xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 220b5c059a84c51ea44107ea8951a57ffaecdc8c)
1 /*	$NetBSD: if_sip.c,v 1.43 2001/11/13 07:48:44 lukem Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Support the 10-bit interface on the DP83820 (for fiber).
80  *
81  *	- Reduce the interrupt load.
82  */
83 
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.43 2001/11/13 07:48:44 lukem Exp $");
86 
87 #include "bpfilter.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100 
101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
102 
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107 
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111 
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125 
126 #include <dev/pci/if_sipreg.h>
127 
128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
130 #else			/* SiS900 and DP83815 */
131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
132 #endif
133 
134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
135 
136 /*
137  * Transmit descriptor list size.  This is arbitrary, but allocate
138  * enough descriptors for 128 pending transmissions, and 8 segments
139  * per packet.  This MUST work out to a power of 2.
140  */
141 #define	SIP_NTXSEGS		8
142 
143 #define	SIP_TXQUEUELEN		256
144 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
145 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
146 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
147 
148 /*
149  * Receive descriptor list size.  We have one Rx buffer per incoming
150  * packet, so this logic is a little simpler.
151  *
152  * Actually, on the DP83820, we allow the packet to consume more than
153  * one buffer, in order to support jumbo Ethernet frames.  In that
154  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
155  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
156  * so we'd better be quick about handling receive interrupts.
157  */
158 #if defined(DP83820)
159 #define	SIP_NRXDESC		256
160 #else
161 #define	SIP_NRXDESC		128
162 #endif /* DP83820 */
163 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
164 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
165 
166 /*
167  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
168  * a single clump that maps to a single DMA segment to make several things
169  * easier.
170  */
171 struct sip_control_data {
172 	/*
173 	 * The transmit descriptors.
174 	 */
175 	struct sip_desc scd_txdescs[SIP_NTXDESC];
176 
177 	/*
178 	 * The receive descriptors.
179 	 */
180 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
181 };
182 
183 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
184 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
185 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
186 
187 /*
188  * Software state for transmit jobs.
189  */
190 struct sip_txsoft {
191 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
192 	bus_dmamap_t txs_dmamap;	/* our DMA map */
193 	int txs_firstdesc;		/* first descriptor in packet */
194 	int txs_lastdesc;		/* last descriptor in packet */
195 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
196 };
197 
198 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
199 
200 /*
201  * Software state for receive jobs.
202  */
203 struct sip_rxsoft {
204 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
205 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
206 };
207 
208 /*
209  * Software state per device.
210  */
211 struct sip_softc {
212 	struct device sc_dev;		/* generic device information */
213 	bus_space_tag_t sc_st;		/* bus space tag */
214 	bus_space_handle_t sc_sh;	/* bus space handle */
215 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
216 	struct ethercom sc_ethercom;	/* ethernet common data */
217 	void *sc_sdhook;		/* shutdown hook */
218 
219 	const struct sip_product *sc_model; /* which model are we? */
220 
221 	void *sc_ih;			/* interrupt cookie */
222 
223 	struct mii_data sc_mii;		/* MII/media information */
224 
225 	struct callout sc_tick_ch;	/* tick callout */
226 
227 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
228 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
229 
230 	/*
231 	 * Software state for transmit and receive descriptors.
232 	 */
233 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
234 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
235 
236 	/*
237 	 * Control data structures.
238 	 */
239 	struct sip_control_data *sc_control_data;
240 #define	sc_txdescs	sc_control_data->scd_txdescs
241 #define	sc_rxdescs	sc_control_data->scd_rxdescs
242 
243 #ifdef SIP_EVENT_COUNTERS
244 	/*
245 	 * Event counters.
246 	 */
247 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
248 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
249 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
250 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
251 #ifdef DP83820
252 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
253 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
254 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
255 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
256 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
257 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
258 #endif /* DP83820 */
259 #endif /* SIP_EVENT_COUNTERS */
260 
261 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
262 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
263 	u_int32_t sc_imr;		/* prototype IMR register */
264 	u_int32_t sc_rfcr;		/* prototype RFCR register */
265 
266 	u_int32_t sc_cfg;		/* prototype CFG register */
267 
268 #ifdef DP83820
269 	u_int32_t sc_gpior;		/* prototype GPIOR register */
270 #endif /* DP83820 */
271 
272 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
273 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
274 
275 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
276 
277 	int	sc_flags;		/* misc. flags; see below */
278 
279 	int	sc_txfree;		/* number of free Tx descriptors */
280 	int	sc_txnext;		/* next ready Tx descriptor */
281 
282 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
283 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
284 
285 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
286 #if defined(DP83820)
287 	int	sc_rxdiscard;
288 	int	sc_rxlen;
289 	struct mbuf *sc_rxhead;
290 	struct mbuf *sc_rxtail;
291 	struct mbuf **sc_rxtailp;
292 #endif /* DP83820 */
293 };
294 
295 /* sc_flags */
296 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
297 
298 #ifdef DP83820
299 #define	SIP_RXCHAIN_RESET(sc)						\
300 do {									\
301 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
302 	*(sc)->sc_rxtailp = NULL;					\
303 	(sc)->sc_rxlen = 0;						\
304 } while (/*CONSTCOND*/0)
305 
306 #define	SIP_RXCHAIN_LINK(sc, m)						\
307 do {									\
308 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
309 	(sc)->sc_rxtailp = &(m)->m_next;				\
310 } while (/*CONSTCOND*/0)
311 #endif /* DP83820 */
312 
313 #ifdef SIP_EVENT_COUNTERS
314 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
315 #else
316 #define	SIP_EVCNT_INCR(ev)	/* nothing */
317 #endif
318 
319 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
320 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
321 
322 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
323 do {									\
324 	int __x, __n;							\
325 									\
326 	__x = (x);							\
327 	__n = (n);							\
328 									\
329 	/* If it will wrap around, sync to the end of the ring. */	\
330 	if ((__x + __n) > SIP_NTXDESC) {				\
331 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
332 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
333 		    (SIP_NTXDESC - __x), (ops));			\
334 		__n -= (SIP_NTXDESC - __x);				\
335 		__x = 0;						\
336 	}								\
337 									\
338 	/* Now sync whatever is left. */				\
339 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
340 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
341 } while (0)
342 
343 #define	SIP_CDRXSYNC(sc, x, ops)					\
344 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
345 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
346 
347 #ifdef DP83820
348 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
349 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
350 #else
351 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
352 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
353 #endif
354 #define	SIP_INIT_RXDESC(sc, x)						\
355 do {									\
356 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
357 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
358 									\
359 	__sipd->sipd_link =						\
360 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
361 	__sipd->sipd_bufptr =						\
362 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
363 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
364 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
365 	SIP_INIT_RXDESC_EXTSTS						\
366 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
367 } while (0)
368 
369 #define SIP_TIMEOUT 1000
370 
371 void	SIP_DECL(start)(struct ifnet *);
372 void	SIP_DECL(watchdog)(struct ifnet *);
373 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
374 int	SIP_DECL(init)(struct ifnet *);
375 void	SIP_DECL(stop)(struct ifnet *, int);
376 
377 void	SIP_DECL(shutdown)(void *);
378 
379 void	SIP_DECL(reset)(struct sip_softc *);
380 void	SIP_DECL(rxdrain)(struct sip_softc *);
381 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
382 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
383 void	SIP_DECL(tick)(void *);
384 
385 #if !defined(DP83820)
386 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
387 #endif /* ! DP83820 */
388 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
389 
390 #if defined(DP83820)
391 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *, u_int8_t *);
392 #else
393 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *, u_int8_t *);
394 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *, u_int8_t *);
395 #endif /* DP83820 */
396 
397 int	SIP_DECL(intr)(void *);
398 void	SIP_DECL(txintr)(struct sip_softc *);
399 void	SIP_DECL(rxintr)(struct sip_softc *);
400 
401 #if defined(DP83820)
402 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
403 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
404 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
405 #else
406 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
407 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
408 void	SIP_DECL(sis900_mii_statchg)(struct device *);
409 
410 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
411 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
412 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
413 #endif /* DP83820 */
414 
415 int	SIP_DECL(mediachange)(struct ifnet *);
416 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
417 
418 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
419 void	SIP_DECL(attach)(struct device *, struct device *, void *);
420 
421 int	SIP_DECL(copy_small) = 0;
422 
423 struct cfattach SIP_DECL(ca) = {
424 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
425 };
426 
427 /*
428  * Descriptions of the variants of the SiS900.
429  */
430 struct sip_variant {
431 	int	(*sipv_mii_readreg)(struct device *, int, int);
432 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
433 	void	(*sipv_mii_statchg)(struct device *);
434 	void	(*sipv_set_filter)(struct sip_softc *);
435 	void	(*sipv_read_macaddr)(struct sip_softc *, u_int8_t *);
436 };
437 
438 #if defined(DP83820)
439 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
440 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
441 
442 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
443 	SIP_DECL(dp83820_mii_bitbang_read),
444 	SIP_DECL(dp83820_mii_bitbang_write),
445 	{
446 		EROMAR_MDIO,		/* MII_BIT_MDO */
447 		EROMAR_MDIO,		/* MII_BIT_MDI */
448 		EROMAR_MDC,		/* MII_BIT_MDC */
449 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
450 		0,			/* MII_BIT_DIR_PHY_HOST */
451 	}
452 };
453 #endif /* DP83820 */
454 
455 #if defined(DP83820)
456 const struct sip_variant SIP_DECL(variant_dp83820) = {
457 	SIP_DECL(dp83820_mii_readreg),
458 	SIP_DECL(dp83820_mii_writereg),
459 	SIP_DECL(dp83820_mii_statchg),
460 	SIP_DECL(dp83815_set_filter),
461 	SIP_DECL(dp83820_read_macaddr),
462 };
463 #else
464 const struct sip_variant SIP_DECL(variant_sis900) = {
465 	SIP_DECL(sis900_mii_readreg),
466 	SIP_DECL(sis900_mii_writereg),
467 	SIP_DECL(sis900_mii_statchg),
468 	SIP_DECL(sis900_set_filter),
469 	SIP_DECL(sis900_read_macaddr),
470 };
471 
472 const struct sip_variant SIP_DECL(variant_dp83815) = {
473 	SIP_DECL(dp83815_mii_readreg),
474 	SIP_DECL(dp83815_mii_writereg),
475 	SIP_DECL(dp83815_mii_statchg),
476 	SIP_DECL(dp83815_set_filter),
477 	SIP_DECL(dp83815_read_macaddr),
478 };
479 #endif /* DP83820 */
480 
481 /*
482  * Devices supported by this driver.
