xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 21e37cc72a480a47828990a439cde7ac9ffaf0c6)
1 /*	$NetBSD: if_sip.c,v 1.94 2004/05/15 22:33:13 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.94 2004/05/15 22:33:13 thorpej Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/pci/if_sipreg.h>
128 
129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
131 #else			/* SiS900 and DP83815 */
132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
133 #endif
134 
135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
136 
137 /*
138  * Transmit descriptor list size.  This is arbitrary, but allocate
139  * enough descriptors for 128 pending transmissions, and 8 segments
140  * per packet (64 for DP83820 for jumbo frames).
141  *
142  * This MUST work out to a power of 2.
143  */
144 #ifdef DP83820
145 #define	SIP_NTXSEGS		64
146 #define	SIP_NTXSEGS_ALLOC	16
147 #else
148 #define	SIP_NTXSEGS		16
149 #define	SIP_NTXSEGS_ALLOC	8
150 #endif
151 
152 #define	SIP_TXQUEUELEN		256
153 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
155 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
156 
157 #if defined(DP83820)
158 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
159 #else
160 #define	TX_DMAMAP_SIZE		MCLBYTES
161 #endif
162 
163 /*
164  * Receive descriptor list size.  We have one Rx buffer per incoming
165  * packet, so this logic is a little simpler.
166  *
167  * Actually, on the DP83820, we allow the packet to consume more than
168  * one buffer, in order to support jumbo Ethernet frames.  In that
169  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
171  * so we'd better be quick about handling receive interrupts.
172  */
173 #if defined(DP83820)
174 #define	SIP_NRXDESC		256
175 #else
176 #define	SIP_NRXDESC		128
177 #endif /* DP83820 */
178 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
179 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
180 
181 /*
182  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
183  * a single clump that maps to a single DMA segment to make several things
184  * easier.
185  */
186 struct sip_control_data {
187 	/*
188 	 * The transmit descriptors.
189 	 */
190 	struct sip_desc scd_txdescs[SIP_NTXDESC];
191 
192 	/*
193 	 * The receive descriptors.
194 	 */
195 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197 
198 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
199 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
200 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
201 
202 /*
203  * Software state for transmit jobs.
204  */
205 struct sip_txsoft {
206 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
207 	bus_dmamap_t txs_dmamap;	/* our DMA map */
208 	int txs_firstdesc;		/* first descriptor in packet */
209 	int txs_lastdesc;		/* last descriptor in packet */
210 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212 
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214 
215 /*
216  * Software state for receive jobs.
217  */
218 struct sip_rxsoft {
219 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
220 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
221 };
222 
223 /*
224  * Software state per device.
225  */
226 struct sip_softc {
227 	struct device sc_dev;		/* generic device information */
228 	bus_space_tag_t sc_st;		/* bus space tag */
229 	bus_space_handle_t sc_sh;	/* bus space handle */
230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
231 	struct ethercom sc_ethercom;	/* ethernet common data */
232 	void *sc_sdhook;		/* shutdown hook */
233 
234 	const struct sip_product *sc_model; /* which model are we? */
235 	int sc_rev;			/* chip revision */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	struct mii_data sc_mii;		/* MII/media information */
240 
241 	struct callout sc_tick_ch;	/* tick callout */
242 
243 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
244 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
245 
246 	/*
247 	 * Software state for transmit and receive descriptors.
248 	 */
249 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251 
252 	/*
253 	 * Control data structures.
254 	 */
255 	struct sip_control_data *sc_control_data;
256 #define	sc_txdescs	sc_control_data->scd_txdescs
257 #define	sc_rxdescs	sc_control_data->scd_rxdescs
258 
259 #ifdef SIP_EVENT_COUNTERS
260 	/*
261 	 * Event counters.
262 	 */
263 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
264 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
265 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
266 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
267 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
268 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
269 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
270 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
271 #ifdef DP83820
272 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
273 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
274 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
275 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
277 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
278 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281 
282 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
283 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
284 	u_int32_t sc_imr;		/* prototype IMR register */
285 	u_int32_t sc_rfcr;		/* prototype RFCR register */
286 
287 	u_int32_t sc_cfg;		/* prototype CFG register */
288 
289 #ifdef DP83820
290 	u_int32_t sc_gpior;		/* prototype GPIOR register */
291 #endif /* DP83820 */
292 
293 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
294 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
295 
296 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
297 
298 	int	sc_flowflags;		/* 802.3x flow control flags */
299 #ifdef DP83820
300 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
301 #else
302 	int	sc_paused;		/* paused indication */
303 #endif
304 
305 	int	sc_txfree;		/* number of free Tx descriptors */
306 	int	sc_txnext;		/* next ready Tx descriptor */
307 	int	sc_txwin;		/* Tx descriptors since last intr */
308 
309 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
310 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
311 
312 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
313 #if defined(DP83820)
314 	int	sc_rxdiscard;
315 	int	sc_rxlen;
316 	struct mbuf *sc_rxhead;
317 	struct mbuf *sc_rxtail;
318 	struct mbuf **sc_rxtailp;
319 #endif /* DP83820 */
320 
321 #if NRND > 0
322 	rndsource_element_t rnd_source;	/* random source */
323 #endif
324 };
325 
326 #ifdef DP83820
327 #define	SIP_RXCHAIN_RESET(sc)						\
328 do {									\
329 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
330 	*(sc)->sc_rxtailp = NULL;					\
331 	(sc)->sc_rxlen = 0;						\
332 } while (/*CONSTCOND*/0)
333 
334 #define	SIP_RXCHAIN_LINK(sc, m)						\
335 do {									\
336 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
337 	(sc)->sc_rxtailp = &(m)->m_next;				\
338 } while (/*CONSTCOND*/0)
339 #endif /* DP83820 */
340 
341 #ifdef SIP_EVENT_COUNTERS
342 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
343 #else
344 #define	SIP_EVCNT_INCR(ev)	/* nothing */
345 #endif
346 
347 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
348 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
349 
350 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
351 do {									\
352 	int __x, __n;							\
353 									\
354 	__x = (x);							\
355 	__n = (n);							\
356 									\
357 	/* If it will wrap around, sync to the end of the ring. */	\
358 	if ((__x + __n) > SIP_NTXDESC) {				\
359 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
360 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
361 		    (SIP_NTXDESC - __x), (ops));			\
362 		__n -= (SIP_NTXDESC - __x);				\
363 		__x = 0;						\
364 	}								\
365 									\
366 	/* Now sync whatever is left. */				\
367 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
368 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
369 } while (0)
370 
371 #define	SIP_CDRXSYNC(sc, x, ops)					\
372 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
373 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
374 
375 #ifdef DP83820
376 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
377 #define	SIP_RXBUF_LEN		(MCLBYTES - 8)
378 #else
379 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
380 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
381 #endif
382 #define	SIP_INIT_RXDESC(sc, x)						\
383 do {									\
384 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
385 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
386 									\
387 	__sipd->sipd_link =						\
388 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
389 	__sipd->sipd_bufptr =						\
390 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
391 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
392 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
393 	SIP_INIT_RXDESC_EXTSTS						\
394 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
395 } while (0)
396 
397 #define	SIP_CHIP_VERS(sc, v, p, r)					\
398 	((sc)->sc_model->sip_vendor == (v) &&				\
399 	 (sc)->sc_model->sip_product == (p) &&				\
400 	 (sc)->sc_rev == (r))
401 
402 #define	SIP_CHIP_MODEL(sc, v, p)					\
403 	((sc)->sc_model->sip_vendor == (v) &&				\
404 	 (sc)->sc_model->sip_product == (p))
405 
406 #if !defined(DP83820)
407 #define	SIP_SIS900_REV(sc, rev)						\
408 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
409 #endif
410 
411 #define SIP_TIMEOUT 1000
412 
413 void	SIP_DECL(start)(struct ifnet *);
414 void	SIP_DECL(watchdog)(struct ifnet *);
415 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
416 int	SIP_DECL(init)(struct ifnet *);
417 void	SIP_DECL(stop)(struct ifnet *, int);
418 
419 void	SIP_DECL(shutdown)(void *);
420 
421 void	SIP_DECL(reset)(struct sip_softc *);
422 void	SIP_DECL(rxdrain)(struct sip_softc *);
423 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
424 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
425 void	SIP_DECL(tick)(void *);
426 
427 #if !defined(DP83820)
428 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
429 #endif /* ! DP83820 */
430 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
431 
432 #if defined(DP83820)
433 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
434 	    const struct pci_attach_args *, u_int8_t *);
435 #else
436 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
437 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
438 	    const struct pci_attach_args *, u_int8_t *);
439 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
440 	    const struct pci_attach_args *, u_int8_t *);
441 #endif /* DP83820 */
442 
443 int	SIP_DECL(intr)(void *);
444 void	SIP_DECL(txintr)(struct sip_softc *);
445 void	SIP_DECL(rxintr)(struct sip_softc *);
446 
447 #if defined(DP83820)
448 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
449 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
450 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
451 #else
452 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
453 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
454 void	SIP_DECL(sis900_mii_statchg)(struct device *);
455 
456 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
457 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
458 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
459 #endif /* DP83820 */
460 
461 int	SIP_DECL(mediachange)(struct ifnet *);
462 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
463 
464 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
465 void	SIP_DECL(attach)(struct device *, struct device *, void *);
466 
467 int	SIP_DECL(copy_small) = 0;
468 
469 #ifdef DP83820
470 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
471     gsip_match, gsip_attach, NULL, NULL);
472 #else
473 CFATTACH_DECL(sip, sizeof(struct sip_softc),
474     sip_match, sip_attach, NULL, NULL);
475 #endif
476 
477 /*
478  * Descriptions of the variants of the SiS900.
479  */
480 struct sip_variant {
481 	int	(*sipv_mii_readreg)(struct device *, int, int);
482 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
483 	void	(*sipv_mii_statchg)(struct device *);
484 	void	(*sipv_set_filter)(struct sip_softc *);
485 	void	(*sipv_read_macaddr)(struct sip_softc *,
486 		    const struct pci_attach_args *, u_int8_t *);
487 };
488 
489 u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
490 void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
491 
492 const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
493 	SIP_DECL(mii_bitbang_read),
494 	SIP_DECL(mii_bitbang_write),
495 	{
496 		EROMAR_MDIO,		/* MII_BIT_MDO */
497 		EROMAR_MDIO,		/* MII_BIT_MDI */
498 		EROMAR_MDC,		/* MII_BIT_MDC */
499 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
500 		0,			/* MII_BIT_DIR_PHY_HOST */
501 	}
502 };
503 
504 #if defined(DP83820)
505 const struct sip_variant SIP_DECL(variant_dp83820) = {
506 	SIP_DECL(dp83820_mii_readreg),
507 	SIP_DECL(dp83820_mii_writereg),
508 	SIP_DECL(dp83820_mii_statchg),
509 	SIP_DECL(dp83815_set_filter),
510 	SIP_DECL(dp83820_read_macaddr),
511 };
512 #else
513 const struct sip_variant SIP_DECL(variant_sis900) = {
514 	SIP_DECL(sis900_mii_readreg),
515 	SIP_DECL(sis900_mii_writereg),
516 	SIP_DECL(sis900_mii_statchg),
517 	SIP_DECL(sis900_set_filter),
518 	SIP_DECL(sis900_read_macaddr),
519 };
520 
521 const struct sip_variant SIP_DECL(variant_dp83815) = {
522 	SIP_DECL(dp83815_mii_readreg),
523 	SIP_DECL(dp83815_mii_writereg),
524 	SIP_DECL(dp83815_mii_statchg),
525 	SIP_DECL(dp83815_set_filter),
526 	SIP_DECL(dp83815_read_macaddr),
527 };
528 #endif /* DP83820 */
529 
530 /*
531  * Devices supported by this driver.
532  */
533 const struct sip_product {
534 	pci_vendor_id_t		sip_vendor;
535 	pci_product_id_t	sip_product;
536 	const char		*sip_name;
537 	const struct sip_variant *sip_variant;
538 } SIP_DECL(products)[] = {
539 #if defined(DP83820)
540 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
541 	  "NatSemi DP83820 Gigabit Ethernet",
542 	  &SIP_DECL(variant_dp83820) },
543 #else
544 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
545 	  "SiS 900 10/100 Ethernet",
546 	  &SIP_DECL(variant_sis900) },
547 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
548 	  "SiS 7016 10/100 Ethernet",
549 	  &SIP_DECL(variant_sis900) },
550 
551 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
552 	  "NatSemi DP83815 10/100 Ethernet",
553 	  &SIP_DECL(variant_dp83815) },
554 #endif /* DP83820 */
555 
556 	{ 0,			0,
557 	  NULL,
558 	  NULL },
559 };
560 
561 static const struct sip_product *
562 SIP_DECL(lookup)(const struct pci_attach_args *pa)
563 {
564 	const struct sip_product *sip;
565 
566 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
567 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
568 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
569 			return (sip);
570 	}
571 	return (NULL);
572 }
573 
574 #ifdef DP83820
575 /*
576  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
577  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
578  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
579  * which means we try to use 64-bit data transfers on those cards if we
580  * happen to be plugged into a 32-bit slot.
