1 /* $NetBSD: if_sip.c,v 1.143 2009/11/26 15:17:10 njoly Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1999 Network Computer, Inc. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of Network Computer, Inc. nor the names of its 45 * contributors may be used to endorse or promote products derived 46 * from this software without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS 49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 58 * POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 /* 62 * Device driver for the Silicon Integrated Systems SiS 900, 63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and 64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet 65 * controllers. 66 * 67 * Originally written to support the SiS 900 by Jason R. Thorpe for 68 * Network Computer, Inc. 69 * 70 * TODO: 71 * 72 * - Reduce the Rx interrupt load. 73 */ 74 75 #include <sys/cdefs.h> 76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.143 2009/11/26 15:17:10 njoly Exp $"); 77 78 #include "bpfilter.h" 79 #include "rnd.h" 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/callout.h> 84 #include <sys/mbuf.h> 85 #include <sys/malloc.h> 86 #include <sys/kernel.h> 87 #include <sys/socket.h> 88 #include <sys/ioctl.h> 89 #include <sys/errno.h> 90 #include <sys/device.h> 91 #include <sys/queue.h> 92 93 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */ 94 95 #if NRND > 0 96 #include <sys/rnd.h> 97 #endif 98 99 #include <net/if.h> 100 #include <net/if_dl.h> 101 #include <net/if_media.h> 102 #include <net/if_ether.h> 103 104 #if NBPFILTER > 0 105 #include <net/bpf.h> 106 #endif 107 108 #include <sys/bus.h> 109 #include <sys/intr.h> 110 #include <machine/endian.h> 111 112 #include <dev/mii/mii.h> 113 #include <dev/mii/miivar.h> 114 #include <dev/mii/mii_bitbang.h> 115 116 #include <dev/pci/pcireg.h> 117 #include <dev/pci/pcivar.h> 118 #include <dev/pci/pcidevs.h> 119 120 #include <dev/pci/if_sipreg.h> 121 122 /* 123 * Transmit descriptor list size. This is arbitrary, but allocate 124 * enough descriptors for 128 pending transmissions, and 8 segments 125 * per packet (64 for DP83820 for jumbo frames). 126 * 127 * This MUST work out to a power of 2. 128 */ 129 #define GSIP_NTXSEGS_ALLOC 16 130 #define SIP_NTXSEGS_ALLOC 8 131 132 #define SIP_TXQUEUELEN 256 133 #define MAX_SIP_NTXDESC \ 134 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC)) 135 136 /* 137 * Receive descriptor list size. We have one Rx buffer per incoming 138 * packet, so this logic is a little simpler. 139 * 140 * Actually, on the DP83820, we allow the packet to consume more than 141 * one buffer, in order to support jumbo Ethernet frames. In that 142 * case, a packet may consume up to 5 buffers (assuming a 2048 byte 143 * mbuf cluster). 256 receive buffers is only 51 maximum size packets, 144 * so we'd better be quick about handling receive interrupts. 145 */ 146 #define GSIP_NRXDESC 256 147 #define SIP_NRXDESC 128 148 149 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC) 150 151 /* 152 * Control structures are DMA'd to the SiS900 chip. We allocate them in 153 * a single clump that maps to a single DMA segment to make several things 154 * easier. 155 */ 156 struct sip_control_data { 157 /* 158 * The transmit descriptors. 159 */ 160 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC]; 161 162 /* 163 * The receive descriptors. 164 */ 165 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC]; 166 }; 167 168 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x) 169 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)]) 170 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)]) 171 172 /* 173 * Software state for transmit jobs. 174 */ 175 struct sip_txsoft { 176 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 177 bus_dmamap_t txs_dmamap; /* our DMA map */ 178 int txs_firstdesc; /* first descriptor in packet */ 179 int txs_lastdesc; /* last descriptor in packet */ 180 SIMPLEQ_ENTRY(sip_txsoft) txs_q; 181 }; 182 183 SIMPLEQ_HEAD(sip_txsq, sip_txsoft); 184 185 /* 186 * Software state for receive jobs. 187 */ 188 struct sip_rxsoft { 189 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 190 bus_dmamap_t rxs_dmamap; /* our DMA map */ 191 }; 192 193 enum sip_attach_stage { 194 SIP_ATTACH_FIN = 0 195 , SIP_ATTACH_CREATE_RXMAP 196 , SIP_ATTACH_CREATE_TXMAP 197 , SIP_ATTACH_LOAD_MAP 198 , SIP_ATTACH_CREATE_MAP 199 , SIP_ATTACH_MAP_MEM 200 , SIP_ATTACH_ALLOC_MEM 201 , SIP_ATTACH_INTR 202 , SIP_ATTACH_MAP 203 }; 204 205 /* 206 * Software state per device. 207 */ 208 struct sip_softc { 209 device_t sc_dev; /* generic device information */ 210 struct device_suspensor sc_suspensor; 211 struct pmf_qual sc_qual; 212 213 bus_space_tag_t sc_st; /* bus space tag */ 214 bus_space_handle_t sc_sh; /* bus space handle */ 215 bus_size_t sc_sz; /* bus space size */ 216 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 217 pci_chipset_tag_t sc_pc; 218 bus_dma_segment_t sc_seg; 219 struct ethercom sc_ethercom; /* ethernet common data */ 220 221 const struct sip_product *sc_model; /* which model are we? */ 222 int sc_gigabit; /* 1: 83820, 0: other */ 223 int sc_rev; /* chip revision */ 224 225 void *sc_ih; /* interrupt cookie */ 226 227 struct mii_data sc_mii; /* MII/media information */ 228 229 callout_t sc_tick_ch; /* tick callout */ 230 231 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 232 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 233 234 /* 235 * Software state for transmit and receive descriptors. 236 */ 237 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN]; 238 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC]; 239 240 /* 241 * Control data structures. 242 */ 243 struct sip_control_data *sc_control_data; 244 #define sc_txdescs sc_control_data->scd_txdescs 245 #define sc_rxdescs sc_control_data->scd_rxdescs 246 247 #ifdef SIP_EVENT_COUNTERS 248 /* 249 * Event counters. 250 */ 251 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 252 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 253 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */ 254 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */ 255 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */ 256 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 257 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */ 258 struct evcnt sc_ev_rxpause; /* PAUSE received */ 259 /* DP83820 only */ 260 struct evcnt sc_ev_txpause; /* PAUSE transmitted */ 261 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ 262 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */ 263 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */ 264 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ 265 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */ 266 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */ 267 #endif /* SIP_EVENT_COUNTERS */ 268 269 u_int32_t sc_txcfg; /* prototype TXCFG register */ 270 u_int32_t sc_rxcfg; /* prototype RXCFG register */ 271 u_int32_t sc_imr; /* prototype IMR register */ 272 u_int32_t sc_rfcr; /* prototype RFCR register */ 273 274 u_int32_t sc_cfg; /* prototype CFG register */ 275 276 u_int32_t sc_gpior; /* prototype GPIOR register */ 277 278 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */ 279 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */ 280 281 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */ 282 283 int sc_flowflags; /* 802.3x flow control flags */ 284 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */ 285 int sc_paused; /* paused indication */ 286 287 int sc_txfree; /* number of free Tx descriptors */ 288 int sc_txnext; /* next ready Tx descriptor */ 289 int sc_txwin; /* Tx descriptors since last intr */ 290 291 struct sip_txsq sc_txfreeq; /* free Tx descsofts */ 292 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */ 293 294 /* values of interface state at last init */ 295 struct { 296 /* if_capenable */ 297 uint64_t if_capenable; 298 /* ec_capenable */ 299 int ec_capenable; 300 /* VLAN_ATTACHED */ 301 int is_vlan; 302 } sc_prev; 303 304 short sc_if_flags; 305 306 int sc_rxptr; /* next ready Rx descriptor/descsoft */ 307 int sc_rxdiscard; 308 int sc_rxlen; 309 struct mbuf *sc_rxhead; 310 struct mbuf *sc_rxtail; 311 struct mbuf **sc_rxtailp; 312 313 int sc_ntxdesc; 314 int sc_ntxdesc_mask; 315 316 int sc_nrxdesc_mask; 317 318 const struct sip_parm { 319 const struct sip_regs { 320 int r_rxcfg; 321 int r_txcfg; 322 } p_regs; 323 324 const struct sip_bits { 325 uint32_t b_txcfg_mxdma_8; 326 uint32_t b_txcfg_mxdma_16; 327 uint32_t b_txcfg_mxdma_32; 328 uint32_t b_txcfg_mxdma_64; 329 uint32_t b_txcfg_mxdma_128; 330 uint32_t b_txcfg_mxdma_256; 331 uint32_t b_txcfg_mxdma_512; 332 uint32_t b_txcfg_flth_mask; 333 uint32_t b_txcfg_drth_mask; 334 335 uint32_t b_rxcfg_mxdma_8; 336 uint32_t b_rxcfg_mxdma_16; 337 uint32_t b_rxcfg_mxdma_32; 338 uint32_t b_rxcfg_mxdma_64; 339 uint32_t b_rxcfg_mxdma_128; 340 uint32_t b_rxcfg_mxdma_256; 341 uint32_t b_rxcfg_mxdma_512; 342 343 uint32_t b_isr_txrcmp; 344 uint32_t b_isr_rxrcmp; 345 uint32_t b_isr_dperr; 346 uint32_t b_isr_sserr; 347 uint32_t b_isr_rmabt; 348 uint32_t b_isr_rtabt; 349 350 uint32_t b_cmdsts_size_mask; 351 } p_bits; 352 int p_filtmem; 353 int p_rxbuf_len; 354 bus_size_t p_tx_dmamap_size; 355 int p_ntxsegs; 356 int p_ntxsegs_alloc; 357 int p_nrxdesc; 358 } *sc_parm; 359 360 void (*sc_rxintr)(struct sip_softc *); 361 362 #if NRND > 0 363 rndsource_element_t rnd_source; /* random source */ 364 #endif 365 }; 366 367 #define sc_bits sc_parm->p_bits 368 #define sc_regs sc_parm->p_regs 369 370 static const struct sip_parm sip_parm = { 371 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM 372 , .p_rxbuf_len = MCLBYTES - 1 /* field width */ 373 , .p_tx_dmamap_size = MCLBYTES 374 , .p_ntxsegs = 16 375 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC 376 , .p_nrxdesc = SIP_NRXDESC 377 , .p_bits = { 378 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */ 379 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */ 380 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */ 381 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */ 382 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */ 383 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */ 384 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */ 385 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */ 386 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */ 387 388 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */ 389 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */ 390 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */ 391 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */ 392 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */ 393 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */ 394 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */ 395 396 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */ 397 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */ 398 , .b_isr_dperr = 0x00800000 /* detected parity error */ 399 , .b_isr_sserr = 0x00400000 /* signalled system error */ 400 , .b_isr_rmabt = 0x00200000 /* received master abort */ 401 , .b_isr_rtabt = 0x00100000 /* received target abort */ 402 