483  */
484 const struct sip_product {
485 	pci_vendor_id_t		sip_vendor;
486 	pci_product_id_t	sip_product;
487 	const char		*sip_name;
488 	const struct sip_variant *sip_variant;
489 } SIP_DECL(products)[] = {
490 #if defined(DP83820)
491 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
492 	  "NatSemi DP83820 Gigabit Ethernet",
493 	  &SIP_DECL(variant_dp83820) },
494 #else
495 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
496 	  "SiS 900 10/100 Ethernet",
497 	  &SIP_DECL(variant_sis900) },
498 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
499 	  "SiS 7016 10/100 Ethernet",
500 	  &SIP_DECL(variant_sis900) },
501 
502 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
503 	  "NatSemi DP83815 10/100 Ethernet",
504 	  &SIP_DECL(variant_dp83815) },
505 #endif /* DP83820 */
506 
507 	{ 0,			0,
508 	  NULL,
509 	  NULL },
510 };
511 
512 static const struct sip_product *
513 SIP_DECL(lookup)(const struct pci_attach_args *pa)
514 {
515 	const struct sip_product *sip;
516 
517 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
518 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
519 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
520 			return (sip);
521 	}
522 	return (NULL);
523 }
524 
525 int
526 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
527 {
528 	struct pci_attach_args *pa = aux;
529 
530 	if (SIP_DECL(lookup)(pa) != NULL)
531 		return (1);
532 
533 	return (0);
534 }
535 
536 void
537 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
538 {
539 	struct sip_softc *sc = (struct sip_softc *) self;
540 	struct pci_attach_args *pa = aux;
541 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
542 	pci_chipset_tag_t pc = pa->pa_pc;
543 	pci_intr_handle_t ih;
544 	const char *intrstr = NULL;
545 	bus_space_tag_t iot, memt;
546 	bus_space_handle_t ioh, memh;
547 	bus_dma_segment_t seg;
548 	int ioh_valid, memh_valid;
549 	int i, rseg, error;
550 	const struct sip_product *sip;
551 	pcireg_t pmode;
552 	u_int8_t enaddr[ETHER_ADDR_LEN];
553 	int pmreg;
554 #ifdef DP83820
555 	pcireg_t memtype;
556 	u_int32_t reg;
557 #endif /* DP83820 */
558 
559 	callout_init(&sc->sc_tick_ch);
560 
561 	sip = SIP_DECL(lookup)(pa);
562 	if (sip == NULL) {
563 		printf("\n");
564 		panic(SIP_STR(attach) ": impossible");
565 	}
566 
567 	printf(": %s\n", sip->sip_name);
568 
569 	sc->sc_model = sip;
570 
571 	/*
572 	 * Map the device.
573 	 */
574 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
575 	    PCI_MAPREG_TYPE_IO, 0,
576 	    &iot, &ioh, NULL, NULL) == 0);
577 #ifdef DP83820
578 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
579 	switch (memtype) {
580 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
581 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
582 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
583 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
584 		break;
585 	default:
586 		memh_valid = 0;
587 	}
588 #else
589 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
590 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
591 	    &memt, &memh, NULL, NULL) == 0);
592 #endif /* DP83820 */
593 
594 	if (memh_valid) {
595 		sc->sc_st = memt;
596 		sc->sc_sh = memh;
597 	} else if (ioh_valid) {
598 		sc->sc_st = iot;
599 		sc->sc_sh = ioh;
600 	} else {
601 		printf("%s: unable to map device registers\n",
602 		    sc->sc_dev.dv_xname);
603 		return;
604 	}
605 
606 	sc->sc_dmat = pa->pa_dmat;
607 
608 	/* Enable bus mastering. */
609 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
610 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
611 	    PCI_COMMAND_MASTER_ENABLE);
612 
613 	/* Get it out of power save mode if needed. */
614 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
615 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
616 		if (pmode == 3) {
617 			/*
618 			 * The card has lost all configuration data in
619 			 * this state, so punt.
620 			 */
621 			printf("%s: unable to wake up from power state D3\n",
622 			    sc->sc_dev.dv_xname);
623 			return;
624 		}
625 		if (pmode != 0) {
626 			printf("%s: waking up from power state D%d\n",
627 			    sc->sc_dev.dv_xname, pmode);
628 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
629 		}
630 	}
631 
632 	/*
633 	 * Map and establish our interrupt.
634 	 */
635 	if (pci_intr_map(pa, &ih)) {
636 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
637 		return;
638 	}
639 	intrstr = pci_intr_string(pc, ih);
640 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
641 	if (sc->sc_ih == NULL) {
642 		printf("%s: unable to establish interrupt",
643 		    sc->sc_dev.dv_xname);
644 		if (intrstr != NULL)
645 			printf(" at %s", intrstr);
646 		printf("\n");
647 		return;
648 	}
649 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
650 
651 	SIMPLEQ_INIT(&sc->sc_txfreeq);
652 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
653 
654 	/*
655 	 * Allocate the control data structures, and create and load the
656 	 * DMA map for it.
657 	 */
658 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
659 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
660 	    0)) != 0) {
661 		printf("%s: unable to allocate control data, error = %d\n",
662 		    sc->sc_dev.dv_xname, error);
663 		goto fail_0;
664 	}
665 
666 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
667 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
668 	    BUS_DMA_COHERENT)) != 0) {
669 		printf("%s: unable to map control data, error = %d\n",
670 		    sc->sc_dev.dv_xname, error);
671 		goto fail_1;
672 	}
673 
674 	if ((error = bus_dmamap_create(sc->sc_dmat,
675 	    sizeof(struct sip_control_data), 1,
676 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
677 		printf("%s: unable to create control data DMA map, "
678 		    "error = %d\n", sc->sc_dev.dv_xname, error);
679 		goto fail_2;
680 	}
681 
682 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
683 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
684 	    0)) != 0) {
685 		printf("%s: unable to load control data DMA map, error = %d\n",
686 		    sc->sc_dev.dv_xname, error);
687 		goto fail_3;
688 	}
689 
690 	/*
691 	 * Create the transmit buffer DMA maps.
692 	 */
693 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
694 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
695 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
696 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
697 			printf("%s: unable to create tx DMA map %d, "
698 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
699 			goto fail_4;
700 		}
701 	}
702 
703 	/*
704 	 * Create the receive buffer DMA maps.
705 	 */
706 	for (i = 0; i < SIP_NRXDESC; i++) {
707 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
708 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
709 			printf("%s: unable to create rx DMA map %d, "
710 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
711 			goto fail_5;
712 		}
713 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
714 	}
715 
716 	/*
717 	 * Reset the chip to a known state.
718 	 */
719 	SIP_DECL(reset)(sc);
720 
721 	/*
722 	 * Read the Ethernet address from the EEPROM.  This might
723 	 * also fetch other stuff from the EEPROM and stash it
724 	 * in the softc.
725 	 */
726 	sc->sc_cfg = 0;
727 	(*sip->sip_variant->sipv_read_macaddr)(sc, enaddr);
728 
729 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
730 	    ether_sprintf(enaddr));
731 
732 	/*
733 	 * Initialize the configuration register: aggressive PCI
734 	 * bus request algorithm, default backoff, default OW timer,
735 	 * default parity error detection.
736 	 *
737 	 * NOTE: "Big endian mode" is useless on the SiS900 and
738 	 * friends -- it affects packet data, not descriptors.
739 	 */
740 #ifdef DP83820
741 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
742 	if (reg & CFG_PCI64_DET) {
743 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
744 		/*
745 		 * XXX Need some PCI flags indicating support for
746 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
747 		 * XXX data path.
748 		 */
749 	}
750 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
751 		const char *sep = "";
752 		printf("%s: using ", sc->sc_dev.dv_xname);
753 		if (sc->sc_cfg & CFG_EXT_125) {
754 			printf("%s125MHz clock", sep);
755 			sep = ", ";
756 		}
757 		if (sc->sc_cfg & CFG_TBI_EN) {
758 			printf("%sten-bit interface", sep);
759 			sep = ", ";
760 		}
761 		printf("\n");
762 	}
763 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
764 		sc->sc_cfg |= CFG_MRM_DIS;
765 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
766 		sc->sc_cfg |= CFG_MWI_DIS;
767 
768 	/*
769 	 * Use the extended descriptor format on the DP83820.  This
770 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
771 	 * checksumming.
772 	 */
773 	sc->sc_cfg |= CFG_EXTSTS_EN;
774 #endif /* DP83820 */
775 
776 	/*
777 	 * Initialize our media structures and probe the MII.
778 	 */
779 	sc->sc_mii.mii_ifp = ifp;
780 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
781 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
782 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
783 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
784 	    SIP_DECL(mediastatus));
785 #ifdef DP83820
786 	if (sc->sc_cfg & CFG_TBI_EN) {
787 		/* Using ten-bit interface. */
788 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
789 	} else {
790 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
791 		    MII_OFFSET_ANY, 0);
792 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
793 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
794 			    0, NULL);
795 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
796 		} else
797 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
798 	}
799 #else
800 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
801 	    MII_OFFSET_ANY, 0);
802 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
803 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
804 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
805 	} else
806 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
807 #endif /* DP83820 */
808 
809 	ifp = &sc->sc_ethercom.ec_if;
810 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
811 	ifp->if_softc = sc;
812 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
813 	ifp->if_ioctl = SIP_DECL(ioctl);
814 	ifp->if_start = SIP_DECL(start);
815 	ifp->if_watchdog = SIP_DECL(watchdog);
816 	ifp->if_init = SIP_DECL(init);
817 	ifp->if_stop = SIP_DECL(stop);
818 	IFQ_SET_READY(&ifp->if_snd);
819 
820 	/*
821 	 * We can support 802.1Q VLAN-sized frames.
822 	 */
823 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
824 
825 #ifdef DP83820
826 	/*
827 	 * And the DP83820 can do VLAN tagging in hardware, and
828 	 * support the jumbo Ethernet MTU.
829 	 */
830 	sc->sc_ethercom.ec_capabilities |=
831 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
832 
833 	/*
834 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
835 	 * in hardware.
836 	 */
837 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
838 	    IFCAP_CSUM_UDPv4;
839 #endif /* DP83820 */
840 
841 	/*
842 	 * Attach the interface.
843 	 */
844 	if_attach(ifp);
845 	ether_ifattach(ifp, enaddr);
846 
847 #ifdef SIP_EVENT_COUNTERS
848 	/*
849 	 * Attach event counters.
850 	 */
851 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
852 	    NULL, sc->sc_dev.dv_xname, "txsstall");
853 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
854 	    NULL, sc->sc_dev.dv_xname, "txdstall");
855 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
856 	    NULL, sc->sc_dev.dv_xname, "txintr");
857 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
858 	    NULL, sc->sc_dev.dv_xname, "rxintr");
859 #ifdef DP83820
860 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
861 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
862 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
863 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
864 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
865 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
866 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
867 	    NULL, sc->sc_dev.dv_xname, "txipsum");
868 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
869 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
870 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
871 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
872 #endif /* DP83820 */
873 #endif /* SIP_EVENT_COUNTERS */
874 
875 	/*
876 	 * Make sure the interface is shutdown during reboot.
877 	 */
878 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
879 	if (sc->sc_sdhook == NULL)
880 		printf("%s: WARNING: unable to establish shutdown hook\n",
881 		    sc->sc_dev.dv_xname);
882 	return;
883 
884 	/*
885 	 * Free any resources we've allocated during the failed attach
886 	 * attempt.  Do this in reverse order and fall through.