581  *
582  * What we do is use this table of cards known to be 64-bit cards.  If
583  * you have a 64-bit card who's subsystem ID is not listed in this table,
584  * send the output of "pcictl dump ..." of the device to me so that your
585  * card will use the 64-bit data path when plugged into a 64-bit slot.
586  *
587  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
588  *	   June 30, 2002
589  */
590 static int
591 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
592 {
593 	static const struct {
594 		pci_vendor_id_t c64_vendor;
595 		pci_product_id_t c64_product;
596 	} card64[] = {
597 		/* Asante GigaNIX */
598 		{ 0x128a,	0x0002 },
599 
600 		/* Accton EN1407-T, Planex GN-1000TE */
601 		{ 0x1113,	0x1407 },
602 
603 		/* Netgear GA-621 */
604 		{ 0x1385,	0x621a },
605 
606 		/* SMC EZ Card */
607 		{ 0x10b8,	0x9462 },
608 
609 		{ 0, 0}
610 	};
611 	pcireg_t subsys;
612 	int i;
613 
614 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
615 
616 	for (i = 0; card64[i].c64_vendor != 0; i++) {
617 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
618 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
619 			return (1);
620 	}
621 
622 	return (0);
623 }
624 #endif /* DP83820 */
625 
626 int
627 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
628 {
629 	struct pci_attach_args *pa = aux;
630 
631 	if (SIP_DECL(lookup)(pa) != NULL)
632 		return (1);
633 
634 	return (0);
635 }
636 
637 void
638 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
639 {
640 	struct sip_softc *sc = (struct sip_softc *) self;
641 	struct pci_attach_args *pa = aux;
642 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
643 	pci_chipset_tag_t pc = pa->pa_pc;
644 	pci_intr_handle_t ih;
645 	const char *intrstr = NULL;
646 	bus_space_tag_t iot, memt;
647 	bus_space_handle_t ioh, memh;
648 	bus_dma_segment_t seg;
649 	int ioh_valid, memh_valid;
650 	int i, rseg, error;
651 	const struct sip_product *sip;
652 	pcireg_t pmode;
653 	u_int8_t enaddr[ETHER_ADDR_LEN];
654 	int pmreg;
655 #ifdef DP83820
656 	pcireg_t memtype;
657 	u_int32_t reg;
658 #endif /* DP83820 */
659 
660 	callout_init(&sc->sc_tick_ch);
661 
662 	sip = SIP_DECL(lookup)(pa);
663 	if (sip == NULL) {
664 		printf("\n");
665 		panic(SIP_STR(attach) ": impossible");
666 	}
667 	sc->sc_rev = PCI_REVISION(pa->pa_class);
668 
669 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
670 
671 	sc->sc_model = sip;
672 
673 	/*
674 	 * XXX Work-around broken PXE firmware on some boards.
675 	 *
676 	 * The DP83815 shares an address decoder with the MEM BAR
677 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
678 	 * so that memory mapped access works.
679 	 */
680 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
681 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
682 	    ~PCI_MAPREG_ROM_ENABLE);
683 
684 	/*
685 	 * Map the device.
686 	 */
687 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
688 	    PCI_MAPREG_TYPE_IO, 0,
689 	    &iot, &ioh, NULL, NULL) == 0);
690 #ifdef DP83820
691 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
692 	switch (memtype) {
693 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
694 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
695 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
696 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
697 		break;
698 	default:
699 		memh_valid = 0;
700 	}
701 #else
702 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
703 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
704 	    &memt, &memh, NULL, NULL) == 0);
705 #endif /* DP83820 */
706 
707 	if (memh_valid) {
708 		sc->sc_st = memt;
709 		sc->sc_sh = memh;
710 	} else if (ioh_valid) {
711 		sc->sc_st = iot;
712 		sc->sc_sh = ioh;
713 	} else {
714 		printf("%s: unable to map device registers\n",
715 		    sc->sc_dev.dv_xname);
716 		return;
717 	}
718 
719 	sc->sc_dmat = pa->pa_dmat;
720 
721 	/*
722 	 * Make sure bus mastering is enabled.  Also make sure
723 	 * Write/Invalidate is enabled if we're allowed to use it.
724 	 */
725 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
726 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
727 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
728 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
729 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
730 
731 	/* Get it out of power save mode if needed. */
732 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
733 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
734 		    PCI_PMCSR_STATE_MASK;
735 		if (pmode == PCI_PMCSR_STATE_D3) {
736 			/*
737 			 * The card has lost all configuration data in
738 			 * this state, so punt.
739 			 */
740 			printf("%s: unable to wake up from power state D3\n",
741 			    sc->sc_dev.dv_xname);
742 			return;
743 		}
744 		if (pmode != PCI_PMCSR_STATE_D0) {
745 			printf("%s: waking up from power state D%d\n",
746 			    sc->sc_dev.dv_xname, pmode);
747 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
748 			    PCI_PMCSR_STATE_D0);
749 		}
750 	}
751 
752 	/*
753 	 * Map and establish our interrupt.
754 	 */
755 	if (pci_intr_map(pa, &ih)) {
756 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
757 		return;
758 	}
759 	intrstr = pci_intr_string(pc, ih);
760 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
761 	if (sc->sc_ih == NULL) {
762 		printf("%s: unable to establish interrupt",
763 		    sc->sc_dev.dv_xname);
764 		if (intrstr != NULL)
765 			printf(" at %s", intrstr);
766 		printf("\n");
767 		return;
768 	}
769 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
770 
771 	SIMPLEQ_INIT(&sc->sc_txfreeq);
772 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
773 
774 	/*
775 	 * Allocate the control data structures, and create and load the
776 	 * DMA map for it.
777 	 */
778 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
779 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
780 	    0)) != 0) {
781 		printf("%s: unable to allocate control data, error = %d\n",
782 		    sc->sc_dev.dv_xname, error);
783 		goto fail_0;
784 	}
785 
786 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
787 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
788 	    BUS_DMA_COHERENT)) != 0) {
789 		printf("%s: unable to map control data, error = %d\n",
790 		    sc->sc_dev.dv_xname, error);
791 		goto fail_1;
792 	}
793 
794 	if ((error = bus_dmamap_create(sc->sc_dmat,
795 	    sizeof(struct sip_control_data), 1,
796 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
797 		printf("%s: unable to create control data DMA map, "
798 		    "error = %d\n", sc->sc_dev.dv_xname, error);
799 		goto fail_2;
800 	}
801 
802 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
803 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
804 	    0)) != 0) {
805 		printf("%s: unable to load control data DMA map, error = %d\n",
806 		    sc->sc_dev.dv_xname, error);
807 		goto fail_3;
808 	}
809 
810 	/*
811 	 * Create the transmit buffer DMA maps.
812 	 */
813 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
814 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
815 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
816 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
817 			printf("%s: unable to create tx DMA map %d, "
818 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
819 			goto fail_4;
820 		}
821 	}
822 
823 	/*
824 	 * Create the receive buffer DMA maps.
825 	 */
826 	for (i = 0; i < SIP_NRXDESC; i++) {
827 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
828 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
829 			printf("%s: unable to create rx DMA map %d, "
830 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
831 			goto fail_5;
832 		}
833 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
834 	}
835 
836 	/*
837 	 * Reset the chip to a known state.
838 	 */
839 	SIP_DECL(reset)(sc);
840 
841 	/*
842 	 * Read the Ethernet address from the EEPROM.  This might
843 	 * also fetch other stuff from the EEPROM and stash it
844 	 * in the softc.
845 	 */
846 	sc->sc_cfg = 0;
847 #if !defined(DP83820)
848 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
849 	    SIP_SIS900_REV(sc,SIS_REV_900B))
850 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
851 
852 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
853 	    SIP_SIS900_REV(sc,SIS_REV_960) ||
854 	    SIP_SIS900_REV(sc,SIS_REV_900B))
855 		sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
856 						SIP_CFG) & CFG_EDBMASTEN);
857 #endif
858 
859 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
860 
861 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
862 	    ether_sprintf(enaddr));
863 
864 	/*
865 	 * Initialize the configuration register: aggressive PCI
866 	 * bus request algorithm, default backoff, default OW timer,
867 	 * default parity error detection.
868 	 *
869 	 * NOTE: "Big endian mode" is useless on the SiS900 and
870 	 * friends -- it affects packet data, not descriptors.
871 	 */
872 #ifdef DP83820
873 	/*
874 	 * Cause the chip to load configuration data from the EEPROM.
875 	 */
876 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
877 	for (i = 0; i < 10000; i++) {
878 		delay(10);
879 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
880 		    PTSCR_EELOAD_EN) == 0)
881 			break;
882 	}
883 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
884 	    PTSCR_EELOAD_EN) {
885 		printf("%s: timeout loading configuration from EEPROM\n",
886 		    sc->sc_dev.dv_xname);
887 		return;
888 	}
889 
890 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
891 
892 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
893 	if (reg & CFG_PCI64_DET) {
894 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
895 		/*
896 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
897 		 * data transfers.
898 		 *
899 		 * We can't use the DATA64_EN bit in the EEPROM, because
900 		 * vendors of 32-bit cards fail to clear that bit in many
901 		 * cases (yet the card still detects that it's in a 64-bit
902 		 * slot; go figure).
903 		 */
904 		if (SIP_DECL(check_64bit)(pa)) {
905 			sc->sc_cfg |= CFG_DATA64_EN;
906 			printf(", using 64-bit data transfers");
907 		}
908 		printf("\n");
909 	}
910 
911 	/*
912 	 * XXX Need some PCI flags indicating support for
913 	 * XXX 64-bit addressing.
914 	 */
915 #if 0
916 	if (reg & CFG_M64ADDR)
917 		sc->sc_cfg |= CFG_M64ADDR;
918 	if (reg & CFG_T64ADDR)
919 		sc->sc_cfg |= CFG_T64ADDR;
920 #endif
921 
922 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
923 		const char *sep = "";
924 		printf("%s: using ", sc->sc_dev.dv_xname);
925 		if (reg & CFG_EXT_125) {
926 			sc->sc_cfg |= CFG_EXT_125;
927 			printf("%s125MHz clock", sep);
928 			sep = ", ";
929 		}
930 		if (reg & CFG_TBI_EN) {
931 			sc->sc_cfg |= CFG_TBI_EN;
932 			printf("%sten-bit interface", sep);
933 			sep = ", ";
934 		}
935 		printf("\n");
936 	}
937 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
938 	    (reg & CFG_MRM_DIS) != 0)
939 		sc->sc_cfg |= CFG_MRM_DIS;
940 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
941 	    (reg & CFG_MWI_DIS) != 0)
942 		sc->sc_cfg |= CFG_MWI_DIS;
943 
944 	/*
945 	 * Use the extended descriptor format on the DP83820.  This
946 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
947 	 * checksumming.
948 	 */
949 	sc->sc_cfg |= CFG_EXTSTS_EN;
950 #endif /* DP83820 */
951 
952 	/*
953 	 * Initialize our media structures and probe the MII.
954 	 */
955 	sc->sc_mii.mii_ifp = ifp;
956 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
957 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
958 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
959 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
960 	    SIP_DECL(mediastatus));
961 
962 	/*
963 	 * XXX We cannot handle flow control on the DP83815.
964 	 */
965 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
966 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
967 			   MII_OFFSET_ANY, 0);
968 	else
969 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
970 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
971 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
972 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
973 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
974 	} else
975 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
976 
977 	ifp = &sc->sc_ethercom.ec_if;
978 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
979 	ifp->if_softc = sc;
980 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
981 	ifp->if_ioctl = SIP_DECL(ioctl);
982 	ifp->if_start = SIP_DECL(start);
983 	ifp->if_watchdog = SIP_DECL(watchdog);
984 	ifp->if_init = SIP_DECL(init);
985 	ifp->if_stop = SIP_DECL(stop);
986 	IFQ_SET_READY(&ifp->if_snd);
987 
988 	/*
989 	 * We can support 802.1Q VLAN-sized frames.
990 	 */
991 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
992 
993 #ifdef DP83820
994 	/*
995 	 * And the DP83820 can do VLAN tagging in hardware, and
996 	 * support the jumbo Ethernet MTU.
997 	 */
998 	sc->sc_ethercom.ec_capabilities |=
999 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1000 
1001 	/*
1002 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1003 	 * in hardware.
1004 	 */
1005 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1006 	    IFCAP_CSUM_UDPv4;
1007 #endif /* DP83820 */
1008 
1009 	/*
1010 	 * Attach the interface.
1011 	 */
1012 	if_attach(ifp);
1013 	ether_ifattach(ifp, enaddr);
1014 #if NRND > 0
1015 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1016 	    RND_TYPE_NET, 0);
1017 #endif
1018 
1019 	/*
1020 	 * The number of bytes that must be available in
1021 	 * the Tx FIFO before the bus master can DMA more
1022 	 * data into the FIFO.
1023 	 */
1024 	sc->sc_tx_fill_thresh = 64 / 32;
1025 
1026 	/*
1027 	 * Start at a drain threshold of 512 bytes.  We will
1028 	 * increase it if a DMA underrun occurs.
