xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 1ca06f9c9235889e2ff6dc77279d01d151d70a9a)
1 /*	$NetBSD: if_sip.c,v 1.143 2009/11/26 15:17:10 njoly Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.143 2009/11/26 15:17:10 njoly Exp $");
77 
78 #include "bpfilter.h"
79 #include "rnd.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/queue.h>
92 
93 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
94 
95 #if NRND > 0
96 #include <sys/rnd.h>
97 #endif
98 
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103 
104 #if NBPFILTER > 0
105 #include <net/bpf.h>
106 #endif
107 
108 #include <sys/bus.h>
109 #include <sys/intr.h>
110 #include <machine/endian.h>
111 
112 #include <dev/mii/mii.h>
113 #include <dev/mii/miivar.h>
114 #include <dev/mii/mii_bitbang.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119 
120 #include <dev/pci/if_sipreg.h>
121 
122 /*
123  * Transmit descriptor list size.  This is arbitrary, but allocate
124  * enough descriptors for 128 pending transmissions, and 8 segments
125  * per packet (64 for DP83820 for jumbo frames).
126  *
127  * This MUST work out to a power of 2.
128  */
129 #define	GSIP_NTXSEGS_ALLOC 16
130 #define	SIP_NTXSEGS_ALLOC 8
131 
132 #define	SIP_TXQUEUELEN		256
133 #define	MAX_SIP_NTXDESC	\
134     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
135 
136 /*
137  * Receive descriptor list size.  We have one Rx buffer per incoming
138  * packet, so this logic is a little simpler.
139  *
140  * Actually, on the DP83820, we allow the packet to consume more than
141  * one buffer, in order to support jumbo Ethernet frames.  In that
142  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
143  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
144  * so we'd better be quick about handling receive interrupts.
145  */
146 #define	GSIP_NRXDESC		256
147 #define	SIP_NRXDESC		128
148 
149 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
150 
151 /*
152  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
153  * a single clump that maps to a single DMA segment to make several things
154  * easier.
155  */
156 struct sip_control_data {
157 	/*
158 	 * The transmit descriptors.
159 	 */
160 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
161 
162 	/*
163 	 * The receive descriptors.
164 	 */
165 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
166 };
167 
168 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
169 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
170 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
171 
172 /*
173  * Software state for transmit jobs.
174  */
175 struct sip_txsoft {
176 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
177 	bus_dmamap_t txs_dmamap;	/* our DMA map */
178 	int txs_firstdesc;		/* first descriptor in packet */
179 	int txs_lastdesc;		/* last descriptor in packet */
180 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
181 };
182 
183 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
184 
185 /*
186  * Software state for receive jobs.
187  */
188 struct sip_rxsoft {
189 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
190 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
191 };
192 
193 enum sip_attach_stage {
194 	  SIP_ATTACH_FIN = 0
195 	, SIP_ATTACH_CREATE_RXMAP
196 	, SIP_ATTACH_CREATE_TXMAP
197 	, SIP_ATTACH_LOAD_MAP
198 	, SIP_ATTACH_CREATE_MAP
199 	, SIP_ATTACH_MAP_MEM
200 	, SIP_ATTACH_ALLOC_MEM
201 	, SIP_ATTACH_INTR
202 	, SIP_ATTACH_MAP
203 };
204 
205 /*
206  * Software state per device.
207  */
208 struct sip_softc {
209 	device_t sc_dev;		/* generic device information */
210 	struct device_suspensor		sc_suspensor;
211 	struct pmf_qual			sc_qual;
212 
213 	bus_space_tag_t sc_st;		/* bus space tag */
214 	bus_space_handle_t sc_sh;	/* bus space handle */
215 	bus_size_t sc_sz;		/* bus space size */
216 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
217 	pci_chipset_tag_t sc_pc;
218 	bus_dma_segment_t sc_seg;
219 	struct ethercom sc_ethercom;	/* ethernet common data */
220 
221 	const struct sip_product *sc_model; /* which model are we? */
222 	int sc_gigabit;			/* 1: 83820, 0: other */
223 	int sc_rev;			/* chip revision */
224 
225 	void *sc_ih;			/* interrupt cookie */
226 
227 	struct mii_data sc_mii;		/* MII/media information */
228 
229 	callout_t sc_tick_ch;		/* tick callout */
230 
231 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
232 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
233 
234 	/*
235 	 * Software state for transmit and receive descriptors.
236 	 */
237 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
238 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
239 
240 	/*
241 	 * Control data structures.
242 	 */
243 	struct sip_control_data *sc_control_data;
244 #define	sc_txdescs	sc_control_data->scd_txdescs
245 #define	sc_rxdescs	sc_control_data->scd_rxdescs
246 
247 #ifdef SIP_EVENT_COUNTERS
248 	/*
249 	 * Event counters.
250 	 */
251 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
252 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
253 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
254 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
255 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
256 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
257 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
258 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
259 	/* DP83820 only */
260 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
261 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
262 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
263 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
264 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
265 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
266 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
267 #endif /* SIP_EVENT_COUNTERS */
268 
269 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
270 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
271 	u_int32_t sc_imr;		/* prototype IMR register */
272 	u_int32_t sc_rfcr;		/* prototype RFCR register */
273 
274 	u_int32_t sc_cfg;		/* prototype CFG register */
275 
276 	u_int32_t sc_gpior;		/* prototype GPIOR register */
277 
278 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
279 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
280 
281 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
282 
283 	int	sc_flowflags;		/* 802.3x flow control flags */
284 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
285 	int	sc_paused;		/* paused indication */
286 
287 	int	sc_txfree;		/* number of free Tx descriptors */
288 	int	sc_txnext;		/* next ready Tx descriptor */
289 	int	sc_txwin;		/* Tx descriptors since last intr */
290 
291 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
292 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
293 
294 	/* values of interface state at last init */
295 	struct {
296 		/* if_capenable */
297 		uint64_t	if_capenable;
298 		/* ec_capenable */
299 		int		ec_capenable;
300 		/* VLAN_ATTACHED */
301 		int		is_vlan;
302 	}	sc_prev;
303 
304 	short	sc_if_flags;
305 
306 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
307 	int	sc_rxdiscard;
308 	int	sc_rxlen;
309 	struct mbuf *sc_rxhead;
310 	struct mbuf *sc_rxtail;
311 	struct mbuf **sc_rxtailp;
312 
313 	int sc_ntxdesc;
314 	int sc_ntxdesc_mask;
315 
316 	int sc_nrxdesc_mask;
317 
318 	const struct sip_parm {
319 		const struct sip_regs {
320 			int r_rxcfg;
321 			int r_txcfg;
322 		} p_regs;
323 
324 		const struct sip_bits {
325 			uint32_t b_txcfg_mxdma_8;
326 			uint32_t b_txcfg_mxdma_16;
327 			uint32_t b_txcfg_mxdma_32;
328 			uint32_t b_txcfg_mxdma_64;
329 			uint32_t b_txcfg_mxdma_128;
330 			uint32_t b_txcfg_mxdma_256;
331 			uint32_t b_txcfg_mxdma_512;
332 			uint32_t b_txcfg_flth_mask;
333 			uint32_t b_txcfg_drth_mask;
334 
335 			uint32_t b_rxcfg_mxdma_8;
336 			uint32_t b_rxcfg_mxdma_16;
337 			uint32_t b_rxcfg_mxdma_32;
338 			uint32_t b_rxcfg_mxdma_64;
339 			uint32_t b_rxcfg_mxdma_128;
340 			uint32_t b_rxcfg_mxdma_256;
341 			uint32_t b_rxcfg_mxdma_512;
342 
343 			uint32_t b_isr_txrcmp;
344 			uint32_t b_isr_rxrcmp;
345 			uint32_t b_isr_dperr;
346 			uint32_t b_isr_sserr;
347 			uint32_t b_isr_rmabt;
348 			uint32_t b_isr_rtabt;
349 
350 			uint32_t b_cmdsts_size_mask;
351 		} p_bits;
352 		int		p_filtmem;
353 		int		p_rxbuf_len;
354 		bus_size_t	p_tx_dmamap_size;
355 		int		p_ntxsegs;
356 		int		p_ntxsegs_alloc;
357 		int		p_nrxdesc;
358 	} *sc_parm;
359 
360 	void (*sc_rxintr)(struct sip_softc *);
361 
362 #if NRND > 0
363 	rndsource_element_t rnd_source;	/* random source */
364 #endif
365 };
366 
367 #define	sc_bits	sc_parm->p_bits
368 #define	sc_regs	sc_parm->p_regs
369 
370 static const struct sip_parm sip_parm = {
371 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
372 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
373 	, .p_tx_dmamap_size = MCLBYTES
374 	, .p_ntxsegs = 16
375 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
376 	, .p_nrxdesc = SIP_NRXDESC
377 	, .p_bits = {
378 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
379 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
380 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
381 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
382 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
383 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
384 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
385 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
386 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
387 
388 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
389 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
390 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
391 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
392 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
393 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
394 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
395 
396 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
397 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
398 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
399 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
400 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
401 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
402 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
403 	}
404 	, .p_regs = {
405 		.r_rxcfg = OTHER_SIP_RXCFG,
406 		.r_txcfg = OTHER_SIP_TXCFG
407 	}
408 }, gsip_parm = {
409 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
410 	, .p_rxbuf_len = MCLBYTES - 8
411 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
412 	, .p_ntxsegs = 64
413 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
414 	, .p_nrxdesc = GSIP_NRXDESC
415 	, .p_bits = {
416 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
417 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
418 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
419 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
420 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
421 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
422 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
423 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
424 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
425 
426 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
427 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
428 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
429 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
430 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
431 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
432 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
433 
434 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
435 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
436 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
437 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
438 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
439 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
440 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
441 	}
442 	, .p_regs = {
443 		.r_rxcfg = DP83820_SIP_RXCFG,
444 		.r_txcfg = DP83820_SIP_TXCFG
445 	}
446 };
447 
448 static inline int
449 sip_nexttx(const struct sip_softc *sc, int x)
450 {
451 	return (x + 1) & sc->sc_ntxdesc_mask;
452 }
453 
454 static inline int
455 sip_nextrx(const struct sip_softc *sc, int x)
456 {
457 	return (x + 1) & sc->sc_nrxdesc_mask;
458 }
459 
460 /* 83820 only */
461 static inline void
462 sip_rxchain_reset(struct sip_softc *sc)
463 {
464 	sc->sc_rxtailp = &sc->sc_rxhead;
465 	*sc->sc_rxtailp = NULL;
466 	sc->sc_rxlen = 0;
467 }
468 
469 /* 83820 only */
470 static inline void
471 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
472 {
473 	*sc->sc_rxtailp = sc->sc_rxtail = m;
474 	sc->sc_rxtailp = &m->m_next;
475 }
476 
477 #ifdef SIP_EVENT_COUNTERS
478 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
479 #else
480 #define	SIP_EVCNT_INCR(ev)	/* nothing */
481 #endif
482 
483 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
484 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
485 
486 static inline void
487 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
488 {
489 	int x, n;
490 
491 	x = x0;
492 	n = n0;
493 
494 	/* If it will wrap around, sync to the end of the ring. */
495 	if (x + n > sc->sc_ntxdesc) {
496 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
497 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
498 		    (sc->sc_ntxdesc - x), ops);
499 		n -= (sc->sc_ntxdesc - x);
500 		x = 0;
501 	}
502 
503 	/* Now sync whatever is left. */
504 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
505 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
506 }
507 
508 static inline void
509 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
510 {
511 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
512 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
513 }
514 
515 #if 0
516 #ifdef DP83820
517 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
518 	u_int32_t	sipd_cmdsts;	/* command/status word */
519 #else
520 	u_int32_t	sipd_cmdsts;	/* command/status word */
521 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
522 #endif /* DP83820 */
523 #endif /* 0 */
524 
525 static inline volatile uint32_t *
526 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
527 {
528 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
529 }
530 
531 static inline volatile uint32_t *
532 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
533 {
534 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
535 }
536 
537 static inline void
538 sip_init_rxdesc(struct sip_softc *sc, int x)
539 {
540 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
541 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
542 
543 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
544 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
545 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
546 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
547 	sipd->sipd_extsts = 0;
548 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
549 }
550 
551 #define	SIP_CHIP_VERS(sc, v, p, r)					\
552 	((sc)->sc_model->sip_vendor == (v) &&				\
553 	 (sc)->sc_model->sip_product == (p) &&				\
554 	 (sc)->sc_rev == (r))
555 
556 #define	SIP_CHIP_MODEL(sc, v, p)					\
557 	((sc)->sc_model->sip_vendor == (v) &&				\
558 	 (sc)->sc_model->sip_product == (p))
559 
560 #define	SIP_SIS900_REV(sc, rev)						\
561 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
562 
563 #define SIP_TIMEOUT 1000
564 
565 static int	sip_ifflags_cb(struct ethercom *);
566 static void	sipcom_start(struct ifnet *);
567 static void	sipcom_watchdog(struct ifnet *);
568 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
569 static int	sipcom_init(struct ifnet *);
570 static void	sipcom_stop(struct ifnet *, int);
571 
572 static bool	sipcom_reset(struct sip_softc *);
573 static void	sipcom_rxdrain(struct sip_softc *);
574 static int	sipcom_add_rxbuf(struct sip_softc *, int);
575 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
576 				      u_int16_t *);
577 static void	sipcom_tick(void *);
578 
579 static void	sipcom_sis900_set_filter(struct sip_softc *);
580 static void	sipcom_dp83815_set_filter(struct sip_softc *);
581 
582 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
583 		    const struct pci_attach_args *, u_int8_t *);
584 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
585 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
586 		    const struct pci_attach_args *, u_int8_t *);
587 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
588 		    const struct pci_attach_args *, u_int8_t *);
589 
590 static int	sipcom_intr(void *);
591 static void	sipcom_txintr(struct sip_softc *);
592 static void	sip_rxintr(struct sip_softc *);
593 static void	gsip_rxintr(struct sip_softc *);
594 
595 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
596 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
597 static void	sipcom_dp83820_mii_statchg(device_t);
598 
599 static int	sipcom_sis900_mii_readreg(device_t, int, int);
600 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
601 static void	sipcom_sis900_mii_statchg(device_t);
602 
603 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
604 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
605 static void	sipcom_dp83815_mii_statchg(device_t);
606 
607 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
608 
609 static int	sipcom_match(device_t, cfdata_t, void *);
610 static void	sipcom_attach(device_t, device_t, void *);
611 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
612 static int	sipcom_detach(device_t, int);
613 static bool	sipcom_resume(device_t PMF_FN_PROTO);
614 static bool	sipcom_suspend(device_t PMF_FN_PROTO);
615 
616 int	gsip_copy_small = 0;
617 int	sip_copy_small = 0;
618 
619 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
620     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
621     DVF_DETACH_SHUTDOWN);
622 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
623     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
624     DVF_DETACH_SHUTDOWN);
625 
626 /*
627  * Descriptions of the variants of the SiS900.