887 	 */
888  fail_5:
889 	for (i = 0; i < SIP_NRXDESC; i++) {
890 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
891 			bus_dmamap_destroy(sc->sc_dmat,
892 			    sc->sc_rxsoft[i].rxs_dmamap);
893 	}
894  fail_4:
895 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
896 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
897 			bus_dmamap_destroy(sc->sc_dmat,
898 			    sc->sc_txsoft[i].txs_dmamap);
899 	}
900 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
901  fail_3:
902 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
903  fail_2:
904 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
905 	    sizeof(struct sip_control_data));
906  fail_1:
907 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
908  fail_0:
909 	return;
910 }
911 
912 /*
913  * sip_shutdown:
914  *
915  *	Make sure the interface is stopped at reboot time.
916  */
917 void
918 SIP_DECL(shutdown)(void *arg)
919 {
920 	struct sip_softc *sc = arg;
921 
922 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
923 }
924 
925 /*
926  * sip_start:		[ifnet interface function]
927  *
928  *	Start packet transmission on the interface.
929  */
930 void
931 SIP_DECL(start)(struct ifnet *ifp)
932 {
933 	struct sip_softc *sc = ifp->if_softc;
934 	struct mbuf *m0, *m;
935 	struct sip_txsoft *txs;
936 	bus_dmamap_t dmamap;
937 	int error, firsttx, nexttx, lasttx, ofree, seg;
938 #ifdef DP83820
939 	u_int32_t extsts;
940 #endif
941 
942 	/*
943 	 * If we've been told to pause, don't transmit any more packets.
944 	 */
945 	if (sc->sc_flags & SIPF_PAUSED)
946 		ifp->if_flags |= IFF_OACTIVE;
947 
948 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
949 		return;
950 
951 	/*
952 	 * Remember the previous number of free descriptors and
953 	 * the first descriptor we'll use.
954 	 */
955 	ofree = sc->sc_txfree;
956 	firsttx = sc->sc_txnext;
957 
958 	/*
959 	 * Loop through the send queue, setting up transmit descriptors
960 	 * until we drain the queue, or use up all available transmit
961 	 * descriptors.
962 	 */
963 	for (;;) {
964 		/* Get a work queue entry. */
965 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
966 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
967 			break;
968 		}
969 
970 		/*
971 		 * Grab a packet off the queue.
972 		 */
973 		IFQ_POLL(&ifp->if_snd, m0);
974 		if (m0 == NULL)
975 			break;
976 #ifndef DP83820
977 		m = NULL;
978 #endif
979 
980 		dmamap = txs->txs_dmamap;
981 
982 #ifdef DP83820
983 		/*
984 		 * Load the DMA map.  If this fails, the packet either
985 		 * didn't fit in the allotted number of segments, or we
986 		 * were short on resources.  For the too-many-segments
987 		 * case, we simply report an error and drop the packet,
988 		 * since we can't sanely copy a jumbo packet to a single
989 		 * buffer.
990 		 */
991 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
992 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
993 		if (error) {
994 			if (error == EFBIG) {
995 				printf("%s: Tx packet consumes too many "
996 				    "DMA segments, dropping...\n",
997 				    sc->sc_dev.dv_xname);
998 				IFQ_DEQUEUE(&ifp->if_snd, m0);
999 				m_freem(m0);
1000 				continue;
1001 			}
1002 			/*
1003 			 * Short on resources, just stop for now.
1004 			 */
1005 			break;
1006 		}
1007 #else /* DP83820 */
1008 		/*
1009 		 * Load the DMA map.  If this fails, the packet either
1010 		 * didn't fit in the alloted number of segments, or we
1011 		 * were short on resources.  In this case, we'll copy
1012 		 * and try again.
1013 		 */
1014 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1015 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1016 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1017 			if (m == NULL) {
1018 				printf("%s: unable to allocate Tx mbuf\n",
1019 				    sc->sc_dev.dv_xname);
1020 				break;
1021 			}
1022 			if (m0->m_pkthdr.len > MHLEN) {
1023 				MCLGET(m, M_DONTWAIT);
1024 				if ((m->m_flags & M_EXT) == 0) {
1025 					printf("%s: unable to allocate Tx "
1026 					    "cluster\n", sc->sc_dev.dv_xname);
1027 					m_freem(m);
1028 					break;
1029 				}
1030 			}
1031 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1032 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1033 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1034 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1035 			if (error) {
1036 				printf("%s: unable to load Tx buffer, "
1037 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1038 				break;
1039 			}
1040 		}
1041 #endif /* DP83820 */
1042 
1043 		/*
1044 		 * Ensure we have enough descriptors free to describe
1045 		 * the packet.  Note, we always reserve one descriptor
1046 		 * at the end of the ring as a termination point, to
1047 		 * prevent wrap-around.
1048 		 */
1049 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1050 			/*
1051 			 * Not enough free descriptors to transmit this
1052 			 * packet.  We haven't committed anything yet,
1053 			 * so just unload the DMA map, put the packet
1054 			 * back on the queue, and punt.  Notify the upper
1055 			 * layer that there are not more slots left.
1056 			 *
1057 			 * XXX We could allocate an mbuf and copy, but
1058 			 * XXX is it worth it?
1059 			 */
1060 			ifp->if_flags |= IFF_OACTIVE;
1061 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1062 #ifndef DP83820
1063 			if (m != NULL)
1064 				m_freem(m);
1065 #endif
1066 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1067 			break;
1068 		}
1069 
1070 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1071 #ifndef DP83820
1072 		if (m != NULL) {
1073 			m_freem(m0);
1074 			m0 = m;
1075 		}
1076 #endif
1077 
1078 		/*
1079 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1080 		 */
1081 
1082 		/* Sync the DMA map. */
1083 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1084 		    BUS_DMASYNC_PREWRITE);
1085 
1086 		/*
1087 		 * Initialize the transmit descriptors.
1088 		 */
1089 		for (nexttx = sc->sc_txnext, seg = 0;
1090 		     seg < dmamap->dm_nsegs;
1091 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1092 			/*
1093 			 * If this is the first descriptor we're
1094 			 * enqueueing, don't set the OWN bit just
1095 			 * yet.  That could cause a race condition.
1096 			 * We'll do it below.
1097 			 */
1098 			sc->sc_txdescs[nexttx].sipd_bufptr =
1099 			    htole32(dmamap->dm_segs[seg].ds_addr);
1100 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1101 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1102 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1103 #ifdef DP83820
1104 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1105 #endif /* DP83820 */
1106 			lasttx = nexttx;
1107 		}
1108 
1109 		/* Clear the MORE bit on the last segment. */
1110 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1111 
1112 #ifdef DP83820
1113 		/*
1114 		 * If VLANs are enabled and the packet has a VLAN tag, set
1115 		 * up the descriptor to encapsulate the packet for us.
1116 		 *
1117 		 * This apparently has to be on the last descriptor of
1118 		 * the packet.
1119 		 */
1120 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1121 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1122 			sc->sc_txdescs[lasttx].sipd_extsts |=
1123 			    htole32(EXTSTS_VPKT |
1124 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
1125 		}
1126 
1127 		/*
1128 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1129 		 * checksumming, set up the descriptor to do this work
1130 		 * for us.
1131 		 *
1132 		 * This apparently has to be on the first descriptor of
1133 		 * the packet.
1134 		 *
1135 		 * Byte-swap constants so the compiler can optimize.
1136 		 */
1137 		extsts = 0;
1138 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1139 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1140 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1141 			extsts |= htole32(EXTSTS_IPPKT);
1142 		}
1143 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1144 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1145 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1146 			extsts |= htole32(EXTSTS_TCPPKT);
1147 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1148 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1149 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1150 			extsts |= htole32(EXTSTS_UDPPKT);
1151 		}
1152 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1153 #endif /* DP83820 */
1154 
1155 		/* Sync the descriptors we're using. */
1156 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1157 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1158 
1159 		/*
1160 		 * Store a pointer to the packet so we can free it later,
1161 		 * and remember what txdirty will be once the packet is
1162 		 * done.
1163 		 */
1164 		txs->txs_mbuf = m0;
1165 		txs->txs_firstdesc = sc->sc_txnext;
1166 		txs->txs_lastdesc = lasttx;
1167 
1168 		/* Advance the tx pointer. */
1169 		sc->sc_txfree -= dmamap->dm_nsegs;
1170 		sc->sc_txnext = nexttx;
1171 
1172 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1173 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1174 
1175 #if NBPFILTER > 0
1176 		/*
1177 		 * Pass the packet to any BPF listeners.
1178 		 */
1179 		if (ifp->if_bpf)
1180 			bpf_mtap(ifp->if_bpf, m0);
1181 #endif /* NBPFILTER > 0 */
1182 	}
1183 
1184 	if (txs == NULL || sc->sc_txfree == 0) {
1185 		/* No more slots left; notify upper layer. */
1186 		ifp->if_flags |= IFF_OACTIVE;
1187 	}
1188 
1189 	if (sc->sc_txfree != ofree) {
1190 		/*
1191 		 * Cause a descriptor interrupt to happen on the
1192 		 * last packet we enqueued.
1193 		 */
1194 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1195 		SIP_CDTXSYNC(sc, lasttx, 1,
1196 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1197 
1198 		/*
1199 		 * The entire packet chain is set up.  Give the
1200 		 * first descrptor to the chip now.
1201 		 */
1202 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1203 		SIP_CDTXSYNC(sc, firsttx, 1,
1204 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1205 
1206 		/*
1207 		 * Start the transmit process.  Note, the manual says
1208 		 * that if there are no pending transmissions in the
1209 		 * chip's internal queue (indicated by TXE being clear),
1210 		 * then the driver software must set the TXDP to the
1211 		 * first descriptor to be transmitted.  However, if we
1212 		 * do this, it causes serious performance degredation on
1213 		 * the DP83820 under load, not setting TXDP doesn't seem
1214 		 * to adversely affect the SiS 900 or DP83815.
1215 		 *
1216 		 * Well, I guess it wouldn't be the first time a manual
1217 		 * has lied -- and they could be speaking of the NULL-
1218 		 * terminated descriptor list case, rather than OWN-
1219 		 * terminated rings.
1220 		 */
1221 #if 0
1222 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1223 		     CR_TXE) == 0) {
1224 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1225 			    SIP_CDTXADDR(sc, firsttx));
1226 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1227 		}
1228 #else
1229 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1230 #endif
1231 
1232 		/* Set a watchdog timer in case the chip flakes out. */
1233 		ifp->if_timer = 5;
1234 	}
1235 }
1236 
1237 /*
1238  * sip_watchdog:	[ifnet interface function]
1239  *
1240  *	Watchdog timer handler.
1241  */
1242 void
1243 SIP_DECL(watchdog)(struct ifnet *ifp)
1244 {
1245 	struct sip_softc *sc = ifp->if_softc;
1246 
1247 	/*
1248 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1249 	 * If we get a timeout, try and sweep up transmit descriptors.