1029 	 *
1030 	 * XXX The minimum value of this variable should be
1031 	 * tuned.  We may be able to improve performance
1032 	 * by starting with a lower value.  That, however,
1033 	 * may trash the first few outgoing packets if the
1034 	 * PCI bus is saturated.
1035 	 */
1036 #ifdef DP83820
1037 	sc->sc_tx_drain_thresh = 6400 / 32;	/* from FreeBSD nge(4) */
1038 #else
1039 	sc->sc_tx_drain_thresh = 1504 / 32;
1040 #endif
1041 
1042 	/*
1043 	 * Initialize the Rx FIFO drain threshold.
1044 	 *
1045 	 * This is in units of 8 bytes.
1046 	 *
1047 	 * We should never set this value lower than 2; 14 bytes are
1048 	 * required to filter the packet.
1049 	 */
1050 	sc->sc_rx_drain_thresh = 128 / 8;
1051 
1052 #ifdef SIP_EVENT_COUNTERS
1053 	/*
1054 	 * Attach event counters.
1055 	 */
1056 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1057 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1058 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1059 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1060 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1061 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1062 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1063 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1064 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1065 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1066 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1067 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1068 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1069 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1070 #ifndef DP83820
1071 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1072 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1073 #endif /* !DP83820 */
1074 #ifdef DP83820
1075 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1076 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1077 	evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1078 	    NULL, sc->sc_dev.dv_xname, "txpause");
1079 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1080 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1081 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1082 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1083 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1084 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1085 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1086 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1087 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1088 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1089 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1090 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
1091 #endif /* DP83820 */
1092 #endif /* SIP_EVENT_COUNTERS */
1093 
1094 	/*
1095 	 * Make sure the interface is shutdown during reboot.
1096 	 */
1097 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1098 	if (sc->sc_sdhook == NULL)
1099 		printf("%s: WARNING: unable to establish shutdown hook\n",
1100 		    sc->sc_dev.dv_xname);
1101 	return;
1102 
1103 	/*
1104 	 * Free any resources we've allocated during the failed attach
1105 	 * attempt.  Do this in reverse order and fall through.
1106 	 */
1107  fail_5:
1108 	for (i = 0; i < SIP_NRXDESC; i++) {
1109 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1110 			bus_dmamap_destroy(sc->sc_dmat,
1111 			    sc->sc_rxsoft[i].rxs_dmamap);
1112 	}
1113  fail_4:
1114 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1115 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1116 			bus_dmamap_destroy(sc->sc_dmat,
1117 			    sc->sc_txsoft[i].txs_dmamap);
1118 	}
1119 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1120  fail_3:
1121 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1122  fail_2:
1123 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1124 	    sizeof(struct sip_control_data));
1125  fail_1:
1126 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1127  fail_0:
1128 	return;
1129 }
1130 
1131 /*
1132  * sip_shutdown:
1133  *
1134  *	Make sure the interface is stopped at reboot time.
1135  */
1136 void
1137 SIP_DECL(shutdown)(void *arg)
1138 {
1139 	struct sip_softc *sc = arg;
1140 
1141 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1142 }
1143 
1144 /*
1145  * sip_start:		[ifnet interface function]
1146  *
1147  *	Start packet transmission on the interface.
1148  */
1149 void
1150 SIP_DECL(start)(struct ifnet *ifp)
1151 {
1152 	struct sip_softc *sc = ifp->if_softc;
1153 	struct mbuf *m0;
1154 #ifndef DP83820
1155 	struct mbuf *m;
1156 #endif
1157 	struct sip_txsoft *txs;
1158 	bus_dmamap_t dmamap;
1159 	int error, nexttx, lasttx, seg;
1160 	int ofree = sc->sc_txfree;
1161 #if 0
1162 	int firsttx = sc->sc_txnext;
1163 #endif
1164 #ifdef DP83820
1165 	struct m_tag *mtag;
1166 	u_int32_t extsts;
1167 #endif
1168 
1169 #ifndef DP83820
1170 	/*
1171 	 * If we've been told to pause, don't transmit any more packets.
1172 	 */
1173 	if (sc->sc_paused)
1174 		ifp->if_flags |= IFF_OACTIVE;
1175 #endif
1176 
1177 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1178 		return;
1179 
1180 	/*
1181 	 * Loop through the send queue, setting up transmit descriptors
1182 	 * until we drain the queue, or use up all available transmit
1183 	 * descriptors.
1184 	 */
1185 	for (;;) {
1186 		/* Get a work queue entry. */
1187 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1188 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1189 			break;
1190 		}
1191 
1192 		/*
1193 		 * Grab a packet off the queue.
1194 		 */
1195 		IFQ_POLL(&ifp->if_snd, m0);
1196 		if (m0 == NULL)
1197 			break;
1198 #ifndef DP83820
1199 		m = NULL;
1200 #endif
1201 
1202 		dmamap = txs->txs_dmamap;
1203 
1204 #ifdef DP83820
1205 		/*
1206 		 * Load the DMA map.  If this fails, the packet either
1207 		 * didn't fit in the allotted number of segments, or we
1208 		 * were short on resources.  For the too-many-segments
1209 		 * case, we simply report an error and drop the packet,
1210 		 * since we can't sanely copy a jumbo packet to a single
1211 		 * buffer.
1212 		 */
1213 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1214 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1215 		if (error) {
1216 			if (error == EFBIG) {
1217 				printf("%s: Tx packet consumes too many "
1218 				    "DMA segments, dropping...\n",
1219 				    sc->sc_dev.dv_xname);
1220 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1221 				m_freem(m0);
1222 				continue;
1223 			}
1224 			/*
1225 			 * Short on resources, just stop for now.
1226 			 */
1227 			break;
1228 		}
1229 #else /* DP83820 */
1230 		/*
1231 		 * Load the DMA map.  If this fails, the packet either
1232 		 * didn't fit in the alloted number of segments, or we
1233 		 * were short on resources.  In this case, we'll copy
1234 		 * and try again.
1235 		 */
1236 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1237 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1238 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1239 			if (m == NULL) {
1240 				printf("%s: unable to allocate Tx mbuf\n",
1241 				    sc->sc_dev.dv_xname);
1242 				break;
1243 			}
1244 			if (m0->m_pkthdr.len > MHLEN) {
1245 				MCLGET(m, M_DONTWAIT);
1246 				if ((m->m_flags & M_EXT) == 0) {
1247 					printf("%s: unable to allocate Tx "
1248 					    "cluster\n", sc->sc_dev.dv_xname);
1249 					m_freem(m);
1250 					break;
1251 				}
1252 			}
1253 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1254 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1255 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1256 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1257 			if (error) {
1258 				printf("%s: unable to load Tx buffer, "
1259 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1260 				break;
1261 			}
1262 		}
1263 #endif /* DP83820 */
1264 
1265 		/*
1266 		 * Ensure we have enough descriptors free to describe
1267 		 * the packet.  Note, we always reserve one descriptor
1268 		 * at the end of the ring as a termination point, to
1269 		 * prevent wrap-around.
1270 		 */
1271 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1272 			/*
1273 			 * Not enough free descriptors to transmit this
1274 			 * packet.  We haven't committed anything yet,
1275 			 * so just unload the DMA map, put the packet
1276 			 * back on the queue, and punt.  Notify the upper
1277 			 * layer that there are not more slots left.
1278 			 *
1279 			 * XXX We could allocate an mbuf and copy, but
1280 			 * XXX is it worth it?
1281 			 */
1282 			ifp->if_flags |= IFF_OACTIVE;
1283 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1284 #ifndef DP83820
1285 			if (m != NULL)
1286 				m_freem(m);
1287 #endif
1288 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1289 			break;
1290 		}
1291 
1292 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1293 #ifndef DP83820
1294 		if (m != NULL) {
1295 			m_freem(m0);
1296 			m0 = m;
1297 		}
1298 #endif
1299 
1300 		/*
1301 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1302 		 */
1303 
1304 		/* Sync the DMA map. */
1305 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1306 		    BUS_DMASYNC_PREWRITE);
1307 
1308 		/*
1309 		 * Initialize the transmit descriptors.
1310 		 */
1311 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1312 		     seg < dmamap->dm_nsegs;
1313 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1314 			/*
1315 			 * If this is the first descriptor we're
1316 			 * enqueueing, don't set the OWN bit just
1317 			 * yet.  That could cause a race condition.
1318 			 * We'll do it below.
1319 			 */
1320 			sc->sc_txdescs[nexttx].sipd_bufptr =
1321 			    htole32(dmamap->dm_segs[seg].ds_addr);
1322 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1323 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1324 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1325 #ifdef DP83820
1326 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1327 #endif /* DP83820 */
1328 			lasttx = nexttx;
1329 		}
1330 
1331 		/* Clear the MORE bit on the last segment. */
1332 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1333 
1334 		/*
1335 		 * If we're in the interrupt delay window, delay the
1336 		 * interrupt.
1337 		 */
1338 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1339 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1340 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
1341 			    htole32(CMDSTS_INTR);
1342 			sc->sc_txwin = 0;
1343 		}
1344 
1345 #ifdef DP83820
1346 		/*
1347 		 * If VLANs are enabled and the packet has a VLAN tag, set
1348 		 * up the descriptor to encapsulate the packet for us.
1349 		 *
1350 		 * This apparently has to be on the last descriptor of
1351 		 * the packet.
1352 		 */
1353 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1354 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1355 			sc->sc_txdescs[lasttx].sipd_extsts |=
1356 			    htole32(EXTSTS_VPKT |
1357 				    (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1358 		}
1359 
1360 		/*
1361 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1362 		 * checksumming, set up the descriptor to do this work
1363 		 * for us.
1364 		 *
1365 		 * This apparently has to be on the first descriptor of
1366 		 * the packet.
1367 		 *
1368 		 * Byte-swap constants so the compiler can optimize.
1369 		 */
1370 		extsts = 0;
1371 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1372 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1373 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1374 			extsts |= htole32(EXTSTS_IPPKT);
1375 		}
1376 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1377 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1378 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1379 			extsts |= htole32(EXTSTS_TCPPKT);
1380 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1381 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1382 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1383 			extsts |= htole32(EXTSTS_UDPPKT);
1384 		}
1385 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1386 #endif /* DP83820 */
1387 
1388 		/* Sync the descriptors we're using. */
1389 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1390 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1391 
1392 		/*
1393 		 * The entire packet is set up.  Give the first descrptor
1394 		 * to the chip now.
1395 		 */
1396 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1397 		    htole32(CMDSTS_OWN);
1398 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1399 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1400 
1401 		/*
1402 		 * Store a pointer to the packet so we can free it later,
1403 		 * and remember what txdirty will be once the packet is
1404 		 * done.
1405 		 */
1406 		txs->txs_mbuf = m0;
1407 		txs->txs_firstdesc = sc->sc_txnext;
1408 		txs->txs_lastdesc = lasttx;
1409 
1410 		/* Advance the tx pointer. */
1411 		sc->sc_txfree -= dmamap->dm_nsegs;
1412 		sc->sc_txnext = nexttx;
1413 
1414 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1415 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1416 
1417 #if NBPFILTER > 0
1418 		/*
1419 		 * Pass the packet to any BPF listeners.
1420 		 */
1421 		if (ifp->if_bpf)
1422 			bpf_mtap(ifp->if_bpf, m0);
1423 #endif /* NBPFILTER > 0 */
1424 	}
1425 
1426 	if (txs == NULL || sc->sc_txfree == 0) {
1427 		/* No more slots left; notify upper layer. */
1428 		ifp->if_flags |= IFF_OACTIVE;
1429 	}
1430 
1431 	if (sc->sc_txfree != ofree) {
1432 		/*
1433 		 * Start the transmit process.  Note, the manual says
1434 		 * that if there are no pending transmissions in the
1435 		 * chip's internal queue (indicated by TXE being clear),
1436 		 * then the driver software must set the TXDP to the
1437 		 * first descriptor to be transmitted.  However, if we
1438 		 * do this, it causes serious performance degredation on
1439 		 * the DP83820 under load, not setting TXDP doesn't seem
1440 		 * to adversely affect the SiS 900 or DP83815.
1441 		 *
1442 		 * Well, I guess it wouldn't be the first time a manual
1443 		 * has lied -- and they could be speaking of the NULL-
1444 		 * terminated descriptor list case, rather than OWN-
1445 		 * terminated rings.
1446 		 */
1447 #if 0
1448 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1449 		     CR_TXE) == 0) {
1450 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1451 			    SIP_CDTXADDR(sc, firsttx));
1452 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1453 		}
1454 #else
1455 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1456 #endif
1457 
1458 		/* Set a watchdog timer in case the chip flakes out. */
1459 #ifdef DP83820
1460 		/* Gigabit autonegotiation takes 5 seconds. */
1461 		ifp->if_timer = 10;
1462 #else
1463 		ifp->if_timer = 5;
1464 #endif
1465 	}
1466 }
1467 
1468 /*
1469  * sip_watchdog:	[ifnet interface function]
1470  *
1471  *	Watchdog timer handler.