628  */
629 struct sip_variant {
630 	int	(*sipv_mii_readreg)(device_t, int, int);
631 	void	(*sipv_mii_writereg)(device_t, int, int, int);
632 	void	(*sipv_mii_statchg)(device_t);
633 	void	(*sipv_set_filter)(struct sip_softc *);
634 	void	(*sipv_read_macaddr)(struct sip_softc *,
635 		    const struct pci_attach_args *, u_int8_t *);
636 };
637 
638 static u_int32_t sipcom_mii_bitbang_read(device_t);
639 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
640 
641 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
642 	sipcom_mii_bitbang_read,
643 	sipcom_mii_bitbang_write,
644 	{
645 		EROMAR_MDIO,		/* MII_BIT_MDO */
646 		EROMAR_MDIO,		/* MII_BIT_MDI */
647 		EROMAR_MDC,		/* MII_BIT_MDC */
648 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
649 		0,			/* MII_BIT_DIR_PHY_HOST */
650 	}
651 };
652 
653 static const struct sip_variant sipcom_variant_dp83820 = {
654 	sipcom_dp83820_mii_readreg,
655 	sipcom_dp83820_mii_writereg,
656 	sipcom_dp83820_mii_statchg,
657 	sipcom_dp83815_set_filter,
658 	sipcom_dp83820_read_macaddr,
659 };
660 
661 static const struct sip_variant sipcom_variant_sis900 = {
662 	sipcom_sis900_mii_readreg,
663 	sipcom_sis900_mii_writereg,
664 	sipcom_sis900_mii_statchg,
665 	sipcom_sis900_set_filter,
666 	sipcom_sis900_read_macaddr,
667 };
668 
669 static const struct sip_variant sipcom_variant_dp83815 = {
670 	sipcom_dp83815_mii_readreg,
671 	sipcom_dp83815_mii_writereg,
672 	sipcom_dp83815_mii_statchg,
673 	sipcom_dp83815_set_filter,
674 	sipcom_dp83815_read_macaddr,
675 };
676 
677 
678 /*
679  * Devices supported by this driver.
680  */
681 static const struct sip_product {
682 	pci_vendor_id_t		sip_vendor;
683 	pci_product_id_t	sip_product;
684 	const char		*sip_name;
685 	const struct sip_variant *sip_variant;
686 	int			sip_gigabit;
687 } sipcom_products[] = {
688 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
689 	  "NatSemi DP83820 Gigabit Ethernet",
690 	  &sipcom_variant_dp83820, 1 },
691 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
692 	  "SiS 900 10/100 Ethernet",
693 	  &sipcom_variant_sis900, 0 },
694 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
695 	  "SiS 7016 10/100 Ethernet",
696 	  &sipcom_variant_sis900, 0 },
697 
698 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
699 	  "NatSemi DP83815 10/100 Ethernet",
700 	  &sipcom_variant_dp83815, 0 },
701 
702 	{ 0,			0,
703 	  NULL,
704 	  NULL, 0 },
705 };
706 
707 static const struct sip_product *
708 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
709 {
710 	const struct sip_product *sip;
711 
712 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
713 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
714 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
715 		    sip->sip_gigabit == gigabit)
716 			return sip;
717 	}
718 	return NULL;
719 }
720 
721 /*
722  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
723  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
724  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
725  * which means we try to use 64-bit data transfers on those cards if we
726  * happen to be plugged into a 32-bit slot.
727  *
728  * What we do is use this table of cards known to be 64-bit cards.  If
729  * you have a 64-bit card who's subsystem ID is not listed in this table,
730  * send the output of "pcictl dump ..." of the device to me so that your
731  * card will use the 64-bit data path when plugged into a 64-bit slot.
732  *
733  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
734  *	   June 30, 2002
735  */
736 static int
737 sipcom_check_64bit(const struct pci_attach_args *pa)
738 {
739 	static const struct {
740 		pci_vendor_id_t c64_vendor;
741 		pci_product_id_t c64_product;
742 	} card64[] = {
743 		/* Asante GigaNIX */
744 		{ 0x128a,	0x0002 },
745 
746 		/* Accton EN1407-T, Planex GN-1000TE */
747 		{ 0x1113,	0x1407 },
748 
749 		/* Netgear GA-621 */
750 		{ 0x1385,	0x621a },
751 
752 		/* SMC EZ Card */
753 		{ 0x10b8,	0x9462 },
754 
755 		{ 0, 0}
756 	};
757 	pcireg_t subsys;
758 	int i;
759 
760 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
761 
762 	for (i = 0; card64[i].c64_vendor != 0; i++) {
763 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
764 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
765 			return (1);
766 	}
767 
768 	return (0);
769 }
770 
771 static int
772 sipcom_match(device_t parent, cfdata_t cf, void *aux)
773 {
774 	struct pci_attach_args *pa = aux;
775 
776 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
777 		return 1;
778 
779 	return 0;
780 }
781 
782 static void
783 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
784 {
785 	u_int32_t reg;
786 	int i;
787 
788 	/*
789 	 * Cause the chip to load configuration data from the EEPROM.
790 	 */
791 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
792 	for (i = 0; i < 10000; i++) {
793 		delay(10);
794 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
795 		    PTSCR_EELOAD_EN) == 0)
796 			break;
797 	}
798 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
799 	    PTSCR_EELOAD_EN) {
800 		printf("%s: timeout loading configuration from EEPROM\n",
801 		    device_xname(sc->sc_dev));
802 		return;
803 	}
804 
805 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
806 
807 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
808 	if (reg & CFG_PCI64_DET) {
809 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
810 		/*
811 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
812 		 * data transfers.
813 		 *
814 		 * We can't use the DATA64_EN bit in the EEPROM, because
815 		 * vendors of 32-bit cards fail to clear that bit in many
816 		 * cases (yet the card still detects that it's in a 64-bit
817 		 * slot; go figure).
818 		 */
819 		if (sipcom_check_64bit(pa)) {
820 			sc->sc_cfg |= CFG_DATA64_EN;
821 			printf(", using 64-bit data transfers");
822 		}
823 		printf("\n");
824 	}
825 
826 	/*
827 	 * XXX Need some PCI flags indicating support for
828 	 * XXX 64-bit addressing.
829 	 */
830 #if 0
831 	if (reg & CFG_M64ADDR)
832 		sc->sc_cfg |= CFG_M64ADDR;
833 	if (reg & CFG_T64ADDR)
834 		sc->sc_cfg |= CFG_T64ADDR;
835 #endif
836 
837 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
838 		const char *sep = "";
839 		printf("%s: using ", device_xname(sc->sc_dev));
840 		if (reg & CFG_EXT_125) {
841 			sc->sc_cfg |= CFG_EXT_125;
842 			printf("%s125MHz clock", sep);
843 			sep = ", ";
844 		}
845 		if (reg & CFG_TBI_EN) {
846 			sc->sc_cfg |= CFG_TBI_EN;
847 			printf("%sten-bit interface", sep);
848 			sep = ", ";
849 		}
850 		printf("\n");
851 	}
852 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
853 	    (reg & CFG_MRM_DIS) != 0)
854 		sc->sc_cfg |= CFG_MRM_DIS;
855 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
856 	    (reg & CFG_MWI_DIS) != 0)
857 		sc->sc_cfg |= CFG_MWI_DIS;
858 
859 	/*
860 	 * Use the extended descriptor format on the DP83820.  This
861 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
862 	 * checksumming.
863 	 */
864 	sc->sc_cfg |= CFG_EXTSTS_EN;
865 }
866 
867 static int
868 sipcom_detach(device_t self, int flags)
869 {
870 	int s;
871 
872 	s = splnet();
873 	sipcom_do_detach(self, SIP_ATTACH_FIN);
874 	splx(s);
875 
876 	return 0;
877 }
878 
879 static void
880 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
881 {
882 	int i;
883 	struct sip_softc *sc = device_private(self);
884 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
885 
886 	/*
887 	 * Free any resources we've allocated during attach.
888 	 * Do this in reverse order and fall through.
889 	 */
890 	switch (stage) {
891 	case SIP_ATTACH_FIN:
892 		sipcom_stop(ifp, 1);
893 		pmf_device_deregister(self);
894 #ifdef SIP_EVENT_COUNTERS
895 		/*
896 		 * Attach event counters.
897 		 */
898 		evcnt_detach(&sc->sc_ev_txforceintr);
899 		evcnt_detach(&sc->sc_ev_txdstall);
900 		evcnt_detach(&sc->sc_ev_txsstall);
901 		evcnt_detach(&sc->sc_ev_hiberr);
902 		evcnt_detach(&sc->sc_ev_rxintr);
903 		evcnt_detach(&sc->sc_ev_txiintr);
904 		evcnt_detach(&sc->sc_ev_txdintr);
905 		if (!sc->sc_gigabit) {
906 			evcnt_detach(&sc->sc_ev_rxpause);
907 		} else {
908 			evcnt_detach(&sc->sc_ev_txudpsum);
909 			evcnt_detach(&sc->sc_ev_txtcpsum);
910 			evcnt_detach(&sc->sc_ev_txipsum);
911 			evcnt_detach(&sc->sc_ev_rxudpsum);
912 			evcnt_detach(&sc->sc_ev_rxtcpsum);
913 			evcnt_detach(&sc->sc_ev_rxipsum);
914 			evcnt_detach(&sc->sc_ev_txpause);
915 			evcnt_detach(&sc->sc_ev_rxpause);
916 		}
917 #endif /* SIP_EVENT_COUNTERS */
918 
919 #if NRND > 0
920 		rnd_detach_source(&sc->rnd_source);
921 #endif
922 
923 		ether_ifdetach(ifp);
924 		if_detach(ifp);
925 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
926 
927 		/*FALLTHROUGH*/
928 	case SIP_ATTACH_CREATE_RXMAP:
929 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
930 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
931 				bus_dmamap_destroy(sc->sc_dmat,
932 				    sc->sc_rxsoft[i].rxs_dmamap);
933 		}
934 		/*FALLTHROUGH*/
935 	case SIP_ATTACH_CREATE_TXMAP:
936 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
937 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
938 				bus_dmamap_destroy(sc->sc_dmat,
939 				    sc->sc_txsoft[i].txs_dmamap);
940 		}
941 		/*FALLTHROUGH*/
942 	case SIP_ATTACH_LOAD_MAP:
943 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
944 		/*FALLTHROUGH*/
945 	case SIP_ATTACH_CREATE_MAP:
946 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
947 		/*FALLTHROUGH*/
948 	case SIP_ATTACH_MAP_MEM:
949 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
950 		    sizeof(struct sip_control_data));
951 		/*FALLTHROUGH*/
952 	case SIP_ATTACH_ALLOC_MEM:
953 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
954 		/* FALLTHROUGH*/
955 	case SIP_ATTACH_INTR:
956 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
957 		/* FALLTHROUGH*/
958 	case SIP_ATTACH_MAP:
959 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
960 		break;
961 	default:
962 		break;
963 	}
964 	return;
965 }
966 
967 static bool
968 sipcom_resume(device_t self PMF_FN_ARGS)
969 {
970 	struct sip_softc *sc = device_private(self);
971 
972 	return sipcom_reset(sc);
973 }
974 
975 static bool
976 sipcom_suspend(device_t self PMF_FN_ARGS)
977 {
978 	struct sip_softc *sc = device_private(self);
979 
980 	sipcom_rxdrain(sc);
981 	return true;
982 }
983 
984 static void
985 sipcom_attach(device_t parent, device_t self, void *aux)
986 {
987 	struct sip_softc *sc = device_private(self);
988 	struct pci_attach_args *pa = aux;
989 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
990 	pci_chipset_tag_t pc = pa->pa_pc;
991 	pci_intr_handle_t ih;
992 	const char *intrstr = NULL;
993 	bus_space_tag_t iot, memt;
994 	bus_space_handle_t ioh, memh;
995 	bus_size_t iosz, memsz;
996 	int ioh_valid, memh_valid;
997 	int i, rseg, error;
998 	const struct sip_product *sip;
999 	u_int8_t enaddr[ETHER_ADDR_LEN];
1000 	pcireg_t csr;
1001 	pcireg_t memtype;
1002 	bus_size_t tx_dmamap_size;
1003 	int ntxsegs_alloc;
1004 	cfdata_t cf = device_cfdata(self);
1005 
1006 	callout_init(&sc->sc_tick_ch, 0);
1007 
1008 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1009 	if (sip == NULL) {
1010 		printf("\n");
1011 		panic("%s: impossible", __func__);
1012 	}
1013 	sc->sc_dev = self;
1014 	sc->sc_gigabit = sip->sip_gigabit;
1015 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1016 	sc->sc_pc = pc;
1017 
1018 	if (sc->sc_gigabit) {
1019 		sc->sc_rxintr = gsip_rxintr;
1020 		sc->sc_parm = &gsip_parm;
1021 	} else {
1022 		sc->sc_rxintr = sip_rxintr;
1023 		sc->sc_parm = &sip_parm;
1024 	}
1025 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1026 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1027 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1028 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1029 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1030 
1031 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1032 
1033 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1034 
1035 	sc->sc_model = sip;
1036 
1037 	/*
1038 	 * XXX Work-around broken PXE firmware on some boards.