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK 403 } 404 , .p_regs = { 405 .r_rxcfg = OTHER_SIP_RXCFG, 406 .r_txcfg = OTHER_SIP_TXCFG 407 } 408 }, gsip_parm = { 409 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM 410 , .p_rxbuf_len = MCLBYTES - 8 411 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO 412 , .p_ntxsegs = 64 413 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC 414 , .p_nrxdesc = GSIP_NRXDESC 415 , .p_bits = { 416 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */ 417 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */ 418 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */ 419 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */ 420 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */ 421 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */ 422 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */ 423 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */ 424 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */ 425 426 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */ 427 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */ 428 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */ 429 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */ 430 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */ 431 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */ 432 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */ 433 434 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */ 435 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */ 436 , .b_isr_dperr = 0x00100000 /* detected parity error */ 437 , .b_isr_sserr = 0x00080000 /* signalled system error */ 438 , .b_isr_rmabt = 0x00040000 /* received master abort */ 439 , .b_isr_rtabt = 0x00020000 /* received target abort */ 440 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK 441 } 442 , .p_regs = { 443 .r_rxcfg = DP83820_SIP_RXCFG, 444 .r_txcfg = DP83820_SIP_TXCFG 445 } 446 }; 447 448 static inline int 449 sip_nexttx(const struct sip_softc *sc, int x) 450 { 451 return (x + 1) & sc->sc_ntxdesc_mask; 452 } 453 454 static inline int 455 sip_nextrx(const struct sip_softc *sc, int x) 456 { 457 return (x + 1) & sc->sc_nrxdesc_mask; 458 } 459 460 /* 83820 only */ 461 static inline void 462 sip_rxchain_reset(struct sip_softc *sc) 463 { 464 sc->sc_rxtailp = &sc->sc_rxhead; 465 *sc->sc_rxtailp = NULL; 466 sc->sc_rxlen = 0; 467 } 468 469 /* 83820 only */ 470 static inline void 471 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m) 472 { 473 *sc->sc_rxtailp = sc->sc_rxtail = m; 474 sc->sc_rxtailp = &m->m_next; 475 } 476 477 #ifdef SIP_EVENT_COUNTERS 478 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++ 479 #else 480 #define SIP_EVCNT_INCR(ev) /* nothing */ 481 #endif 482 483 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x))) 484 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x))) 485 486 static inline void 487 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops) 488 { 489 int x, n; 490 491 x = x0; 492 n = n0; 493 494 /* If it will wrap around, sync to the end of the ring. */ 495 if (x + n > sc->sc_ntxdesc) { 496 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 497 SIP_CDTXOFF(x), sizeof(struct sip_desc) * 498 (sc->sc_ntxdesc - x), ops); 499 n -= (sc->sc_ntxdesc - x); 500 x = 0; 501 } 502 503 /* Now sync whatever is left. */ 504 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 505 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops); 506 } 507 508 static inline void 509 sip_cdrxsync(struct sip_softc *sc, int x, int ops) 510 { 511 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 512 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops); 513 } 514 515 #if 0 516 #ifdef DP83820 517 u_int32_t sipd_bufptr; /* pointer to DMA segment */ 518 u_int32_t sipd_cmdsts; /* command/status word */ 519 #else 520 u_int32_t sipd_cmdsts; /* command/status word */ 521 u_int32_t sipd_bufptr; /* pointer to DMA segment */ 522 #endif /* DP83820 */ 523 #endif /* 0 */ 524 525 static inline volatile uint32_t * 526 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd) 527 { 528 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0]; 529 } 530 531 static inline volatile uint32_t * 532 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd) 533 { 534 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1]; 535 } 536 537 static inline void 538 sip_init_rxdesc(struct sip_softc *sc, int x) 539 { 540 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x]; 541 struct sip_desc *sipd = &sc->sc_rxdescs[x]; 542 543 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x))); 544 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr); 545 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR | 546 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask)); 547 sipd->sipd_extsts = 0; 548 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 549 } 550 551 #define SIP_CHIP_VERS(sc, v, p, r) \ 552 ((sc)->sc_model->sip_vendor == (v) && \ 553 (sc)->sc_model->sip_product == (p) && \ 554 (sc)->sc_rev == (r)) 555 556 #define SIP_CHIP_MODEL(sc, v, p) \ 557 ((sc)->sc_model->sip_vendor == (v) && \ 558 (sc)->sc_model->sip_product == (p)) 559 560 #define SIP_SIS900_REV(sc, rev) \ 561 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev)) 562 563 #define SIP_TIMEOUT 1000 564 565 static int sip_ifflags_cb(struct ethercom *); 566 static void sipcom_start(struct ifnet *); 567 static void sipcom_watchdog(struct ifnet *); 568 static int sipcom_ioctl(struct ifnet *, u_long, void *); 569 static int sipcom_init(struct ifnet *); 570 static void sipcom_stop(struct ifnet *, int); 571 572 static bool sipcom_reset(struct sip_softc *); 573 static void sipcom_rxdrain(struct sip_softc *); 574 static int sipcom_add_rxbuf(struct sip_softc *, int); 575 static void sipcom_read_eeprom(struct sip_softc *, int, int, 576 u_int16_t *); 577 static void sipcom_tick(void *); 578 579 static void sipcom_sis900_set_filter(struct sip_softc *); 580 static void sipcom_dp83815_set_filter(struct sip_softc *); 581 582 static void sipcom_dp83820_read_macaddr(struct sip_softc *, 583 const struct pci_attach_args *, u_int8_t *); 584 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc); 585 static void sipcom_sis900_read_macaddr(struct sip_softc *, 586 const struct pci_attach_args *, u_int8_t *); 587 static void sipcom_dp83815_read_macaddr(struct sip_softc *, 588 const struct pci_attach_args *, u_int8_t *); 589 590 static int sipcom_intr(void *); 591 static void sipcom_txintr(struct sip_softc *); 592 static void sip_rxintr(struct sip_softc *); 593 static void gsip_rxintr(struct sip_softc *); 594 595 static int sipcom_dp83820_mii_readreg(device_t, int, int); 596 static void sipcom_dp83820_mii_writereg(device_t, int, int, int); 597 static void sipcom_dp83820_mii_statchg(device_t); 598 599 static int sipcom_sis900_mii_readreg(device_t, int, int); 600 static void sipcom_sis900_mii_writereg(device_t, int, int, int); 601 static void sipcom_sis900_mii_statchg(device_t); 602 603 static int sipcom_dp83815_mii_readreg(device_t, int, int); 604 static void sipcom_dp83815_mii_writereg(device_t, int, int, int); 605 static void sipcom_dp83815_mii_statchg(device_t); 606 607 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *); 608 609 static int sipcom_match(device_t, cfdata_t, void *); 610 static void sipcom_attach(device_t, device_t, void *); 611 static void sipcom_do_detach(device_t, enum sip_attach_stage); 612 static int sipcom_detach(device_t, int); 613 static bool sipcom_resume(device_t PMF_FN_PROTO); 614 static bool sipcom_suspend(device_t PMF_FN_PROTO); 615 616 int gsip_copy_small = 0; 617 int sip_copy_small = 0; 618 619 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc), 620 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL, 621 DVF_DETACH_SHUTDOWN); 622 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc), 623 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL, 624 DVF_DETACH_SHUTDOWN); 625 626 /* 627 * Descriptions of the variants of the SiS900. 628 */ 629 struct sip_variant { 630 int (*sipv_mii_readreg)(device_t, int, int); 631 void (*sipv_mii_writereg)(device_t, int, int, int); 632 void (*sipv_mii_statchg)(device_t); 633 void (*sipv_set_filter)(struct sip_softc *); 634 void (*sipv_read_macaddr)(struct sip_softc *, 635 const struct pci_attach_args *, u_int8_t *); 636 }; 637 638 static u_int32_t sipcom_mii_bitbang_read(device_t); 639 static void sipcom_mii_bitbang_write(device_t, u_int32_t); 640 641 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = { 642 sipcom_mii_bitbang_read, 643 sipcom_mii_bitbang_write, 644 { 645 EROMAR_MDIO, /* MII_BIT_MDO */ 646 EROMAR_MDIO, /* MII_BIT_MDI */ 647 EROMAR_MDC, /* MII_BIT_MDC */ 648 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */ 649 0, /* MII_BIT_DIR_PHY_HOST */ 650 } 651 }; 652 653 static const struct sip_variant sipcom_variant_dp83820 = { 654 sipcom_dp83820_mii_readreg, 655 sipcom_dp83820_mii_writereg, 656 sipcom_dp83820_mii_statchg, 657 sipcom_dp83815_set_filter, 658 sipcom_dp83820_read_macaddr, 659 }; 660 661 static const struct sip_variant sipcom_variant_sis900 = { 662 sipcom_sis900_mii_readreg, 663 sipcom_sis900_mii_writereg, 664 sipcom_sis900_mii_statchg, 665 sipcom_sis900_set_filter, 666 sipcom_sis900_read_macaddr, 667 }; 668 669 static const struct sip_variant sipcom_variant_dp83815 = { 670 sipcom_dp83815_mii_readreg, 671 sipcom_dp83815_mii_writereg, 672 sipcom_dp83815_mii_statchg, 673 sipcom_dp83815_set_filter, 674 sipcom_dp83815_read_macaddr, 675 }; 676 677 678 /* 679 * Devices supported by this driver. 680 */ 681 static const struct sip_product { 682 pci_vendor_id_t sip_vendor; 683 pci_product_id_t sip_product; 684 const char *sip_name; 685 const struct sip_variant *sip_variant; 686 int sip_gigabit; 687 } sipcom_products[] = { 688 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820, 689 "NatSemi DP83820 Gigabit Ethernet", 690 &sipcom_variant_dp83820, 1 }, 691 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, 692 "SiS 900 10/100 Ethernet", 693 &sipcom_variant_sis900, 0 }, 694 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, 695 "SiS 7016 10/100 Ethernet", 696 &sipcom_variant_sis900, 0 }, 697 698 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, 699 "NatSemi DP83815 10/100 Ethernet", 700 &sipcom_variant_dp83815, 0 }, 701 702 { 0, 0, 703 NULL, 704 NULL, 0 }, 705 }; 706 707 static const struct sip_product * 708 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit) 709 { 710 const struct sip_product *sip; 711 712 for (sip = sipcom_products; sip->sip_name != NULL; sip++) { 713 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor && 714 PCI_PRODUCT(pa->pa_id) == sip->sip_product && 715 sip->sip_gigabit == gigabit) 716 return sip; 717 } 718 return NULL; 719 } 720 721 /* 722 * I really hate stupid hardware vendors. There's a bit in the EEPROM 723 * which indicates if the card can do 64-bit data transfers. Unfortunately, 724 * several vendors of 32-bit cards fail to clear this bit in the EEPROM, 725 * which means we try to use 64-bit data transfers on those cards if we 726 * happen to be plugged into a 32-bit slot. 727 * 728 * What we do is use this table of cards known to be 64-bit cards. If 729 * you have a 64-bit card who's subsystem ID is not listed in this table, 730 * send the output of "pcictl dump ..." of the device to me so that your 731 * card will use the 64-bit data path when plugged into a 64-bit slot. 732 * 733 * -- Jason R. Thorpe <thorpej@NetBSD.org> 734 * June 30, 2002 735 */ 736 static int 737 sipcom_check_64bit(const struct pci_attach_args *pa) 738 { 739 static const struct { 740 pci_vendor_id_t c64_vendor; 741 pci_product_id_t c64_product; 742 } card64[] = { 743 /* Asante GigaNIX */ 744 { 0x128a, 0x0002 }, 745 746 /* Accton EN1407-T, Planex GN-1000TE */ 747 { 0x1113, 0x1407 }, 748 749 /* Netgear GA-621 */ 750 { 0x1385, 0x621a }, 751 752 /* SMC EZ Card */ 753 { 0x10b8, 0x9462 }, 754 755 { 0, 0} 756 }; 757 pcireg_t subsys; 758 int i; 759 760 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); 761 762 for (i = 0; card64[i].c64_vendor != 0; i++) { 763 if (PCI_VENDOR(subsys) == card64[i].c64_vendor && 764 PCI_PRODUCT(subsys) == card64[i].c64_product) 765 return (1); 766 } 767 768 return (0); 769 } 770 771 static int 772 sipcom_match(device_t parent, cfdata_t cf, void *aux) 773 { 774 struct pci_attach_args *pa = aux; 775 776 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL) 777 return 1; 778 779 return 0; 780 } 781 782 static void 783 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa) 784 { 785 u_int32_t reg; 786 int i; 787 788 /* 789 * Cause the chip to load configuration data from the EEPROM. 