1472  */
1473 void
1474 SIP_DECL(watchdog)(struct ifnet *ifp)
1475 {
1476 	struct sip_softc *sc = ifp->if_softc;
1477 
1478 	/*
1479 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1480 	 * If we get a timeout, try and sweep up transmit descriptors.
1481 	 * If we manage to sweep them all up, ignore the lack of
1482 	 * interrupt.
1483 	 */
1484 	SIP_DECL(txintr)(sc);
1485 
1486 	if (sc->sc_txfree != SIP_NTXDESC) {
1487 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1488 		ifp->if_oerrors++;
1489 
1490 		/* Reset the interface. */
1491 		(void) SIP_DECL(init)(ifp);
1492 	} else if (ifp->if_flags & IFF_DEBUG)
1493 		printf("%s: recovered from device timeout\n",
1494 		    sc->sc_dev.dv_xname);
1495 
1496 	/* Try to get more packets going. */
1497 	SIP_DECL(start)(ifp);
1498 }
1499 
1500 /*
1501  * sip_ioctl:		[ifnet interface function]
1502  *
1503  *	Handle control requests from the operator.
1504  */
1505 int
1506 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1507 {
1508 	struct sip_softc *sc = ifp->if_softc;
1509 	struct ifreq *ifr = (struct ifreq *)data;
1510 	int s, error;
1511 
1512 	s = splnet();
1513 
1514 	switch (cmd) {
1515 	case SIOCSIFMEDIA:
1516 		/* Flow control requires full-duplex mode. */
1517 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1518 		    (ifr->ifr_media & IFM_FDX) == 0)
1519 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1520 #ifdef DP83820
1521 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1522 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1523 				/* We can do both TXPAUSE and RXPAUSE. */
1524 				ifr->ifr_media |=
1525 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1526 			}
1527 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1528 		}
1529 #else
1530 		/* XXX */
1531 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1532 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1533 
1534 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1535 			if (ifr->ifr_media & IFM_FLOW) {
1536 				/*
1537 				 * Both TXPAUSE and RXPAUSE must be set.
1538 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1539 				 * feature.)
1540 				 *
1541 				 * XXX Can SiS900 and DP83815 send PAUSE?
1542 				 */
1543 				ifr->ifr_media |=
1544 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1545 			}
1546 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1547 		}
1548 #endif
1549 		/* FALLTHROUGH */
1550 	case SIOCGIFMEDIA:
1551 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1552 		break;
1553 
1554 	default:
1555 		error = ether_ioctl(ifp, cmd, data);
1556 		if (error == ENETRESET) {
1557 			/*
1558 			 * Multicast list has changed; set the hardware filter
1559 			 * accordingly.
1560 			 */
1561 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1562 			error = 0;
1563 		}
1564 		break;
1565 	}
1566 
1567 	/* Try to get more packets going. */
1568 	SIP_DECL(start)(ifp);
1569 
1570 	splx(s);
1571 	return (error);
1572 }
1573 
1574 /*
1575  * sip_intr:
1576  *
1577  *	Interrupt service routine.
1578  */
1579 int
1580 SIP_DECL(intr)(void *arg)
1581 {
1582 	struct sip_softc *sc = arg;
1583 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1584 	u_int32_t isr;
1585 	int handled = 0;
1586 
1587 	/* Disable interrupts. */
1588 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1589 
1590 	for (;;) {
1591 		/* Reading clears interrupt. */
1592 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1593 		if ((isr & sc->sc_imr) == 0)
1594 			break;
1595 
1596 #if NRND > 0
1597 		if (RND_ENABLED(&sc->rnd_source))
1598 			rnd_add_uint32(&sc->rnd_source, isr);
1599 #endif
1600 
1601 		handled = 1;
1602 
1603 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1604 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1605 
1606 			/* Grab any new packets. */
1607 			SIP_DECL(rxintr)(sc);
1608 
1609 			if (isr & ISR_RXORN) {
1610 				printf("%s: receive FIFO overrun\n",
1611 				    sc->sc_dev.dv_xname);
1612 
1613 				/* XXX adjust rx_drain_thresh? */
1614 			}
1615 
1616 			if (isr & ISR_RXIDLE) {
1617 				printf("%s: receive ring overrun\n",
1618 				    sc->sc_dev.dv_xname);
1619 
1620 				/* Get the receive process going again. */
1621 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1622 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1623 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1624 				    SIP_CR, CR_RXE);
1625 			}
1626 		}
1627 
1628 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1629 #ifdef SIP_EVENT_COUNTERS
1630 			if (isr & ISR_TXDESC)
1631 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1632 			else if (isr & ISR_TXIDLE)
1633 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1634 #endif
1635 
1636 			/* Sweep up transmit descriptors. */
1637 			SIP_DECL(txintr)(sc);
1638 
1639 			if (isr & ISR_TXURN) {
1640 				u_int32_t thresh;
1641 
1642 				printf("%s: transmit FIFO underrun",
1643 				    sc->sc_dev.dv_xname);
1644 
1645 				thresh = sc->sc_tx_drain_thresh + 1;
1646 				if (thresh <= TXCFG_DRTH &&
1647 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1648 				     (sc->sc_tx_fill_thresh * 32))) {
1649 					printf("; increasing Tx drain "
1650 					    "threshold to %u bytes\n",
1651 					    thresh * 32);
1652 					sc->sc_tx_drain_thresh = thresh;
1653 					(void) SIP_DECL(init)(ifp);
1654 				} else {
1655 					(void) SIP_DECL(init)(ifp);
1656 					printf("\n");
1657 				}
1658 			}
1659 		}
1660 
1661 #if !defined(DP83820)
1662 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1663 			if (isr & ISR_PAUSE_ST) {
1664 				sc->sc_paused = 1;
1665 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1666 				ifp->if_flags |= IFF_OACTIVE;
1667 			}
1668 			if (isr & ISR_PAUSE_END) {
1669 				sc->sc_paused = 0;
1670 				ifp->if_flags &= ~IFF_OACTIVE;
1671 			}
1672 		}
1673 #endif /* ! DP83820 */
1674 
1675 		if (isr & ISR_HIBERR) {
1676 			int want_init = 0;
1677 
1678 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1679 
1680 #define	PRINTERR(bit, str)						\
1681 			do {						\
1682 				if ((isr & (bit)) != 0) {		\
1683 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1684 						printf("%s: %s\n",	\
1685 						    sc->sc_dev.dv_xname, str); \
1686 					want_init = 1;			\
1687 				}					\
1688 			} while (/*CONSTCOND*/0)
1689 
1690 			PRINTERR(ISR_DPERR, "parity error");
1691 			PRINTERR(ISR_SSERR, "system error");
1692 			PRINTERR(ISR_RMABT, "master abort");
1693 			PRINTERR(ISR_RTABT, "target abort");
1694 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1695 			/*
1696 			 * Ignore:
1697 			 *	Tx reset complete
1698 			 *	Rx reset complete
1699 			 */
1700 			if (want_init)
1701 				(void) SIP_DECL(init)(ifp);
1702 #undef PRINTERR
1703 		}
1704 	}
1705 
1706 	/* Re-enable interrupts. */
1707 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1708 
1709 	/* Try to get more packets going. */
1710 	SIP_DECL(start)(ifp);
1711 
1712 	return (handled);
1713 }
1714 
1715 /*
1716  * sip_txintr:
1717  *
1718  *	Helper; handle transmit interrupts.
1719  */
1720 void
1721 SIP_DECL(txintr)(struct sip_softc *sc)
1722 {
1723 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1724 	struct sip_txsoft *txs;
1725 	u_int32_t cmdsts;
1726 
1727 #ifndef DP83820
1728 	if (sc->sc_paused == 0)
1729 #endif
1730 		ifp->if_flags &= ~IFF_OACTIVE;
1731 
1732 	/*
1733 	 * Go through our Tx list and free mbufs for those
1734 	 * frames which have been transmitted.
1735 	 */
1736 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1737 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1738 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1739 
1740 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1741 		if (cmdsts & CMDSTS_OWN)
1742 			break;
1743 
1744 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1745 
1746 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1747 
1748 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1749 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1750 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1751 		m_freem(txs->txs_mbuf);
1752 		txs->txs_mbuf = NULL;
1753 
1754 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1755 
1756 		/*
1757 		 * Check for errors and collisions.
1758 		 */
1759 		if (cmdsts &
1760 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1761 			ifp->if_oerrors++;
1762 			if (cmdsts & CMDSTS_Tx_EC)
1763 				ifp->if_collisions += 16;
1764 			if (ifp->if_flags & IFF_DEBUG) {
1765 				if (cmdsts & CMDSTS_Tx_ED)
1766 					printf("%s: excessive deferral\n",
1767 					    sc->sc_dev.dv_xname);
1768 				if (cmdsts & CMDSTS_Tx_EC)
1769 					printf("%s: excessive collisions\n",
1770 					    sc->sc_dev.dv_xname);
1771 			}
1772 		} else {
1773 			/* Packet was transmitted successfully. */
1774 			ifp->if_opackets++;
1775 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1776 		}
1777 	}
1778 
1779 	/*
1780 	 * If there are no more pending transmissions, cancel the watchdog
1781 	 * timer.
1782 	 */
1783 	if (txs == NULL) {
1784 		ifp->if_timer = 0;
1785 		sc->sc_txwin = 0;
1786 	}
1787 }
1788 
1789 #if defined(DP83820)
1790 /*
1791  * sip_rxintr:
1792  *
1793  *	Helper; handle receive interrupts.
1794  */
1795 void
1796 SIP_DECL(rxintr)(struct sip_softc *sc)
1797 {
1798 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1799 	struct sip_rxsoft *rxs;
1800 	struct mbuf *m, *tailm;
1801 	u_int32_t cmdsts, extsts;
1802 	int i, len, frame_len;
1803 
1804 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1805 		rxs = &sc->sc_rxsoft[i];
1806 
1807 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1808 
1809 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1810 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1811 
1812 		/*
1813 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1814 		 * consumer of the receive ring, so if the bit is clear,
1815 		 * we have processed all of the packets.
1816 		 */
1817 		if ((cmdsts & CMDSTS_OWN) == 0) {
1818 			/*
1819 			 * We have processed all of the receive buffers.
1820 			 */
1821 			break;
1822 		}
1823 
1824 		if (__predict_false(sc->sc_rxdiscard)) {
1825 			SIP_INIT_RXDESC(sc, i);
1826 			if ((cmdsts & CMDSTS_MORE) == 0) {
1827 				/* Reset our state. */
1828 				sc->sc_rxdiscard = 0;
1829 			}
1830 			continue;
1831 		}
1832 
1833 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1834 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1835 
1836 		m = rxs->rxs_mbuf;
1837 
1838 		/*
1839 		 * Add a new receive buffer to the ring.
1840 		 */
1841 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1842 			/*
1843 			 * Failed, throw away what we've done so
1844 			 * far, and discard the rest of the packet.
1845 			 */
1846 			ifp->if_ierrors++;
1847 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1848 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1849 			SIP_INIT_RXDESC(sc, i);
1850 			if (cmdsts & CMDSTS_MORE)
1851 				sc->sc_rxdiscard = 1;
1852 			if (sc->sc_rxhead != NULL)
1853 				m_freem(sc->sc_rxhead);
1854 			SIP_RXCHAIN_RESET(sc);
1855 			continue;
1856 		}
1857 
1858 		SIP_RXCHAIN_LINK(sc, m);
1859 
1860 		/*
1861 		 * If this is not the end of the packet, keep
1862 		 * looking.
1863 		 */
1864 		if (cmdsts & CMDSTS_MORE) {
1865 			sc->sc_rxlen += m->m_len;
1866 			continue;
1867 		}
1868 
1869 		/*
1870 		 * Okay, we have the entire packet now...
1871 		 */
1872 		*sc->sc_rxtailp = NULL;
1873 		m = sc->sc_rxhead;
1874 		tailm = sc->sc_rxtail;
1875 		frame_len = sc->sc_rxlen;
1876 
1877 		SIP_RXCHAIN_RESET(sc);
1878 
1879 		/*
1880 		 * If an error occurred, update stats and drop the packet.
1881 		 */
1882 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1883 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1884 			ifp->if_ierrors++;
1885 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1886 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1887 				/* Receive overrun handled elsewhere. */
1888 				printf("%s: receive descriptor error\n",
1889 				    sc->sc_dev.dv_xname);
1890 			}
1891 #define	PRINTERR(bit, str)						\
1892 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1893 			    (cmdsts & (bit)) != 0)			\
1894 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1895 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1896 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1897 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1898 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1899 #undef PRINTERR
1900 			m_freem(m);
1901 			continue;
1902 		}
1903 
1904 		/*
1905 		 * No errors.
1906 		 *
1907 		 * Note, the DP83820 includes the CRC with
1908 		 * every packet.
1909 		 */
1910 		len = CMDSTS_SIZE(cmdsts);
1911 		frame_len += len;
1912 		tailm->m_len = len;
1913 
1914 		/*
1915 		 * If the packet is small enough to fit in a
1916 		 * single header mbuf, allocate one and copy
1917 		 * the data into it.  This greatly reduces
1918 		 * memory consumption when we receive lots
1919 		 * of small packets.