1039 	 *
1040 	 * The DP83815 shares an address decoder with the MEM BAR
1041 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1042 	 * so that memory mapped access works.
1043 	 */
1044 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1045 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1046 	    ~PCI_MAPREG_ROM_ENABLE);
1047 
1048 	/*
1049 	 * Map the device.
1050 	 */
1051 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1052 	    PCI_MAPREG_TYPE_IO, 0,
1053 	    &iot, &ioh, NULL, &iosz) == 0);
1054 	if (sc->sc_gigabit) {
1055 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1056 		switch (memtype) {
1057 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1058 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1059 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1061 			break;
1062 		default:
1063 			memh_valid = 0;
1064 		}
1065 	} else {
1066 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1067 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1068 		    &memt, &memh, NULL, &memsz) == 0);
1069 	}
1070 
1071 	if (memh_valid) {
1072 		sc->sc_st = memt;
1073 		sc->sc_sh = memh;
1074 		sc->sc_sz = memsz;
1075 	} else if (ioh_valid) {
1076 		sc->sc_st = iot;
1077 		sc->sc_sh = ioh;
1078 		sc->sc_sz = iosz;
1079 	} else {
1080 		printf("%s: unable to map device registers\n",
1081 		    device_xname(sc->sc_dev));
1082 		return;
1083 	}
1084 
1085 	sc->sc_dmat = pa->pa_dmat;
1086 
1087 	/*
1088 	 * Make sure bus mastering is enabled.  Also make sure
1089 	 * Write/Invalidate is enabled if we're allowed to use it.
1090 	 */
1091 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1092 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1093 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1094 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1095 	    csr | PCI_COMMAND_MASTER_ENABLE);
1096 
1097 	/* power up chip */
1098 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1099 	if (error != 0 && error != EOPNOTSUPP) {
1100 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1101 		return;
1102 	}
1103 
1104 	/*
1105 	 * Map and establish our interrupt.
1106 	 */
1107 	if (pci_intr_map(pa, &ih)) {
1108 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1109 		return;
1110 	}
1111 	intrstr = pci_intr_string(pc, ih);
1112 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1113 	if (sc->sc_ih == NULL) {
1114 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1115 		if (intrstr != NULL)
1116 			aprint_error(" at %s", intrstr);
1117 		aprint_error("\n");
1118 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
1119 	}
1120 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1121 
1122 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1123 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1124 
1125 	/*
1126 	 * Allocate the control data structures, and create and load the
1127 	 * DMA map for it.
1128 	 */
1129 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1130 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1131 	    &rseg, 0)) != 0) {
1132 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1133 		    error);
1134 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
1135 	}
1136 
1137 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1138 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1139 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1140 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1141 		    error);
1142 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1143 	}
1144 
1145 	if ((error = bus_dmamap_create(sc->sc_dmat,
1146 	    sizeof(struct sip_control_data), 1,
1147 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1148 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1149 		    "error = %d\n", error);
1150 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1151 	}
1152 
1153 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1154 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1155 	    0)) != 0) {
1156 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1157 		    error);
1158 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1159 	}
1160 
1161 	/*
1162 	 * Create the transmit buffer DMA maps.
1163 	 */
1164 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1165 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1166 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1167 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1168 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1169 			    "error = %d\n", i, error);
1170 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1171 		}
1172 	}
1173 
1174 	/*
1175 	 * Create the receive buffer DMA maps.
1176 	 */
1177 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1178 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1179 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1180 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1181 			    "error = %d\n", i, error);
1182 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1183 		}
1184 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1185 	}
1186 
1187 	/*
1188 	 * Reset the chip to a known state.
1189 	 */
1190 	sipcom_reset(sc);
1191 
1192 	/*
1193 	 * Read the Ethernet address from the EEPROM.  This might
1194 	 * also fetch other stuff from the EEPROM and stash it
1195 	 * in the softc.
1196 	 */
1197 	sc->sc_cfg = 0;
1198 	if (!sc->sc_gigabit) {
1199 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1200 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1201 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1202 
1203 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1204 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1205 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1206 			sc->sc_cfg |=
1207 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1208 			     CFG_EDBMASTEN);
1209 	}
1210 
1211 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1212 
1213 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1214 	    ether_sprintf(enaddr));
1215 
1216 	/*
1217 	 * Initialize the configuration register: aggressive PCI
1218 	 * bus request algorithm, default backoff, default OW timer,
1219 	 * default parity error detection.
1220 	 *
1221 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1222 	 * friends -- it affects packet data, not descriptors.
1223 	 */
1224 	if (sc->sc_gigabit)
1225 		sipcom_dp83820_attach(sc, pa);
1226 
1227 	/*
1228 	 * Initialize our media structures and probe the MII.
1229 	 */
1230 	sc->sc_mii.mii_ifp = ifp;
1231 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1232 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1233 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1234 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1235 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1236 	    sipcom_mediastatus);
1237 
1238 	/*
1239 	 * XXX We cannot handle flow control on the DP83815.
1240 	 */
1241 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1242 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1243 			   MII_OFFSET_ANY, 0);
1244 	else
1245 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1246 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1247 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1248 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1249 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1250 	} else
1251 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1252 
1253 	ifp = &sc->sc_ethercom.ec_if;
1254 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1255 	ifp->if_softc = sc;
1256 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1257 	sc->sc_if_flags = ifp->if_flags;
1258 	ifp->if_ioctl = sipcom_ioctl;
1259 	ifp->if_start = sipcom_start;
1260 	ifp->if_watchdog = sipcom_watchdog;
1261 	ifp->if_init = sipcom_init;
1262 	ifp->if_stop = sipcom_stop;
1263 	IFQ_SET_READY(&ifp->if_snd);
1264 
1265 	/*
1266 	 * We can support 802.1Q VLAN-sized frames.
1267 	 */
1268 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1269 
1270 	if (sc->sc_gigabit) {
1271 		/*
1272 		 * And the DP83820 can do VLAN tagging in hardware, and
1273 		 * support the jumbo Ethernet MTU.
1274 		 */
1275 		sc->sc_ethercom.ec_capabilities |=
1276 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1277 
1278 		/*
1279 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1280 		 * in hardware.
1281 		 */
1282 		ifp->if_capabilities |=
1283 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1284 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1285 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1286 	}
1287 
1288 	/*
1289 	 * Attach the interface.
1290 	 */
1291 	if_attach(ifp);
1292 	ether_ifattach(ifp, enaddr);
1293 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1294 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1295 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1296 	sc->sc_prev.if_capenable = ifp->if_capenable;
1297 #if NRND > 0
1298 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1299 	    RND_TYPE_NET, 0);
1300 #endif
1301 
1302 	/*
1303 	 * The number of bytes that must be available in
1304 	 * the Tx FIFO before the bus master can DMA more
1305 	 * data into the FIFO.
1306 	 */
1307 	sc->sc_tx_fill_thresh = 64 / 32;
1308 
1309 	/*
1310 	 * Start at a drain threshold of 512 bytes.  We will
1311 	 * increase it if a DMA underrun occurs.
1312 	 *
1313 	 * XXX The minimum value of this variable should be
1314 	 * tuned.  We may be able to improve performance
1315 	 * by starting with a lower value.  That, however,
1316 	 * may trash the first few outgoing packets if the
1317 	 * PCI bus is saturated.
1318 	 */
1319 	if (sc->sc_gigabit)
1320 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1321 	else
1322 		sc->sc_tx_drain_thresh = 1504 / 32;
1323 
1324 	/*
1325 	 * Initialize the Rx FIFO drain threshold.
1326 	 *
1327 	 * This is in units of 8 bytes.
1328 	 *
1329 	 * We should never set this value lower than 2; 14 bytes are
1330 	 * required to filter the packet.
1331 	 */
1332 	sc->sc_rx_drain_thresh = 128 / 8;
1333 
1334 #ifdef SIP_EVENT_COUNTERS
1335 	/*
1336 	 * Attach event counters.
1337 	 */
1338 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1339 	    NULL, device_xname(sc->sc_dev), "txsstall");
1340 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1341 	    NULL, device_xname(sc->sc_dev), "txdstall");
1342 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1343 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1344 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1345 	    NULL, device_xname(sc->sc_dev), "txdintr");
1346 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1347 	    NULL, device_xname(sc->sc_dev), "txiintr");
1348 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1349 	    NULL, device_xname(sc->sc_dev), "rxintr");
1350 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1351 	    NULL, device_xname(sc->sc_dev), "hiberr");
1352 	if (!sc->sc_gigabit) {
1353 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1354 		    NULL, device_xname(sc->sc_dev), "rxpause");
1355 	} else {
1356 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1357 		    NULL, device_xname(sc->sc_dev), "rxpause");
1358 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1359 		    NULL, device_xname(sc->sc_dev), "txpause");
1360 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1361 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1362 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1363 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1364 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1365 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1366 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1367 		    NULL, device_xname(sc->sc_dev), "txipsum");
1368 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1369 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1370 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1371 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1372 	}
1373 #endif /* SIP_EVENT_COUNTERS */
1374 
1375 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1376 		pmf_class_network_register(self, ifp);
1377 	else
1378 		aprint_error_dev(self, "couldn't establish power handler\n");
1379 }
1380 
1381 static inline void
1382 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1383     uint64_t capenable)
1384 {
1385 	struct m_tag *mtag;
1386 	u_int32_t extsts;
1387 #ifdef DEBUG
1388 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1389 #endif
1390 	/*
1391 	 * If VLANs are enabled and the packet has a VLAN tag, set
1392 	 * up the descriptor to encapsulate the packet for us.
1393 	 *
1394 	 * This apparently has to be on the last descriptor of
1395 	 * the packet.
1396 	 */
1397 
1398 	/*
1399 	 * Byte swapping is tricky. We need to provide the tag
1400 	 * in a network byte order. On a big-endian machine,
1401 	 * the byteorder is correct, but we need to swap it
1402 	 * anyway, because this will be undone by the outside
1403 	 * htole32(). That's why there must be an
1404 	 * unconditional swap instead of htons() inside.
1405 	 */
1406 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1407 		sc->sc_txdescs[lasttx].sipd_extsts |=
1408 		    htole32(EXTSTS_VPKT |
1409 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1410 				 EXTSTS_VTCI));
1411 	}
1412 
1413 	/*
1414 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1415 	 * checksumming, set up the descriptor to do this work
1416 	 * for us.
1417 	 *
1418 	 * This apparently has to be on the first descriptor of
1419 	 * the packet.
1420 	 *
1421 	 * Byte-swap constants so the compiler can optimize.
1422 	 */
1423 	extsts = 0;
1424 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1425 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1426 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1427 		extsts |= htole32(EXTSTS_IPPKT);
1428 	}
1429 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1430 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1431 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1432 		extsts |= htole32(EXTSTS_TCPPKT);
1433 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1434 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1435 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1436 		extsts |= htole32(EXTSTS_UDPPKT);
1437 	}
1438 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1439 }
1440 
1441 /*
1442  * sip_start:		[ifnet interface function]
1443  *
1444  *	Start packet transmission on the interface.
1445  */
1446 static void
1447 sipcom_start(struct ifnet *ifp)
1448 {
1449 	struct sip_softc *sc = ifp->if_softc;
1450 	struct mbuf *m0;
1451 	struct mbuf *m;
1452 	struct sip_txsoft *txs;
1453 	bus_dmamap_t dmamap;
1454 	int error, nexttx, lasttx, seg;
1455 	int ofree = sc->sc_txfree;
1456 #if 0
1457 	int firsttx = sc->sc_txnext;
1458 #endif
1459 
1460 	/*
1461 	 * If we've been told to pause, don't transmit any more packets.
1462 	 */
1463 	if (!sc->sc_gigabit && sc->sc_paused)
1464 		ifp->if_flags |= IFF_OACTIVE;
1465 
1466 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1467 		return;
1468 
1469 	/*
1470 	 * Loop through the send queue, setting up transmit descriptors
1471 	 * until we drain the queue, or use up all available transmit
1472 	 * descriptors.
1473 	 */
1474 	for (;;) {
1475 		/* Get a work queue entry. */
1476 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1477 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1478 			break;
1479 		}
1480 
1481 		/*
1482 		 * Grab a packet off the queue.
1483 		 */
1484 		IFQ_POLL(&ifp->if_snd, m0);
1485 		if (m0 == NULL)
1486 			break;
1487 		m = NULL;
1488 
1489 		dmamap = txs->txs_dmamap;
1490 
1491 		/*
1492 		 * Load the DMA map.  If this fails, the packet either
1493 		 * didn't fit in the alloted number of segments, or we
1494 		 * were short on resources.
1495 		 */
1496 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1497 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1498 		/* In the non-gigabit case, we'll copy and try again. */
1499 		if (error != 0 && !sc->sc_gigabit) {
1500 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1501 			if (m == NULL) {
1502 				printf("%s: unable to allocate Tx mbuf\n",
1503 				    device_xname(sc->sc_dev));
1504 				break;
1505 			}
1506 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1507 			if (m0->m_pkthdr.len > MHLEN) {
1508 				MCLGET(m, M_DONTWAIT);
1509 				if ((m->m_flags & M_EXT) == 0) {
1510 					printf("%s: unable to allocate Tx "
1511 					    "cluster\n", device_xname(sc->sc_dev));
1512 					m_freem(m);
1513 					break;
1514 				}
1515 			}
1516 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1517 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1518 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1519 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1520 			if (error) {
1521 				printf("%s: unable to load Tx buffer, "
1522 				    "error = %d\n", device_xname(sc->sc_dev), error);
1523 				break;
1524 			}
1525 		} else if (error == EFBIG) {
1526 			/*
1527 			 * For the too-many-segments case, we simply
1528 			 * report an error and drop the packet,
1529 			 * since we can't sanely copy a jumbo packet
1530 			 * to a single buffer.