790 */ 791 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN); 792 for (i = 0; i < 10000; i++) { 793 delay(10); 794 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 795 PTSCR_EELOAD_EN) == 0) 796 break; 797 } 798 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 799 PTSCR_EELOAD_EN) { 800 printf("%s: timeout loading configuration from EEPROM\n", 801 device_xname(sc->sc_dev)); 802 return; 803 } 804 805 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR); 806 807 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG); 808 if (reg & CFG_PCI64_DET) { 809 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev)); 810 /* 811 * Check to see if this card is 64-bit. If so, enable 64-bit 812 * data transfers. 813 * 814 * We can't use the DATA64_EN bit in the EEPROM, because 815 * vendors of 32-bit cards fail to clear that bit in many 816 * cases (yet the card still detects that it's in a 64-bit 817 * slot; go figure). 818 */ 819 if (sipcom_check_64bit(pa)) { 820 sc->sc_cfg |= CFG_DATA64_EN; 821 printf(", using 64-bit data transfers"); 822 } 823 printf("\n"); 824 } 825 826 /* 827 * XXX Need some PCI flags indicating support for 828 * XXX 64-bit addressing. 829 */ 830 #if 0 831 if (reg & CFG_M64ADDR) 832 sc->sc_cfg |= CFG_M64ADDR; 833 if (reg & CFG_T64ADDR) 834 sc->sc_cfg |= CFG_T64ADDR; 835 #endif 836 837 if (reg & (CFG_TBI_EN|CFG_EXT_125)) { 838 const char *sep = ""; 839 printf("%s: using ", device_xname(sc->sc_dev)); 840 if (reg & CFG_EXT_125) { 841 sc->sc_cfg |= CFG_EXT_125; 842 printf("%s125MHz clock", sep); 843 sep = ", "; 844 } 845 if (reg & CFG_TBI_EN) { 846 sc->sc_cfg |= CFG_TBI_EN; 847 printf("%sten-bit interface", sep); 848 sep = ", "; 849 } 850 printf("\n"); 851 } 852 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 || 853 (reg & CFG_MRM_DIS) != 0) 854 sc->sc_cfg |= CFG_MRM_DIS; 855 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 || 856 (reg & CFG_MWI_DIS) != 0) 857 sc->sc_cfg |= CFG_MWI_DIS; 858 859 /* 860 * Use the extended descriptor format on the DP83820. This 861 * gives us an interface to VLAN tagging and IPv4/TCP/UDP 862 * checksumming. 863 */ 864 sc->sc_cfg |= CFG_EXTSTS_EN; 865 } 866 867 static int 868 sipcom_detach(device_t self, int flags) 869 { 870 int s; 871 872 s = splnet(); 873 sipcom_do_detach(self, SIP_ATTACH_FIN); 874 splx(s); 875 876 return 0; 877 } 878 879 static void 880 sipcom_do_detach(device_t self, enum sip_attach_stage stage) 881 { 882 int i; 883 struct sip_softc *sc = device_private(self); 884 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 885 886 /* 887 * Free any resources we've allocated during attach. 888 * Do this in reverse order and fall through. 889 */ 890 switch (stage) { 891 case SIP_ATTACH_FIN: 892 sipcom_stop(ifp, 1); 893 pmf_device_deregister(self); 894 #ifdef SIP_EVENT_COUNTERS 895 /* 896 * Attach event counters. 897 */ 898 evcnt_detach(&sc->sc_ev_txforceintr); 899 evcnt_detach(&sc->sc_ev_txdstall); 900 evcnt_detach(&sc->sc_ev_txsstall); 901 evcnt_detach(&sc->sc_ev_hiberr); 902 evcnt_detach(&sc->sc_ev_rxintr); 903 evcnt_detach(&sc->sc_ev_txiintr); 904 evcnt_detach(&sc->sc_ev_txdintr); 905 if (!sc->sc_gigabit) { 906 evcnt_detach(&sc->sc_ev_rxpause); 907 } else { 908 evcnt_detach(&sc->sc_ev_txudpsum); 909 evcnt_detach(&sc->sc_ev_txtcpsum); 910 evcnt_detach(&sc->sc_ev_txipsum); 911 evcnt_detach(&sc->sc_ev_rxudpsum); 912 evcnt_detach(&sc->sc_ev_rxtcpsum); 913 evcnt_detach(&sc->sc_ev_rxipsum); 914 evcnt_detach(&sc->sc_ev_txpause); 915 evcnt_detach(&sc->sc_ev_rxpause); 916 } 917 #endif /* SIP_EVENT_COUNTERS */ 918 919 #if NRND > 0 920 rnd_detach_source(&sc->rnd_source); 921 #endif 922 923 ether_ifdetach(ifp); 924 if_detach(ifp); 925 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 926 927 /*FALLTHROUGH*/ 928 case SIP_ATTACH_CREATE_RXMAP: 929 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 930 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 931 bus_dmamap_destroy(sc->sc_dmat, 932 sc->sc_rxsoft[i].rxs_dmamap); 933 } 934 /*FALLTHROUGH*/ 935 case SIP_ATTACH_CREATE_TXMAP: 936 for (i = 0; i < SIP_TXQUEUELEN; i++) { 937 if (sc->sc_txsoft[i].txs_dmamap != NULL) 938 bus_dmamap_destroy(sc->sc_dmat, 939 sc->sc_txsoft[i].txs_dmamap); 940 } 941 /*FALLTHROUGH*/ 942 case SIP_ATTACH_LOAD_MAP: 943 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 944 /*FALLTHROUGH*/ 945 case SIP_ATTACH_CREATE_MAP: 946 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 947 /*FALLTHROUGH*/ 948 case SIP_ATTACH_MAP_MEM: 949 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 950 sizeof(struct sip_control_data)); 951 /*FALLTHROUGH*/ 952 case SIP_ATTACH_ALLOC_MEM: 953 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1); 954 /* FALLTHROUGH*/ 955 case SIP_ATTACH_INTR: 956 pci_intr_disestablish(sc->sc_pc, sc->sc_ih); 957 /* FALLTHROUGH*/ 958 case SIP_ATTACH_MAP: 959 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 960 break; 961 default: 962 break; 963 } 964 return; 965 } 966 967 static bool 968 sipcom_resume(device_t self PMF_FN_ARGS) 969 { 970 struct sip_softc *sc = device_private(self); 971 972 return sipcom_reset(sc); 973 } 974 975 static bool 976 sipcom_suspend(device_t self PMF_FN_ARGS) 977 { 978 struct sip_softc *sc = device_private(self); 979 980 sipcom_rxdrain(sc); 981 return true; 982 } 983 984 static void 985 sipcom_attach(device_t parent, device_t self, void *aux) 986 { 987 struct sip_softc *sc = device_private(self); 988 struct pci_attach_args *pa = aux; 989 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 990 pci_chipset_tag_t pc = pa->pa_pc; 991 pci_intr_handle_t ih; 992 const char *intrstr = NULL; 993 bus_space_tag_t iot, memt; 994 bus_space_handle_t ioh, memh; 995 bus_size_t iosz, memsz; 996 int ioh_valid, memh_valid; 997 int i, rseg, error; 998 const struct sip_product *sip; 999 u_int8_t enaddr[ETHER_ADDR_LEN]; 1000 pcireg_t csr; 1001 pcireg_t memtype; 1002 bus_size_t tx_dmamap_size; 1003 int ntxsegs_alloc; 1004 cfdata_t cf = device_cfdata(self); 1005 1006 callout_init(&sc->sc_tick_ch, 0); 1007 1008 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0); 1009 if (sip == NULL) { 1010 printf("\n"); 1011 panic("%s: impossible", __func__); 1012 } 1013 sc->sc_dev = self; 1014 sc->sc_gigabit = sip->sip_gigabit; 1015 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual); 1016 sc->sc_pc = pc; 1017 1018 if (sc->sc_gigabit) { 1019 sc->sc_rxintr = gsip_rxintr; 1020 sc->sc_parm = &gsip_parm; 1021 } else { 1022 sc->sc_rxintr = sip_rxintr; 1023 sc->sc_parm = &sip_parm; 1024 } 1025 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size; 1026 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc; 1027 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc; 1028 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1; 1029 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1; 1030 1031 sc->sc_rev = PCI_REVISION(pa->pa_class); 1032 1033 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev); 1034 1035 sc->sc_model = sip; 1036 1037 /* 1038 * XXX Work-around broken PXE firmware on some boards. 1039 * 1040 * The DP83815 shares an address decoder with the MEM BAR 1041 * and the ROM BAR. Make sure the ROM BAR is disabled, 1042 * so that memory mapped access works. 1043 */ 1044 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, 1045 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) & 1046 ~PCI_MAPREG_ROM_ENABLE); 1047 1048 /* 1049 * Map the device. 1050 */ 1051 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA, 1052 PCI_MAPREG_TYPE_IO, 0, 1053 &iot, &ioh, NULL, &iosz) == 0); 1054 if (sc->sc_gigabit) { 1055 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA); 1056 switch (memtype) { 1057 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 1058 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 1059 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 1060 memtype, 0, &memt, &memh, NULL, &memsz) == 0); 1061 break; 1062 default: 1063 memh_valid = 0; 1064 } 1065 } else { 1066 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 1067 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, 1068 &memt, &memh, NULL, &memsz) == 0); 1069 } 1070 1071 if (memh_valid) { 1072 sc->sc_st = memt; 1073 sc->sc_sh = memh; 1074 sc->sc_sz = memsz; 1075 } else if (ioh_valid) { 1076 sc->sc_st = iot; 1077 sc->sc_sh = ioh; 1078 sc->sc_sz = iosz; 1079 } else { 1080 printf("%s: unable to map device registers\n", 1081 device_xname(sc->sc_dev)); 1082 return; 1083 } 1084 1085 sc->sc_dmat = pa->pa_dmat; 1086 1087 /* 1088 * Make sure bus mastering is enabled. Also make sure 1089 * Write/Invalidate is enabled if we're allowed to use it. 1090 */ 1091 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1092 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY) 1093 csr |= PCI_COMMAND_INVALIDATE_ENABLE; 1094 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 1095 csr | PCI_COMMAND_MASTER_ENABLE); 1096 1097 /* power up chip */ 1098 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null); 1099 if (error != 0 && error != EOPNOTSUPP) { 1100 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error); 1101 return; 1102 } 1103 1104 /* 1105 * Map and establish our interrupt. 