1250 	 * If we manage to sweep them all up, ignore the lack of
1251 	 * interrupt.
1252 	 */
1253 	SIP_DECL(txintr)(sc);
1254 
1255 	if (sc->sc_txfree != SIP_NTXDESC) {
1256 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1257 		ifp->if_oerrors++;
1258 
1259 		/* Reset the interface. */
1260 		(void) SIP_DECL(init)(ifp);
1261 	} else if (ifp->if_flags & IFF_DEBUG)
1262 		printf("%s: recovered from device timeout\n",
1263 		    sc->sc_dev.dv_xname);
1264 
1265 	/* Try to get more packets going. */
1266 	SIP_DECL(start)(ifp);
1267 }
1268 
1269 /*
1270  * sip_ioctl:		[ifnet interface function]
1271  *
1272  *	Handle control requests from the operator.
1273  */
1274 int
1275 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1276 {
1277 	struct sip_softc *sc = ifp->if_softc;
1278 	struct ifreq *ifr = (struct ifreq *)data;
1279 	int s, error;
1280 
1281 	s = splnet();
1282 
1283 	switch (cmd) {
1284 	case SIOCSIFMEDIA:
1285 	case SIOCGIFMEDIA:
1286 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1287 		break;
1288 
1289 	default:
1290 		error = ether_ioctl(ifp, cmd, data);
1291 		if (error == ENETRESET) {
1292 			/*
1293 			 * Multicast list has changed; set the hardware filter
1294 			 * accordingly.
1295 			 */
1296 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1297 			error = 0;
1298 		}
1299 		break;
1300 	}
1301 
1302 	/* Try to get more packets going. */
1303 	SIP_DECL(start)(ifp);
1304 
1305 	splx(s);
1306 	return (error);
1307 }
1308 
1309 /*
1310  * sip_intr:
1311  *
1312  *	Interrupt service routine.
1313  */
1314 int
1315 SIP_DECL(intr)(void *arg)
1316 {
1317 	struct sip_softc *sc = arg;
1318 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1319 	u_int32_t isr;
1320 	int handled = 0;
1321 
1322 	for (;;) {
1323 		/* Reading clears interrupt. */
1324 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1325 		if ((isr & sc->sc_imr) == 0)
1326 			break;
1327 
1328 		handled = 1;
1329 
1330 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1331 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1332 
1333 			/* Grab any new packets. */
1334 			SIP_DECL(rxintr)(sc);
1335 
1336 			if (isr & ISR_RXORN) {
1337 				printf("%s: receive FIFO overrun\n",
1338 				    sc->sc_dev.dv_xname);
1339 
1340 				/* XXX adjust rx_drain_thresh? */
1341 			}
1342 
1343 			if (isr & ISR_RXIDLE) {
1344 				printf("%s: receive ring overrun\n",
1345 				    sc->sc_dev.dv_xname);
1346 
1347 				/* Get the receive process going again. */
1348 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1349 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1350 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1351 				    SIP_CR, CR_RXE);
1352 			}
1353 		}
1354 
1355 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
1356 			SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1357 
1358 			/* Sweep up transmit descriptors. */
1359 			SIP_DECL(txintr)(sc);
1360 
1361 			if (isr & ISR_TXURN) {
1362 				u_int32_t thresh;
1363 
1364 				printf("%s: transmit FIFO underrun",
1365 				    sc->sc_dev.dv_xname);
1366 
1367 				thresh = sc->sc_tx_drain_thresh + 1;
1368 				if (thresh <= TXCFG_DRTH &&
1369 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1370 				     (sc->sc_tx_fill_thresh * 32))) {
1371 					printf("; increasing Tx drain "
1372 					    "threshold to %u bytes\n",
1373 					    thresh * 32);
1374 					sc->sc_tx_drain_thresh = thresh;
1375 					(void) SIP_DECL(init)(ifp);
1376 				} else {
1377 					(void) SIP_DECL(init)(ifp);
1378 					printf("\n");
1379 				}
1380 			}
1381 		}
1382 
1383 #if !defined(DP83820)
1384 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1385 			if (isr & ISR_PAUSE_ST) {
1386 				sc->sc_flags |= SIPF_PAUSED;
1387 				ifp->if_flags |= IFF_OACTIVE;
1388 			}
1389 			if (isr & ISR_PAUSE_END) {
1390 				sc->sc_flags &= ~SIPF_PAUSED;
1391 				ifp->if_flags &= ~IFF_OACTIVE;
1392 			}
1393 		}
1394 #endif /* ! DP83820 */
1395 
1396 		if (isr & ISR_HIBERR) {
1397 #define	PRINTERR(bit, str)						\
1398 			if (isr & (bit))				\
1399 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1400 			PRINTERR(ISR_DPERR, "parity error");
1401 			PRINTERR(ISR_SSERR, "system error");
1402 			PRINTERR(ISR_RMABT, "master abort");
1403 			PRINTERR(ISR_RTABT, "target abort");
1404 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1405 			(void) SIP_DECL(init)(ifp);
1406 #undef PRINTERR
1407 		}
1408 	}
1409 
1410 	/* Try to get more packets going. */
1411 	SIP_DECL(start)(ifp);
1412 
1413 	return (handled);
1414 }
1415 
1416 /*
1417  * sip_txintr:
1418  *
1419  *	Helper; handle transmit interrupts.
1420  */
1421 void
1422 SIP_DECL(txintr)(struct sip_softc *sc)
1423 {
1424 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1425 	struct sip_txsoft *txs;
1426 	u_int32_t cmdsts;
1427 
1428 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1429 		ifp->if_flags &= ~IFF_OACTIVE;
1430 
1431 	/*
1432 	 * Go through our Tx list and free mbufs for those
1433 	 * frames which have been transmitted.
1434 	 */
1435 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1436 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1437 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1438 
1439 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1440 		if (cmdsts & CMDSTS_OWN)
1441 			break;
1442 
1443 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1444 
1445 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1446 
1447 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1448 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1449 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1450 		m_freem(txs->txs_mbuf);
1451 		txs->txs_mbuf = NULL;
1452 
1453 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1454 
1455 		/*
1456 		 * Check for errors and collisions.
1457 		 */
1458 		if (cmdsts &
1459 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1460 			ifp->if_oerrors++;
1461 			if (cmdsts & CMDSTS_Tx_EC)
1462 				ifp->if_collisions += 16;
1463 			if (ifp->if_flags & IFF_DEBUG) {
1464 				if (cmdsts & CMDSTS_Tx_ED)
1465 					printf("%s: excessive deferral\n",
1466 					    sc->sc_dev.dv_xname);
1467 				if (cmdsts & CMDSTS_Tx_EC)
1468 					printf("%s: excessive collisions\n",
1469 					    sc->sc_dev.dv_xname);
1470 			}
1471 		} else {
1472 			/* Packet was transmitted successfully. */
1473 			ifp->if_opackets++;
1474 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1475 		}
1476 	}
1477 
1478 	/*
1479 	 * If there are no more pending transmissions, cancel the watchdog
1480 	 * timer.
1481 	 */
1482 	if (txs == NULL)
1483 		ifp->if_timer = 0;
1484 }
1485 
1486 #if defined(DP83820)
1487 /*
1488  * sip_rxintr:
1489  *
1490  *	Helper; handle receive interrupts.
1491  */
1492 void
1493 SIP_DECL(rxintr)(struct sip_softc *sc)
1494 {
1495 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1496 	struct sip_rxsoft *rxs;
1497 	struct mbuf *m, *tailm;
1498 	u_int32_t cmdsts, extsts;
1499 	int i, len;
1500 
1501 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1502 		rxs = &sc->sc_rxsoft[i];
1503 
1504 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1505 
1506 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1507 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1508 
1509 		/*
1510 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1511 		 * consumer of the receive ring, so if the bit is clear,
1512 		 * we have processed all of the packets.
1513 		 */
1514 		if ((cmdsts & CMDSTS_OWN) == 0) {
1515 			/*
1516 			 * We have processed all of the receive buffers.
1517 			 */
1518 			break;
1519 		}
1520 
1521 		if (__predict_false(sc->sc_rxdiscard)) {
1522 			SIP_INIT_RXDESC(sc, i);
1523 			if ((cmdsts & CMDSTS_MORE) == 0) {
1524 				/* Reset our state. */
1525 				sc->sc_rxdiscard = 0;
1526 			}
1527 			continue;
1528 		}
1529 
1530 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1531 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1532 
1533 		m = rxs->rxs_mbuf;
1534 
1535 		/*
1536 		 * Add a new receive buffer to the ring.
1537 		 */
1538 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1539 			/*
1540 			 * Failed, throw away what we've done so
1541 			 * far, and discard the rest of the packet.
1542 			 */
1543 			ifp->if_ierrors++;
1544 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1545 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1546 			SIP_INIT_RXDESC(sc, i);
1547 			if (cmdsts & CMDSTS_MORE)
1548 				sc->sc_rxdiscard = 1;
1549 			if (sc->sc_rxhead != NULL)
1550 				m_freem(sc->sc_rxhead);
1551 			SIP_RXCHAIN_RESET(sc);
1552 			continue;
1553 		}
1554 
1555 		SIP_RXCHAIN_LINK(sc, m);
1556 
1557 		/*
1558 		 * If this is not the end of the packet, keep
1559 		 * looking.
1560 		 */
1561 		if (cmdsts & CMDSTS_MORE) {
1562 			sc->sc_rxlen += m->m_len;
1563 			continue;
1564 		}
1565 
1566 		/*
1567 		 * Okay, we have the entire packet now...
1568 		 */
1569 		*sc->sc_rxtailp = NULL;
1570 		m = sc->sc_rxhead;
1571 		tailm = sc->sc_rxtail;
1572 
1573 		SIP_RXCHAIN_RESET(sc);
1574 
1575 		/*
1576 		 * If an error occurred, update stats and drop the packet.
1577 		 */
1578 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1579 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1580 			ifp->if_ierrors++;
1581 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1582 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1583 				/* Receive overrun handled elsewhere. */
1584 				printf("%s: receive descriptor error\n",
1585 				    sc->sc_dev.dv_xname);
1586 			}
1587 #define	PRINTERR(bit, str)						\
1588 			if (cmdsts & (bit))				\
1589 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1590 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1591 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1592 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1593 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1594 #undef PRINTERR
1595 			m_freem(m);
1596 			continue;
1597 		}
1598 
1599 		/*
1600 		 * No errors.
1601 		 *
1602 		 * Note, the DP83820 includes the CRC with
1603 		 * every packet.
1604 		 */
1605 		len = CMDSTS_SIZE(cmdsts);
1606 		tailm->m_len = len - sc->sc_rxlen;
1607 
1608 		/*
1609 		 * If the packet is small enough to fit in a
1610 		 * single header mbuf, allocate one and copy
1611 		 * the data into it.  This greatly reduces
1612 		 * memory consumption when we receive lots
1613 		 * of small packets.