1531 			 */
1532 			printf("%s: Tx packet consumes too many "
1533 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1534 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1535 			m_freem(m0);
1536 			continue;
1537 		} else if (error != 0) {
1538 			/*
1539 			 * Short on resources, just stop for now.
1540 			 */
1541 			break;
1542 		}
1543 
1544 		/*
1545 		 * Ensure we have enough descriptors free to describe
1546 		 * the packet.  Note, we always reserve one descriptor
1547 		 * at the end of the ring as a termination point, to
1548 		 * prevent wrap-around.
1549 		 */
1550 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1551 			/*
1552 			 * Not enough free descriptors to transmit this
1553 			 * packet.  We haven't committed anything yet,
1554 			 * so just unload the DMA map, put the packet
1555 			 * back on the queue, and punt.  Notify the upper
1556 			 * layer that there are not more slots left.
1557 			 *
1558 			 * XXX We could allocate an mbuf and copy, but
1559 			 * XXX is it worth it?
1560 			 */
1561 			ifp->if_flags |= IFF_OACTIVE;
1562 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1563 			if (m != NULL)
1564 				m_freem(m);
1565 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1566 			break;
1567 		}
1568 
1569 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1570 		if (m != NULL) {
1571 			m_freem(m0);
1572 			m0 = m;
1573 		}
1574 
1575 		/*
1576 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1577 		 */
1578 
1579 		/* Sync the DMA map. */
1580 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1581 		    BUS_DMASYNC_PREWRITE);
1582 
1583 		/*
1584 		 * Initialize the transmit descriptors.
1585 		 */
1586 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1587 		     seg < dmamap->dm_nsegs;
1588 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1589 			/*
1590 			 * If this is the first descriptor we're
1591 			 * enqueueing, don't set the OWN bit just
1592 			 * yet.  That could cause a race condition.
1593 			 * We'll do it below.
1594 			 */
1595 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1596 			    htole32(dmamap->dm_segs[seg].ds_addr);
1597 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1598 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1599 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1600 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1601 			lasttx = nexttx;
1602 		}
1603 
1604 		/* Clear the MORE bit on the last segment. */
1605 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1606 		    htole32(~CMDSTS_MORE);
1607 
1608 		/*
1609 		 * If we're in the interrupt delay window, delay the
1610 		 * interrupt.
1611 		 */
1612 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1613 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1614 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1615 			    htole32(CMDSTS_INTR);
1616 			sc->sc_txwin = 0;
1617 		}
1618 
1619 		if (sc->sc_gigabit)
1620 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1621 
1622 		/* Sync the descriptors we're using. */
1623 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1624 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1625 
1626 		/*
1627 		 * The entire packet is set up.  Give the first descrptor
1628 		 * to the chip now.
1629 		 */
1630 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1631 		    htole32(CMDSTS_OWN);
1632 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1633 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1634 
1635 		/*
1636 		 * Store a pointer to the packet so we can free it later,
1637 		 * and remember what txdirty will be once the packet is
1638 		 * done.
1639 		 */
1640 		txs->txs_mbuf = m0;
1641 		txs->txs_firstdesc = sc->sc_txnext;
1642 		txs->txs_lastdesc = lasttx;
1643 
1644 		/* Advance the tx pointer. */
1645 		sc->sc_txfree -= dmamap->dm_nsegs;
1646 		sc->sc_txnext = nexttx;
1647 
1648 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1649 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1650 
1651 #if NBPFILTER > 0
1652 		/*
1653 		 * Pass the packet to any BPF listeners.
1654 		 */
1655 		if (ifp->if_bpf)
1656 			bpf_mtap(ifp->if_bpf, m0);
1657 #endif /* NBPFILTER > 0 */
1658 	}
1659 
1660 	if (txs == NULL || sc->sc_txfree == 0) {
1661 		/* No more slots left; notify upper layer. */
1662 		ifp->if_flags |= IFF_OACTIVE;
1663 	}
1664 
1665 	if (sc->sc_txfree != ofree) {
1666 		/*
1667 		 * Start the transmit process.  Note, the manual says
1668 		 * that if there are no pending transmissions in the
1669 		 * chip's internal queue (indicated by TXE being clear),
1670 		 * then the driver software must set the TXDP to the
1671 		 * first descriptor to be transmitted.  However, if we
1672 		 * do this, it causes serious performance degredation on
1673 		 * the DP83820 under load, not setting TXDP doesn't seem
1674 		 * to adversely affect the SiS 900 or DP83815.
1675 		 *
1676 		 * Well, I guess it wouldn't be the first time a manual
1677 		 * has lied -- and they could be speaking of the NULL-
1678 		 * terminated descriptor list case, rather than OWN-
1679 		 * terminated rings.
1680 		 */
1681 #if 0
1682 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1683 		     CR_TXE) == 0) {
1684 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1685 			    SIP_CDTXADDR(sc, firsttx));
1686 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1687 		}
1688 #else
1689 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1690 #endif
1691 
1692 		/* Set a watchdog timer in case the chip flakes out. */
1693 		/* Gigabit autonegotiation takes 5 seconds. */
1694 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1695 	}
1696 }
1697 
1698 /*
1699  * sip_watchdog:	[ifnet interface function]
1700  *
1701  *	Watchdog timer handler.
1702  */
1703 static void
1704 sipcom_watchdog(struct ifnet *ifp)
1705 {
1706 	struct sip_softc *sc = ifp->if_softc;
1707 
1708 	/*
1709 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1710 	 * If we get a timeout, try and sweep up transmit descriptors.
1711 	 * If we manage to sweep them all up, ignore the lack of
1712 	 * interrupt.
1713 	 */
1714 	sipcom_txintr(sc);
1715 
1716 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1717 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1718 		ifp->if_oerrors++;
1719 
1720 		/* Reset the interface. */
1721 		(void) sipcom_init(ifp);
1722 	} else if (ifp->if_flags & IFF_DEBUG)
1723 		printf("%s: recovered from device timeout\n",
1724 		    device_xname(sc->sc_dev));
1725 
1726 	/* Try to get more packets going. */
1727 	sipcom_start(ifp);
1728 }
1729 
1730 /* If the interface is up and running, only modify the receive
1731  * filter when setting promiscuous or debug mode.  Otherwise fall
1732  * through to ether_ioctl, which will reset the chip.
1733  */
1734 static int
1735 sip_ifflags_cb(struct ethercom *ec)
1736 {
1737 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1738 			 == (sc)->sc_ethercom.ec_capenable)		\
1739 			&& ((sc)->sc_prev.is_vlan ==			\
1740 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1741 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1742 	struct ifnet *ifp = &ec->ec_if;
1743 	struct sip_softc *sc = ifp->if_softc;
1744 	int change = ifp->if_flags ^ sc->sc_if_flags;
1745 
1746 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1747 	    !COMPARE_IC(sc, ifp))
1748 		return ENETRESET;
1749 	/* Set up the receive filter. */
1750 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1751 	return 0;
1752 }
1753 
1754 /*
1755  * sip_ioctl:		[ifnet interface function]
1756  *
1757  *	Handle control requests from the operator.
1758  */
1759 static int
1760 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1761 {
1762 	struct sip_softc *sc = ifp->if_softc;
1763 	struct ifreq *ifr = (struct ifreq *)data;
1764 	int s, error;
1765 
1766 	s = splnet();
1767 
1768 	switch (cmd) {
1769 	case SIOCSIFMEDIA:
1770 		/* Flow control requires full-duplex mode. */
1771 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1772 		    (ifr->ifr_media & IFM_FDX) == 0)
1773 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1774 
1775 		/* XXX */
1776 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1777 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1778 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1779 			if (sc->sc_gigabit &&
1780 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1781 				/* We can do both TXPAUSE and RXPAUSE. */
1782 				ifr->ifr_media |=
1783 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1784 			} else if (ifr->ifr_media & IFM_FLOW) {
1785 				/*
1786 				 * Both TXPAUSE and RXPAUSE must be set.
1787 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1788 				 * feature.)
1789 				 *
1790 				 * XXX Can SiS900 and DP83815 send PAUSE?
1791 				 */
1792 				ifr->ifr_media |=
1793 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1794 			}
1795 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1796 		}
1797 		/*FALLTHROUGH*/
1798 	default:
1799 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1800 			break;
1801 
1802 		error = 0;
1803 
1804 		if (cmd == SIOCSIFCAP)
1805 			error = (*ifp->if_init)(ifp);
1806 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1807 			;
1808 		else if (ifp->if_flags & IFF_RUNNING) {
1809 			/*
1810 			 * Multicast list has changed; set the hardware filter
1811 			 * accordingly.
1812 			 */
1813 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1814 		}
1815 		break;
1816 	}
1817 
1818 	/* Try to get more packets going. */
1819 	sipcom_start(ifp);
1820 
1821 	sc->sc_if_flags = ifp->if_flags;
1822 	splx(s);
1823 	return (error);
1824 }
1825 
1826 /*
1827  * sip_intr:
1828  *
1829  *	Interrupt service routine.
1830  */
1831 static int
1832 sipcom_intr(void *arg)
1833 {
1834 	struct sip_softc *sc = arg;
1835 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1836 	u_int32_t isr;
1837 	int handled = 0;
1838 
1839 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1840 		return 0;
1841 
1842 	/* Disable interrupts. */
1843 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1844 
1845 	for (;;) {
1846 		/* Reading clears interrupt. */
1847 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1848 		if ((isr & sc->sc_imr) == 0)
1849 			break;
1850 
1851 #if NRND > 0
1852 		if (RND_ENABLED(&sc->rnd_source))
1853 			rnd_add_uint32(&sc->rnd_source, isr);
1854 #endif
1855 
1856 		handled = 1;
1857 
1858 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1859 			break;
1860 
1861 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1862 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1863 
1864 			/* Grab any new packets. */
1865 			(*sc->sc_rxintr)(sc);
1866 
1867 			if (isr & ISR_RXORN) {
1868 				printf("%s: receive FIFO overrun\n",
1869 				    device_xname(sc->sc_dev));
1870 
1871 				/* XXX adjust rx_drain_thresh? */
1872 			}
1873 
1874 			if (isr & ISR_RXIDLE) {
1875 				printf("%s: receive ring overrun\n",
1876 				    device_xname(sc->sc_dev));
1877 
1878 				/* Get the receive process going again. */
1879 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1880 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1881 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1882 				    SIP_CR, CR_RXE);
1883 			}
1884 		}
1885 
1886 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1887 #ifdef SIP_EVENT_COUNTERS
1888 			if (isr & ISR_TXDESC)
1889 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1890 			else if (isr & ISR_TXIDLE)
1891 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1892 #endif
1893 
1894 			/* Sweep up transmit descriptors. */
1895 			sipcom_txintr(sc);
1896 
1897 			if (isr & ISR_TXURN) {
1898 				u_int32_t thresh;
1899 				int txfifo_size = (sc->sc_gigabit)
1900 				    ? DP83820_SIP_TXFIFO_SIZE
1901 				    : OTHER_SIP_TXFIFO_SIZE;
1902 
1903 				printf("%s: transmit FIFO underrun",
1904 				    device_xname(sc->sc_dev));
1905 				thresh = sc->sc_tx_drain_thresh + 1;
1906 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1907 				&& (thresh * 32) <= (txfifo_size -
1908 				     (sc->sc_tx_fill_thresh * 32))) {
1909 					printf("; increasing Tx drain "
1910 					    "threshold to %u bytes\n",
1911 					    thresh * 32);
1912 					sc->sc_tx_drain_thresh = thresh;
1913 					(void) sipcom_init(ifp);
1914 				} else {
1915 					(void) sipcom_init(ifp);
1916 					printf("\n");
1917 				}
1918 			}
1919 		}
1920 
1921 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1922 			if (isr & ISR_PAUSE_ST) {
1923 				sc->sc_paused = 1;
1924 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1925 				ifp->if_flags |= IFF_OACTIVE;
1926 			}
1927 			if (isr & ISR_PAUSE_END) {
1928 				sc->sc_paused = 0;
1929 				ifp->if_flags &= ~IFF_OACTIVE;
1930 			}
1931 		}
1932 
1933 		if (isr & ISR_HIBERR) {
1934 			int want_init = 0;
1935 
1936 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1937 
1938 #define	PRINTERR(bit, str)						\
1939 			do {						\
1940 				if ((isr & (bit)) != 0) {		\
1941 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1942 						printf("%s: %s\n",	\
1943 						    device_xname(sc->sc_dev), str); \
1944 					want_init = 1;			\
1945 				}					\
1946 			} while (/*CONSTCOND*/0)
1947 
1948 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1949 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1950 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1951 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1952 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1953 			/*
1954 			 * Ignore:
1955 			 *	Tx reset complete
1956 			 *	Rx reset complete
1957 			 */
1958 			if (want_init)
1959 				(void) sipcom_init(ifp);
1960 #undef PRINTERR
1961 		}
1962 	}
1963 
1964 	/* Re-enable interrupts. */
1965 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1966 
1967 	/* Try to get more packets going. */
1968 	sipcom_start(ifp);
1969 
1970 	return (handled);
1971 }
1972 
1973 /*
1974  * sip_txintr:
1975  *
1976  *	Helper; handle transmit interrupts.
1977  */
1978 static void
1979 sipcom_txintr(struct sip_softc *sc)
1980 {
1981 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1982 	struct sip_txsoft *txs;
1983 	u_int32_t cmdsts;
1984 
1985 	if (sc->sc_paused == 0)
1986 		ifp->if_flags &= ~IFF_OACTIVE;
1987 
1988 	/*
1989 	 * Go through our Tx list and free mbufs for those
1990 	 * frames which have been transmitted.
1991 	 */
1992 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1993 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1994 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1995 
1996 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1997 		if (cmdsts & CMDSTS_OWN)
1998 			break;
1999 
2000 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2001 
2002 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
2003 
2004 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2005 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2006 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2007 		m_freem(txs->txs_mbuf);
2008 		txs->txs_mbuf = NULL;
2009 
2010 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2011 
2012 		/*
2013 		 * Check for errors and collisions.