1106 */ 1107 if (pci_intr_map(pa, &ih)) { 1108 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n"); 1109 return; 1110 } 1111 intrstr = pci_intr_string(pc, ih); 1112 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc); 1113 if (sc->sc_ih == NULL) { 1114 aprint_error_dev(sc->sc_dev, "unable to establish interrupt"); 1115 if (intrstr != NULL) 1116 aprint_error(" at %s", intrstr); 1117 aprint_error("\n"); 1118 return sipcom_do_detach(self, SIP_ATTACH_MAP); 1119 } 1120 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); 1121 1122 SIMPLEQ_INIT(&sc->sc_txfreeq); 1123 SIMPLEQ_INIT(&sc->sc_txdirtyq); 1124 1125 /* 1126 * Allocate the control data structures, and create and load the 1127 * DMA map for it. 1128 */ 1129 if ((error = bus_dmamem_alloc(sc->sc_dmat, 1130 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1, 1131 &rseg, 0)) != 0) { 1132 aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n", 1133 error); 1134 return sipcom_do_detach(self, SIP_ATTACH_INTR); 1135 } 1136 1137 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg, 1138 sizeof(struct sip_control_data), (void **)&sc->sc_control_data, 1139 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) { 1140 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n", 1141 error); 1142 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM); 1143 } 1144 1145 if ((error = bus_dmamap_create(sc->sc_dmat, 1146 sizeof(struct sip_control_data), 1, 1147 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 1148 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, " 1149 "error = %d\n", error); 1150 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM); 1151 } 1152 1153 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 1154 sc->sc_control_data, sizeof(struct sip_control_data), NULL, 1155 0)) != 0) { 1156 aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n", 1157 error); 1158 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP); 1159 } 1160 1161 /* 1162 * Create the transmit buffer DMA maps. 1163 */ 1164 for (i = 0; i < SIP_TXQUEUELEN; i++) { 1165 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size, 1166 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0, 1167 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 1168 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, " 1169 "error = %d\n", i, error); 1170 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP); 1171 } 1172 } 1173 1174 /* 1175 * Create the receive buffer DMA maps. 1176 */ 1177 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 1178 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1179 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 1180 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, " 1181 "error = %d\n", i, error); 1182 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP); 1183 } 1184 sc->sc_rxsoft[i].rxs_mbuf = NULL; 1185 } 1186 1187 /* 1188 * Reset the chip to a known state. 1189 */ 1190 sipcom_reset(sc); 1191 1192 /* 1193 * Read the Ethernet address from the EEPROM. This might 1194 * also fetch other stuff from the EEPROM and stash it 1195 * in the softc. 1196 */ 1197 sc->sc_cfg = 0; 1198 if (!sc->sc_gigabit) { 1199 if (SIP_SIS900_REV(sc,SIS_REV_635) || 1200 SIP_SIS900_REV(sc,SIS_REV_900B)) 1201 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT); 1202 1203 if (SIP_SIS900_REV(sc,SIS_REV_635) || 1204 SIP_SIS900_REV(sc,SIS_REV_960) || 1205 SIP_SIS900_REV(sc,SIS_REV_900B)) 1206 sc->sc_cfg |= 1207 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & 1208 CFG_EDBMASTEN); 1209 } 1210 1211 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr); 1212 1213 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev), 1214 ether_sprintf(enaddr)); 1215 1216 /* 1217 * Initialize the configuration register: aggressive PCI 1218 * bus request algorithm, default backoff, default OW timer, 1219 * default parity error detection. 1220 * 1221 * NOTE: "Big endian mode" is useless on the SiS900 and 1222 * friends -- it affects packet data, not descriptors. 1223 */ 1224 if (sc->sc_gigabit) 1225 sipcom_dp83820_attach(sc, pa); 1226 1227 /* 1228 * Initialize our media structures and probe the MII. 1229 */ 1230 sc->sc_mii.mii_ifp = ifp; 1231 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg; 1232 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg; 1233 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg; 1234 sc->sc_ethercom.ec_mii = &sc->sc_mii; 1235 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange, 1236 sipcom_mediastatus); 1237 1238 /* 1239 * XXX We cannot handle flow control on the DP83815. 1240 */ 1241 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) 1242 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 1243 MII_OFFSET_ANY, 0); 1244 else 1245 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 1246 MII_OFFSET_ANY, MIIF_DOPAUSE); 1247 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 1248 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 1249 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 1250 } else 1251 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 1252 1253 ifp = &sc->sc_ethercom.ec_if; 1254 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 1255 ifp->if_softc = sc; 1256 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1257 sc->sc_if_flags = ifp->if_flags; 1258 ifp->if_ioctl = sipcom_ioctl; 1259 ifp->if_start = sipcom_start; 1260 ifp->if_watchdog = sipcom_watchdog; 1261 ifp->if_init = sipcom_init; 1262 ifp->if_stop = sipcom_stop; 1263 IFQ_SET_READY(&ifp->if_snd); 1264 1265 /* 1266 * We can support 802.1Q VLAN-sized frames. 1267 */ 1268 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 1269 1270 if (sc->sc_gigabit) { 1271 /* 1272 * And the DP83820 can do VLAN tagging in hardware, and 1273 * support the jumbo Ethernet MTU. 1274 */ 1275 sc->sc_ethercom.ec_capabilities |= 1276 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU; 1277 1278 /* 1279 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums 1280 * in hardware. 1281 */ 1282 ifp->if_capabilities |= 1283 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 1284 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 1285 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 1286 } 1287 1288 /* 1289 * Attach the interface. 1290 */ 1291 if_attach(ifp); 1292 ether_ifattach(ifp, enaddr); 1293 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb); 1294 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable; 1295 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom); 1296 sc->sc_prev.if_capenable = ifp->if_capenable; 1297 #if NRND > 0 1298 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 1299 RND_TYPE_NET, 0); 1300 #endif 1301 1302 /* 1303 * The number of bytes that must be available in 1304 * the Tx FIFO before the bus master can DMA more 1305 * data into the FIFO. 1306 */ 1307 sc->sc_tx_fill_thresh = 64 / 32; 1308 1309 /* 1310 * Start at a drain threshold of 512 bytes. We will 1311 * increase it if a DMA underrun occurs. 1312 * 1313 * XXX The minimum value of this variable should be 1314 * tuned. We may be able to improve performance 1315 * by starting with a lower value. That, however, 1316 * may trash the first few outgoing packets if the 1317 * PCI bus is saturated. 1318 */ 1319 if (sc->sc_gigabit) 1320 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */ 1321 else 1322 sc->sc_tx_drain_thresh = 1504 / 32; 1323 1324 /* 1325 * Initialize the Rx FIFO drain threshold. 1326 * 1327 * This is in units of 8 bytes. 1328 * 1329 * We should never set this value lower than 2; 14 bytes are 1330 * required to filter the packet. 1331 */ 1332 sc->sc_rx_drain_thresh = 128 / 8; 1333 1334 #ifdef SIP_EVENT_COUNTERS 1335 /* 1336 * Attach event counters. 1337 */ 1338 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 1339 NULL, device_xname(sc->sc_dev), "txsstall"); 1340 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 1341 NULL, device_xname(sc->sc_dev), "txdstall"); 1342 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR, 1343 NULL, device_xname(sc->sc_dev), "txforceintr"); 1344 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR, 1345 NULL, device_xname(sc->sc_dev), "txdintr"); 1346 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR, 1347 NULL, device_xname(sc->sc_dev), "txiintr"); 1348 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 1349 NULL, device_xname(sc->sc_dev), "rxintr"); 1350 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR, 1351 NULL, device_xname(sc->sc_dev), "hiberr"); 1352 if (!sc->sc_gigabit) { 1353 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR, 1354 NULL, device_xname(sc->sc_dev), "rxpause"); 1355 } else { 1356 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC, 1357 NULL, device_xname(sc->sc_dev), "rxpause"); 1358 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC, 1359 NULL, device_xname(sc->sc_dev), "txpause"); 1360 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, 1361 NULL, device_xname(sc->sc_dev), "rxipsum"); 1362 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC, 1363 NULL, device_xname(sc->sc_dev), "rxtcpsum"); 1364 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC, 1365 NULL, device_xname(sc->sc_dev), "rxudpsum"); 1366 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, 1367 NULL, device_xname(sc->sc_dev), "txipsum"); 1368 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC, 1369 NULL, device_xname(sc->sc_dev), "txtcpsum"); 1370 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC, 1371 NULL, device_xname(sc->sc_dev), "txudpsum"); 1372 } 1373 #endif /* SIP_EVENT_COUNTERS */ 1374 1375 if (pmf_device_register(self, sipcom_suspend, sipcom_resume)) 1376 pmf_class_network_register(self, ifp); 1377 else 1378 aprint_error_dev(self, "couldn't establish power handler\n"); 1379 } 1380 1381 static inline void 1382 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0, 1383 uint64_t capenable) 1384 { 1385 struct m_tag *mtag; 1386 u_int32_t extsts; 1387 #ifdef DEBUG 1388 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1389 #endif 1390 /* 1391 * If VLANs are enabled and the packet has a VLAN tag, set 1392 * up the descriptor to encapsulate the packet for us. 1393 * 1394 * This apparently has to be on the last descriptor of 1395 * the packet. 1396 */ 1397 1398 /* 1399 * Byte swapping is tricky. We need to provide the tag 1400 * in a network byte order. On a big-endian machine, 1401 * the byteorder is correct, but we need to swap it 1402 * anyway, because this will be undone by the outside 1403 * htole32(). That's why there must be an 1404 * unconditional swap instead of htons() inside. 1405 */ 1406 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) { 1407 sc->sc_txdescs[lasttx].sipd_extsts |= 1408 htole32(EXTSTS_VPKT | 1409 (bswap16(VLAN_TAG_VALUE(mtag)) & 1410 EXTSTS_VTCI)); 1411 } 1412 1413 /* 1414 * If the upper-layer has requested IPv4/TCPv4/UDPv4 1415 * checksumming, set up the descriptor to do this work 1416 * for us. 1417 * 1418 * This apparently has to be on the first descriptor of 1419 * the packet. 1420 * 1421 * Byte-swap constants so the compiler can optimize. 1422 */ 1423 extsts = 0; 1424 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { 1425 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx); 1426 SIP_EVCNT_INCR(&sc->sc_ev_txipsum); 1427 extsts |= htole32(EXTSTS_IPPKT); 1428 } 1429 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 1430 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx); 1431 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum); 1432 extsts |= htole32(EXTSTS_TCPPKT); 1433 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) { 1434 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx); 1435 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum); 1436 extsts |= htole32(EXTSTS_UDPPKT); 1437 } 1438 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts; 1439 } 1440 1441 /* 1442 * sip_start: [ifnet interface function] 1443 * 1444 * Start packet transmission on the interface. 