1614 		 */
1615 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1616 			struct mbuf *nm;
1617 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1618 			if (nm == NULL) {
1619 				ifp->if_ierrors++;
1620 				m_freem(m);
1621 				continue;
1622 			}
1623 			nm->m_data += 2;
1624 			nm->m_pkthdr.len = nm->m_len = len;
1625 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1626 			m_freem(m);
1627 			m = nm;
1628 		}
1629 #ifndef __NO_STRICT_ALIGNMENT
1630 		else {
1631 			/*
1632 			 * The DP83820's receive buffers must be 4-byte
1633 			 * aligned.  But this means that the data after
1634 			 * the Ethernet header is misaligned.  To compensate,
1635 			 * we have artificially shortened the buffer size
1636 			 * in the descriptor, and we do an overlapping copy
1637 			 * of the data two bytes further in (in the first
1638 			 * buffer of the chain only).
1639 			 */
1640 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1641 			    m->m_len);
1642 			m->m_data += 2;
1643 		}
1644 #endif /* ! __NO_STRICT_ALIGNMENT */
1645 
1646 		/*
1647 		 * If VLANs are enabled, VLAN packets have been unwrapped
1648 		 * for us.  Associate the tag with the packet.
1649 		 */
1650 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1651 		    (extsts & EXTSTS_VPKT) != 0) {
1652 			struct mbuf *vtag;
1653 
1654 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1655 			if (vtag == NULL) {
1656 				ifp->if_ierrors++;
1657 				printf("%s: unable to allocate VLAN tag\n",
1658 				    sc->sc_dev.dv_xname);
1659 				m_freem(m);
1660 				continue;
1661 			}
1662 
1663 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1664 			vtag->m_len = sizeof(int);
1665 		}
1666 
1667 		/*
1668 		 * Set the incoming checksum information for the
1669 		 * packet.
1670 		 */
1671 		if ((extsts & EXTSTS_IPPKT) != 0) {
1672 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1673 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1674 			if (extsts & EXTSTS_Rx_IPERR)
1675 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1676 			if (extsts & EXTSTS_TCPPKT) {
1677 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1678 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1679 				if (extsts & EXTSTS_Rx_TCPERR)
1680 					m->m_pkthdr.csum_flags |=
1681 					    M_CSUM_TCP_UDP_BAD;
1682 			} else if (extsts & EXTSTS_UDPPKT) {
1683 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1684 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1685 				if (extsts & EXTSTS_Rx_UDPERR)
1686 					m->m_pkthdr.csum_flags |=
1687 					    M_CSUM_TCP_UDP_BAD;
1688 			}
1689 		}
1690 
1691 		ifp->if_ipackets++;
1692 		m->m_flags |= M_HASFCS;
1693 		m->m_pkthdr.rcvif = ifp;
1694 		m->m_pkthdr.len = len;
1695 
1696 #if NBPFILTER > 0
1697 		/*
1698 		 * Pass this up to any BPF listeners, but only
1699 		 * pass if up the stack if it's for us.
1700 		 */
1701 		if (ifp->if_bpf)
1702 			bpf_mtap(ifp->if_bpf, m);
1703 #endif /* NBPFILTER > 0 */
1704 
1705 		/* Pass it on. */
1706 		(*ifp->if_input)(ifp, m);
1707 	}
1708 
1709 	/* Update the receive pointer. */
1710 	sc->sc_rxptr = i;
1711 }
1712 #else /* ! DP83820 */
1713 /*
1714  * sip_rxintr:
1715  *
1716  *	Helper; handle receive interrupts.
1717  */
1718 void
1719 SIP_DECL(rxintr)(struct sip_softc *sc)
1720 {
1721 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1722 	struct sip_rxsoft *rxs;
1723 	struct mbuf *m;
1724 	u_int32_t cmdsts;
1725 	int i, len;
1726 
1727 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1728 		rxs = &sc->sc_rxsoft[i];
1729 
1730 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1731 
1732 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1733 
1734 		/*
1735 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1736 		 * consumer of the receive ring, so if the bit is clear,
1737 		 * we have processed all of the packets.
1738 		 */
1739 		if ((cmdsts & CMDSTS_OWN) == 0) {
1740 			/*
1741 			 * We have processed all of the receive buffers.
1742 			 */
1743 			break;
1744 		}
1745 
1746 		/*
1747 		 * If any collisions were seen on the wire, count one.
1748 		 */
1749 		if (cmdsts & CMDSTS_Rx_COL)
1750 			ifp->if_collisions++;
1751 
1752 		/*
1753 		 * If an error occurred, update stats, clear the status
1754 		 * word, and leave the packet buffer in place.  It will
1755 		 * simply be reused the next time the ring comes around.
1756 		 */
1757 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1758 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1759 			ifp->if_ierrors++;
1760 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1761 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1762 				/* Receive overrun handled elsewhere. */
1763 				printf("%s: receive descriptor error\n",
1764 				    sc->sc_dev.dv_xname);
1765 			}
1766 #define	PRINTERR(bit, str)						\
1767 			if (cmdsts & (bit))				\
1768 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1769 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1770 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1771 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1772 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1773 #undef PRINTERR
1774 			SIP_INIT_RXDESC(sc, i);
1775 			continue;
1776 		}
1777 
1778 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1779 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1780 
1781 		/*
1782 		 * No errors; receive the packet.  Note, the SiS 900
1783 		 * includes the CRC with every packet.
1784 		 */
1785 		len = CMDSTS_SIZE(cmdsts);
1786 
1787 #ifdef __NO_STRICT_ALIGNMENT
1788 		/*
1789 		 * If the packet is small enough to fit in a
1790 		 * single header mbuf, allocate one and copy
1791 		 * the data into it.  This greatly reduces
1792 		 * memory consumption when we receive lots
1793 		 * of small packets.
1794 		 *
1795 		 * Otherwise, we add a new buffer to the receive
1796 		 * chain.  If this fails, we drop the packet and
1797 		 * recycle the old buffer.
1798 		 */
1799 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1800 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1801 			if (m == NULL)
1802 				goto dropit;
1803 			memcpy(mtod(m, caddr_t),
1804 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1805 			SIP_INIT_RXDESC(sc, i);
1806 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1807 			    rxs->rxs_dmamap->dm_mapsize,
1808 			    BUS_DMASYNC_PREREAD);
1809 		} else {
1810 			m = rxs->rxs_mbuf;
1811 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1812  dropit:
1813 				ifp->if_ierrors++;
1814 				SIP_INIT_RXDESC(sc, i);
1815 				bus_dmamap_sync(sc->sc_dmat,
1816 				    rxs->rxs_dmamap, 0,
1817 				    rxs->rxs_dmamap->dm_mapsize,
1818 				    BUS_DMASYNC_PREREAD);
1819 				continue;
1820 			}
1821 		}
1822 #else
1823 		/*
1824 		 * The SiS 900's receive buffers must be 4-byte aligned.
1825 		 * But this means that the data after the Ethernet header
1826 		 * is misaligned.  We must allocate a new buffer and
1827 		 * copy the data, shifted forward 2 bytes.
1828 		 */
1829 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1830 		if (m == NULL) {
1831  dropit:
1832 			ifp->if_ierrors++;
1833 			SIP_INIT_RXDESC(sc, i);
1834 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1835 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1836 			continue;
1837 		}
1838 		if (len > (MHLEN - 2)) {
1839 			MCLGET(m, M_DONTWAIT);
1840 			if ((m->m_flags & M_EXT) == 0) {
1841 				m_freem(m);
1842 				goto dropit;
1843 			}
1844 		}
1845 		m->m_data += 2;
1846 
1847 		/*
1848 		 * Note that we use clusters for incoming frames, so the
1849 		 * buffer is virtually contiguous.
1850 		 */
1851 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1852 
1853 		/* Allow the receive descriptor to continue using its mbuf. */
1854 		SIP_INIT_RXDESC(sc, i);
1855 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1856 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1857 #endif /* __NO_STRICT_ALIGNMENT */
1858 
1859 		ifp->if_ipackets++;
1860 		m->m_flags |= M_HASFCS;
1861 		m->m_pkthdr.rcvif = ifp;
1862 		m->m_pkthdr.len = m->m_len = len;
1863 
1864 #if NBPFILTER > 0
1865 		/*
1866 		 * Pass this up to any BPF listeners, but only
1867 		 * pass if up the stack if it's for us.
1868 		 */
1869 		if (ifp->if_bpf)
1870 			bpf_mtap(ifp->if_bpf, m);
1871 #endif /* NBPFILTER > 0 */
1872 
1873 		/* Pass it on. */
1874 		(*ifp->if_input)(ifp, m);
1875 	}
1876 
1877 	/* Update the receive pointer. */
1878 	sc->sc_rxptr = i;
1879 }
1880 #endif /* DP83820 */
1881 
1882 /*
1883  * sip_tick:
1884  *
1885  *	One second timer, used to tick the MII.
1886  */
1887 void
1888 SIP_DECL(tick)(void *arg)
1889 {
1890 	struct sip_softc *sc = arg;
1891 	int s;
1892 
1893 	s = splnet();
1894 	mii_tick(&sc->sc_mii);
1895 	splx(s);
1896 
1897 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1898 }
1899 
1900 /*
1901  * sip_reset:
1902  *
1903  *	Perform a soft reset on the SiS 900.
1904  */
1905 void
1906 SIP_DECL(reset)(struct sip_softc *sc)
1907 {
1908 	bus_space_tag_t st = sc->sc_st;
1909 	bus_space_handle_t sh = sc->sc_sh;
1910 	int i;
1911 
1912 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1913 
1914 	for (i = 0; i < SIP_TIMEOUT; i++) {
1915 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1916 			break;
1917 		delay(2);
1918 	}
1919 
1920 	if (i == SIP_TIMEOUT)
1921 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1922 
1923 	delay(1000);
1924 
1925 #ifdef DP83820
1926 	/*
1927 	 * Set the general purpose I/O bits.  Do it here in case we
1928 	 * need to have GPIO set up to talk to the media interface.
1929 	 */
1930 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
1931 	delay(1000);
1932 #endif /* DP83820 */
1933 }
1934 
1935 /*
1936  * sip_init:		[ ifnet interface function ]
1937  *
1938  *	Initialize the interface.  Must be called at splnet().
1939  */
1940 int
1941 SIP_DECL(init)(struct ifnet *ifp)
1942 {
1943 	struct sip_softc *sc = ifp->if_softc;
1944 	bus_space_tag_t st = sc->sc_st;
1945 	bus_space_handle_t sh = sc->sc_sh;
1946 	struct sip_txsoft *txs;
1947 	struct sip_rxsoft *rxs;
1948 	struct sip_desc *sipd;
1949 	u_int32_t reg;
1950 	int i, error = 0;
1951 
1952 	/*
1953 	 * Cancel any pending I/O.
1954 	 */
1955 	SIP_DECL(stop)(ifp, 0);
1956 
1957 	/*
1958 	 * Reset the chip to a known state.