2014 		 */
2015 		if (cmdsts &
2016 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2017 			ifp->if_oerrors++;
2018 			if (cmdsts & CMDSTS_Tx_EC)
2019 				ifp->if_collisions += 16;
2020 			if (ifp->if_flags & IFF_DEBUG) {
2021 				if (cmdsts & CMDSTS_Tx_ED)
2022 					printf("%s: excessive deferral\n",
2023 					    device_xname(sc->sc_dev));
2024 				if (cmdsts & CMDSTS_Tx_EC)
2025 					printf("%s: excessive collisions\n",
2026 					    device_xname(sc->sc_dev));
2027 			}
2028 		} else {
2029 			/* Packet was transmitted successfully. */
2030 			ifp->if_opackets++;
2031 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2032 		}
2033 	}
2034 
2035 	/*
2036 	 * If there are no more pending transmissions, cancel the watchdog
2037 	 * timer.
2038 	 */
2039 	if (txs == NULL) {
2040 		ifp->if_timer = 0;
2041 		sc->sc_txwin = 0;
2042 	}
2043 }
2044 
2045 /*
2046  * gsip_rxintr:
2047  *
2048  *	Helper; handle receive interrupts on gigabit parts.
2049  */
2050 static void
2051 gsip_rxintr(struct sip_softc *sc)
2052 {
2053 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2054 	struct sip_rxsoft *rxs;
2055 	struct mbuf *m;
2056 	u_int32_t cmdsts, extsts;
2057 	int i, len;
2058 
2059 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2060 		rxs = &sc->sc_rxsoft[i];
2061 
2062 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2063 
2064 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2065 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2066 		len = CMDSTS_SIZE(sc, cmdsts);
2067 
2068 		/*
2069 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2070 		 * consumer of the receive ring, so if the bit is clear,
2071 		 * we have processed all of the packets.
2072 		 */
2073 		if ((cmdsts & CMDSTS_OWN) == 0) {
2074 			/*
2075 			 * We have processed all of the receive buffers.
2076 			 */
2077 			break;
2078 		}
2079 
2080 		if (__predict_false(sc->sc_rxdiscard)) {
2081 			sip_init_rxdesc(sc, i);
2082 			if ((cmdsts & CMDSTS_MORE) == 0) {
2083 				/* Reset our state. */
2084 				sc->sc_rxdiscard = 0;
2085 			}
2086 			continue;
2087 		}
2088 
2089 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2090 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2091 
2092 		m = rxs->rxs_mbuf;
2093 
2094 		/*
2095 		 * Add a new receive buffer to the ring.
2096 		 */
2097 		if (sipcom_add_rxbuf(sc, i) != 0) {
2098 			/*
2099 			 * Failed, throw away what we've done so
2100 			 * far, and discard the rest of the packet.
2101 			 */
2102 			ifp->if_ierrors++;
2103 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2104 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2105 			sip_init_rxdesc(sc, i);
2106 			if (cmdsts & CMDSTS_MORE)
2107 				sc->sc_rxdiscard = 1;
2108 			if (sc->sc_rxhead != NULL)
2109 				m_freem(sc->sc_rxhead);
2110 			sip_rxchain_reset(sc);
2111 			continue;
2112 		}
2113 
2114 		sip_rxchain_link(sc, m);
2115 
2116 		m->m_len = len;
2117 
2118 		/*
2119 		 * If this is not the end of the packet, keep
2120 		 * looking.
2121 		 */
2122 		if (cmdsts & CMDSTS_MORE) {
2123 			sc->sc_rxlen += len;
2124 			continue;
2125 		}
2126 
2127 		/*
2128 		 * Okay, we have the entire packet now.  The chip includes
2129 		 * the FCS, so we need to trim it.
2130 		 */
2131 		m->m_len -= ETHER_CRC_LEN;
2132 
2133 		*sc->sc_rxtailp = NULL;
2134 		len = m->m_len + sc->sc_rxlen;
2135 		m = sc->sc_rxhead;
2136 
2137 		sip_rxchain_reset(sc);
2138 
2139 		/*
2140 		 * If an error occurred, update stats and drop the packet.
2141 		 */
2142 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2143 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2144 			ifp->if_ierrors++;
2145 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2146 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2147 				/* Receive overrun handled elsewhere. */
2148 				printf("%s: receive descriptor error\n",
2149 				    device_xname(sc->sc_dev));
2150 			}
2151 #define	PRINTERR(bit, str)						\
2152 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2153 			    (cmdsts & (bit)) != 0)			\
2154 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2155 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2156 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2157 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2158 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2159 #undef PRINTERR
2160 			m_freem(m);
2161 			continue;
2162 		}
2163 
2164 		/*
2165 		 * If the packet is small enough to fit in a
2166 		 * single header mbuf, allocate one and copy
2167 		 * the data into it.  This greatly reduces
2168 		 * memory consumption when we receive lots
2169 		 * of small packets.
2170 		 */
2171 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2172 			struct mbuf *nm;
2173 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2174 			if (nm == NULL) {
2175 				ifp->if_ierrors++;
2176 				m_freem(m);
2177 				continue;
2178 			}
2179 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2180 			nm->m_data += 2;
2181 			nm->m_pkthdr.len = nm->m_len = len;
2182 			m_copydata(m, 0, len, mtod(nm, void *));
2183 			m_freem(m);
2184 			m = nm;
2185 		}
2186 #ifndef __NO_STRICT_ALIGNMENT
2187 		else {
2188 			/*
2189 			 * The DP83820's receive buffers must be 4-byte
2190 			 * aligned.  But this means that the data after
2191 			 * the Ethernet header is misaligned.  To compensate,
2192 			 * we have artificially shortened the buffer size
2193 			 * in the descriptor, and we do an overlapping copy
2194 			 * of the data two bytes further in (in the first
2195 			 * buffer of the chain only).
2196 			 */
2197 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2198 			    m->m_len);
2199 			m->m_data += 2;
2200 		}
2201 #endif /* ! __NO_STRICT_ALIGNMENT */
2202 
2203 		/*
2204 		 * If VLANs are enabled, VLAN packets have been unwrapped
2205 		 * for us.  Associate the tag with the packet.
2206 		 */
2207 
2208 		/*
2209 		 * Again, byte swapping is tricky. Hardware provided
2210 		 * the tag in the network byte order, but extsts was
2211 		 * passed through le32toh() in the meantime. On a
2212 		 * big-endian machine, we need to swap it again. On a
2213 		 * little-endian machine, we need to convert from the
2214 		 * network to host byte order. This means that we must
2215 		 * swap it in any case, so unconditional swap instead
2216 		 * of htons() is used.
2217 		 */
2218 		if ((extsts & EXTSTS_VPKT) != 0) {
2219 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2220 			    continue);
2221 		}
2222 
2223 		/*
2224 		 * Set the incoming checksum information for the
2225 		 * packet.
2226 		 */
2227 		if ((extsts & EXTSTS_IPPKT) != 0) {
2228 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2229 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2230 			if (extsts & EXTSTS_Rx_IPERR)
2231 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2232 			if (extsts & EXTSTS_TCPPKT) {
2233 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2234 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2235 				if (extsts & EXTSTS_Rx_TCPERR)
2236 					m->m_pkthdr.csum_flags |=
2237 					    M_CSUM_TCP_UDP_BAD;
2238 			} else if (extsts & EXTSTS_UDPPKT) {
2239 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2240 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2241 				if (extsts & EXTSTS_Rx_UDPERR)
2242 					m->m_pkthdr.csum_flags |=
2243 					    M_CSUM_TCP_UDP_BAD;
2244 			}
2245 		}
2246 
2247 		ifp->if_ipackets++;
2248 		m->m_pkthdr.rcvif = ifp;
2249 		m->m_pkthdr.len = len;
2250 
2251 #if NBPFILTER > 0
2252 		/*
2253 		 * Pass this up to any BPF listeners, but only
2254 		 * pass if up the stack if it's for us.
2255 		 */
2256 		if (ifp->if_bpf)
2257 			bpf_mtap(ifp->if_bpf, m);
2258 #endif /* NBPFILTER > 0 */
2259 
2260 		/* Pass it on. */
2261 		(*ifp->if_input)(ifp, m);
2262 	}
2263 
2264 	/* Update the receive pointer. */
2265 	sc->sc_rxptr = i;
2266 }
2267 
2268 /*
2269  * sip_rxintr:
2270  *
2271  *	Helper; handle receive interrupts on 10/100 parts.
2272  */
2273 static void
2274 sip_rxintr(struct sip_softc *sc)
2275 {
2276 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2277 	struct sip_rxsoft *rxs;
2278 	struct mbuf *m;
2279 	u_int32_t cmdsts;
2280 	int i, len;
2281 
2282 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2283 		rxs = &sc->sc_rxsoft[i];
2284 
2285 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2286 
2287 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2288 
2289 		/*
2290 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2291 		 * consumer of the receive ring, so if the bit is clear,
2292 		 * we have processed all of the packets.
2293 		 */
2294 		if ((cmdsts & CMDSTS_OWN) == 0) {
2295 			/*
2296 			 * We have processed all of the receive buffers.
2297 			 */
2298 			break;
2299 		}
2300 
2301 		/*
2302 		 * If any collisions were seen on the wire, count one.
2303 		 */
2304 		if (cmdsts & CMDSTS_Rx_COL)
2305 			ifp->if_collisions++;
2306 
2307 		/*
2308 		 * If an error occurred, update stats, clear the status
2309 		 * word, and leave the packet buffer in place.  It will
2310 		 * simply be reused the next time the ring comes around.
2311 		 */
2312 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2313 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2314 			ifp->if_ierrors++;
2315 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2316 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2317 				/* Receive overrun handled elsewhere. */
2318 				printf("%s: receive descriptor error\n",
2319 				    device_xname(sc->sc_dev));
2320 			}
2321 #define	PRINTERR(bit, str)						\
2322 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2323 			    (cmdsts & (bit)) != 0)			\
2324 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2325 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2326 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2327 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2328 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2329 #undef PRINTERR
2330 			sip_init_rxdesc(sc, i);
2331 			continue;
2332 		}
2333 
2334 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2335 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2336 
2337 		/*
2338 		 * No errors; receive the packet.  Note, the SiS 900
2339 		 * includes the CRC with every packet.
2340 		 */
2341 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2342 
2343 #ifdef __NO_STRICT_ALIGNMENT
2344 		/*
2345 		 * If the packet is small enough to fit in a
2346 		 * single header mbuf, allocate one and copy
2347 		 * the data into it.  This greatly reduces
2348 		 * memory consumption when we receive lots
2349 		 * of small packets.
2350 		 *
2351 		 * Otherwise, we add a new buffer to the receive
2352 		 * chain.  If this fails, we drop the packet and
2353 		 * recycle the old buffer.
2354 		 */
2355 		if (sip_copy_small != 0 && len <= MHLEN) {
2356 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2357 			if (m == NULL)
2358 				goto dropit;
2359 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2360 			memcpy(mtod(m, void *),
2361 			    mtod(rxs->rxs_mbuf, void *), len);
2362 			sip_init_rxdesc(sc, i);
2363 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2364 			    rxs->rxs_dmamap->dm_mapsize,
2365 			    BUS_DMASYNC_PREREAD);
2366 		} else {
2367 			m = rxs->rxs_mbuf;
2368 			if (sipcom_add_rxbuf(sc, i) != 0) {
2369  dropit:
2370 				ifp->if_ierrors++;
2371 				sip_init_rxdesc(sc, i);
2372 				bus_dmamap_sync(sc->sc_dmat,
2373 				    rxs->rxs_dmamap, 0,
2374 				    rxs->rxs_dmamap->dm_mapsize,
2375 				    BUS_DMASYNC_PREREAD);
2376 				continue;
2377 			}
2378 		}
2379 #else
2380 		/*
2381 		 * The SiS 900's receive buffers must be 4-byte aligned.
2382 		 * But this means that the data after the Ethernet header
2383 		 * is misaligned.  We must allocate a new buffer and
2384 		 * copy the data, shifted forward 2 bytes.
2385 		 */
2386 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2387 		if (m == NULL) {
2388  dropit:
2389 			ifp->if_ierrors++;
2390 			sip_init_rxdesc(sc, i);
2391 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2392 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2393 			continue;
2394 		}
2395 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2396 		if (len > (MHLEN - 2)) {
2397 			MCLGET(m, M_DONTWAIT);
2398 			if ((m->m_flags & M_EXT) == 0) {
2399 				m_freem(m);
2400 				goto dropit;
2401 			}
2402 		}
2403 		m->m_data += 2;
2404 
2405 		/*
2406 		 * Note that we use clusters for incoming frames, so the
2407 		 * buffer is virtually contiguous.
2408 		 */
2409 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2410 
2411 		/* Allow the receive descriptor to continue using its mbuf. */
2412 		sip_init_rxdesc(sc, i);
2413 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2414 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2415 #endif /* __NO_STRICT_ALIGNMENT */
2416 
2417 		ifp->if_ipackets++;
2418 		m->m_pkthdr.rcvif = ifp;
2419 		m->m_pkthdr.len = m->m_len = len;
2420 
2421 #if NBPFILTER > 0
2422 		/*
2423 		 * Pass this up to any BPF listeners, but only
2424 		 * pass if up the stack if it's for us.
2425 		 */
2426 		if (ifp->if_bpf)
2427 			bpf_mtap(ifp->if_bpf, m);
2428 #endif /* NBPFILTER > 0 */
2429 
2430 		/* Pass it on. */
2431 		(*ifp->if_input)(ifp, m);
2432 	}
2433 
2434 	/* Update the receive pointer. */
2435 	sc->sc_rxptr = i;
2436 }
2437 
2438 /*
2439  * sip_tick:
2440  *
2441  *	One second timer, used to tick the MII.