1445 */ 1446 static void 1447 sipcom_start(struct ifnet *ifp) 1448 { 1449 struct sip_softc *sc = ifp->if_softc; 1450 struct mbuf *m0; 1451 struct mbuf *m; 1452 struct sip_txsoft *txs; 1453 bus_dmamap_t dmamap; 1454 int error, nexttx, lasttx, seg; 1455 int ofree = sc->sc_txfree; 1456 #if 0 1457 int firsttx = sc->sc_txnext; 1458 #endif 1459 1460 /* 1461 * If we've been told to pause, don't transmit any more packets. 1462 */ 1463 if (!sc->sc_gigabit && sc->sc_paused) 1464 ifp->if_flags |= IFF_OACTIVE; 1465 1466 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 1467 return; 1468 1469 /* 1470 * Loop through the send queue, setting up transmit descriptors 1471 * until we drain the queue, or use up all available transmit 1472 * descriptors. 1473 */ 1474 for (;;) { 1475 /* Get a work queue entry. */ 1476 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) { 1477 SIP_EVCNT_INCR(&sc->sc_ev_txsstall); 1478 break; 1479 } 1480 1481 /* 1482 * Grab a packet off the queue. 1483 */ 1484 IFQ_POLL(&ifp->if_snd, m0); 1485 if (m0 == NULL) 1486 break; 1487 m = NULL; 1488 1489 dmamap = txs->txs_dmamap; 1490 1491 /* 1492 * Load the DMA map. If this fails, the packet either 1493 * didn't fit in the alloted number of segments, or we 1494 * were short on resources. 1495 */ 1496 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1497 BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1498 /* In the non-gigabit case, we'll copy and try again. */ 1499 if (error != 0 && !sc->sc_gigabit) { 1500 MGETHDR(m, M_DONTWAIT, MT_DATA); 1501 if (m == NULL) { 1502 printf("%s: unable to allocate Tx mbuf\n", 1503 device_xname(sc->sc_dev)); 1504 break; 1505 } 1506 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); 1507 if (m0->m_pkthdr.len > MHLEN) { 1508 MCLGET(m, M_DONTWAIT); 1509 if ((m->m_flags & M_EXT) == 0) { 1510 printf("%s: unable to allocate Tx " 1511 "cluster\n", device_xname(sc->sc_dev)); 1512 m_freem(m); 1513 break; 1514 } 1515 } 1516 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 1517 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 1518 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 1519 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1520 if (error) { 1521 printf("%s: unable to load Tx buffer, " 1522 "error = %d\n", device_xname(sc->sc_dev), error); 1523 break; 1524 } 1525 } else if (error == EFBIG) { 1526 /* 1527 * For the too-many-segments case, we simply 1528 * report an error and drop the packet, 1529 * since we can't sanely copy a jumbo packet 1530 * to a single buffer. 1531 */ 1532 printf("%s: Tx packet consumes too many " 1533 "DMA segments, dropping...\n", device_xname(sc->sc_dev)); 1534 IFQ_DEQUEUE(&ifp->if_snd, m0); 1535 m_freem(m0); 1536 continue; 1537 } else if (error != 0) { 1538 /* 1539 * Short on resources, just stop for now. 1540 */ 1541 break; 1542 } 1543 1544 /* 1545 * Ensure we have enough descriptors free to describe 1546 * the packet. Note, we always reserve one descriptor 1547 * at the end of the ring as a termination point, to 1548 * prevent wrap-around. 1549 */ 1550 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { 1551 /* 1552 * Not enough free descriptors to transmit this 1553 * packet. We haven't committed anything yet, 1554 * so just unload the DMA map, put the packet 1555 * back on the queue, and punt. Notify the upper 1556 * layer that there are not more slots left. 1557 * 1558 * XXX We could allocate an mbuf and copy, but 1559 * XXX is it worth it? 1560 */ 1561 ifp->if_flags |= IFF_OACTIVE; 1562 bus_dmamap_unload(sc->sc_dmat, dmamap); 1563 if (m != NULL) 1564 m_freem(m); 1565 SIP_EVCNT_INCR(&sc->sc_ev_txdstall); 1566 break; 1567 } 1568 1569 IFQ_DEQUEUE(&ifp->if_snd, m0); 1570 if (m != NULL) { 1571 m_freem(m0); 1572 m0 = m; 1573 } 1574 1575 /* 1576 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1577 */ 1578 1579 /* Sync the DMA map. */ 1580 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1581 BUS_DMASYNC_PREWRITE); 1582 1583 /* 1584 * Initialize the transmit descriptors. 1585 */ 1586 for (nexttx = lasttx = sc->sc_txnext, seg = 0; 1587 seg < dmamap->dm_nsegs; 1588 seg++, nexttx = sip_nexttx(sc, nexttx)) { 1589 /* 1590 * If this is the first descriptor we're 1591 * enqueueing, don't set the OWN bit just 1592 * yet. That could cause a race condition. 1593 * We'll do it below. 1594 */ 1595 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) = 1596 htole32(dmamap->dm_segs[seg].ds_addr); 1597 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) = 1598 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) | 1599 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len); 1600 sc->sc_txdescs[nexttx].sipd_extsts = 0; 1601 lasttx = nexttx; 1602 } 1603 1604 /* Clear the MORE bit on the last segment. */ 1605 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &= 1606 htole32(~CMDSTS_MORE); 1607 1608 /* 1609 * If we're in the interrupt delay window, delay the 1610 * interrupt. 1611 */ 1612 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) { 1613 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr); 1614 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |= 1615 htole32(CMDSTS_INTR); 1616 sc->sc_txwin = 0; 1617 } 1618 1619 if (sc->sc_gigabit) 1620 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable); 1621 1622 /* Sync the descriptors we're using. */ 1623 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs, 1624 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1625 1626 /* 1627 * The entire packet is set up. Give the first descrptor 1628 * to the chip now. 1629 */ 1630 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |= 1631 htole32(CMDSTS_OWN); 1632 sip_cdtxsync(sc, sc->sc_txnext, 1, 1633 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1634 1635 /* 1636 * Store a pointer to the packet so we can free it later, 1637 * and remember what txdirty will be once the packet is 1638 * done. 1639 */ 1640 txs->txs_mbuf = m0; 1641 txs->txs_firstdesc = sc->sc_txnext; 1642 txs->txs_lastdesc = lasttx; 1643 1644 /* Advance the tx pointer. */ 1645 sc->sc_txfree -= dmamap->dm_nsegs; 1646 sc->sc_txnext = nexttx; 1647 1648 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1649 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1650 1651 #if NBPFILTER > 0 1652 /* 1653 * Pass the packet to any BPF listeners. 1654 */ 1655 if (ifp->if_bpf) 1656 bpf_mtap(ifp->if_bpf, m0); 1657 #endif /* NBPFILTER > 0 */ 1658 } 1659 1660 if (txs == NULL || sc->sc_txfree == 0) { 1661 /* No more slots left; notify upper layer. */ 1662 ifp->if_flags |= IFF_OACTIVE; 1663 } 1664 1665 if (sc->sc_txfree != ofree) { 1666 /* 1667 * Start the transmit process. Note, the manual says 1668 * that if there are no pending transmissions in the 1669 * chip's internal queue (indicated by TXE being clear), 1670 * then the driver software must set the TXDP to the 1671 * first descriptor to be transmitted. However, if we 1672 * do this, it causes serious performance degredation on 1673 * the DP83820 under load, not setting TXDP doesn't seem 1674 * to adversely affect the SiS 900 or DP83815. 1675 * 1676 * Well, I guess it wouldn't be the first time a manual 1677 * has lied -- and they could be speaking of the NULL- 1678 * terminated descriptor list case, rather than OWN- 1679 * terminated rings. 1680 */ 1681 #if 0 1682 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) & 1683 CR_TXE) == 0) { 1684 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, 1685 SIP_CDTXADDR(sc, firsttx)); 1686 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1687 } 1688 #else 1689 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1690 #endif 1691 1692 /* Set a watchdog timer in case the chip flakes out. */ 1693 /* Gigabit autonegotiation takes 5 seconds. */ 1694 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5; 1695 } 1696 } 1697 1698 /* 1699 * sip_watchdog: [ifnet interface function] 1700 * 1701 * Watchdog timer handler. 1702 */ 1703 static void 1704 sipcom_watchdog(struct ifnet *ifp) 1705 { 1706 struct sip_softc *sc = ifp->if_softc; 1707 1708 /* 1709 * The chip seems to ignore the CMDSTS_INTR bit sometimes! 1710 * If we get a timeout, try and sweep up transmit descriptors. 1711 * If we manage to sweep them all up, ignore the lack of 1712 * interrupt. 1713 */ 1714 sipcom_txintr(sc); 1715 1716 if (sc->sc_txfree != sc->sc_ntxdesc) { 1717 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1718 ifp->if_oerrors++; 1719 1720 /* Reset the interface. */ 1721 (void) sipcom_init(ifp); 1722 } else if (ifp->if_flags & IFF_DEBUG) 1723 printf("%s: recovered from device timeout\n", 1724 device_xname(sc->sc_dev)); 1725 1726 /* Try to get more packets going. */ 1727 sipcom_start(ifp); 1728 } 1729 1730 /* If the interface is up and running, only modify the receive 1731 * filter when setting promiscuous or debug mode. Otherwise fall 1732 * through to ether_ioctl, which will reset the chip. 1733 */ 1734 static int 1735 sip_ifflags_cb(struct ethercom *ec) 1736 { 1737 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \ 1738 == (sc)->sc_ethercom.ec_capenable) \ 1739 && ((sc)->sc_prev.is_vlan == \ 1740 VLAN_ATTACHED(&(sc)->sc_ethercom) )) 1741 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable) 1742 struct ifnet *ifp = &ec->ec_if; 1743 struct sip_softc *sc = ifp->if_softc; 1744 int change = ifp->if_flags ^ sc->sc_if_flags; 1745 1746 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) || 1747 !COMPARE_IC(sc, ifp)) 1748 return ENETRESET; 1749 /* Set up the receive filter. */ 1750 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1751 return 0; 1752 } 1753 1754 /* 1755 * sip_ioctl: [ifnet interface function] 1756 * 1757 * Handle control requests from the operator. 1758 */ 1759 static int 1760 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1761 { 1762 struct sip_softc *sc = ifp->if_softc; 1763 struct ifreq *ifr = (struct ifreq *)data; 1764 int s, error; 1765 1766 s = splnet(); 1767 1768 switch (cmd) { 1769 case SIOCSIFMEDIA: 1770 /* Flow control requires full-duplex mode. */ 1771 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 1772 (ifr->ifr_media & IFM_FDX) == 0) 1773 ifr->ifr_media &= ~IFM_ETH_FMASK; 1774 1775 /* XXX */ 1776 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) 1777 ifr->ifr_media &= ~IFM_ETH_FMASK; 1778 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 1779 if (sc->sc_gigabit && 1780 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 1781 /* We can do both TXPAUSE and RXPAUSE. */ 1782 ifr->ifr_media |= 1783 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1784 } else if (ifr->ifr_media & IFM_FLOW) { 1785 /* 1786 * Both TXPAUSE and RXPAUSE must be set. 1787 * (SiS900 and DP83815 don't have PAUSE_ASYM 1788 * feature.) 1789 * 1790 * XXX Can SiS900 and DP83815 send PAUSE? 1791 */ 1792 ifr->ifr_media |= 1793 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1794 } 1795 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 1796 } 1797 /*FALLTHROUGH*/ 1798 default: 1799 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 1800 break; 1801 1802 error = 0; 1803 1804 if (cmd == SIOCSIFCAP) 1805 error = (*ifp->if_init)(ifp); 1806 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 1807 ; 1808 else if (ifp->if_flags & IFF_RUNNING) { 1809 /* 1810 * Multicast list has changed; set the hardware filter 1811 * accordingly. 