1920 		 */
1921 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1922 			struct mbuf *nm;
1923 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1924 			if (nm == NULL) {
1925 				ifp->if_ierrors++;
1926 				m_freem(m);
1927 				continue;
1928 			}
1929 			nm->m_data += 2;
1930 			nm->m_pkthdr.len = nm->m_len = len;
1931 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1932 			m_freem(m);
1933 			m = nm;
1934 		}
1935 #ifndef __NO_STRICT_ALIGNMENT
1936 		else {
1937 			/*
1938 			 * The DP83820's receive buffers must be 4-byte
1939 			 * aligned.  But this means that the data after
1940 			 * the Ethernet header is misaligned.  To compensate,
1941 			 * we have artificially shortened the buffer size
1942 			 * in the descriptor, and we do an overlapping copy
1943 			 * of the data two bytes further in (in the first
1944 			 * buffer of the chain only).
1945 			 */
1946 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1947 			    m->m_len);
1948 			m->m_data += 2;
1949 		}
1950 #endif /* ! __NO_STRICT_ALIGNMENT */
1951 
1952 		/*
1953 		 * If VLANs are enabled, VLAN packets have been unwrapped
1954 		 * for us.  Associate the tag with the packet.
1955 		 */
1956 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1957 		    (extsts & EXTSTS_VPKT) != 0) {
1958 			struct m_tag *vtag;
1959 
1960 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1961 			    M_NOWAIT);
1962 			if (vtag == NULL) {
1963 				ifp->if_ierrors++;
1964 				printf("%s: unable to allocate VLAN tag\n",
1965 				    sc->sc_dev.dv_xname);
1966 				m_freem(m);
1967 				continue;
1968 			}
1969 
1970 			*(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1971 		}
1972 
1973 		/*
1974 		 * Set the incoming checksum information for the
1975 		 * packet.
1976 		 */
1977 		if ((extsts & EXTSTS_IPPKT) != 0) {
1978 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1979 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1980 			if (extsts & EXTSTS_Rx_IPERR)
1981 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1982 			if (extsts & EXTSTS_TCPPKT) {
1983 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1984 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1985 				if (extsts & EXTSTS_Rx_TCPERR)
1986 					m->m_pkthdr.csum_flags |=
1987 					    M_CSUM_TCP_UDP_BAD;
1988 			} else if (extsts & EXTSTS_UDPPKT) {
1989 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1990 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1991 				if (extsts & EXTSTS_Rx_UDPERR)
1992 					m->m_pkthdr.csum_flags |=
1993 					    M_CSUM_TCP_UDP_BAD;
1994 			}
1995 		}
1996 
1997 		ifp->if_ipackets++;
1998 		m->m_flags |= M_HASFCS;
1999 		m->m_pkthdr.rcvif = ifp;
2000 		m->m_pkthdr.len = frame_len;
2001 
2002 #if NBPFILTER > 0
2003 		/*
2004 		 * Pass this up to any BPF listeners, but only
2005 		 * pass if up the stack if it's for us.
2006 		 */
2007 		if (ifp->if_bpf)
2008 			bpf_mtap(ifp->if_bpf, m);
2009 #endif /* NBPFILTER > 0 */
2010 
2011 		/* Pass it on. */
2012 		(*ifp->if_input)(ifp, m);
2013 	}
2014 
2015 	/* Update the receive pointer. */
2016 	sc->sc_rxptr = i;
2017 }
2018 #else /* ! DP83820 */
2019 /*
2020  * sip_rxintr:
2021  *
2022  *	Helper; handle receive interrupts.
2023  */
2024 void
2025 SIP_DECL(rxintr)(struct sip_softc *sc)
2026 {
2027 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2028 	struct sip_rxsoft *rxs;
2029 	struct mbuf *m;
2030 	u_int32_t cmdsts;
2031 	int i, len;
2032 
2033 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2034 		rxs = &sc->sc_rxsoft[i];
2035 
2036 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2037 
2038 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2039 
2040 		/*
2041 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2042 		 * consumer of the receive ring, so if the bit is clear,
2043 		 * we have processed all of the packets.
2044 		 */
2045 		if ((cmdsts & CMDSTS_OWN) == 0) {
2046 			/*
2047 			 * We have processed all of the receive buffers.
2048 			 */
2049 			break;
2050 		}
2051 
2052 		/*
2053 		 * If any collisions were seen on the wire, count one.
2054 		 */
2055 		if (cmdsts & CMDSTS_Rx_COL)
2056 			ifp->if_collisions++;
2057 
2058 		/*
2059 		 * If an error occurred, update stats, clear the status
2060 		 * word, and leave the packet buffer in place.  It will
2061 		 * simply be reused the next time the ring comes around.
2062 		 */
2063 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2064 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2065 			ifp->if_ierrors++;
2066 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2067 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2068 				/* Receive overrun handled elsewhere. */
2069 				printf("%s: receive descriptor error\n",
2070 				    sc->sc_dev.dv_xname);
2071 			}
2072 #define	PRINTERR(bit, str)						\
2073 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2074 			    (cmdsts & (bit)) != 0)			\
2075 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2076 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2077 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2078 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2079 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2080 #undef PRINTERR
2081 			SIP_INIT_RXDESC(sc, i);
2082 			continue;
2083 		}
2084 
2085 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2086 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2087 
2088 		/*
2089 		 * No errors; receive the packet.  Note, the SiS 900
2090 		 * includes the CRC with every packet.
2091 		 */
2092 		len = CMDSTS_SIZE(cmdsts);
2093 
2094 #ifdef __NO_STRICT_ALIGNMENT
2095 		/*
2096 		 * If the packet is small enough to fit in a
2097 		 * single header mbuf, allocate one and copy
2098 		 * the data into it.  This greatly reduces
2099 		 * memory consumption when we receive lots
2100 		 * of small packets.
2101 		 *
2102 		 * Otherwise, we add a new buffer to the receive
2103 		 * chain.  If this fails, we drop the packet and
2104 		 * recycle the old buffer.
2105 		 */
2106 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2107 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2108 			if (m == NULL)
2109 				goto dropit;
2110 			memcpy(mtod(m, caddr_t),
2111 			    mtod(rxs->rxs_mbuf, caddr_t), len);
2112 			SIP_INIT_RXDESC(sc, i);
2113 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2114 			    rxs->rxs_dmamap->dm_mapsize,
2115 			    BUS_DMASYNC_PREREAD);
2116 		} else {
2117 			m = rxs->rxs_mbuf;
2118 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2119  dropit:
2120 				ifp->if_ierrors++;
2121 				SIP_INIT_RXDESC(sc, i);
2122 				bus_dmamap_sync(sc->sc_dmat,
2123 				    rxs->rxs_dmamap, 0,
2124 				    rxs->rxs_dmamap->dm_mapsize,
2125 				    BUS_DMASYNC_PREREAD);
2126 				continue;
2127 			}
2128 		}
2129 #else
2130 		/*
2131 		 * The SiS 900's receive buffers must be 4-byte aligned.
2132 		 * But this means that the data after the Ethernet header
2133 		 * is misaligned.  We must allocate a new buffer and
2134 		 * copy the data, shifted forward 2 bytes.
2135 		 */
2136 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2137 		if (m == NULL) {
2138  dropit:
2139 			ifp->if_ierrors++;
2140 			SIP_INIT_RXDESC(sc, i);
2141 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2142 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2143 			continue;
2144 		}
2145 		if (len > (MHLEN - 2)) {
2146 			MCLGET(m, M_DONTWAIT);
2147 			if ((m->m_flags & M_EXT) == 0) {
2148 				m_freem(m);
2149 				goto dropit;
2150 			}
2151 		}
2152 		m->m_data += 2;
2153 
2154 		/*
2155 		 * Note that we use clusters for incoming frames, so the
2156 		 * buffer is virtually contiguous.
2157 		 */
2158 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2159 
2160 		/* Allow the receive descriptor to continue using its mbuf. */
2161 		SIP_INIT_RXDESC(sc, i);
2162 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2163 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2164 #endif /* __NO_STRICT_ALIGNMENT */
2165 
2166 		ifp->if_ipackets++;
2167 		m->m_flags |= M_HASFCS;
2168 		m->m_pkthdr.rcvif = ifp;
2169 		m->m_pkthdr.len = m->m_len = len;
2170 
2171 #if NBPFILTER > 0
2172 		/*
2173 		 * Pass this up to any BPF listeners, but only
2174 		 * pass if up the stack if it's for us.
2175 		 */
2176 		if (ifp->if_bpf)
2177 			bpf_mtap(ifp->if_bpf, m);
2178 #endif /* NBPFILTER > 0 */
2179 
2180 		/* Pass it on. */
2181 		(*ifp->if_input)(ifp, m);
2182 	}
2183 
2184 	/* Update the receive pointer. */
2185 	sc->sc_rxptr = i;
2186 }
2187 #endif /* DP83820 */
2188 
2189 /*
2190  * sip_tick:
2191  *
2192  *	One second timer, used to tick the MII.
2193  */
2194 void
2195 SIP_DECL(tick)(void *arg)
2196 {
2197 	struct sip_softc *sc = arg;
2198 	int s;
2199 
2200 	s = splnet();
2201 #ifdef DP83820
2202 #ifdef SIP_EVENT_COUNTERS
2203 	/* Read PAUSE related counts from MIB registers. */
2204 	sc->sc_ev_rxpause.ev_count +=
2205 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2206 			     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2207 	sc->sc_ev_txpause.ev_count +=
2208 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2209 			     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2210 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2211 #endif /* SIP_EVENT_COUNTERS */
2212 #endif /* DP83820 */
2213 	mii_tick(&sc->sc_mii);
2214 	splx(s);
2215 
2216 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2217 }
2218 
2219 /*
2220  * sip_reset:
2221  *
2222  *	Perform a soft reset on the SiS 900.
2223  */
2224 void
2225 SIP_DECL(reset)(struct sip_softc *sc)
2226 {
2227 	bus_space_tag_t st = sc->sc_st;
2228 	bus_space_handle_t sh = sc->sc_sh;
2229 	int i;
2230 
2231 	bus_space_write_4(st, sh, SIP_IER, 0);
2232 	bus_space_write_4(st, sh, SIP_IMR, 0);
2233 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2234 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2235 
2236 	for (i = 0; i < SIP_TIMEOUT; i++) {
2237 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2238 			break;
2239 		delay(2);
2240 	}
2241 
2242 	if (i == SIP_TIMEOUT)
2243 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2244 
2245 	delay(1000);
2246 
2247 #ifdef DP83820
2248 	/*
2249 	 * Set the general purpose I/O bits.  Do it here in case we
2250 	 * need to have GPIO set up to talk to the media interface.
2251 	 */
2252 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2253 	delay(1000);
2254 #endif /* DP83820 */
2255 }
2256 
2257 /*
2258  * sip_init:		[ ifnet interface function ]
2259  *
2260  *	Initialize the interface.  Must be called at splnet().
2261  */
2262 int
2263 SIP_DECL(init)(struct ifnet *ifp)
2264 {
2265 	struct sip_softc *sc = ifp->if_softc;
2266 	bus_space_tag_t st = sc->sc_st;
2267 	bus_space_handle_t sh = sc->sc_sh;
2268 	struct sip_txsoft *txs;
2269 	struct sip_rxsoft *rxs;
2270 	struct sip_desc *sipd;
2271 #if defined(DP83820)
2272 	u_int32_t reg;
2273 #endif
2274 	int i, error = 0;
2275 
2276 	/*
2277 	 * Cancel any pending I/O.
2278 	 */
2279 	SIP_DECL(stop)(ifp, 0);
2280 
2281 	/*
2282 	 * Reset the chip to a known state.
2283 	 */
2284 	SIP_DECL(reset)(sc);
2285 
2286 #if !defined(DP83820)
2287 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2288 		/*
2289 		 * DP83815 manual, page 78:
2290 		 *    4.4 Recommended Registers Configuration
2291 		 *    For optimum performance of the DP83815, version noted
2292 		 *    as DP83815CVNG (SRR = 203h), the listed register
2293 		 *    modifications must be followed in sequence...
2294 		 *
2295 		 * It's not clear if this should be 302h or 203h because that
2296 		 * chip name is listed as SRR 302h in the description of the
2297 		 * SRR register.  However, my revision 302h DP83815 on the
2298 		 * Netgear FA311 purchased in 02/2001 needs these settings
2299 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2300 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2301 		 * this set or not.  [briggs -- 09 March 2001]
2302 		 *
2303 		 * Note that only the low-order 12 bits of 0xe4 are documented
2304 		 * and that this sets reserved bits in that register.
2305 		 */
2306 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2307 
2308 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2309 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2310 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2311 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2312 
2313 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2314 	}
2315 #endif /* ! DP83820 */
2316 
2317 	/*
2318 	 * Initialize the transmit descriptor ring.
2319 	 */
2320 	for (i = 0; i < SIP_NTXDESC; i++) {
2321 		sipd = &sc->sc_txdescs[i];
2322 		memset(sipd, 0, sizeof(struct sip_desc));
2323 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2324 	}
2325 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2326 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2327 	sc->sc_txfree = SIP_NTXDESC;
2328 	sc->sc_txnext = 0;
2329 	sc->sc_txwin = 0;
2330 
2331 	/*
2332 	 * Initialize the transmit job descriptors.