1959 	 */
1960 	SIP_DECL(reset)(sc);
1961 
1962 #if !defined(DP83820)
1963 	if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
1964 	    sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1965 		/*
1966 		 * DP83815 manual, page 78:
1967 		 *    4.4 Recommended Registers Configuration
1968 		 *    For optimum performance of the DP83815, version noted
1969 		 *    as DP83815CVNG (SRR = 203h), the listed register
1970 		 *    modifications must be followed in sequence...
1971 		 *
1972 		 * It's not clear if this should be 302h or 203h because that
1973 		 * chip name is listed as SRR 302h in the description of the
1974 		 * SRR register.  However, my revision 302h DP83815 on the
1975 		 * Netgear FA311 purchased in 02/2001 needs these settings
1976 		 * to avoid tons of errors in AcceptPerfectMatch (non-
1977 		 * IFF_PROMISC) mode.  I do not know if other revisions need
1978 		 * this set or not.  [briggs -- 09 March 2001]
1979 		 *
1980 		 * Note that only the low-order 12 bits of 0xe4 are documented
1981 		 * and that this sets reserved bits in that register.
1982 		 */
1983 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
1984 		if (reg == 0x302) {
1985 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
1986 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
1987 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
1988 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
1989 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
1990 		}
1991 	}
1992 #endif /* ! DP83820 */
1993 
1994 	/*
1995 	 * Initialize the transmit descriptor ring.
1996 	 */
1997 	for (i = 0; i < SIP_NTXDESC; i++) {
1998 		sipd = &sc->sc_txdescs[i];
1999 		memset(sipd, 0, sizeof(struct sip_desc));
2000 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2001 	}
2002 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2003 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2004 	sc->sc_txfree = SIP_NTXDESC;
2005 	sc->sc_txnext = 0;
2006 
2007 	/*
2008 	 * Initialize the transmit job descriptors.
2009 	 */
2010 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2011 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2012 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2013 		txs = &sc->sc_txsoft[i];
2014 		txs->txs_mbuf = NULL;
2015 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2016 	}
2017 
2018 	/*
2019 	 * Initialize the receive descriptor and receive job
2020 	 * descriptor rings.
2021 	 */
2022 	for (i = 0; i < SIP_NRXDESC; i++) {
2023 		rxs = &sc->sc_rxsoft[i];
2024 		if (rxs->rxs_mbuf == NULL) {
2025 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2026 				printf("%s: unable to allocate or map rx "
2027 				    "buffer %d, error = %d\n",
2028 				    sc->sc_dev.dv_xname, i, error);
2029 				/*
2030 				 * XXX Should attempt to run with fewer receive
2031 				 * XXX buffers instead of just failing.
2032 				 */
2033 				SIP_DECL(rxdrain)(sc);
2034 				goto out;
2035 			}
2036 		} else
2037 			SIP_INIT_RXDESC(sc, i);
2038 	}
2039 	sc->sc_rxptr = 0;
2040 #ifdef DP83820
2041 	sc->sc_rxdiscard = 0;
2042 	SIP_RXCHAIN_RESET(sc);
2043 #endif /* DP83820 */
2044 
2045 	/*
2046 	 * Set the configuration register; it's already initialized
2047 	 * in sip_attach().
2048 	 */
2049 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2050 
2051 	/*
2052 	 * Initialize the transmit fill and drain thresholds if
2053 	 * we have never done so.
2054 	 */
2055 	if (sc->sc_tx_fill_thresh == 0) {
2056 		/*
2057 		 * XXX This value should be tuned.  This is the
2058 		 * minimum (32 bytes), and we may be able to
2059 		 * improve performance by increasing it.
2060 		 */
2061 		sc->sc_tx_fill_thresh = 1;
2062 	}
2063 	if (sc->sc_tx_drain_thresh == 0) {
2064 		/*
2065 		 * Start at a drain threshold of 512 bytes.  We will
2066 		 * increase it if a DMA underrun occurs.
2067 		 *
2068 		 * XXX The minimum value of this variable should be
2069 		 * tuned.  We may be able to improve performance
2070 		 * by starting with a lower value.  That, however,
2071 		 * may trash the first few outgoing packets if the
2072 		 * PCI bus is saturated.
2073 		 */
2074 		sc->sc_tx_drain_thresh = 512 / 32;
2075 	}
2076 
2077 	/*
2078 	 * Initialize the prototype TXCFG register.
2079 	 */
2080 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
2081 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2082 	    sc->sc_tx_drain_thresh;
2083 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2084 
2085 	/*
2086 	 * Initialize the receive drain threshold if we have never
2087 	 * done so.
2088 	 */
2089 	if (sc->sc_rx_drain_thresh == 0) {
2090 		/*
2091 		 * XXX This value should be tuned.  This is set to the
2092 		 * maximum of 248 bytes, and we may be able to improve
2093 		 * performance by decreasing it (although we should never
2094 		 * set this value lower than 2; 14 bytes are required to
2095 		 * filter the packet).
2096 		 */
2097 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2098 	}
2099 
2100 	/*
2101 	 * Initialize the prototype RXCFG register.
2102 	 */
2103 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
2104 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2105 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2106 
2107 	/* Set up the receive filter. */
2108 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2109 
2110 #ifdef DP83820
2111 	/*
2112 	 * Initialize the VLAN/IP receive control register.
2113 	 * We enable checksum computation on all incoming
2114 	 * packets, and do not reject packets w/ bad checksums.
2115 	 */
2116 	reg = 0;
2117 	if (ifp->if_capenable &
2118 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2119 		reg |= VRCR_IPEN;
2120 	if (sc->sc_ethercom.ec_nvlans != 0)
2121 		reg |= VRCR_VTDEN|VRCR_VTREN;
2122 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2123 
2124 	/*
2125 	 * Initialize the VLAN/IP transmit control register.
2126 	 * We enable outgoing checksum computation on a
2127 	 * per-packet basis.
2128 	 */
2129 	reg = 0;
2130 	if (ifp->if_capenable &
2131 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2132 		reg |= VTCR_PPCHK;
2133 	if (sc->sc_ethercom.ec_nvlans != 0)
2134 		reg |= VTCR_VPPTI;
2135 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2136 
2137 	/*
2138 	 * If we're using VLANs, initialize the VLAN data register.
2139 	 * To understand why we bswap the VLAN Ethertype, see section
2140 	 * 4.2.36 of the DP83820 manual.
2141 	 */
2142 	if (sc->sc_ethercom.ec_nvlans != 0)
2143 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2144 #endif /* DP83820 */
2145 
2146 	/*
2147 	 * Give the transmit and receive rings to the chip.
2148 	 */
2149 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2150 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2151 
2152 	/*
2153 	 * Initialize the interrupt mask.
2154 	 */
2155 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2156 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2157 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2158 
2159 	/*
2160 	 * Set the current media.  Do this after initializing the prototype
2161 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2162 	 * control.
2163 	 */
2164 	mii_mediachg(&sc->sc_mii);
2165 
2166 	/*
2167 	 * Enable interrupts.
2168 	 */
2169 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2170 
2171 	/*
2172 	 * Start the transmit and receive processes.
2173 	 */
2174 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2175 
2176 	/*
2177 	 * Start the one second MII clock.
2178 	 */
2179 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2180 
2181 	/*
2182 	 * ...all done!
2183 	 */
2184 	ifp->if_flags |= IFF_RUNNING;
2185 	ifp->if_flags &= ~IFF_OACTIVE;
2186 
2187  out:
2188 	if (error)
2189 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2190 	return (error);
2191 }
2192 
2193 /*
2194  * sip_drain:
2195  *
2196  *	Drain the receive queue.
2197  */
2198 void
2199 SIP_DECL(rxdrain)(struct sip_softc *sc)
2200 {
2201 	struct sip_rxsoft *rxs;
2202 	int i;
2203 
2204 	for (i = 0; i < SIP_NRXDESC; i++) {
2205 		rxs = &sc->sc_rxsoft[i];
2206 		if (rxs->rxs_mbuf != NULL) {
2207 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2208 			m_freem(rxs->rxs_mbuf);
2209 			rxs->rxs_mbuf = NULL;
2210 		}
2211 	}
2212 }
2213 
2214 /*
2215  * sip_stop:		[ ifnet interface function ]
2216  *
2217  *	Stop transmission on the interface.
2218  */
2219 void
2220 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2221 {
2222 	struct sip_softc *sc = ifp->if_softc;
2223 	bus_space_tag_t st = sc->sc_st;
2224 	bus_space_handle_t sh = sc->sc_sh;
2225 	struct sip_txsoft *txs;
2226 	u_int32_t cmdsts = 0;		/* DEBUG */
2227 
2228 	/*
2229 	 * Stop the one second clock.
2230 	 */
2231 	callout_stop(&sc->sc_tick_ch);
2232 
2233 	/* Down the MII. */
2234 	mii_down(&sc->sc_mii);
2235 
2236 	/*
2237 	 * Disable interrupts.
2238 	 */
2239 	bus_space_write_4(st, sh, SIP_IER, 0);
2240 
2241 	/*
2242 	 * Stop receiver and transmitter.
2243 	 */
2244 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2245 
2246 	/*
2247 	 * Release any queued transmit buffers.
2248 	 */
2249 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2250 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2251 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2252 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2253 		     CMDSTS_INTR) == 0)
2254 			printf("%s: sip_stop: last descriptor does not "
2255 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2256 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2257 #ifdef DIAGNOSTIC
2258 		if (txs->txs_mbuf == NULL) {
2259 			printf("%s: dirty txsoft with no mbuf chain\n",
2260 			    sc->sc_dev.dv_xname);
2261 			panic("sip_stop");
2262 		}
2263 #endif
2264 		cmdsts |=		/* DEBUG */
2265 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2266 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2267 		m_freem(txs->txs_mbuf);
2268 		txs->txs_mbuf = NULL;
2269 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2270 	}
2271 
2272 	if (disable)
2273 		SIP_DECL(rxdrain)(sc);
2274 
2275 	/*
2276 	 * Mark the interface down and cancel the watchdog timer.
2277 	 */
2278 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2279 	ifp->if_timer = 0;
2280 
2281 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2282 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2283 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2284 		    "descriptors\n", sc->sc_dev.dv_xname);
2285 }
2286 
2287 /*
2288  * sip_read_eeprom:
2289  *
2290  *	Read data from the serial EEPROM.