1812 */ 1813 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1814 } 1815 break; 1816 } 1817 1818 /* Try to get more packets going. */ 1819 sipcom_start(ifp); 1820 1821 sc->sc_if_flags = ifp->if_flags; 1822 splx(s); 1823 return (error); 1824 } 1825 1826 /* 1827 * sip_intr: 1828 * 1829 * Interrupt service routine. 1830 */ 1831 static int 1832 sipcom_intr(void *arg) 1833 { 1834 struct sip_softc *sc = arg; 1835 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1836 u_int32_t isr; 1837 int handled = 0; 1838 1839 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) 1840 return 0; 1841 1842 /* Disable interrupts. */ 1843 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0); 1844 1845 for (;;) { 1846 /* Reading clears interrupt. */ 1847 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR); 1848 if ((isr & sc->sc_imr) == 0) 1849 break; 1850 1851 #if NRND > 0 1852 if (RND_ENABLED(&sc->rnd_source)) 1853 rnd_add_uint32(&sc->rnd_source, isr); 1854 #endif 1855 1856 handled = 1; 1857 1858 if ((ifp->if_flags & IFF_RUNNING) == 0) 1859 break; 1860 1861 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) { 1862 SIP_EVCNT_INCR(&sc->sc_ev_rxintr); 1863 1864 /* Grab any new packets. */ 1865 (*sc->sc_rxintr)(sc); 1866 1867 if (isr & ISR_RXORN) { 1868 printf("%s: receive FIFO overrun\n", 1869 device_xname(sc->sc_dev)); 1870 1871 /* XXX adjust rx_drain_thresh? */ 1872 } 1873 1874 if (isr & ISR_RXIDLE) { 1875 printf("%s: receive ring overrun\n", 1876 device_xname(sc->sc_dev)); 1877 1878 /* Get the receive process going again. */ 1879 bus_space_write_4(sc->sc_st, sc->sc_sh, 1880 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 1881 bus_space_write_4(sc->sc_st, sc->sc_sh, 1882 SIP_CR, CR_RXE); 1883 } 1884 } 1885 1886 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) { 1887 #ifdef SIP_EVENT_COUNTERS 1888 if (isr & ISR_TXDESC) 1889 SIP_EVCNT_INCR(&sc->sc_ev_txdintr); 1890 else if (isr & ISR_TXIDLE) 1891 SIP_EVCNT_INCR(&sc->sc_ev_txiintr); 1892 #endif 1893 1894 /* Sweep up transmit descriptors. */ 1895 sipcom_txintr(sc); 1896 1897 if (isr & ISR_TXURN) { 1898 u_int32_t thresh; 1899 int txfifo_size = (sc->sc_gigabit) 1900 ? DP83820_SIP_TXFIFO_SIZE 1901 : OTHER_SIP_TXFIFO_SIZE; 1902 1903 printf("%s: transmit FIFO underrun", 1904 device_xname(sc->sc_dev)); 1905 thresh = sc->sc_tx_drain_thresh + 1; 1906 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask) 1907 && (thresh * 32) <= (txfifo_size - 1908 (sc->sc_tx_fill_thresh * 32))) { 1909 printf("; increasing Tx drain " 1910 "threshold to %u bytes\n", 1911 thresh * 32); 1912 sc->sc_tx_drain_thresh = thresh; 1913 (void) sipcom_init(ifp); 1914 } else { 1915 (void) sipcom_init(ifp); 1916 printf("\n"); 1917 } 1918 } 1919 } 1920 1921 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) { 1922 if (isr & ISR_PAUSE_ST) { 1923 sc->sc_paused = 1; 1924 SIP_EVCNT_INCR(&sc->sc_ev_rxpause); 1925 ifp->if_flags |= IFF_OACTIVE; 1926 } 1927 if (isr & ISR_PAUSE_END) { 1928 sc->sc_paused = 0; 1929 ifp->if_flags &= ~IFF_OACTIVE; 1930 } 1931 } 1932 1933 if (isr & ISR_HIBERR) { 1934 int want_init = 0; 1935 1936 SIP_EVCNT_INCR(&sc->sc_ev_hiberr); 1937 1938 #define PRINTERR(bit, str) \ 1939 do { \ 1940 if ((isr & (bit)) != 0) { \ 1941 if ((ifp->if_flags & IFF_DEBUG) != 0) \ 1942 printf("%s: %s\n", \ 1943 device_xname(sc->sc_dev), str); \ 1944 want_init = 1; \ 1945 } \ 1946 } while (/*CONSTCOND*/0) 1947 1948 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error"); 1949 PRINTERR(sc->sc_bits.b_isr_sserr, "system error"); 1950 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort"); 1951 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort"); 1952 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun"); 1953 /* 1954 * Ignore: 1955 * Tx reset complete 1956 * Rx reset complete 1957 */ 1958 if (want_init) 1959 (void) sipcom_init(ifp); 1960 #undef PRINTERR 1961 } 1962 } 1963 1964 /* Re-enable interrupts. */ 1965 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE); 1966 1967 /* Try to get more packets going. */ 1968 sipcom_start(ifp); 1969 1970 return (handled); 1971 } 1972 1973 /* 1974 * sip_txintr: 1975 * 1976 * Helper; handle transmit interrupts. 1977 */ 1978 static void 1979 sipcom_txintr(struct sip_softc *sc) 1980 { 1981 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1982 struct sip_txsoft *txs; 1983 u_int32_t cmdsts; 1984 1985 if (sc->sc_paused == 0) 1986 ifp->if_flags &= ~IFF_OACTIVE; 1987 1988 /* 1989 * Go through our Tx list and free mbufs for those 1990 * frames which have been transmitted. 1991 */ 1992 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1993 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 1994 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1995 1996 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])); 1997 if (cmdsts & CMDSTS_OWN) 1998 break; 1999 2000 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 2001 2002 sc->sc_txfree += txs->txs_dmamap->dm_nsegs; 2003 2004 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 2005 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2006 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2007 m_freem(txs->txs_mbuf); 2008 txs->txs_mbuf = NULL; 2009 2010 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2011 2012 /* 2013 * Check for errors and collisions. 2014 */ 2015 if (cmdsts & 2016 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) { 2017 ifp->if_oerrors++; 2018 if (cmdsts & CMDSTS_Tx_EC) 2019 ifp->if_collisions += 16; 2020 if (ifp->if_flags & IFF_DEBUG) { 2021 if (cmdsts & CMDSTS_Tx_ED) 2022 printf("%s: excessive deferral\n", 2023 device_xname(sc->sc_dev)); 2024 if (cmdsts & CMDSTS_Tx_EC) 2025 printf("%s: excessive collisions\n", 2026 device_xname(sc->sc_dev)); 2027 } 2028 } else { 2029 /* Packet was transmitted successfully. */ 2030 ifp->if_opackets++; 2031 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts); 2032 } 2033 } 2034 2035 /* 2036 * If there are no more pending transmissions, cancel the watchdog 2037 * timer. 2038 */ 2039 if (txs == NULL) { 2040 ifp->if_timer = 0; 2041 sc->sc_txwin = 0; 2042 } 2043 } 2044 2045 /* 2046 * gsip_rxintr: 2047 * 2048 * Helper; handle receive interrupts on gigabit parts. 2049 */ 2050 static void 2051 gsip_rxintr(struct sip_softc *sc) 2052 { 2053 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2054 struct sip_rxsoft *rxs; 2055 struct mbuf *m; 2056 u_int32_t cmdsts, extsts; 2057 int i, len; 2058 2059 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) { 2060 rxs = &sc->sc_rxsoft[i]; 2061 2062 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2063 2064 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i])); 2065 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts); 2066 len = CMDSTS_SIZE(sc, cmdsts); 2067 2068 /* 2069 * NOTE: OWN is set if owned by _consumer_. We're the 2070 * consumer of the receive ring, so if the bit is clear, 2071 * we have processed all of the packets. 2072 */ 2073 if ((cmdsts & CMDSTS_OWN) == 0) { 2074 /* 2075 * We have processed all of the receive buffers. 2076 */ 2077 break; 2078 } 2079 2080 if (__predict_false(sc->sc_rxdiscard)) { 2081 sip_init_rxdesc(sc, i); 2082 if ((cmdsts & CMDSTS_MORE) == 0) { 2083 /* Reset our state. */ 2084 sc->sc_rxdiscard = 0; 2085 } 2086 continue; 2087 } 2088 2089 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2090 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2091 2092 m = rxs->rxs_mbuf; 2093 2094 /* 2095 * Add a new receive buffer to the ring. 2096 */ 2097 if (sipcom_add_rxbuf(sc, i) != 0) { 2098 /* 2099 * Failed, throw away what we've done so 2100 * far, and discard the rest of the packet. 2101 */ 2102 ifp->if_ierrors++; 2103 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2104 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2105 sip_init_rxdesc(sc, i); 2106 if (cmdsts & CMDSTS_MORE) 2107 sc->sc_rxdiscard = 1; 2108 if (sc->sc_rxhead != NULL) 2109 m_freem(sc->sc_rxhead); 2110 sip_rxchain_reset(sc); 2111 continue; 2112 } 2113 2114 sip_rxchain_link(sc, m); 2115 2116 m->m_len = len; 2117 2118 /* 2119 * If this is not the end of the packet, keep 2120 * looking. 2121 */ 2122 if (cmdsts & CMDSTS_MORE) { 2123 sc->sc_rxlen += len; 2124 continue; 2125 } 2126 2127 /* 2128 * Okay, we have the entire packet now. The chip includes 2129 * the FCS, so we need to trim it. 2130 */ 2131 m->m_len -= ETHER_CRC_LEN; 2132 2133 *sc->sc_rxtailp = NULL; 2134 len = m->m_len + sc->sc_rxlen; 2135 m = sc->sc_rxhead; 2136 2137 sip_rxchain_reset(sc); 2138 2139 /* 2140 * If an error occurred, update stats and drop the packet. 2141 */ 2142 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 2143 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 2144 ifp->if_ierrors++; 2145 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 2146 (cmdsts & CMDSTS_Rx_RXO) == 0) { 2147 /* Receive overrun handled elsewhere. */ 2148 printf("%s: receive descriptor error\n", 2149 device_xname(sc->sc_dev)); 2150 } 2151 #define PRINTERR(bit, str) \ 2152 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 2153 (cmdsts & (bit)) != 0) \ 2154 printf("%s: %s\n", device_xname(sc->sc_dev), str) 2155 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 2156 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 2157 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 2158 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 2159 #undef PRINTERR 2160 m_freem(m); 2161 continue; 2162 } 2163 2164 /* 2165 * If the packet is small enough to fit in a 2166 * single header mbuf, allocate one and copy 2167 * the data into it. This greatly reduces 2168 * memory consumption when we receive lots 2169 * of small packets. 2170 */ 2171 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) { 2172 struct mbuf *nm; 2173 MGETHDR(nm, M_DONTWAIT, MT_DATA); 2174 if (nm == NULL) { 2175 ifp->if_ierrors++; 2176 m_freem(m); 2177 continue; 2178 } 2179 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2180 nm->m_data += 2; 2181 nm->m_pkthdr.len = nm->m_len = len; 2182 m_copydata(m, 0, len, mtod(nm, void *)); 2183 m_freem(m); 2184 m = nm; 2185 } 2186 #ifndef __NO_STRICT_ALIGNMENT 2187 else { 2188 /* 2189 * The DP83820's receive buffers must be 4-byte 2190 * aligned. But this means that the data after 2191 * the Ethernet header is misaligned. To compensate, 2192 * we have artificially shortened the buffer size 2193 * in the descriptor, and we do an overlapping copy 2194 * of the data two bytes further in (in the first 2195 * buffer of the chain only). 2196 */ 2197 memmove(mtod(m, char *) + 2, mtod(m, void *), 2198 m->m_len); 2199 m->m_data += 2; 2200 } 2201 #endif /* ! __NO_STRICT_ALIGNMENT */ 2202 2203 /* 2204 * If VLANs are enabled, VLAN packets have been unwrapped 2205 * for us. Associate the tag with the packet. 2206 */ 2207 2208 /* 2209 * Again, byte swapping is tricky. Hardware provided 2210 * the tag in the network byte order, but extsts was 2211 * passed through le32toh() in the meantime. On a 2212 * big-endian machine, we need to swap it again. On a 2213 * little-endian machine, we need to convert from the 2214 * network to host byte order. This means that we must 2215 * swap it in any case, so unconditional swap instead 2216 * of htons() is used. 2217 */ 2218 if ((extsts & EXTSTS_VPKT) != 0) { 2219 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI), 2220 continue); 2221 } 2222 2223 /* 2224 * Set the incoming checksum information for the 2225 * packet. 