2333 	 */
2334 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2335 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2336 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2337 		txs = &sc->sc_txsoft[i];
2338 		txs->txs_mbuf = NULL;
2339 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2340 	}
2341 
2342 	/*
2343 	 * Initialize the receive descriptor and receive job
2344 	 * descriptor rings.
2345 	 */
2346 	for (i = 0; i < SIP_NRXDESC; i++) {
2347 		rxs = &sc->sc_rxsoft[i];
2348 		if (rxs->rxs_mbuf == NULL) {
2349 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2350 				printf("%s: unable to allocate or map rx "
2351 				    "buffer %d, error = %d\n",
2352 				    sc->sc_dev.dv_xname, i, error);
2353 				/*
2354 				 * XXX Should attempt to run with fewer receive
2355 				 * XXX buffers instead of just failing.
2356 				 */
2357 				SIP_DECL(rxdrain)(sc);
2358 				goto out;
2359 			}
2360 		} else
2361 			SIP_INIT_RXDESC(sc, i);
2362 	}
2363 	sc->sc_rxptr = 0;
2364 #ifdef DP83820
2365 	sc->sc_rxdiscard = 0;
2366 	SIP_RXCHAIN_RESET(sc);
2367 #endif /* DP83820 */
2368 
2369 	/*
2370 	 * Set the configuration register; it's already initialized
2371 	 * in sip_attach().
2372 	 */
2373 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2374 
2375 	/*
2376 	 * Initialize the prototype TXCFG register.
2377 	 */
2378 #if defined(DP83820)
2379 	sc->sc_txcfg = TXCFG_MXDMA_512;
2380 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2381 #else
2382 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2383 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2384 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2385 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2386 		sc->sc_txcfg = TXCFG_MXDMA_64;
2387 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2388 	} else {
2389 		sc->sc_txcfg = TXCFG_MXDMA_512;
2390 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2391 	}
2392 #endif /* DP83820 */
2393 
2394 	sc->sc_txcfg |= TXCFG_ATP |
2395 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2396 	    sc->sc_tx_drain_thresh;
2397 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2398 
2399 	/*
2400 	 * Initialize the receive drain threshold if we have never
2401 	 * done so.
2402 	 */
2403 	if (sc->sc_rx_drain_thresh == 0) {
2404 		/*
2405 		 * XXX This value should be tuned.  This is set to the
2406 		 * maximum of 248 bytes, and we may be able to improve
2407 		 * performance by decreasing it (although we should never
2408 		 * set this value lower than 2; 14 bytes are required to
2409 		 * filter the packet).
2410 		 */
2411 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2412 	}
2413 
2414 	/*
2415 	 * Initialize the prototype RXCFG register.
2416 	 */
2417 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2418 #ifdef DP83820
2419 	/*
2420 	 * Accept long packets (including FCS) so we can handle
2421 	 * 802.1q-tagged frames and jumbo frames properly.
2422 	 */
2423 	if (ifp->if_mtu > ETHERMTU ||
2424 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2425 		sc->sc_rxcfg |= RXCFG_ALP;
2426 
2427 	/*
2428 	 * Checksum offloading is disabled if the user selects an MTU
2429 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2430 	 * evidence that >8109 does not work on some boards, such as the
2431 	 * Planex GN-1000TE).
2432 	 */
2433 	if (ifp->if_mtu > 8109 &&
2434 	    (ifp->if_capenable &
2435 	     (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) {
2436 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2437 		       "disabled.\n", sc->sc_dev.dv_xname);
2438 		ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
2439 				       IFCAP_CSUM_UDPv4);
2440 		ifp->if_csum_flags_tx = 0;
2441 		ifp->if_csum_flags_rx = 0;
2442 	}
2443 #else
2444 	/*
2445 	 * Accept packets >1518 bytes (including FCS) so we can handle
2446 	 * 802.1q-tagged frames properly.
2447 	 */
2448 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2449 		sc->sc_rxcfg |= RXCFG_ALP;
2450 #endif
2451 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2452 
2453 #ifdef DP83820
2454 	/*
2455 	 * Initialize the VLAN/IP receive control register.
2456 	 * We enable checksum computation on all incoming
2457 	 * packets, and do not reject packets w/ bad checksums.
2458 	 */
2459 	reg = 0;
2460 	if (ifp->if_capenable &
2461 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2462 		reg |= VRCR_IPEN;
2463 	if (sc->sc_ethercom.ec_nvlans != 0)
2464 		reg |= VRCR_VTDEN|VRCR_VTREN;
2465 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2466 
2467 	/*
2468 	 * Initialize the VLAN/IP transmit control register.
2469 	 * We enable outgoing checksum computation on a
2470 	 * per-packet basis.
2471 	 */
2472 	reg = 0;
2473 	if (ifp->if_capenable &
2474 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2475 		reg |= VTCR_PPCHK;
2476 	if (sc->sc_ethercom.ec_nvlans != 0)
2477 		reg |= VTCR_VPPTI;
2478 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2479 
2480 	/*
2481 	 * If we're using VLANs, initialize the VLAN data register.
2482 	 * To understand why we bswap the VLAN Ethertype, see section
2483 	 * 4.2.36 of the DP83820 manual.
2484 	 */
2485 	if (sc->sc_ethercom.ec_nvlans != 0)
2486 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2487 #endif /* DP83820 */
2488 
2489 	/*
2490 	 * Give the transmit and receive rings to the chip.
2491 	 */
2492 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2493 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2494 
2495 	/*
2496 	 * Initialize the interrupt mask.
2497 	 */
2498 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2499 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2500 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2501 
2502 	/* Set up the receive filter. */
2503 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2504 
2505 #ifdef DP83820
2506 	/*
2507 	 * Tune sc_rx_flow_thresh.
2508 	 * XXX "More than 8KB" is too short for jumbo frames.
2509 	 * XXX TODO: Threshold value should be user-settable.
2510 	 */
2511 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2512 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2513 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2514 #endif
2515 
2516 	/*
2517 	 * Set the current media.  Do this after initializing the prototype
2518 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2519 	 * control.
2520 	 */
2521 	mii_mediachg(&sc->sc_mii);
2522 
2523 #ifdef DP83820
2524 	/*
2525 	 * Set the interrupt hold-off timer to 100us.
2526 	 */
2527 	bus_space_write_4(st, sh, SIP_IHR, 0x01);
2528 #endif
2529 
2530 	/*
2531 	 * Enable interrupts.
2532 	 */
2533 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2534 
2535 	/*
2536 	 * Start the transmit and receive processes.
2537 	 */
2538 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2539 
2540 	/*
2541 	 * Start the one second MII clock.
2542 	 */
2543 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2544 
2545 	/*
2546 	 * ...all done!
2547 	 */
2548 	ifp->if_flags |= IFF_RUNNING;
2549 	ifp->if_flags &= ~IFF_OACTIVE;
2550 
2551  out:
2552 	if (error)
2553 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2554 	return (error);
2555 }
2556 
2557 /*
2558  * sip_drain:
2559  *
2560  *	Drain the receive queue.
2561  */
2562 void
2563 SIP_DECL(rxdrain)(struct sip_softc *sc)
2564 {
2565 	struct sip_rxsoft *rxs;
2566 	int i;
2567 
2568 	for (i = 0; i < SIP_NRXDESC; i++) {
2569 		rxs = &sc->sc_rxsoft[i];
2570 		if (rxs->rxs_mbuf != NULL) {
2571 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2572 			m_freem(rxs->rxs_mbuf);
2573 			rxs->rxs_mbuf = NULL;
2574 		}
2575 	}
2576 }
2577 
2578 /*
2579  * sip_stop:		[ ifnet interface function ]
2580  *
2581  *	Stop transmission on the interface.
2582  */
2583 void
2584 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2585 {
2586 	struct sip_softc *sc = ifp->if_softc;
2587 	bus_space_tag_t st = sc->sc_st;
2588 	bus_space_handle_t sh = sc->sc_sh;
2589 	struct sip_txsoft *txs;
2590 	u_int32_t cmdsts = 0;		/* DEBUG */
2591 
2592 	/*
2593 	 * Stop the one second clock.
2594 	 */
2595 	callout_stop(&sc->sc_tick_ch);
2596 
2597 	/* Down the MII. */
2598 	mii_down(&sc->sc_mii);
2599 
2600 	/*
2601 	 * Disable interrupts.
2602 	 */
2603 	bus_space_write_4(st, sh, SIP_IER, 0);
2604 
2605 	/*
2606 	 * Stop receiver and transmitter.
2607 	 */
2608 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2609 
2610 	/*
2611 	 * Release any queued transmit buffers.
2612 	 */
2613 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2614 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2615 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2616 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2617 		     CMDSTS_INTR) == 0)
2618 			printf("%s: sip_stop: last descriptor does not "
2619 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2620 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2621 #ifdef DIAGNOSTIC
2622 		if (txs->txs_mbuf == NULL) {
2623 			printf("%s: dirty txsoft with no mbuf chain\n",
2624 			    sc->sc_dev.dv_xname);
2625 			panic("sip_stop");
2626 		}
2627 #endif
2628 		cmdsts |=		/* DEBUG */
2629 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2630 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2631 		m_freem(txs->txs_mbuf);
2632 		txs->txs_mbuf = NULL;
2633 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2634 	}
2635 
2636 	if (disable)
2637 		SIP_DECL(rxdrain)(sc);
2638 
2639 	/*
2640 	 * Mark the interface down and cancel the watchdog timer.
2641 	 */
2642 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2643 	ifp->if_timer = 0;
2644 
2645 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2646 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2647 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2648 		    "descriptors\n", sc->sc_dev.dv_xname);
2649 }
2650 
2651 /*
2652  * sip_read_eeprom:
2653  *
2654  *	Read data from the serial EEPROM.
2655  */
2656 void
2657 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2658     u_int16_t *data)
2659 {
2660 	bus_space_tag_t st = sc->sc_st;
2661 	bus_space_handle_t sh = sc->sc_sh;
2662 	u_int16_t reg;
2663 	int i, x;
2664 
2665 	for (i = 0; i < wordcnt; i++) {
2666 		/* Send CHIP SELECT. */
2667 		reg = EROMAR_EECS;
2668 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2669 
2670 		/* Shift in the READ opcode. */
2671 		for (x = 3; x > 0; x--) {
2672 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2673 				reg |= EROMAR_EEDI;
2674 			else
2675 				reg &= ~EROMAR_EEDI;
2676 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2677 			bus_space_write_4(st, sh, SIP_EROMAR,
2678 			    reg | EROMAR_EESK);
2679 			delay(4);
2680 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2681 			delay(4);
2682 		}
2683 
2684 		/* Shift in address. */
2685 		for (x = 6; x > 0; x--) {
2686 			if ((word + i) & (1 << (x - 1)))
2687 				reg |= EROMAR_EEDI;
2688 			else
2689 				reg &= ~EROMAR_EEDI;
2690 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2691 			bus_space_write_4(st, sh, SIP_EROMAR,
2692 			    reg | EROMAR_EESK);
2693 			delay(4);
2694 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2695 			delay(4);
2696 		}
2697 
2698 		/* Shift out data. */
2699 		reg = EROMAR_EECS;
2700 		data[i] = 0;
2701 		for (x = 16; x > 0; x--) {
2702 			bus_space_write_4(st, sh, SIP_EROMAR,
2703 			    reg | EROMAR_EESK);
2704 			delay(4);
2705 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2706 				data[i] |= (1 << (x - 1));
2707 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2708 			delay(4);
2709 		}
2710 
2711 		/* Clear CHIP SELECT. */
2712 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2713 		delay(4);
2714 	}
2715 }
2716 
2717 /*
2718  * sip_add_rxbuf:
2719  *
2720  *	Add a receive buffer to the indicated descriptor.
2721  */
2722 int
2723 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2724 {
2725 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2726 	struct mbuf *m;
2727 	int error;
2728 
2729 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2730 	if (m == NULL)
2731 		return (ENOBUFS);
2732 
2733 	MCLGET(m, M_DONTWAIT);
2734 	if ((m->m_flags & M_EXT) == 0) {
2735 		m_freem(m);
2736 		return (ENOBUFS);
2737 	}
2738 
2739 #if defined(DP83820)
2740 	m->m_len = SIP_RXBUF_LEN;
2741 #endif /* DP83820 */
2742 
2743 	if (rxs->rxs_mbuf != NULL)
2744 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2745 
2746 	rxs->rxs_mbuf = m;
2747 
2748 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2749 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2750 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2751 	if (error) {
2752 		printf("%s: can't load rx DMA map %d, error = %d\n",
2753 		    sc->sc_dev.dv_xname, idx, error);
2754 		panic("sip_add_rxbuf");		/* XXX */
2755 	}
2756 
2757 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2758 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2759 
2760 	SIP_INIT_RXDESC(sc, idx);
2761 
2762 	return (0);
2763 }
2764 
2765 #if !defined(DP83820)
2766 /*
2767  * sip_sis900_set_filter:
2768  *
2769  *	Set up the receive filter.