2291  */
2292 void
2293 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2294     u_int16_t *data)
2295 {
2296 	bus_space_tag_t st = sc->sc_st;
2297 	bus_space_handle_t sh = sc->sc_sh;
2298 	u_int16_t reg;
2299 	int i, x;
2300 
2301 	for (i = 0; i < wordcnt; i++) {
2302 		/* Send CHIP SELECT. */
2303 		reg = EROMAR_EECS;
2304 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2305 
2306 		/* Shift in the READ opcode. */
2307 		for (x = 3; x > 0; x--) {
2308 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2309 				reg |= EROMAR_EEDI;
2310 			else
2311 				reg &= ~EROMAR_EEDI;
2312 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2313 			bus_space_write_4(st, sh, SIP_EROMAR,
2314 			    reg | EROMAR_EESK);
2315 			delay(4);
2316 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2317 			delay(4);
2318 		}
2319 
2320 		/* Shift in address. */
2321 		for (x = 6; x > 0; x--) {
2322 			if ((word + i) & (1 << (x - 1)))
2323 				reg |= EROMAR_EEDI;
2324 			else
2325 				reg &= ~EROMAR_EEDI;
2326 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2327 			bus_space_write_4(st, sh, SIP_EROMAR,
2328 			    reg | EROMAR_EESK);
2329 			delay(4);
2330 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2331 			delay(4);
2332 		}
2333 
2334 		/* Shift out data. */
2335 		reg = EROMAR_EECS;
2336 		data[i] = 0;
2337 		for (x = 16; x > 0; x--) {
2338 			bus_space_write_4(st, sh, SIP_EROMAR,
2339 			    reg | EROMAR_EESK);
2340 			delay(4);
2341 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2342 				data[i] |= (1 << (x - 1));
2343 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2344 			delay(4);
2345 		}
2346 
2347 		/* Clear CHIP SELECT. */
2348 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2349 		delay(4);
2350 	}
2351 }
2352 
2353 /*
2354  * sip_add_rxbuf:
2355  *
2356  *	Add a receive buffer to the indicated descriptor.
2357  */
2358 int
2359 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2360 {
2361 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2362 	struct mbuf *m;
2363 	int error;
2364 
2365 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2366 	if (m == NULL)
2367 		return (ENOBUFS);
2368 
2369 	MCLGET(m, M_DONTWAIT);
2370 	if ((m->m_flags & M_EXT) == 0) {
2371 		m_freem(m);
2372 		return (ENOBUFS);
2373 	}
2374 
2375 #if defined(DP83820)
2376 	m->m_len = SIP_RXBUF_LEN;
2377 #endif /* DP83820 */
2378 
2379 	if (rxs->rxs_mbuf != NULL)
2380 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2381 
2382 	rxs->rxs_mbuf = m;
2383 
2384 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2385 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2386 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2387 	if (error) {
2388 		printf("%s: can't load rx DMA map %d, error = %d\n",
2389 		    sc->sc_dev.dv_xname, idx, error);
2390 		panic("sip_add_rxbuf");		/* XXX */
2391 	}
2392 
2393 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2394 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2395 
2396 	SIP_INIT_RXDESC(sc, idx);
2397 
2398 	return (0);
2399 }
2400 
2401 #if !defined(DP83820)
2402 /*
2403  * sip_sis900_set_filter:
2404  *
2405  *	Set up the receive filter.
2406  */
2407 void
2408 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2409 {
2410 	bus_space_tag_t st = sc->sc_st;
2411 	bus_space_handle_t sh = sc->sc_sh;
2412 	struct ethercom *ec = &sc->sc_ethercom;
2413 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2414 	struct ether_multi *enm;
2415 	u_int8_t *cp;
2416 	struct ether_multistep step;
2417 	u_int32_t crc, mchash[8];
2418 
2419 	/*
2420 	 * Initialize the prototype RFCR.
2421 	 */
2422 	sc->sc_rfcr = RFCR_RFEN;
2423 	if (ifp->if_flags & IFF_BROADCAST)
2424 		sc->sc_rfcr |= RFCR_AAB;
2425 	if (ifp->if_flags & IFF_PROMISC) {
2426 		sc->sc_rfcr |= RFCR_AAP;
2427 		goto allmulti;
2428 	}
2429 
2430 	/*
2431 	 * Set up the multicast address filter by passing all multicast
2432 	 * addresses through a CRC generator, and then using the high-order
2433 	 * 6 bits as an index into the 128 bit multicast hash table (only
2434 	 * the lower 16 bits of each 32 bit multicast hash register are
2435 	 * valid).  The high order bits select the register, while the
2436 	 * rest of the bits select the bit within the register.
2437 	 */
2438 
2439 	memset(mchash, 0, sizeof(mchash));
2440 
2441 	ETHER_FIRST_MULTI(step, ec, enm);
2442 	while (enm != NULL) {
2443 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2444 			/*
2445 			 * We must listen to a range of multicast addresses.
2446 			 * For now, just accept all multicasts, rather than
2447 			 * trying to set only those filter bits needed to match
2448 			 * the range.  (At this time, the only use of address
2449 			 * ranges is for IP multicast routing, for which the
2450 			 * range is big enough to require all bits set.)
2451 			 */
2452 			goto allmulti;
2453 		}
2454 
2455 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2456 
2457 		/* Just want the 7 most significant bits. */
2458 		crc >>= 25;
2459 
2460 		/* Set the corresponding bit in the hash table. */
2461 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2462 
2463 		ETHER_NEXT_MULTI(step, enm);
2464 	}
2465 
2466 	ifp->if_flags &= ~IFF_ALLMULTI;
2467 	goto setit;
2468 
2469  allmulti:
2470 	ifp->if_flags |= IFF_ALLMULTI;
2471 	sc->sc_rfcr |= RFCR_AAM;
2472 
2473  setit:
2474 #define	FILTER_EMIT(addr, data)						\
2475 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2476 	delay(1);							\
2477 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2478 	delay(1)
2479 
2480 	/*
2481 	 * Disable receive filter, and program the node address.
2482 	 */
2483 	cp = LLADDR(ifp->if_sadl);
2484 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2485 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2486 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2487 
2488 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2489 		/*
2490 		 * Program the multicast hash table.
2491 		 */
2492 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2493 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2494 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2495 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2496 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2497 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2498 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2499 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2500 	}
2501 #undef FILTER_EMIT
2502 
2503 	/*
2504 	 * Re-enable the receiver filter.
2505 	 */
2506 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2507 }
2508 #endif /* ! DP83820 */
2509 
2510 /*
2511  * sip_dp83815_set_filter:
2512  *
2513  *	Set up the receive filter.
2514  */
2515 void
2516 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2517 {
2518 	bus_space_tag_t st = sc->sc_st;
2519 	bus_space_handle_t sh = sc->sc_sh;
2520 	struct ethercom *ec = &sc->sc_ethercom;
2521 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2522 	struct ether_multi *enm;
2523 	u_int8_t *cp;
2524 	struct ether_multistep step;
2525 	u_int32_t crc, hash, slot, bit;
2526 #ifdef DP83820
2527 #define	MCHASH_NWORDS	128
2528 #else
2529 #define	MCHASH_NWORDS	32
2530 #endif /* DP83820 */
2531 	u_int16_t mchash[MCHASH_NWORDS];
2532 	int i;
2533 
2534 	/*
2535 	 * Initialize the prototype RFCR.
2536 	 * Enable the receive filter, and accept on
2537 	 *    Perfect (destination address) Match
2538 	 * If IFF_BROADCAST, also accept all broadcast packets.
2539 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2540 	 *    IFF_ALLMULTI and accept all multicast, too).
2541 	 */
2542 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2543 	if (ifp->if_flags & IFF_BROADCAST)
2544 		sc->sc_rfcr |= RFCR_AAB;
2545 	if (ifp->if_flags & IFF_PROMISC) {
2546 		sc->sc_rfcr |= RFCR_AAP;
2547 		goto allmulti;
2548 	}
2549 
2550 #ifdef DP83820
2551 	/*
2552 	 * Set up the DP83820 multicast address filter by passing all multicast
2553 	 * addresses through a CRC generator, and then using the high-order
2554 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2555 	 * high-order 7 bits select the slot, while the low-order 4 bits
2556 	 * select the bit within the slot.  Note that only the low 16-bits
2557 	 * of each filter word are used, and there are 128 filter words.
2558 	 */
2559 #else
2560 	/*
2561 	 * Set up the DP83815 multicast address filter by passing all multicast
2562 	 * addresses through a CRC generator, and then using the high-order
2563 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2564 	 * high-order 5 bits select the slot, while the low-order 4 bits
2565 	 * select the bit within the slot.  Note that only the low 16-bits
2566 	 * of each filter word are used, and there are 32 filter words.
2567 	 */
2568 #endif /* DP83820 */
2569 
2570 	memset(mchash, 0, sizeof(mchash));
2571 
2572 	ifp->if_flags &= ~IFF_ALLMULTI;
2573 	ETHER_FIRST_MULTI(step, ec, enm);
2574 	if (enm == NULL)
2575 		goto setit;
2576 	while (enm != NULL) {
2577 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2578 			/*
2579 			 * We must listen to a range of multicast addresses.
2580 			 * For now, just accept all multicasts, rather than
2581 			 * trying to set only those filter bits needed to match
2582 			 * the range.  (At this time, the only use of address
2583 			 * ranges is for IP multicast routing, for which the
2584 			 * range is big enough to require all bits set.)
2585 			 */
2586 			goto allmulti;
2587 		}
2588 
2589 #ifdef DP83820
2590 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2591 
2592 		/* Just want the 11 most significant bits. */
2593 		hash = crc >> 21;
2594 #else
2595 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2596 
2597 		/* Just want the 9 most significant bits. */
2598 		hash = crc >> 23;
2599 #endif /* DP83820 */
2600 		slot = hash >> 4;
2601 		bit = hash & 0xf;
2602 
2603 		/* Set the corresponding bit in the hash table. */
2604 		mchash[slot] |= 1 << bit;
2605 
2606 		ETHER_NEXT_MULTI(step, enm);
2607 	}
2608 	sc->sc_rfcr |= RFCR_MHEN;
2609 	goto setit;
2610 
2611  allmulti:
2612 	ifp->if_flags |= IFF_ALLMULTI;
2613 	sc->sc_rfcr |= RFCR_AAM;
2614 
2615  setit:
2616 #define	FILTER_EMIT(addr, data)						\
2617 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2618 	delay(1);							\
2619 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2620 	delay(1)
2621 
2622 	/*
2623 	 * Disable receive filter, and program the node address.
2624 	 */
2625 	cp = LLADDR(ifp->if_sadl);
2626 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2627 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2628 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2629 
2630 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2631 		/*
2632 		 * Program the multicast hash table.
2633 		 */
2634 		for (i = 0; i < MCHASH_NWORDS; i++) {
2635 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2636 			    mchash[i]);
2637 		}
2638 	}
2639 #undef FILTER_EMIT
2640 #undef MCHASH_NWORDS
2641 
2642 	/*
2643 	 * Re-enable the receiver filter.
2644 	 */
2645 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2646 }
2647 
2648 #if defined(DP83820)
2649 /*
2650  * sip_dp83820_mii_readreg:	[mii interface function]
2651  *
2652  *	Read a PHY register on the MII of the DP83820.
2653  */
2654 int
2655 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2656 {
2657 
2658 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2659 	    phy, reg));
2660 }
2661 
2662 /*
2663  * sip_dp83820_mii_writereg:	[mii interface function]
2664  *
2665  *	Write a PHY register on the MII of the DP83820.