2226 */ 2227 if ((extsts & EXTSTS_IPPKT) != 0) { 2228 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum); 2229 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 2230 if (extsts & EXTSTS_Rx_IPERR) 2231 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 2232 if (extsts & EXTSTS_TCPPKT) { 2233 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum); 2234 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 2235 if (extsts & EXTSTS_Rx_TCPERR) 2236 m->m_pkthdr.csum_flags |= 2237 M_CSUM_TCP_UDP_BAD; 2238 } else if (extsts & EXTSTS_UDPPKT) { 2239 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum); 2240 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 2241 if (extsts & EXTSTS_Rx_UDPERR) 2242 m->m_pkthdr.csum_flags |= 2243 M_CSUM_TCP_UDP_BAD; 2244 } 2245 } 2246 2247 ifp->if_ipackets++; 2248 m->m_pkthdr.rcvif = ifp; 2249 m->m_pkthdr.len = len; 2250 2251 #if NBPFILTER > 0 2252 /* 2253 * Pass this up to any BPF listeners, but only 2254 * pass if up the stack if it's for us. 2255 */ 2256 if (ifp->if_bpf) 2257 bpf_mtap(ifp->if_bpf, m); 2258 #endif /* NBPFILTER > 0 */ 2259 2260 /* Pass it on. */ 2261 (*ifp->if_input)(ifp, m); 2262 } 2263 2264 /* Update the receive pointer. */ 2265 sc->sc_rxptr = i; 2266 } 2267 2268 /* 2269 * sip_rxintr: 2270 * 2271 * Helper; handle receive interrupts on 10/100 parts. 2272 */ 2273 static void 2274 sip_rxintr(struct sip_softc *sc) 2275 { 2276 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2277 struct sip_rxsoft *rxs; 2278 struct mbuf *m; 2279 u_int32_t cmdsts; 2280 int i, len; 2281 2282 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) { 2283 rxs = &sc->sc_rxsoft[i]; 2284 2285 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2286 2287 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i])); 2288 2289 /* 2290 * NOTE: OWN is set if owned by _consumer_. We're the 2291 * consumer of the receive ring, so if the bit is clear, 2292 * we have processed all of the packets. 2293 */ 2294 if ((cmdsts & CMDSTS_OWN) == 0) { 2295 /* 2296 * We have processed all of the receive buffers. 2297 */ 2298 break; 2299 } 2300 2301 /* 2302 * If any collisions were seen on the wire, count one. 2303 */ 2304 if (cmdsts & CMDSTS_Rx_COL) 2305 ifp->if_collisions++; 2306 2307 /* 2308 * If an error occurred, update stats, clear the status 2309 * word, and leave the packet buffer in place. It will 2310 * simply be reused the next time the ring comes around. 2311 */ 2312 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 2313 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 2314 ifp->if_ierrors++; 2315 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 2316 (cmdsts & CMDSTS_Rx_RXO) == 0) { 2317 /* Receive overrun handled elsewhere. */ 2318 printf("%s: receive descriptor error\n", 2319 device_xname(sc->sc_dev)); 2320 } 2321 #define PRINTERR(bit, str) \ 2322 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 2323 (cmdsts & (bit)) != 0) \ 2324 printf("%s: %s\n", device_xname(sc->sc_dev), str) 2325 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 2326 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 2327 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 2328 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 2329 #undef PRINTERR 2330 sip_init_rxdesc(sc, i); 2331 continue; 2332 } 2333 2334 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2335 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2336 2337 /* 2338 * No errors; receive the packet. Note, the SiS 900 2339 * includes the CRC with every packet. 2340 */ 2341 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN; 2342 2343 #ifdef __NO_STRICT_ALIGNMENT 2344 /* 2345 * If the packet is small enough to fit in a 2346 * single header mbuf, allocate one and copy 2347 * the data into it. This greatly reduces 2348 * memory consumption when we receive lots 2349 * of small packets. 2350 * 2351 * Otherwise, we add a new buffer to the receive 2352 * chain. If this fails, we drop the packet and 2353 * recycle the old buffer. 2354 */ 2355 if (sip_copy_small != 0 && len <= MHLEN) { 2356 MGETHDR(m, M_DONTWAIT, MT_DATA); 2357 if (m == NULL) 2358 goto dropit; 2359 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2360 memcpy(mtod(m, void *), 2361 mtod(rxs->rxs_mbuf, void *), len); 2362 sip_init_rxdesc(sc, i); 2363 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2364 rxs->rxs_dmamap->dm_mapsize, 2365 BUS_DMASYNC_PREREAD); 2366 } else { 2367 m = rxs->rxs_mbuf; 2368 if (sipcom_add_rxbuf(sc, i) != 0) { 2369 dropit: 2370 ifp->if_ierrors++; 2371 sip_init_rxdesc(sc, i); 2372 bus_dmamap_sync(sc->sc_dmat, 2373 rxs->rxs_dmamap, 0, 2374 rxs->rxs_dmamap->dm_mapsize, 2375 BUS_DMASYNC_PREREAD); 2376 continue; 2377 } 2378 } 2379 #else 2380 /* 2381 * The SiS 900's receive buffers must be 4-byte aligned. 2382 * But this means that the data after the Ethernet header 2383 * is misaligned. We must allocate a new buffer and 2384 * copy the data, shifted forward 2 bytes. 2385 */ 2386 MGETHDR(m, M_DONTWAIT, MT_DATA); 2387 if (m == NULL) { 2388 dropit: 2389 ifp->if_ierrors++; 2390 sip_init_rxdesc(sc, i); 2391 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2392 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2393 continue; 2394 } 2395 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2396 if (len > (MHLEN - 2)) { 2397 MCLGET(m, M_DONTWAIT); 2398 if ((m->m_flags & M_EXT) == 0) { 2399 m_freem(m); 2400 goto dropit; 2401 } 2402 } 2403 m->m_data += 2; 2404 2405 /* 2406 * Note that we use clusters for incoming frames, so the 2407 * buffer is virtually contiguous. 2408 */ 2409 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len); 2410 2411 /* Allow the receive descriptor to continue using its mbuf. */ 2412 sip_init_rxdesc(sc, i); 2413 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2414 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2415 #endif /* __NO_STRICT_ALIGNMENT */ 2416 2417 ifp->if_ipackets++; 2418 m->m_pkthdr.rcvif = ifp; 2419 m->m_pkthdr.len = m->m_len = len; 2420 2421 #if NBPFILTER > 0 2422 /* 2423 * Pass this up to any BPF listeners, but only 2424 * pass if up the stack if it's for us. 2425 */ 2426 if (ifp->if_bpf) 2427 bpf_mtap(ifp->if_bpf, m); 2428 #endif /* NBPFILTER > 0 */ 2429 2430 /* Pass it on. */ 2431 (*ifp->if_input)(ifp, m); 2432 } 2433 2434 /* Update the receive pointer. */ 2435 sc->sc_rxptr = i; 2436 } 2437 2438 /* 2439 * sip_tick: 2440 * 2441 * One second timer, used to tick the MII. 2442 */ 2443 static void 2444 sipcom_tick(void *arg) 2445 { 2446 struct sip_softc *sc = arg; 2447 int s; 2448 2449 s = splnet(); 2450 #ifdef SIP_EVENT_COUNTERS 2451 if (sc->sc_gigabit) { 2452 /* Read PAUSE related counts from MIB registers. */ 2453 sc->sc_ev_rxpause.ev_count += 2454 bus_space_read_4(sc->sc_st, sc->sc_sh, 2455 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff; 2456 sc->sc_ev_txpause.ev_count += 2457 bus_space_read_4(sc->sc_st, sc->sc_sh, 2458 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff; 2459 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR); 2460 } 2461 #endif /* SIP_EVENT_COUNTERS */ 2462 mii_tick(&sc->sc_mii); 2463 splx(s); 2464 2465 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc); 2466 } 2467 2468 /* 2469 * sip_reset: 2470 * 2471 * Perform a soft reset on the SiS 900. 2472 */ 2473 static bool 2474 sipcom_reset(struct sip_softc *sc) 2475 { 2476 bus_space_tag_t st = sc->sc_st; 2477 bus_space_handle_t sh = sc->sc_sh; 2478 int i; 2479 2480 bus_space_write_4(st, sh, SIP_IER, 0); 2481 bus_space_write_4(st, sh, SIP_IMR, 0); 2482 bus_space_write_4(st, sh, SIP_RFCR, 0); 2483 bus_space_write_4(st, sh, SIP_CR, CR_RST); 2484 2485 for (i = 0; i < SIP_TIMEOUT; i++) { 2486 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0) 2487 break; 2488 delay(2); 2489 } 2490 2491 if (i == SIP_TIMEOUT) { 2492 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev)); 2493 return false; 2494 } 2495 2496 delay(1000); 2497 2498 if (sc->sc_gigabit) { 2499 /* 2500 * Set the general purpose I/O bits. Do it here in case we 2501 * need to have GPIO set up to talk to the media interface. 2502 */ 2503 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior); 2504 delay(1000); 2505 } 2506 return true; 2507 } 2508 2509 static void 2510 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable) 2511 { 2512 u_int32_t reg; 2513 bus_space_tag_t st = sc->sc_st; 2514 bus_space_handle_t sh = sc->sc_sh; 2515 /* 2516 * Initialize the VLAN/IP receive control register. 2517 * We enable checksum computation on all incoming 2518 * packets, and do not reject packets w/ bad checksums. 2519 */ 2520 reg = 0; 2521 if (capenable & 2522 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx)) 2523 reg |= VRCR_IPEN; 2524 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2525 reg |= VRCR_VTDEN|VRCR_VTREN; 2526 bus_space_write_4(st, sh, SIP_VRCR, reg); 2527 2528 /* 2529 * Initialize the VLAN/IP transmit control register. 2530 * We enable outgoing checksum computation on a 2531 * per-packet basis. 2532 */ 2533 reg = 0; 2534 if (capenable & 2535 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx)) 2536 reg |= VTCR_PPCHK; 2537 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2538 reg |= VTCR_VPPTI; 2539 bus_space_write_4(st, sh, SIP_VTCR, reg); 2540 2541 /* 2542 * If we're using VLANs, initialize the VLAN data register. 2543 * To understand why we bswap the VLAN Ethertype, see section 2544 * 4.2.36 of the DP83820 manual. 2545 */ 2546 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2547 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN)); 2548 } 2549 2550 /* 2551 * sip_init: [ ifnet interface function ] 2552 * 2553 * Initialize the interface. Must be called at splnet(). 2554 */ 2555 static int 2556 sipcom_init(struct ifnet *ifp) 2557 { 2558 struct sip_softc *sc = ifp->if_softc; 2559 bus_space_tag_t st = sc->sc_st; 2560 bus_space_handle_t sh = sc->sc_sh; 2561 struct sip_txsoft *txs; 2562 struct sip_rxsoft *rxs; 2563 struct sip_desc *sipd; 2564 int i, error = 0; 2565 2566 if (device_is_active(sc->sc_dev)) { 2567 /* 2568 * Cancel any pending I/O. 2569 */ 2570 sipcom_stop(ifp, 0); 2571 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || 2572 !device_is_active(sc->sc_dev)) 2573 return 0; 2574 2575 /* 2576 * Reset the chip to a known state. 2577 */ 2578 if (!sipcom_reset(sc)) 2579 return EBUSY; 2580 2581 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) { 2582 /* 2583 * DP83815 manual, page 78: 2584 * 4.4 Recommended Registers Configuration 2585 * For optimum performance of the DP83815, version noted 2586 * as DP83815CVNG (SRR = 203h), the listed register 2587 * modifications must be followed in sequence... 