2442  */
2443 static void
2444 sipcom_tick(void *arg)
2445 {
2446 	struct sip_softc *sc = arg;
2447 	int s;
2448 
2449 	s = splnet();
2450 #ifdef SIP_EVENT_COUNTERS
2451 	if (sc->sc_gigabit) {
2452 		/* Read PAUSE related counts from MIB registers. */
2453 		sc->sc_ev_rxpause.ev_count +=
2454 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2455 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2456 		sc->sc_ev_txpause.ev_count +=
2457 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2458 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2459 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2460 	}
2461 #endif /* SIP_EVENT_COUNTERS */
2462 	mii_tick(&sc->sc_mii);
2463 	splx(s);
2464 
2465 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2466 }
2467 
2468 /*
2469  * sip_reset:
2470  *
2471  *	Perform a soft reset on the SiS 900.
2472  */
2473 static bool
2474 sipcom_reset(struct sip_softc *sc)
2475 {
2476 	bus_space_tag_t st = sc->sc_st;
2477 	bus_space_handle_t sh = sc->sc_sh;
2478 	int i;
2479 
2480 	bus_space_write_4(st, sh, SIP_IER, 0);
2481 	bus_space_write_4(st, sh, SIP_IMR, 0);
2482 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2483 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2484 
2485 	for (i = 0; i < SIP_TIMEOUT; i++) {
2486 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2487 			break;
2488 		delay(2);
2489 	}
2490 
2491 	if (i == SIP_TIMEOUT) {
2492 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2493 		return false;
2494 	}
2495 
2496 	delay(1000);
2497 
2498 	if (sc->sc_gigabit) {
2499 		/*
2500 		 * Set the general purpose I/O bits.  Do it here in case we
2501 		 * need to have GPIO set up to talk to the media interface.
2502 		 */
2503 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2504 		delay(1000);
2505 	}
2506 	return true;
2507 }
2508 
2509 static void
2510 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2511 {
2512 	u_int32_t reg;
2513 	bus_space_tag_t st = sc->sc_st;
2514 	bus_space_handle_t sh = sc->sc_sh;
2515 	/*
2516 	 * Initialize the VLAN/IP receive control register.
2517 	 * We enable checksum computation on all incoming
2518 	 * packets, and do not reject packets w/ bad checksums.
2519 	 */
2520 	reg = 0;
2521 	if (capenable &
2522 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2523 		reg |= VRCR_IPEN;
2524 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2525 		reg |= VRCR_VTDEN|VRCR_VTREN;
2526 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2527 
2528 	/*
2529 	 * Initialize the VLAN/IP transmit control register.
2530 	 * We enable outgoing checksum computation on a
2531 	 * per-packet basis.
2532 	 */
2533 	reg = 0;
2534 	if (capenable &
2535 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2536 		reg |= VTCR_PPCHK;
2537 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2538 		reg |= VTCR_VPPTI;
2539 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2540 
2541 	/*
2542 	 * If we're using VLANs, initialize the VLAN data register.
2543 	 * To understand why we bswap the VLAN Ethertype, see section
2544 	 * 4.2.36 of the DP83820 manual.
2545 	 */
2546 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2547 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2548 }
2549 
2550 /*
2551  * sip_init:		[ ifnet interface function ]
2552  *
2553  *	Initialize the interface.  Must be called at splnet().
2554  */
2555 static int
2556 sipcom_init(struct ifnet *ifp)
2557 {
2558 	struct sip_softc *sc = ifp->if_softc;
2559 	bus_space_tag_t st = sc->sc_st;
2560 	bus_space_handle_t sh = sc->sc_sh;
2561 	struct sip_txsoft *txs;
2562 	struct sip_rxsoft *rxs;
2563 	struct sip_desc *sipd;
2564 	int i, error = 0;
2565 
2566 	if (device_is_active(sc->sc_dev)) {
2567 		/*
2568 		 * Cancel any pending I/O.
2569 		 */
2570 		sipcom_stop(ifp, 0);
2571 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2572 	           !device_is_active(sc->sc_dev))
2573 		return 0;
2574 
2575 	/*
2576 	 * Reset the chip to a known state.
2577 	 */
2578 	if (!sipcom_reset(sc))
2579 		return EBUSY;
2580 
2581 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2582 		/*
2583 		 * DP83815 manual, page 78:
2584 		 *    4.4 Recommended Registers Configuration
2585 		 *    For optimum performance of the DP83815, version noted
2586 		 *    as DP83815CVNG (SRR = 203h), the listed register
2587 		 *    modifications must be followed in sequence...
2588 		 *
2589 		 * It's not clear if this should be 302h or 203h because that
2590 		 * chip name is listed as SRR 302h in the description of the
2591 		 * SRR register.  However, my revision 302h DP83815 on the
2592 		 * Netgear FA311 purchased in 02/2001 needs these settings
2593 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2594 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2595 		 * this set or not.  [briggs -- 09 March 2001]
2596 		 *
2597 		 * Note that only the low-order 12 bits of 0xe4 are documented
2598 		 * and that this sets reserved bits in that register.
2599 		 */
2600 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2601 
2602 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2603 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2604 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2605 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2606 
2607 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2608 	}
2609 
2610 	/*
2611 	 * Initialize the transmit descriptor ring.
2612 	 */
2613 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2614 		sipd = &sc->sc_txdescs[i];
2615 		memset(sipd, 0, sizeof(struct sip_desc));
2616 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2617 	}
2618 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2619 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2620 	sc->sc_txfree = sc->sc_ntxdesc;
2621 	sc->sc_txnext = 0;
2622 	sc->sc_txwin = 0;
2623 
2624 	/*
2625 	 * Initialize the transmit job descriptors.
2626 	 */
2627 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2628 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2629 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2630 		txs = &sc->sc_txsoft[i];
2631 		txs->txs_mbuf = NULL;
2632 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2633 	}
2634 
2635 	/*
2636 	 * Initialize the receive descriptor and receive job
2637 	 * descriptor rings.
2638 	 */
2639 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2640 		rxs = &sc->sc_rxsoft[i];
2641 		if (rxs->rxs_mbuf == NULL) {
2642 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2643 				printf("%s: unable to allocate or map rx "
2644 				    "buffer %d, error = %d\n",
2645 				    device_xname(sc->sc_dev), i, error);
2646 				/*
2647 				 * XXX Should attempt to run with fewer receive
2648 				 * XXX buffers instead of just failing.
2649 				 */
2650 				sipcom_rxdrain(sc);
2651 				goto out;
2652 			}
2653 		} else
2654 			sip_init_rxdesc(sc, i);
2655 	}
2656 	sc->sc_rxptr = 0;
2657 	sc->sc_rxdiscard = 0;
2658 	sip_rxchain_reset(sc);
2659 
2660 	/*
2661 	 * Set the configuration register; it's already initialized
2662 	 * in sip_attach().
2663 	 */
2664 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2665 
2666 	/*
2667 	 * Initialize the prototype TXCFG register.
2668 	 */
2669 	if (sc->sc_gigabit) {
2670 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2671 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2672 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2673 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2674 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2675 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2676 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2677 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2678 	} else {
2679 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2680 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2681 	}
2682 
2683 	sc->sc_txcfg |= TXCFG_ATP |
2684 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2685 	    sc->sc_tx_drain_thresh;
2686 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2687 
2688 	/*
2689 	 * Initialize the receive drain threshold if we have never
2690 	 * done so.
2691 	 */
2692 	if (sc->sc_rx_drain_thresh == 0) {
2693 		/*
2694 		 * XXX This value should be tuned.  This is set to the
2695 		 * maximum of 248 bytes, and we may be able to improve
2696 		 * performance by decreasing it (although we should never
2697 		 * set this value lower than 2; 14 bytes are required to
2698 		 * filter the packet).
2699 		 */
2700 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2701 	}
2702 
2703 	/*
2704 	 * Initialize the prototype RXCFG register.
2705 	 */
2706 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2707 	/*
2708 	 * Accept long packets (including FCS) so we can handle
2709 	 * 802.1q-tagged frames and jumbo frames properly.
2710 	 */
2711 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2712 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2713 		sc->sc_rxcfg |= RXCFG_ALP;
2714 
2715 	/*
2716 	 * Checksum offloading is disabled if the user selects an MTU
2717 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2718 	 * evidence that >8109 does not work on some boards, such as the
2719 	 * Planex GN-1000TE).
2720 	 */
2721 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2722 	    (ifp->if_capenable &
2723 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2724 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2725 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2726 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2727 		       "disabled.\n", device_xname(sc->sc_dev));
2728 		ifp->if_capenable &=
2729 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2730 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2731 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2732 		ifp->if_csum_flags_tx = 0;
2733 		ifp->if_csum_flags_rx = 0;
2734 	}
2735 
2736 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2737 
2738 	if (sc->sc_gigabit)
2739 		sipcom_dp83820_init(sc, ifp->if_capenable);
2740 
2741 	/*
2742 	 * Give the transmit and receive rings to the chip.
2743 	 */
2744 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2745 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2746 
2747 	/*
2748 	 * Initialize the interrupt mask.
2749 	 */
2750 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2751 	             sc->sc_bits.b_isr_sserr |
2752 		     sc->sc_bits.b_isr_rmabt |
2753 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2754 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2755 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2756 
2757 	/* Set up the receive filter. */
2758 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2759 
2760 	/*
2761 	 * Tune sc_rx_flow_thresh.
2762 	 * XXX "More than 8KB" is too short for jumbo frames.
2763 	 * XXX TODO: Threshold value should be user-settable.
2764 	 */
2765 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2766 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2767 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2768 
2769 	/*
2770 	 * Set the current media.  Do this after initializing the prototype
2771 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2772 	 * control.
2773 	 */
2774 	if ((error = ether_mediachange(ifp)) != 0)
2775 		goto out;
2776 
2777 	/*
2778 	 * Set the interrupt hold-off timer to 100us.
2779 	 */
2780 	if (sc->sc_gigabit)
2781 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2782 
2783 	/*
2784 	 * Enable interrupts.
2785 	 */
2786 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2787 
2788 	/*
2789 	 * Start the transmit and receive processes.
2790 	 */
2791 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2792 
2793 	/*
2794 	 * Start the one second MII clock.
2795 	 */
2796 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2797 
2798 	/*
2799 	 * ...all done!
2800 	 */
2801 	ifp->if_flags |= IFF_RUNNING;
2802 	ifp->if_flags &= ~IFF_OACTIVE;
2803 	sc->sc_if_flags = ifp->if_flags;
2804 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2805 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2806 	sc->sc_prev.if_capenable = ifp->if_capenable;
2807 
2808  out:
2809 	if (error)
2810 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2811 	return (error);
2812 }
2813 
2814 /*
2815  * sip_drain:
2816  *
2817  *	Drain the receive queue.
2818  */
2819 static void
2820 sipcom_rxdrain(struct sip_softc *sc)
2821 {
2822 	struct sip_rxsoft *rxs;
2823 	int i;
2824 
2825 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2826 		rxs = &sc->sc_rxsoft[i];
2827 		if (rxs->rxs_mbuf != NULL) {
2828 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2829 			m_freem(rxs->rxs_mbuf);
2830 			rxs->rxs_mbuf = NULL;
2831 		}
2832 	}
2833 }
2834 
2835 /*
2836  * sip_stop:		[ ifnet interface function ]
2837  *
2838  *	Stop transmission on the interface.
2839  */
2840 static void
2841 sipcom_stop(struct ifnet *ifp, int disable)
2842 {
2843 	struct sip_softc *sc = ifp->if_softc;
2844 	bus_space_tag_t st = sc->sc_st;
2845 	bus_space_handle_t sh = sc->sc_sh;
2846 	struct sip_txsoft *txs;
2847 	u_int32_t cmdsts = 0;		/* DEBUG */
2848 
2849 	/*
2850 	 * Stop the one second clock.
2851 	 */
2852 	callout_stop(&sc->sc_tick_ch);
2853 
2854 	/* Down the MII. */
2855 	mii_down(&sc->sc_mii);
2856 
2857 	if (device_is_active(sc->sc_dev)) {
2858 		/*
2859 		 * Disable interrupts.
2860 		 */
2861 		bus_space_write_4(st, sh, SIP_IER, 0);
2862 
2863 		/*
2864 		 * Stop receiver and transmitter.
2865 		 */
2866 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2867 	}
2868 
2869 	/*
2870 	 * Release any queued transmit buffers.
2871 	 */
2872 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2873 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2874 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2875 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2876 		     CMDSTS_INTR) == 0)
2877 			printf("%s: sip_stop: last descriptor does not "
2878 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2879 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2880 #ifdef DIAGNOSTIC
2881 		if (txs->txs_mbuf == NULL) {
2882 			printf("%s: dirty txsoft with no mbuf chain\n",
2883 			    device_xname(sc->sc_dev));
2884 			panic("sip_stop");
2885 		}
2886 #endif
2887 		cmdsts |=		/* DEBUG */
2888 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2889 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2890 		m_freem(txs->txs_mbuf);
2891 		txs->txs_mbuf = NULL;
2892 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2893 	}
2894 
2895 	/*
2896 	 * Mark the interface down and cancel the watchdog timer.
2897 	 */
2898 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2899 	ifp->if_timer = 0;
2900 
2901 	if (disable)
2902 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2903 
2904 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2905 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2906 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2907 		    "descriptors\n", device_xname(sc->sc_dev));
2908 }
2909 
2910 /*
2911  * sip_read_eeprom:
2912  *
2913  *	Read data from the serial EEPROM.