2666  */
2667 void
2668 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2669 {
2670 
2671 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2672 	    phy, reg, val);
2673 }
2674 
2675 /*
2676  * sip_dp83815_mii_statchg:	[mii interface function]
2677  *
2678  *	Callback from MII layer when media changes.
2679  */
2680 void
2681 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2682 {
2683 	struct sip_softc *sc = (struct sip_softc *) self;
2684 	u_int32_t cfg;
2685 
2686 	/*
2687 	 * Update TXCFG for full-duplex operation.
2688 	 */
2689 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2690 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2691 	else
2692 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2693 
2694 	/*
2695 	 * Update RXCFG for full-duplex or loopback.
2696 	 */
2697 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2698 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2699 		sc->sc_rxcfg |= RXCFG_ATX;
2700 	else
2701 		sc->sc_rxcfg &= ~RXCFG_ATX;
2702 
2703 	/*
2704 	 * Update CFG for MII/GMII.
2705 	 */
2706 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2707 		cfg = sc->sc_cfg | CFG_MODE_1000;
2708 	else
2709 		cfg = sc->sc_cfg;
2710 
2711 	/*
2712 	 * XXX 802.3x flow control.
2713 	 */
2714 
2715 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2716 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2717 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2718 }
2719 
2720 /*
2721  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2722  *
2723  *	Read the MII serial port for the MII bit-bang module.
2724  */
2725 u_int32_t
2726 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2727 {
2728 	struct sip_softc *sc = (void *) self;
2729 
2730 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2731 }
2732 
2733 /*
2734  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2735  *
2736  *	Write the MII serial port for the MII bit-bang module.
2737  */
2738 void
2739 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2740 {
2741 	struct sip_softc *sc = (void *) self;
2742 
2743 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2744 }
2745 #else /* ! DP83820 */
2746 /*
2747  * sip_sis900_mii_readreg:	[mii interface function]
2748  *
2749  *	Read a PHY register on the MII.
2750  */
2751 int
2752 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2753 {
2754 	struct sip_softc *sc = (struct sip_softc *) self;
2755 	u_int32_t enphy;
2756 
2757 	/*
2758 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2759 	 * MII address 0.
2760 	 */
2761 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2762 		return (0);
2763 
2764 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2765 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2766 	    ENPHY_RWCMD | ENPHY_ACCESS);
2767 	do {
2768 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2769 	} while (enphy & ENPHY_ACCESS);
2770 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2771 }
2772 
2773 /*
2774  * sip_sis900_mii_writereg:	[mii interface function]
2775  *
2776  *	Write a PHY register on the MII.
2777  */
2778 void
2779 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2780 {
2781 	struct sip_softc *sc = (struct sip_softc *) self;
2782 	u_int32_t enphy;
2783 
2784 	/*
2785 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2786 	 * MII address 0.
2787 	 */
2788 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2789 		return;
2790 
2791 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2792 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2793 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2794 	do {
2795 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2796 	} while (enphy & ENPHY_ACCESS);
2797 }
2798 
2799 /*
2800  * sip_sis900_mii_statchg:	[mii interface function]
2801  *
2802  *	Callback from MII layer when media changes.
2803  */
2804 void
2805 SIP_DECL(sis900_mii_statchg)(struct device *self)
2806 {
2807 	struct sip_softc *sc = (struct sip_softc *) self;
2808 	u_int32_t flowctl;
2809 
2810 	/*
2811 	 * Update TXCFG for full-duplex operation.
2812 	 */
2813 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2814 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2815 	else
2816 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2817 
2818 	/*
2819 	 * Update RXCFG for full-duplex or loopback.
2820 	 */
2821 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2822 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2823 		sc->sc_rxcfg |= RXCFG_ATX;
2824 	else
2825 		sc->sc_rxcfg &= ~RXCFG_ATX;
2826 
2827 	/*
2828 	 * Update IMR for use of 802.3x flow control.
2829 	 */
2830 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2831 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2832 		flowctl = FLOWCTL_FLOWEN;
2833 	} else {
2834 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2835 		flowctl = 0;
2836 	}
2837 
2838 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2839 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2840 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2841 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2842 }
2843 
2844 /*
2845  * sip_dp83815_mii_readreg:	[mii interface function]
2846  *
2847  *	Read a PHY register on the MII.
2848  */
2849 int
2850 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2851 {
2852 	struct sip_softc *sc = (struct sip_softc *) self;
2853 	u_int32_t val;
2854 
2855 	/*
2856 	 * The DP83815 only has an internal PHY.  Only allow
2857 	 * MII address 0.
2858 	 */
2859 	if (phy != 0)
2860 		return (0);
2861 
2862 	/*
2863 	 * Apparently, after a reset, the DP83815 can take a while
2864 	 * to respond.  During this recovery period, the BMSR returns
2865 	 * a value of 0.  Catch this -- it's not supposed to happen
2866 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2867 	 * PHY to come back to life.
2868 	 *
2869 	 * This works out because the BMSR is the first register
2870 	 * read during the PHY probe process.
2871 	 */
2872 	do {
2873 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2874 	} while (reg == MII_BMSR && val == 0);
2875 
2876 	return (val & 0xffff);
2877 }
2878 
2879 /*
2880  * sip_dp83815_mii_writereg:	[mii interface function]
2881  *
2882  *	Write a PHY register to the MII.
2883  */
2884 void
2885 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2886 {
2887 	struct sip_softc *sc = (struct sip_softc *) self;
2888 
2889 	/*
2890 	 * The DP83815 only has an internal PHY.  Only allow
2891 	 * MII address 0.
2892 	 */
2893 	if (phy != 0)
2894 		return;
2895 
2896 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2897 }
2898 
2899 /*
2900  * sip_dp83815_mii_statchg:	[mii interface function]
2901  *
2902  *	Callback from MII layer when media changes.
2903  */
2904 void
2905 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2906 {
2907 	struct sip_softc *sc = (struct sip_softc *) self;
2908 
2909 	/*
2910 	 * Update TXCFG for full-duplex operation.
2911 	 */
2912 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2913 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2914 	else
2915 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2916 
2917 	/*
2918 	 * Update RXCFG for full-duplex or loopback.
2919 	 */
2920 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2921 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2922 		sc->sc_rxcfg |= RXCFG_ATX;
2923 	else
2924 		sc->sc_rxcfg &= ~RXCFG_ATX;
2925 
2926 	/*
2927 	 * XXX 802.3x flow control.
2928 	 */
2929 
2930 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2931 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2932 }
2933 #endif /* DP83820 */
2934 
2935 #if defined(DP83820)
2936 void
2937 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2938 {
2939 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
2940 	u_int8_t cksum, *e, match;
2941 	int i;
2942 
2943 	/*
2944 	 * EEPROM data format for the DP83820 can be found in
2945 	 * the DP83820 manual, section 4.2.4.
2946 	 */
2947 
2948 	SIP_DECL(read_eeprom)(sc, 0,
2949 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
2950 
2951 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
2952 	match = ~(match - 1);
2953 
2954 	cksum = 0x55;
2955 	e = (u_int8_t *) eeprom_data;
2956 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
2957 		cksum += *e++;
2958 
2959 	if (cksum != match)
2960 		printf("%s: Checksum (%x) mismatch (%x)",
2961 		    sc->sc_dev.dv_xname, cksum, match);
2962 
2963 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
2964 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
2965 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
2966 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
2967 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
2968 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
2969 
2970 	/* Get the GPIOR bits. */
2971 	sc->sc_gpior = eeprom_data[0x04];
2972 
2973 	/* Get various CFG related bits. */
2974 	if ((eeprom_data[0x05] >> 0) & 1)
2975 		sc->sc_cfg |= CFG_EXT_125;
2976 	if ((eeprom_data[0x05] >> 9) & 1)
2977 		sc->sc_cfg |= CFG_TBI_EN;
2978 }
2979 #else /* ! DP83820 */
2980 void
2981 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2982 {
2983 	u_int16_t myea[ETHER_ADDR_LEN / 2];
2984 
2985 	SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
2986 	    sizeof(myea) / sizeof(myea[0]), myea);
2987 
2988 	enaddr[0] = myea[0] & 0xff;
2989 	enaddr[1] = myea[0] >> 8;
2990 	enaddr[2] = myea[1] & 0xff;
2991 	enaddr[3] = myea[1] >> 8;
2992 	enaddr[4] = myea[2] & 0xff;
2993 	enaddr[5] = myea[2] >> 8;
2994 }
2995 
2996 /* Table and macro to bit-reverse an octet. */
2997 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
2998 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
2999 
3000 void
3001 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
3002 {
3003 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3004 	u_int8_t cksum, *e, match;
3005 	int i;
3006 
3007 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3008 	    sizeof(eeprom_data[0]), eeprom_data);
3009 
3010 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3011 	match = ~(match - 1);
3012 
3013 	cksum = 0x55;
3014 	e = (u_int8_t *) eeprom_data;
3015 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3016 		cksum += *e++;
3017 	}
3018 	if (cksum != match) {
3019 		printf("%s: Checksum (%x) mismatch (%x)",
3020 		    sc->sc_dev.dv_xname, cksum, match);
3021 	}
3022 
3023 	/*
3024 	 * Unrolled because it makes slightly more sense this way.
3025 	 * The DP83815 stores the MAC address in bit 0 of word 6
3026 	 * through bit 15 of word 8.
3027 	 */
3028 	ea = &eeprom_data[6];
3029 	enaddr[0] = ((*ea & 0x1) << 7);
3030 	ea++;
3031 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3032 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3033 	enaddr[2] = ((*ea & 0x1) << 7);
3034 	ea++;
3035 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3036 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3037 	enaddr[4] = ((*ea & 0x1) << 7);
3038 	ea++;
3039 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3040 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3041 
3042 	/*
3043 	 * In case that's not weird enough, we also need to reverse
3044 	 * the bits in each byte.  This all actually makes more sense
3045 	 * if you think about the EEPROM storage as an array of bits
3046 	 * being shifted into bytes, but that's not how we're looking
3047 	 * at it here...
3048 	 */
3049 	for (i = 0; i < 6 ;i++)
3050 		enaddr[i] = bbr(enaddr[i]);
3051 }
3052 #endif /* DP83820 */
3053 
3054 /*
3055  * sip_mediastatus:	[ifmedia interface function]
3056  *
3057  *	Get the current interface media status.
3058  */
3059 void
3060 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3061 {
3062 	struct sip_softc *sc = ifp->if_softc;
3063 
3064 	mii_pollstat(&sc->sc_mii);
3065 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3066 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
3067 }
3068 
3069 /*
3070  * sip_mediachange:	[ifmedia interface function]
3071  *
3072  *	Set hardware to newly-selected media.
3073  */
3074 int
3075 SIP_DECL(mediachange)(struct ifnet *ifp)
3076 {
3077 	struct sip_softc *sc = ifp->if_softc;
3078 
3079 	if (ifp->if_flags & IFF_UP)
3080 		mii_mediachg(&sc->sc_mii);
3081 	return (0);
3082 }
3083