2770  */
2771 void
2772 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2773 {
2774 	bus_space_tag_t st = sc->sc_st;
2775 	bus_space_handle_t sh = sc->sc_sh;
2776 	struct ethercom *ec = &sc->sc_ethercom;
2777 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2778 	struct ether_multi *enm;
2779 	u_int8_t *cp;
2780 	struct ether_multistep step;
2781 	u_int32_t crc, mchash[16];
2782 
2783 	/*
2784 	 * Initialize the prototype RFCR.
2785 	 */
2786 	sc->sc_rfcr = RFCR_RFEN;
2787 	if (ifp->if_flags & IFF_BROADCAST)
2788 		sc->sc_rfcr |= RFCR_AAB;
2789 	if (ifp->if_flags & IFF_PROMISC) {
2790 		sc->sc_rfcr |= RFCR_AAP;
2791 		goto allmulti;
2792 	}
2793 
2794 	/*
2795 	 * Set up the multicast address filter by passing all multicast
2796 	 * addresses through a CRC generator, and then using the high-order
2797 	 * 6 bits as an index into the 128 bit multicast hash table (only
2798 	 * the lower 16 bits of each 32 bit multicast hash register are
2799 	 * valid).  The high order bits select the register, while the
2800 	 * rest of the bits select the bit within the register.
2801 	 */
2802 
2803 	memset(mchash, 0, sizeof(mchash));
2804 
2805 	/*
2806 	 * SiS900 (at least SiS963) requires us to register the address of
2807 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2808 	 */
2809 	crc = 0x0ed423f9;
2810 
2811 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2812 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
2813 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2814 		/* Just want the 8 most significant bits. */
2815 		crc >>= 24;
2816 	} else {
2817 		/* Just want the 7 most significant bits. */
2818 		crc >>= 25;
2819 	}
2820 
2821 	/* Set the corresponding bit in the hash table. */
2822 	mchash[crc >> 4] |= 1 << (crc & 0xf);
2823 
2824 	ETHER_FIRST_MULTI(step, ec, enm);
2825 	while (enm != NULL) {
2826 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2827 			/*
2828 			 * We must listen to a range of multicast addresses.
2829 			 * For now, just accept all multicasts, rather than
2830 			 * trying to set only those filter bits needed to match
2831 			 * the range.  (At this time, the only use of address
2832 			 * ranges is for IP multicast routing, for which the
2833 			 * range is big enough to require all bits set.)
2834 			 */
2835 			goto allmulti;
2836 		}
2837 
2838 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2839 
2840 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2841 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2842 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2843 			/* Just want the 8 most significant bits. */
2844 			crc >>= 24;
2845 		} else {
2846 			/* Just want the 7 most significant bits. */
2847 			crc >>= 25;
2848 		}
2849 
2850 		/* Set the corresponding bit in the hash table. */
2851 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2852 
2853 		ETHER_NEXT_MULTI(step, enm);
2854 	}
2855 
2856 	ifp->if_flags &= ~IFF_ALLMULTI;
2857 	goto setit;
2858 
2859  allmulti:
2860 	ifp->if_flags |= IFF_ALLMULTI;
2861 	sc->sc_rfcr |= RFCR_AAM;
2862 
2863  setit:
2864 #define	FILTER_EMIT(addr, data)						\
2865 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2866 	delay(1);							\
2867 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2868 	delay(1)
2869 
2870 	/*
2871 	 * Disable receive filter, and program the node address.
2872 	 */
2873 	cp = LLADDR(ifp->if_sadl);
2874 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2875 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2876 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2877 
2878 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2879 		/*
2880 		 * Program the multicast hash table.
2881 		 */
2882 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2883 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2884 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2885 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2886 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2887 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2888 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2889 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2890 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2891 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2892 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2893 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2894 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2895 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2896 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2897 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2898 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2899 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2900 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2901 		}
2902 	}
2903 #undef FILTER_EMIT
2904 
2905 	/*
2906 	 * Re-enable the receiver filter.
2907 	 */
2908 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2909 }
2910 #endif /* ! DP83820 */
2911 
2912 /*
2913  * sip_dp83815_set_filter:
2914  *
2915  *	Set up the receive filter.
2916  */
2917 void
2918 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2919 {
2920 	bus_space_tag_t st = sc->sc_st;
2921 	bus_space_handle_t sh = sc->sc_sh;
2922 	struct ethercom *ec = &sc->sc_ethercom;
2923 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2924 	struct ether_multi *enm;
2925 	u_int8_t *cp;
2926 	struct ether_multistep step;
2927 	u_int32_t crc, hash, slot, bit;
2928 #ifdef DP83820
2929 #define	MCHASH_NWORDS	128
2930 #else
2931 #define	MCHASH_NWORDS	32
2932 #endif /* DP83820 */
2933 	u_int16_t mchash[MCHASH_NWORDS];
2934 	int i;
2935 
2936 	/*
2937 	 * Initialize the prototype RFCR.
2938 	 * Enable the receive filter, and accept on
2939 	 *    Perfect (destination address) Match
2940 	 * If IFF_BROADCAST, also accept all broadcast packets.
2941 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2942 	 *    IFF_ALLMULTI and accept all multicast, too).
2943 	 */
2944 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2945 	if (ifp->if_flags & IFF_BROADCAST)
2946 		sc->sc_rfcr |= RFCR_AAB;
2947 	if (ifp->if_flags & IFF_PROMISC) {
2948 		sc->sc_rfcr |= RFCR_AAP;
2949 		goto allmulti;
2950 	}
2951 
2952 #ifdef DP83820
2953 	/*
2954 	 * Set up the DP83820 multicast address filter by passing all multicast
2955 	 * addresses through a CRC generator, and then using the high-order
2956 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2957 	 * high-order 7 bits select the slot, while the low-order 4 bits
2958 	 * select the bit within the slot.  Note that only the low 16-bits
2959 	 * of each filter word are used, and there are 128 filter words.
2960 	 */
2961 #else
2962 	/*
2963 	 * Set up the DP83815 multicast address filter by passing all multicast
2964 	 * addresses through a CRC generator, and then using the high-order
2965 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2966 	 * high-order 5 bits select the slot, while the low-order 4 bits
2967 	 * select the bit within the slot.  Note that only the low 16-bits
2968 	 * of each filter word are used, and there are 32 filter words.
2969 	 */
2970 #endif /* DP83820 */
2971 
2972 	memset(mchash, 0, sizeof(mchash));
2973 
2974 	ifp->if_flags &= ~IFF_ALLMULTI;
2975 	ETHER_FIRST_MULTI(step, ec, enm);
2976 	if (enm == NULL)
2977 		goto setit;
2978 	while (enm != NULL) {
2979 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2980 			/*
2981 			 * We must listen to a range of multicast addresses.
2982 			 * For now, just accept all multicasts, rather than
2983 			 * trying to set only those filter bits needed to match
2984 			 * the range.  (At this time, the only use of address
2985 			 * ranges is for IP multicast routing, for which the
2986 			 * range is big enough to require all bits set.)
2987 			 */
2988 			goto allmulti;
2989 		}
2990 
2991 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2992 
2993 #ifdef DP83820
2994 		/* Just want the 11 most significant bits. */
2995 		hash = crc >> 21;
2996 #else
2997 		/* Just want the 9 most significant bits. */
2998 		hash = crc >> 23;
2999 #endif /* DP83820 */
3000 
3001 		slot = hash >> 4;
3002 		bit = hash & 0xf;
3003 
3004 		/* Set the corresponding bit in the hash table. */
3005 		mchash[slot] |= 1 << bit;
3006 
3007 		ETHER_NEXT_MULTI(step, enm);
3008 	}
3009 	sc->sc_rfcr |= RFCR_MHEN;
3010 	goto setit;
3011 
3012  allmulti:
3013 	ifp->if_flags |= IFF_ALLMULTI;
3014 	sc->sc_rfcr |= RFCR_AAM;
3015 
3016  setit:
3017 #define	FILTER_EMIT(addr, data)						\
3018 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3019 	delay(1);							\
3020 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3021 	delay(1)
3022 
3023 	/*
3024 	 * Disable receive filter, and program the node address.
3025 	 */
3026 	cp = LLADDR(ifp->if_sadl);
3027 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3028 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3029 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3030 
3031 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3032 		/*
3033 		 * Program the multicast hash table.
3034 		 */
3035 		for (i = 0; i < MCHASH_NWORDS; i++) {
3036 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3037 			    mchash[i]);
3038 		}
3039 	}
3040 #undef FILTER_EMIT
3041 #undef MCHASH_NWORDS
3042 
3043 	/*
3044 	 * Re-enable the receiver filter.
3045 	 */
3046 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3047 }
3048 
3049 #if defined(DP83820)
3050 /*
3051  * sip_dp83820_mii_readreg:	[mii interface function]
3052  *
3053  *	Read a PHY register on the MII of the DP83820.
3054  */
3055 int
3056 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3057 {
3058 	struct sip_softc *sc = (void *) self;
3059 
3060 	if (sc->sc_cfg & CFG_TBI_EN) {
3061 		bus_addr_t tbireg;
3062 		int rv;
3063 
3064 		if (phy != 0)
3065 			return (0);
3066 
3067 		switch (reg) {
3068 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3069 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3070 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3071 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3072 		case MII_ANER:		tbireg = SIP_TANER; break;
3073 		case MII_EXTSR:
3074 			/*
3075 			 * Don't even bother reading the TESR register.
3076 			 * The manual documents that the device has
3077 			 * 1000baseX full/half capability, but the
3078 			 * register itself seems read back 0 on some
3079 			 * boards.  Just hard-code the result.
3080 			 */
3081 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3082 
3083 		default:
3084 			return (0);
3085 		}
3086 
3087 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3088 		if (tbireg == SIP_TBISR) {
3089 			/* LINK and ACOMP are switched! */
3090 			int val = rv;
3091 
3092 			rv = 0;
3093 			if (val & TBISR_MR_LINK_STATUS)
3094 				rv |= BMSR_LINK;
3095 			if (val & TBISR_MR_AN_COMPLETE)
3096 				rv |= BMSR_ACOMP;
3097 
3098 			/*
3099 			 * The manual claims this register reads back 0
3100 			 * on hard and soft reset.  But we want to let
3101 			 * the gentbi driver know that we support auto-
3102 			 * negotiation, so hard-code this bit in the
3103 			 * result.
3104 			 */
3105 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3106 		}
3107 
3108 		return (rv);
3109 	}
3110 
3111 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3112 	    phy, reg));
3113 }
3114 
3115 /*
3116  * sip_dp83820_mii_writereg:	[mii interface function]
3117  *
3118  *	Write a PHY register on the MII of the DP83820.
3119  */
3120 void
3121 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3122 {
3123 	struct sip_softc *sc = (void *) self;
3124 
3125 	if (sc->sc_cfg & CFG_TBI_EN) {
3126 		bus_addr_t tbireg;
3127 
3128 		if (phy != 0)
3129 			return;
3130 
3131 		switch (reg) {
3132 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3133 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3134 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3135 		default:
3136 			return;
3137 		}
3138 
3139 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3140 		return;
3141 	}
3142 
3143 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3144 	    phy, reg, val);
3145 }
3146 
3147 /*
3148  * sip_dp83820_mii_statchg:	[mii interface function]
3149  *
3150  *	Callback from MII layer when media changes.
3151  */
3152 void
3153 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3154 {
3155 	struct sip_softc *sc = (struct sip_softc *) self;
3156 	struct mii_data *mii = &sc->sc_mii;
3157 	u_int32_t cfg, pcr;
3158 
3159 	/*
3160 	 * Get flow control negotiation result.
3161 	 */
3162 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3163 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3164 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3165 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3166 	}
3167 
3168 	/*
3169 	 * Update TXCFG for full-duplex operation.
3170 	 */
3171 	if ((mii->mii_media_active & IFM_FDX) != 0)
3172 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3173 	else
3174 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3175 
3176 	/*
3177 	 * Update RXCFG for full-duplex or loopback.
3178 	 */
3179 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3180 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3181 		sc->sc_rxcfg |= RXCFG_ATX;
3182 	else
3183 		sc->sc_rxcfg &= ~RXCFG_ATX;
3184 
3185 	/*
3186 	 * Update CFG for MII/GMII.
3187 	 */
3188 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3189 		cfg = sc->sc_cfg | CFG_MODE_1000;
3190 	else
3191 		cfg = sc->sc_cfg;
3192 
3193 	/*
3194 	 * 802.3x flow control.
3195 	 */
3196 	pcr = 0;
3197 	if (sc->sc_flowflags & IFM_FLOW) {
3198 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3199 			pcr |= sc->sc_rx_flow_thresh;
3200 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3201 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3202 	}
3203 
3204 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3205 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3206 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3207 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3208 }
3209 #endif /* ! DP83820 */
3210 
3211 /*
3212  * sip_mii_bitbang_read: [mii bit-bang interface function]
3213  *
3214  *	Read the MII serial port for the MII bit-bang module.
3215  */
3216 u_int32_t
3217 SIP_DECL(mii_bitbang_read)(struct device *self)
3218 {
3219 	struct sip_softc *sc = (void *) self;
3220 
3221 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3222 }
3223 
3224 /*
3225  * sip_mii_bitbang_write: [mii big-bang interface function]
3226  *
3227  *	Write the MII serial port for the MII bit-bang module.