2914  */
2915 static void
2916 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2917     u_int16_t *data)
2918 {
2919 	bus_space_tag_t st = sc->sc_st;
2920 	bus_space_handle_t sh = sc->sc_sh;
2921 	u_int16_t reg;
2922 	int i, x;
2923 
2924 	for (i = 0; i < wordcnt; i++) {
2925 		/* Send CHIP SELECT. */
2926 		reg = EROMAR_EECS;
2927 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2928 
2929 		/* Shift in the READ opcode. */
2930 		for (x = 3; x > 0; x--) {
2931 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2932 				reg |= EROMAR_EEDI;
2933 			else
2934 				reg &= ~EROMAR_EEDI;
2935 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2936 			bus_space_write_4(st, sh, SIP_EROMAR,
2937 			    reg | EROMAR_EESK);
2938 			delay(4);
2939 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2940 			delay(4);
2941 		}
2942 
2943 		/* Shift in address. */
2944 		for (x = 6; x > 0; x--) {
2945 			if ((word + i) & (1 << (x - 1)))
2946 				reg |= EROMAR_EEDI;
2947 			else
2948 				reg &= ~EROMAR_EEDI;
2949 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2950 			bus_space_write_4(st, sh, SIP_EROMAR,
2951 			    reg | EROMAR_EESK);
2952 			delay(4);
2953 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2954 			delay(4);
2955 		}
2956 
2957 		/* Shift out data. */
2958 		reg = EROMAR_EECS;
2959 		data[i] = 0;
2960 		for (x = 16; x > 0; x--) {
2961 			bus_space_write_4(st, sh, SIP_EROMAR,
2962 			    reg | EROMAR_EESK);
2963 			delay(4);
2964 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2965 				data[i] |= (1 << (x - 1));
2966 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2967 			delay(4);
2968 		}
2969 
2970 		/* Clear CHIP SELECT. */
2971 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2972 		delay(4);
2973 	}
2974 }
2975 
2976 /*
2977  * sipcom_add_rxbuf:
2978  *
2979  *	Add a receive buffer to the indicated descriptor.
2980  */
2981 static int
2982 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2983 {
2984 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2985 	struct mbuf *m;
2986 	int error;
2987 
2988 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2989 	if (m == NULL)
2990 		return (ENOBUFS);
2991 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2992 
2993 	MCLGET(m, M_DONTWAIT);
2994 	if ((m->m_flags & M_EXT) == 0) {
2995 		m_freem(m);
2996 		return (ENOBUFS);
2997 	}
2998 
2999 	/* XXX I don't believe this is necessary. --dyoung */
3000 	if (sc->sc_gigabit)
3001 		m->m_len = sc->sc_parm->p_rxbuf_len;
3002 
3003 	if (rxs->rxs_mbuf != NULL)
3004 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3005 
3006 	rxs->rxs_mbuf = m;
3007 
3008 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3009 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3010 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3011 	if (error) {
3012 		printf("%s: can't load rx DMA map %d, error = %d\n",
3013 		    device_xname(sc->sc_dev), idx, error);
3014 		panic("%s", __func__);		/* XXX */
3015 	}
3016 
3017 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3018 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3019 
3020 	sip_init_rxdesc(sc, idx);
3021 
3022 	return (0);
3023 }
3024 
3025 /*
3026  * sip_sis900_set_filter:
3027  *
3028  *	Set up the receive filter.
3029  */
3030 static void
3031 sipcom_sis900_set_filter(struct sip_softc *sc)
3032 {
3033 	bus_space_tag_t st = sc->sc_st;
3034 	bus_space_handle_t sh = sc->sc_sh;
3035 	struct ethercom *ec = &sc->sc_ethercom;
3036 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3037 	struct ether_multi *enm;
3038 	const u_int8_t *cp;
3039 	struct ether_multistep step;
3040 	u_int32_t crc, mchash[16];
3041 
3042 	/*
3043 	 * Initialize the prototype RFCR.
3044 	 */
3045 	sc->sc_rfcr = RFCR_RFEN;
3046 	if (ifp->if_flags & IFF_BROADCAST)
3047 		sc->sc_rfcr |= RFCR_AAB;
3048 	if (ifp->if_flags & IFF_PROMISC) {
3049 		sc->sc_rfcr |= RFCR_AAP;
3050 		goto allmulti;
3051 	}
3052 
3053 	/*
3054 	 * Set up the multicast address filter by passing all multicast
3055 	 * addresses through a CRC generator, and then using the high-order
3056 	 * 6 bits as an index into the 128 bit multicast hash table (only
3057 	 * the lower 16 bits of each 32 bit multicast hash register are
3058 	 * valid).  The high order bits select the register, while the
3059 	 * rest of the bits select the bit within the register.
3060 	 */
3061 
3062 	memset(mchash, 0, sizeof(mchash));
3063 
3064 	/*
3065 	 * SiS900 (at least SiS963) requires us to register the address of
3066 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3067 	 */
3068 	crc = 0x0ed423f9;
3069 
3070 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3071 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3072 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3073 		/* Just want the 8 most significant bits. */
3074 		crc >>= 24;
3075 	} else {
3076 		/* Just want the 7 most significant bits. */
3077 		crc >>= 25;
3078 	}
3079 
3080 	/* Set the corresponding bit in the hash table. */
3081 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3082 
3083 	ETHER_FIRST_MULTI(step, ec, enm);
3084 	while (enm != NULL) {
3085 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3086 			/*
3087 			 * We must listen to a range of multicast addresses.
3088 			 * For now, just accept all multicasts, rather than
3089 			 * trying to set only those filter bits needed to match
3090 			 * the range.  (At this time, the only use of address
3091 			 * ranges is for IP multicast routing, for which the
3092 			 * range is big enough to require all bits set.)
3093 			 */
3094 			goto allmulti;
3095 		}
3096 
3097 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3098 
3099 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3100 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3101 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3102 			/* Just want the 8 most significant bits. */
3103 			crc >>= 24;
3104 		} else {
3105 			/* Just want the 7 most significant bits. */
3106 			crc >>= 25;
3107 		}
3108 
3109 		/* Set the corresponding bit in the hash table. */
3110 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3111 
3112 		ETHER_NEXT_MULTI(step, enm);
3113 	}
3114 
3115 	ifp->if_flags &= ~IFF_ALLMULTI;
3116 	goto setit;
3117 
3118  allmulti:
3119 	ifp->if_flags |= IFF_ALLMULTI;
3120 	sc->sc_rfcr |= RFCR_AAM;
3121 
3122  setit:
3123 #define	FILTER_EMIT(addr, data)						\
3124 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3125 	delay(1);							\
3126 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3127 	delay(1)
3128 
3129 	/*
3130 	 * Disable receive filter, and program the node address.
3131 	 */
3132 	cp = CLLADDR(ifp->if_sadl);
3133 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3134 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3135 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3136 
3137 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3138 		/*
3139 		 * Program the multicast hash table.
3140 		 */
3141 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3142 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3143 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3144 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3145 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3146 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3147 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3148 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3149 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3150 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3151 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3152 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3153 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3154 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3155 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3156 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3157 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3158 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3159 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3160 		}
3161 	}
3162 #undef FILTER_EMIT
3163 
3164 	/*
3165 	 * Re-enable the receiver filter.
3166 	 */
3167 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3168 }
3169 
3170 /*
3171  * sip_dp83815_set_filter:
3172  *
3173  *	Set up the receive filter.
3174  */
3175 static void
3176 sipcom_dp83815_set_filter(struct sip_softc *sc)
3177 {
3178 	bus_space_tag_t st = sc->sc_st;
3179 	bus_space_handle_t sh = sc->sc_sh;
3180 	struct ethercom *ec = &sc->sc_ethercom;
3181 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3182 	struct ether_multi *enm;
3183 	const u_int8_t *cp;
3184 	struct ether_multistep step;
3185 	u_int32_t crc, hash, slot, bit;
3186 #define	MCHASH_NWORDS_83820	128
3187 #define	MCHASH_NWORDS_83815	32
3188 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3189 	u_int16_t mchash[MCHASH_NWORDS];
3190 	int i;
3191 
3192 	/*
3193 	 * Initialize the prototype RFCR.
3194 	 * Enable the receive filter, and accept on
3195 	 *    Perfect (destination address) Match
3196 	 * If IFF_BROADCAST, also accept all broadcast packets.
3197 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3198 	 *    IFF_ALLMULTI and accept all multicast, too).
3199 	 */
3200 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3201 	if (ifp->if_flags & IFF_BROADCAST)
3202 		sc->sc_rfcr |= RFCR_AAB;
3203 	if (ifp->if_flags & IFF_PROMISC) {
3204 		sc->sc_rfcr |= RFCR_AAP;
3205 		goto allmulti;
3206 	}
3207 
3208 	/*
3209          * Set up the DP83820/DP83815 multicast address filter by
3210          * passing all multicast addresses through a CRC generator,
3211          * and then using the high-order 11/9 bits as an index into
3212          * the 2048/512 bit multicast hash table.  The high-order
3213          * 7/5 bits select the slot, while the low-order 4 bits
3214          * select the bit within the slot.  Note that only the low
3215          * 16-bits of each filter word are used, and there are
3216          * 128/32 filter words.
3217 	 */
3218 
3219 	memset(mchash, 0, sizeof(mchash));
3220 
3221 	ifp->if_flags &= ~IFF_ALLMULTI;
3222 	ETHER_FIRST_MULTI(step, ec, enm);
3223 	if (enm == NULL)
3224 		goto setit;
3225 	while (enm != NULL) {
3226 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3227 			/*
3228 			 * We must listen to a range of multicast addresses.
3229 			 * For now, just accept all multicasts, rather than
3230 			 * trying to set only those filter bits needed to match
3231 			 * the range.  (At this time, the only use of address
3232 			 * ranges is for IP multicast routing, for which the
3233 			 * range is big enough to require all bits set.)
3234 			 */
3235 			goto allmulti;
3236 		}
3237 
3238 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3239 
3240 		if (sc->sc_gigabit) {
3241 			/* Just want the 11 most significant bits. */
3242 			hash = crc >> 21;
3243 		} else {
3244 			/* Just want the 9 most significant bits. */
3245 			hash = crc >> 23;
3246 		}
3247 
3248 		slot = hash >> 4;
3249 		bit = hash & 0xf;
3250 
3251 		/* Set the corresponding bit in the hash table. */
3252 		mchash[slot] |= 1 << bit;
3253 
3254 		ETHER_NEXT_MULTI(step, enm);
3255 	}
3256 	sc->sc_rfcr |= RFCR_MHEN;
3257 	goto setit;
3258 
3259  allmulti:
3260 	ifp->if_flags |= IFF_ALLMULTI;
3261 	sc->sc_rfcr |= RFCR_AAM;
3262 
3263  setit:
3264 #define	FILTER_EMIT(addr, data)						\
3265 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3266 	delay(1);							\
3267 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3268 	delay(1)
3269 
3270 	/*
3271 	 * Disable receive filter, and program the node address.
3272 	 */
3273 	cp = CLLADDR(ifp->if_sadl);
3274 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3275 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3276 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3277 
3278 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3279 		int nwords =
3280 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3281 		/*
3282 		 * Program the multicast hash table.
3283 		 */
3284 		for (i = 0; i < nwords; i++) {
3285 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3286 		}
3287 	}
3288 #undef FILTER_EMIT
3289 #undef MCHASH_NWORDS
3290 #undef MCHASH_NWORDS_83815
3291 #undef MCHASH_NWORDS_83820
3292 
3293 	/*
3294 	 * Re-enable the receiver filter.
3295 	 */
3296 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3297 }
3298 
3299 /*
3300  * sip_dp83820_mii_readreg:	[mii interface function]
3301  *
3302  *	Read a PHY register on the MII of the DP83820.
3303  */
3304 static int
3305 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3306 {
3307 	struct sip_softc *sc = device_private(self);
3308 
3309 	if (sc->sc_cfg & CFG_TBI_EN) {
3310 		bus_addr_t tbireg;
3311 		int rv;
3312 
3313 		if (phy != 0)
3314 			return (0);
3315 
3316 		switch (reg) {
3317 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3318 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3319 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3320 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3321 		case MII_ANER:		tbireg = SIP_TANER; break;
3322 		case MII_EXTSR:
3323 			/*
3324 			 * Don't even bother reading the TESR register.
3325 			 * The manual documents that the device has
3326 			 * 1000baseX full/half capability, but the
3327 			 * register itself seems read back 0 on some
3328 			 * boards.  Just hard-code the result.
3329 			 */
3330 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3331 
3332 		default:
3333 			return (0);
3334 		}
3335 
3336 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3337 		if (tbireg == SIP_TBISR) {
3338 			/* LINK and ACOMP are switched! */
3339 			int val = rv;
3340 
3341 			rv = 0;
3342 			if (val & TBISR_MR_LINK_STATUS)
3343 				rv |= BMSR_LINK;
3344 			if (val & TBISR_MR_AN_COMPLETE)
3345 				rv |= BMSR_ACOMP;
3346 
3347 			/*
3348 			 * The manual claims this register reads back 0
3349 			 * on hard and soft reset.  But we want to let
3350 			 * the gentbi driver know that we support auto-
3351 			 * negotiation, so hard-code this bit in the
3352 			 * result.
3353 			 */
3354 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3355 		}
3356 
3357 		return (rv);
3358 	}
3359 
3360 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3361 }
3362 
3363 /*
3364  * sip_dp83820_mii_writereg:	[mii interface function]
3365  *
3366  *	Write a PHY register on the MII of the DP83820.
3367  */
3368 static void
3369 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3370 {
3371 	struct sip_softc *sc = device_private(self);
3372 
3373 	if (sc->sc_cfg & CFG_TBI_EN) {
3374 		bus_addr_t tbireg;
3375 
3376 		if (phy != 0)
3377 			return;
3378 
3379 		switch (reg) {
3380 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3381 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3382 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3383 		default:
3384 			return;
3385 		}
3386 
3387 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3388 		return;
3389 	}
3390 
3391 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3392 }
3393 
3394 /*
3395  * sip_dp83820_mii_statchg:	[mii interface function]
3396  *
3397  *	Callback from MII layer when media changes.
3398  */
3399 static void
3400 sipcom_dp83820_mii_statchg(device_t self)
3401 {
3402 	struct sip_softc *sc = device_private(self);
3403 	struct mii_data *mii = &sc->sc_mii;
3404 	u_int32_t cfg, pcr;
3405 
3406 	/*
3407 	 * Get flow control negotiation result.
3408 	 */
3409 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3410 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3411 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3412 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3413 	}
3414 
3415 	/*
3416 	 * Update TXCFG for full-duplex operation.
3417 	 */
3418 	if ((mii->mii_media_active & IFM_FDX) != 0)
3419 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3420 	else
3421 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3422 
3423 	/*
3424 	 * Update RXCFG for full-duplex or loopback.
3425 	 */
3426 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3427 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3428 		sc->sc_rxcfg |= RXCFG_ATX;
3429 	else
3430 		sc->sc_rxcfg &= ~RXCFG_ATX;
3431 
3432 	/*
3433 	 * Update CFG for MII/GMII.
3434 	 */
3435 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3436 		cfg = sc->sc_cfg | CFG_MODE_1000;
3437 	else
3438 		cfg = sc->sc_cfg;
3439 
3440 	/*
3441 	 * 802.3x flow control.
3442 	 */
3443 	pcr = 0;
3444 	if (sc->sc_flowflags & IFM_FLOW) {
3445 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3446 			pcr |= sc->sc_rx_flow_thresh;
3447 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3448 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3449 	}
3450 
3451 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3452 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3453 	    sc->sc_txcfg);
3454 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3455 	    sc->sc_rxcfg);
3456 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3457 }
3458 
3459 /*
3460  * sip_mii_bitbang_read: [mii bit-bang interface function]
3461  *
3462  *	Read the MII serial port for the MII bit-bang module.
3463  */
3464 static u_int32_t
3465 sipcom_mii_bitbang_read(device_t self)
3466 {
3467 	struct sip_softc *sc = device_private(self);
3468 
3469 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3470 }
3471 
3472 /*
3473  * sip_mii_bitbang_write: [mii big-bang interface function]
3474  *
3475  *	Write the MII serial port for the MII bit-bang module.
3476  */
3477 static void
3478 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3479 {
3480 	struct sip_softc *sc = device_private(self);
3481 
3482 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3483 }
3484 
3485 /*
3486  * sip_sis900_mii_readreg:	[mii interface function]
3487  *
3488  *	Read a PHY register on the MII.
3489  */
3490 static int
3491 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3492 {
3493 	struct sip_softc *sc = device_private(self);
3494 	u_int32_t enphy;
3495 
3496 	/*
3497 	 * The PHY of recent SiS chipsets is accessed through bitbang
3498 	 * operations.
3499 	 */
3500 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3501 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3502 		    phy, reg);
3503 
3504 #ifndef SIS900_MII_RESTRICT
3505 	/*
3506 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3507 	 * MII address 0.
3508 	 */
3509 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3510 		return (0);
3511 #endif
3512 
3513 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3514 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3515 	    ENPHY_RWCMD | ENPHY_ACCESS);
3516 	do {
3517 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3518 	} while (enphy & ENPHY_ACCESS);
3519 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3520 }
3521 
3522 /*
3523  * sip_sis900_mii_writereg:	[mii interface function]
3524  *
3525  *	Write a PHY register on the MII.
3526  */
3527 static void
3528 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3529 {
3530 	struct sip_softc *sc = device_private(self);
3531 	u_int32_t enphy;
3532 
3533 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3534 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3535 		    phy, reg, val);
3536 		return;
3537 	}
3538 
3539 #ifndef SIS900_MII_RESTRICT
3540 	/*
3541 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3542 	 * MII address 0.
3543 	 */
3544 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3545 		return;
3546 #endif
3547 
3548 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3549 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3550 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3551 	do {
3552 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3553 	} while (enphy & ENPHY_ACCESS);
3554 }
3555 
3556 /*
3557  * sip_sis900_mii_statchg:	[mii interface function]
3558  *
3559  *	Callback from MII layer when media changes.
3560  */
3561 static void
3562 sipcom_sis900_mii_statchg(device_t self)
3563 {
3564 	struct sip_softc *sc = device_private(self);
3565 	struct mii_data *mii = &sc->sc_mii;
3566 	u_int32_t flowctl;
3567 
3568 	/*
3569 	 * Get flow control negotiation result.
3570 	 */
3571 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3572 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3573 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3574 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3575 	}
3576 
3577 	/*
3578 	 * Update TXCFG for full-duplex operation.
3579 	 */
3580 	if ((mii->mii_media_active & IFM_FDX) != 0)
3581 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3582 	else
3583 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3584 
3585 	/*
3586 	 * Update RXCFG for full-duplex or loopback.
3587 	 */
3588 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3589 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3590 		sc->sc_rxcfg |= RXCFG_ATX;
3591 	else
3592 		sc->sc_rxcfg &= ~RXCFG_ATX;
3593 
3594 	/*
3595 	 * Update IMR for use of 802.3x flow control.
3596 	 */
3597 	if (sc->sc_flowflags & IFM_FLOW) {
3598 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3599 		flowctl = FLOWCTL_FLOWEN;
3600 	} else {
3601 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3602 		flowctl = 0;
3603 	}
3604 
3605 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3606 	    sc->sc_txcfg);
3607 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3608 	    sc->sc_rxcfg);
3609 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3610 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3611 }
3612 
3613 /*
3614  * sip_dp83815_mii_readreg:	[mii interface function]
3615  *
3616  *	Read a PHY register on the MII.
3617  */
3618 static int
3619 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3620 {
3621 	struct sip_softc *sc = device_private(self);
3622 	u_int32_t val;
3623 
3624 	/*
3625 	 * The DP83815 only has an internal PHY.  Only allow
3626 	 * MII address 0.
3627 	 */
3628 	if (phy != 0)
3629 		return (0);
3630 
3631 	/*
3632 	 * Apparently, after a reset, the DP83815 can take a while
3633 	 * to respond.  During this recovery period, the BMSR returns
3634 	 * a value of 0.  Catch this -- it's not supposed to happen
3635 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3636 	 * PHY to come back to life.
3637 	 *
3638 	 * This works out because the BMSR is the first register
3639 	 * read during the PHY probe process.
3640 	 */
3641 	do {
3642 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3643 	} while (reg == MII_BMSR && val == 0);
3644 
3645 	return (val & 0xffff);
3646 }
3647 
3648 /*
3649  * sip_dp83815_mii_writereg:	[mii interface function]
3650  *
3651  *	Write a PHY register to the MII.
3652  */
3653 static void
3654 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3655 {
3656 	struct sip_softc *sc = device_private(self);
3657 
3658 	/*
3659 	 * The DP83815 only has an internal PHY.  Only allow
3660 	 * MII address 0.
3661 	 */
3662 	if (phy != 0)
3663 		return;
3664 
3665 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3666 }
3667 
3668 /*
3669  * sip_dp83815_mii_statchg:	[mii interface function]
3670  *
3671  *	Callback from MII layer when media changes.
3672  */
3673 static void
3674 sipcom_dp83815_mii_statchg(device_t self)
3675 {
3676 	struct sip_softc *sc = device_private(self);
3677 
3678 	/*
3679 	 * Update TXCFG for full-duplex operation.
3680 	 */
3681 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3682 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3683 	else
3684 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3685 
3686 	/*
3687 	 * Update RXCFG for full-duplex or loopback.
3688 	 */
3689 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3690 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3691 		sc->sc_rxcfg |= RXCFG_ATX;
3692 	else
3693 		sc->sc_rxcfg &= ~RXCFG_ATX;
3694 
3695 	/*
3696 	 * XXX 802.3x flow control.
3697 	 */
3698 
3699 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3700 	    sc->sc_txcfg);
3701 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3702 	    sc->sc_rxcfg);
3703 
3704 	/*
3705 	 * Some DP83815s experience problems when used with short
3706 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3707 	 * sequence adjusts the DSP's signal attenuation to fix the
3708 	 * problem.
3709 	 */
3710 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3711 		uint32_t reg;
3712 
3713 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3714 
3715 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3716 		reg &= 0x0fff;
3717 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3718 		delay(100);
3719 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3720 		reg &= 0x00ff;
3721 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3722 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3723 			    0x00e8);
3724 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3725 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3726 			    reg | 0x20);
3727 		}
3728 
3729 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3730 	}
3731 }
3732 
3733 static void
3734 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3735     const struct pci_attach_args *pa, u_int8_t *enaddr)
3736 {
3737 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3738 	u_int8_t cksum, *e, match;
3739 	int i;
3740 
3741 	/*
3742 	 * EEPROM data format for the DP83820 can be found in
3743 	 * the DP83820 manual, section 4.2.4.
3744 	 */
3745 
3746 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3747 
3748 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3749 	match = ~(match - 1);
3750 
3751 	cksum = 0x55;
3752 	e = (u_int8_t *) eeprom_data;
3753 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3754 		cksum += *e++;
3755 
3756 	if (cksum != match)
3757 		printf("%s: Checksum (%x) mismatch (%x)",
3758 		    device_xname(sc->sc_dev), cksum, match);
3759 
3760 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3761 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3762 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3763 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3764 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3765 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3766 }
3767 
3768 static void
3769 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3770 {
3771 	int i;
3772 
3773 	/*
3774 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3775 	 * a reason, but I don't know it.
3776 	 */
3777 	for (i = 0; i < 10; i++)
3778 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3779 }
3780 
3781 static void
3782 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3783     const struct pci_attach_args *pa, u_int8_t *enaddr)
3784 {
3785 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3786 
3787 	switch (sc->sc_rev) {
3788 	case SIS_REV_630S:
3789 	case SIS_REV_630E:
3790 	case SIS_REV_630EA1:
3791 	case SIS_REV_630ET:
3792 	case SIS_REV_635:
3793 		/*
3794 		 * The MAC address for the on-board Ethernet of
3795 		 * the SiS 630 chipset is in the NVRAM.  Kick
3796 		 * the chip into re-loading it from NVRAM, and
3797 		 * read the MAC address out of the filter registers.
3798 		 */
3799 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3800 
3801 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3802 		    RFCR_RFADDR_NODE0);
3803 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3804 		    0xffff;
3805 
3806 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3807 		    RFCR_RFADDR_NODE2);
3808 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3809 		    0xffff;
3810 
3811 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3812 		    RFCR_RFADDR_NODE4);
3813 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3814 		    0xffff;
3815 		break;
3816 
3817 	case SIS_REV_960:
3818 		{
3819 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3820 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3821 
3822 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3823 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3824 
3825 			int waittime, i;
3826 
3827 			/* Allow to read EEPROM from LAN. It is shared
3828 			 * between a 1394 controller and the NIC and each
3829 			 * time we access it, we need to set SIS_EECMD_REQ.
3830 			 */
3831 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3832 
3833 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3834 				/* Force EEPROM to idle state. */
3835 
3836 				/*
3837 				 * XXX-cube This is ugly.  I'll look for docs about it.
3838 				 */
3839 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3840 				sipcom_sis900_eeprom_delay(sc);
3841 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3842 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3843 					sipcom_sis900_eeprom_delay(sc);
3844 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3845 					sipcom_sis900_eeprom_delay(sc);
3846 				}
3847 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3848 				sipcom_sis900_eeprom_delay(sc);
3849 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3850 
3851 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3852 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3853 					    sizeof(myea) / sizeof(myea[0]), myea);
3854 					break;
3855 				}
3856 				DELAY(1);
3857 			}
3858 
3859 			/*
3860 			 * Set SIS_EECTL_CLK to high, so a other master
3861 			 * can operate on the i2c bus.
3862 			 */
3863 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3864 
3865 			/* Refuse EEPROM access by LAN */
3866 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3867 		} break;
3868 
3869 	default:
3870 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3871 		    sizeof(myea) / sizeof(myea[0]), myea);
3872 	}
3873 
3874 	enaddr[0] = myea[0] & 0xff;
3875 	enaddr[1] = myea[0] >> 8;
3876 	enaddr[2] = myea[1] & 0xff;
3877 	enaddr[3] = myea[1] >> 8;
3878 	enaddr[4] = myea[2] & 0xff;
3879 	enaddr[5] = myea[2] >> 8;
3880 }
3881 
3882 /* Table and macro to bit-reverse an octet. */
3883 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3884 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3885 
3886 static void
3887 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3888     const struct pci_attach_args *pa, u_int8_t *enaddr)
3889 {
3890 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3891 	u_int8_t cksum, *e, match;
3892 	int i;
3893 
3894 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3895 	    sizeof(eeprom_data[0]), eeprom_data);
3896 
3897 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3898 	match = ~(match - 1);
3899 
3900 	cksum = 0x55;
3901 	e = (u_int8_t *) eeprom_data;
3902 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3903 		cksum += *e++;
3904 	}
3905 	if (cksum != match) {
3906 		printf("%s: Checksum (%x) mismatch (%x)",
3907 		    device_xname(sc->sc_dev), cksum, match);
3908 	}
3909 
3910 	/*
3911 	 * Unrolled because it makes slightly more sense this way.
3912 	 * The DP83815 stores the MAC address in bit 0 of word 6
3913 	 * through bit 15 of word 8.
3914 	 */
3915 	ea = &eeprom_data[6];
3916 	enaddr[0] = ((*ea & 0x1) << 7);
3917 	ea++;
3918 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3919 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3920 	enaddr[2] = ((*ea & 0x1) << 7);
3921 	ea++;
3922 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3923 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3924 	enaddr[4] = ((*ea & 0x1) << 7);
3925 	ea++;
3926 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3927 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3928 
3929 	/*
3930 	 * In case that's not weird enough, we also need to reverse
3931 	 * the bits in each byte.  This all actually makes more sense
3932 	 * if you think about the EEPROM storage as an array of bits
3933 	 * being shifted into bytes, but that's not how we're looking
3934 	 * at it here...
3935 	 */
3936 	for (i = 0; i < 6 ;i++)
3937 		enaddr[i] = bbr(enaddr[i]);
3938 }
3939 
3940 /*
3941  * sip_mediastatus:	[ifmedia interface function]
3942  *
3943  *	Get the current interface media status.
3944  */
3945 static void
3946 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3947 {
3948 	struct sip_softc *sc = ifp->if_softc;
3949 
3950 	if (!device_is_active(sc->sc_dev)) {
3951 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3952 		ifmr->ifm_status = 0;
3953 		return;
3954 	}
3955 	ether_mediastatus(ifp, ifmr);
3956 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3957 			   sc->sc_flowflags;
3958 }
3959