3228  */
3229 void
3230 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3231 {
3232 	struct sip_softc *sc = (void *) self;
3233 
3234 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3235 }
3236 
3237 #ifndef DP83820
3238 /*
3239  * sip_sis900_mii_readreg:	[mii interface function]
3240  *
3241  *	Read a PHY register on the MII.
3242  */
3243 int
3244 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3245 {
3246 	struct sip_softc *sc = (struct sip_softc *) self;
3247 	u_int32_t enphy;
3248 
3249 	/*
3250 	 * The PHY of recent SiS chipsets is accessed through bitbang
3251 	 * operations.
3252 	 */
3253 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3254 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3255 		    phy, reg));
3256 
3257 #ifndef SIS900_MII_RESTRICT
3258 	/*
3259 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3260 	 * MII address 0.
3261 	 */
3262 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3263 		return (0);
3264 #endif
3265 
3266 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3267 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3268 	    ENPHY_RWCMD | ENPHY_ACCESS);
3269 	do {
3270 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3271 	} while (enphy & ENPHY_ACCESS);
3272 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3273 }
3274 
3275 /*
3276  * sip_sis900_mii_writereg:	[mii interface function]
3277  *
3278  *	Write a PHY register on the MII.
3279  */
3280 void
3281 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3282 {
3283 	struct sip_softc *sc = (struct sip_softc *) self;
3284 	u_int32_t enphy;
3285 
3286 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3287 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3288 		    phy, reg, val);
3289 		return;
3290 	}
3291 
3292 #ifndef SIS900_MII_RESTRICT
3293 	/*
3294 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3295 	 * MII address 0.
3296 	 */
3297 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3298 		return;
3299 #endif
3300 
3301 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3302 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3303 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3304 	do {
3305 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3306 	} while (enphy & ENPHY_ACCESS);
3307 }
3308 
3309 /*
3310  * sip_sis900_mii_statchg:	[mii interface function]
3311  *
3312  *	Callback from MII layer when media changes.
3313  */
3314 void
3315 SIP_DECL(sis900_mii_statchg)(struct device *self)
3316 {
3317 	struct sip_softc *sc = (struct sip_softc *) self;
3318 	struct mii_data *mii = &sc->sc_mii;
3319 	u_int32_t flowctl;
3320 
3321 	/*
3322 	 * Get flow control negotiation result.
3323 	 */
3324 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3325 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3326 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3327 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3328 	}
3329 
3330 	/*
3331 	 * Update TXCFG for full-duplex operation.
3332 	 */
3333 	if ((mii->mii_media_active & IFM_FDX) != 0)
3334 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3335 	else
3336 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3337 
3338 	/*
3339 	 * Update RXCFG for full-duplex or loopback.
3340 	 */
3341 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3342 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3343 		sc->sc_rxcfg |= RXCFG_ATX;
3344 	else
3345 		sc->sc_rxcfg &= ~RXCFG_ATX;
3346 
3347 	/*
3348 	 * Update IMR for use of 802.3x flow control.
3349 	 */
3350 	if (sc->sc_flowflags & IFM_FLOW) {
3351 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3352 		flowctl = FLOWCTL_FLOWEN;
3353 	} else {
3354 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3355 		flowctl = 0;
3356 	}
3357 
3358 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3359 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3360 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3361 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3362 }
3363 
3364 /*
3365  * sip_dp83815_mii_readreg:	[mii interface function]
3366  *
3367  *	Read a PHY register on the MII.
3368  */
3369 int
3370 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3371 {
3372 	struct sip_softc *sc = (struct sip_softc *) self;
3373 	u_int32_t val;
3374 
3375 	/*
3376 	 * The DP83815 only has an internal PHY.  Only allow
3377 	 * MII address 0.
3378 	 */
3379 	if (phy != 0)
3380 		return (0);
3381 
3382 	/*
3383 	 * Apparently, after a reset, the DP83815 can take a while
3384 	 * to respond.  During this recovery period, the BMSR returns
3385 	 * a value of 0.  Catch this -- it's not supposed to happen
3386 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3387 	 * PHY to come back to life.
3388 	 *
3389 	 * This works out because the BMSR is the first register
3390 	 * read during the PHY probe process.
3391 	 */
3392 	do {
3393 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3394 	} while (reg == MII_BMSR && val == 0);
3395 
3396 	return (val & 0xffff);
3397 }
3398 
3399 /*
3400  * sip_dp83815_mii_writereg:	[mii interface function]
3401  *
3402  *	Write a PHY register to the MII.
3403  */
3404 void
3405 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3406 {
3407 	struct sip_softc *sc = (struct sip_softc *) self;
3408 
3409 	/*
3410 	 * The DP83815 only has an internal PHY.  Only allow
3411 	 * MII address 0.
3412 	 */
3413 	if (phy != 0)
3414 		return;
3415 
3416 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3417 }
3418 
3419 /*
3420  * sip_dp83815_mii_statchg:	[mii interface function]
3421  *
3422  *	Callback from MII layer when media changes.
3423  */
3424 void
3425 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3426 {
3427 	struct sip_softc *sc = (struct sip_softc *) self;
3428 
3429 	/*
3430 	 * Update TXCFG for full-duplex operation.
3431 	 */
3432 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3433 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3434 	else
3435 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3436 
3437 	/*
3438 	 * Update RXCFG for full-duplex or loopback.
3439 	 */
3440 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3441 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3442 		sc->sc_rxcfg |= RXCFG_ATX;
3443 	else
3444 		sc->sc_rxcfg &= ~RXCFG_ATX;
3445 
3446 	/*
3447 	 * XXX 802.3x flow control.
3448 	 */
3449 
3450 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3451 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3452 
3453 	/*
3454 	 * Some DP83815s experience problems when used with short
3455 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3456 	 * sequence adjusts the DSP's signal attenuation to fix the
3457 	 * problem.
3458 	 */
3459 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3460 		uint32_t reg;
3461 
3462 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3463 
3464 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3465 		reg &= 0x0fff;
3466 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3467 		delay(100);
3468 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3469 		reg &= 0x00ff;
3470 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3471 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3472 			    0x00e8);
3473 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3474 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3475 			    reg | 0x20);
3476 		}
3477 
3478 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3479 	}
3480 }
3481 #endif /* DP83820 */
3482 
3483 #if defined(DP83820)
3484 void
3485 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3486     const struct pci_attach_args *pa, u_int8_t *enaddr)
3487 {
3488 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3489 	u_int8_t cksum, *e, match;
3490 	int i;
3491 
3492 	/*
3493 	 * EEPROM data format for the DP83820 can be found in
3494 	 * the DP83820 manual, section 4.2.4.
3495 	 */
3496 
3497 	SIP_DECL(read_eeprom)(sc, 0,
3498 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3499 
3500 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3501 	match = ~(match - 1);
3502 
3503 	cksum = 0x55;
3504 	e = (u_int8_t *) eeprom_data;
3505 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3506 		cksum += *e++;
3507 
3508 	if (cksum != match)
3509 		printf("%s: Checksum (%x) mismatch (%x)",
3510 		    sc->sc_dev.dv_xname, cksum, match);
3511 
3512 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3513 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3514 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3515 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3516 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3517 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3518 }
3519 #else /* ! DP83820 */
3520 static void
3521 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3522 {
3523 	int i;
3524 
3525 	/*
3526 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3527 	 * a reason, but I don't know it.
3528 	 */
3529 	for (i = 0; i < 10; i++)
3530 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3531 }
3532 
3533 void
3534 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3535     const struct pci_attach_args *pa, u_int8_t *enaddr)
3536 {
3537 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3538 
3539 	switch (sc->sc_rev) {
3540 	case SIS_REV_630S:
3541 	case SIS_REV_630E:
3542 	case SIS_REV_630EA1:
3543 	case SIS_REV_630ET:
3544 	case SIS_REV_635:
3545 		/*
3546 		 * The MAC address for the on-board Ethernet of
3547 		 * the SiS 630 chipset is in the NVRAM.  Kick
3548 		 * the chip into re-loading it from NVRAM, and
3549 		 * read the MAC address out of the filter registers.
3550 		 */
3551 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3552 
3553 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3554 		    RFCR_RFADDR_NODE0);
3555 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3556 		    0xffff;
3557 
3558 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3559 		    RFCR_RFADDR_NODE2);
3560 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3561 		    0xffff;
3562 
3563 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3564 		    RFCR_RFADDR_NODE4);
3565 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3566 		    0xffff;
3567 		break;
3568 
3569 	case SIS_REV_960:
3570 		{
3571 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3572 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3573 
3574 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3575 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3576 
3577 			int waittime, i;
3578 
3579 			/* Allow to read EEPROM from LAN. It is shared
3580 			 * between a 1394 controller and the NIC and each
3581 			 * time we access it, we need to set SIS_EECMD_REQ.
3582 			 */
3583 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3584 
3585 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3586 				/* Force EEPROM to idle state. */
3587 
3588 				/*
3589 				 * XXX-cube This is ugly.  I'll look for docs about it.
3590 				 */
3591 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3592 				SIP_DECL(sis900_eeprom_delay)(sc);
3593 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3594 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3595 					SIP_DECL(sis900_eeprom_delay)(sc);
3596 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3597 					SIP_DECL(sis900_eeprom_delay)(sc);
3598 				}
3599 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3600 				SIP_DECL(sis900_eeprom_delay)(sc);
3601 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3602 
3603 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3604 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3605 					    sizeof(myea) / sizeof(myea[0]), myea);
3606 					break;
3607 				}
3608 				DELAY(1);
3609 			}
3610 
3611 			/*
3612 			 * Set SIS_EECTL_CLK to high, so a other master
3613 			 * can operate on the i2c bus.
3614 			 */
3615 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3616 
3617 			/* Refuse EEPROM access by LAN */
3618 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3619 		} break;
3620 
3621 	default:
3622 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3623 		    sizeof(myea) / sizeof(myea[0]), myea);
3624 	}
3625 
3626 	enaddr[0] = myea[0] & 0xff;
3627 	enaddr[1] = myea[0] >> 8;
3628 	enaddr[2] = myea[1] & 0xff;
3629 	enaddr[3] = myea[1] >> 8;
3630 	enaddr[4] = myea[2] & 0xff;
3631 	enaddr[5] = myea[2] >> 8;
3632 }
3633 
3634 /* Table and macro to bit-reverse an octet. */
3635 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3636 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3637 
3638 void
3639 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3640     const struct pci_attach_args *pa, u_int8_t *enaddr)
3641 {
3642 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3643 	u_int8_t cksum, *e, match;
3644 	int i;
3645 
3646 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3647 	    sizeof(eeprom_data[0]), eeprom_data);
3648 
3649 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3650 	match = ~(match - 1);
3651 
3652 	cksum = 0x55;
3653 	e = (u_int8_t *) eeprom_data;
3654 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3655 		cksum += *e++;
3656 	}
3657 	if (cksum != match) {
3658 		printf("%s: Checksum (%x) mismatch (%x)",
3659 		    sc->sc_dev.dv_xname, cksum, match);
3660 	}
3661 
3662 	/*
3663 	 * Unrolled because it makes slightly more sense this way.
3664 	 * The DP83815 stores the MAC address in bit 0 of word 6
3665 	 * through bit 15 of word 8.
3666 	 */
3667 	ea = &eeprom_data[6];
3668 	enaddr[0] = ((*ea & 0x1) << 7);
3669 	ea++;
3670 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3671 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3672 	enaddr[2] = ((*ea & 0x1) << 7);
3673 	ea++;
3674 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3675 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3676 	enaddr[4] = ((*ea & 0x1) << 7);
3677 	ea++;
3678 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3679 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3680 
3681 	/*
3682 	 * In case that's not weird enough, we also need to reverse
3683 	 * the bits in each byte.  This all actually makes more sense
3684 	 * if you think about the EEPROM storage as an array of bits
3685 	 * being shifted into bytes, but that's not how we're looking
3686 	 * at it here...
3687 	 */
3688 	for (i = 0; i < 6 ;i++)
3689 		enaddr[i] = bbr(enaddr[i]);
3690 }
3691 #endif /* DP83820 */
3692 
3693 /*
3694  * sip_mediastatus:	[ifmedia interface function]
3695  *
3696  *	Get the current interface media status.
3697  */
3698 void
3699 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3700 {
3701 	struct sip_softc *sc = ifp->if_softc;
3702 
3703 	mii_pollstat(&sc->sc_mii);
3704 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3705 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3706 			   sc->sc_flowflags;
3707 }
3708 
3709 /*
3710  * sip_mediachange:	[ifmedia interface function]
3711  *
3712  *	Set hardware to newly-selected media.
3713  */
3714 int
3715 SIP_DECL(mediachange)(struct ifnet *ifp)
3716 {
3717 	struct sip_softc *sc = ifp->if_softc;
3718 
3719 	if (ifp->if_flags & IFF_UP)
3720 		mii_mediachg(&sc->sc_mii);
3721 	return (0);
3722 }
3723