2588 * 2589 * It's not clear if this should be 302h or 203h because that 2590 * chip name is listed as SRR 302h in the description of the 2591 * SRR register. However, my revision 302h DP83815 on the 2592 * Netgear FA311 purchased in 02/2001 needs these settings 2593 * to avoid tons of errors in AcceptPerfectMatch (non- 2594 * IFF_PROMISC) mode. I do not know if other revisions need 2595 * this set or not. [briggs -- 09 March 2001] 2596 * 2597 * Note that only the low-order 12 bits of 0xe4 are documented 2598 * and that this sets reserved bits in that register. 2599 */ 2600 bus_space_write_4(st, sh, 0x00cc, 0x0001); 2601 2602 bus_space_write_4(st, sh, 0x00e4, 0x189C); 2603 bus_space_write_4(st, sh, 0x00fc, 0x0000); 2604 bus_space_write_4(st, sh, 0x00f4, 0x5040); 2605 bus_space_write_4(st, sh, 0x00f8, 0x008c); 2606 2607 bus_space_write_4(st, sh, 0x00cc, 0x0000); 2608 } 2609 2610 /* 2611 * Initialize the transmit descriptor ring. 2612 */ 2613 for (i = 0; i < sc->sc_ntxdesc; i++) { 2614 sipd = &sc->sc_txdescs[i]; 2615 memset(sipd, 0, sizeof(struct sip_desc)); 2616 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i))); 2617 } 2618 sip_cdtxsync(sc, 0, sc->sc_ntxdesc, 2619 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2620 sc->sc_txfree = sc->sc_ntxdesc; 2621 sc->sc_txnext = 0; 2622 sc->sc_txwin = 0; 2623 2624 /* 2625 * Initialize the transmit job descriptors. 2626 */ 2627 SIMPLEQ_INIT(&sc->sc_txfreeq); 2628 SIMPLEQ_INIT(&sc->sc_txdirtyq); 2629 for (i = 0; i < SIP_TXQUEUELEN; i++) { 2630 txs = &sc->sc_txsoft[i]; 2631 txs->txs_mbuf = NULL; 2632 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2633 } 2634 2635 /* 2636 * Initialize the receive descriptor and receive job 2637 * descriptor rings. 2638 */ 2639 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 2640 rxs = &sc->sc_rxsoft[i]; 2641 if (rxs->rxs_mbuf == NULL) { 2642 if ((error = sipcom_add_rxbuf(sc, i)) != 0) { 2643 printf("%s: unable to allocate or map rx " 2644 "buffer %d, error = %d\n", 2645 device_xname(sc->sc_dev), i, error); 2646 /* 2647 * XXX Should attempt to run with fewer receive 2648 * XXX buffers instead of just failing. 2649 */ 2650 sipcom_rxdrain(sc); 2651 goto out; 2652 } 2653 } else 2654 sip_init_rxdesc(sc, i); 2655 } 2656 sc->sc_rxptr = 0; 2657 sc->sc_rxdiscard = 0; 2658 sip_rxchain_reset(sc); 2659 2660 /* 2661 * Set the configuration register; it's already initialized 2662 * in sip_attach(). 2663 */ 2664 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg); 2665 2666 /* 2667 * Initialize the prototype TXCFG register. 2668 */ 2669 if (sc->sc_gigabit) { 2670 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512; 2671 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512; 2672 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) || 2673 SIP_SIS900_REV(sc, SIS_REV_960) || 2674 SIP_SIS900_REV(sc, SIS_REV_900B)) && 2675 (sc->sc_cfg & CFG_EDBMASTEN)) { 2676 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64; 2677 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64; 2678 } else { 2679 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512; 2680 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512; 2681 } 2682 2683 sc->sc_txcfg |= TXCFG_ATP | 2684 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) | 2685 sc->sc_tx_drain_thresh; 2686 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg); 2687 2688 /* 2689 * Initialize the receive drain threshold if we have never 2690 * done so. 2691 */ 2692 if (sc->sc_rx_drain_thresh == 0) { 2693 /* 2694 * XXX This value should be tuned. This is set to the 2695 * maximum of 248 bytes, and we may be able to improve 2696 * performance by decreasing it (although we should never 2697 * set this value lower than 2; 14 bytes are required to 2698 * filter the packet). 2699 */ 2700 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK); 2701 } 2702 2703 /* 2704 * Initialize the prototype RXCFG register. 2705 */ 2706 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK); 2707 /* 2708 * Accept long packets (including FCS) so we can handle 2709 * 802.1q-tagged frames and jumbo frames properly. 2710 */ 2711 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) || 2712 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)) 2713 sc->sc_rxcfg |= RXCFG_ALP; 2714 2715 /* 2716 * Checksum offloading is disabled if the user selects an MTU 2717 * larger than 8109. (FreeBSD says 8152, but there is emperical 2718 * evidence that >8109 does not work on some boards, such as the 2719 * Planex GN-1000TE). 2720 */ 2721 if (sc->sc_gigabit && ifp->if_mtu > 8109 && 2722 (ifp->if_capenable & 2723 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx| 2724 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx| 2725 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) { 2726 printf("%s: Checksum offloading does not work if MTU > 8109 - " 2727 "disabled.\n", device_xname(sc->sc_dev)); 2728 ifp->if_capenable &= 2729 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx| 2730 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx| 2731 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx); 2732 ifp->if_csum_flags_tx = 0; 2733 ifp->if_csum_flags_rx = 0; 2734 } 2735 2736 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg); 2737 2738 if (sc->sc_gigabit) 2739 sipcom_dp83820_init(sc, ifp->if_capenable); 2740 2741 /* 2742 * Give the transmit and receive rings to the chip. 2743 */ 2744 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext)); 2745 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 2746 2747 /* 2748 * Initialize the interrupt mask. 2749 */ 2750 sc->sc_imr = sc->sc_bits.b_isr_dperr | 2751 sc->sc_bits.b_isr_sserr | 2752 sc->sc_bits.b_isr_rmabt | 2753 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR | 2754 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC; 2755 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr); 2756 2757 /* Set up the receive filter. */ 2758 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 2759 2760 /* 2761 * Tune sc_rx_flow_thresh. 2762 * XXX "More than 8KB" is too short for jumbo frames. 2763 * XXX TODO: Threshold value should be user-settable. 2764 */ 2765 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 | 2766 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 | 2767 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK)); 2768 2769 /* 2770 * Set the current media. Do this after initializing the prototype 2771 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow 2772 * control. 2773 */ 2774 if ((error = ether_mediachange(ifp)) != 0) 2775 goto out; 2776 2777 /* 2778 * Set the interrupt hold-off timer to 100us. 2779 */ 2780 if (sc->sc_gigabit) 2781 bus_space_write_4(st, sh, SIP_IHR, 0x01); 2782 2783 /* 2784 * Enable interrupts. 2785 */ 2786 bus_space_write_4(st, sh, SIP_IER, IER_IE); 2787 2788 /* 2789 * Start the transmit and receive processes. 2790 */ 2791 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE); 2792 2793 /* 2794 * Start the one second MII clock. 2795 */ 2796 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc); 2797 2798 /* 2799 * ...all done! 2800 */ 2801 ifp->if_flags |= IFF_RUNNING; 2802 ifp->if_flags &= ~IFF_OACTIVE; 2803 sc->sc_if_flags = ifp->if_flags; 2804 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable; 2805 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom); 2806 sc->sc_prev.if_capenable = ifp->if_capenable; 2807 2808 out: 2809 if (error) 2810 printf("%s: interface not running\n", device_xname(sc->sc_dev)); 2811 return (error); 2812 } 2813 2814 /* 2815 * sip_drain: 2816 * 2817 * Drain the receive queue. 2818 */ 2819 static void 2820 sipcom_rxdrain(struct sip_softc *sc) 2821 { 2822 struct sip_rxsoft *rxs; 2823 int i; 2824 2825 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 2826 rxs = &sc->sc_rxsoft[i]; 2827 if (rxs->rxs_mbuf != NULL) { 2828 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2829 m_freem(rxs->rxs_mbuf); 2830 rxs->rxs_mbuf = NULL; 2831 } 2832 } 2833 } 2834 2835 /* 2836 * sip_stop: [ ifnet interface function ] 2837 * 2838 * Stop transmission on the interface. 2839 */ 2840 static void 2841 sipcom_stop(struct ifnet *ifp, int disable) 2842 { 2843 struct sip_softc *sc = ifp->if_softc; 2844 bus_space_tag_t st = sc->sc_st; 2845 bus_space_handle_t sh = sc->sc_sh; 2846 struct sip_txsoft *txs; 2847 u_int32_t cmdsts = 0; /* DEBUG */ 2848 2849 /* 2850 * Stop the one second clock. 2851 */ 2852 callout_stop(&sc->sc_tick_ch); 2853 2854 /* Down the MII. */ 2855 mii_down(&sc->sc_mii); 2856 2857 if (device_is_active(sc->sc_dev)) { 2858 /* 2859 * Disable interrupts. 2860 */ 2861 bus_space_write_4(st, sh, SIP_IER, 0); 2862 2863 /* 2864 * Stop receiver and transmitter. 2865 */ 2866 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD); 2867 } 2868 2869 /* 2870 * Release any queued transmit buffers. 2871 */ 2872 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 2873 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2874 SIMPLEQ_NEXT(txs, txs_q) == NULL && 2875 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) & 2876 CMDSTS_INTR) == 0) 2877 printf("%s: sip_stop: last descriptor does not " 2878 "have INTR bit set\n", device_xname(sc->sc_dev)); 2879 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 2880 #ifdef DIAGNOSTIC 2881 if (txs->txs_mbuf == NULL) { 2882 printf("%s: dirty txsoft with no mbuf chain\n", 2883 device_xname(sc->sc_dev)); 2884 panic("sip_stop"); 2885 } 2886 #endif 2887 cmdsts |= /* DEBUG */ 2888 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])); 2889 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2890 m_freem(txs->txs_mbuf); 2891 txs->txs_mbuf = NULL; 2892 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2893 } 2894 2895 /* 2896 * Mark the interface down and cancel the watchdog timer. 2897 */ 2898 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2899 ifp->if_timer = 0; 2900 2901 if (disable) 2902 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual); 2903 2904 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2905 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc) 2906 printf("%s: sip_stop: no INTR bits set in dirty tx " 2907 "descriptors\n", device_xname(sc->sc_dev)); 2908 } 2909 2910 /* 2911 * sip_read_eeprom: 2912 * 2913 * Read data from the serial EEPROM. 2914 */ 2915 static void 2916 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt, 2917 u_int16_t *data) 2918 { 2919 bus_space_tag_t st = sc->sc_st; 2920 bus_space_handle_t sh = sc->sc_sh; 2921 u_int16_t reg; 2922 int i, x; 2923 2924 for (i = 0; i < wordcnt; i++) { 2925 /* Send CHIP SELECT. */ 2926 reg = EROMAR_EECS; 2927 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2928 2929 /* Shift in the READ opcode. */ 2930 for (x = 3; x > 0; x--) { 2931 if (SIP_EEPROM_OPC_READ & (1 << (x - 1))) 2932 reg |= EROMAR_EEDI; 2933 else 2934 reg &= ~EROMAR_EEDI; 2935 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2936 bus_space_write_4(st, sh, SIP_EROMAR, 2937 reg | EROMAR_EESK); 2938 delay(4); 2939 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2940 delay(4); 2941 } 2942 2943 /* Shift in address. */ 2944 for (x = 6; x > 0; x--) { 2945 if ((word + i) & (1 << (x - 1))) 2946 reg |= EROMAR_EEDI; 2947 else 2948 reg &= ~EROMAR_EEDI; 2949 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2950 bus_space_write_4(st, sh, SIP_EROMAR, 2951 reg | EROMAR_EESK); 2952 delay(4); 2953 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2954 delay(4); 2955 } 2956 2957 /* Shift out data. */ 2958 reg = EROMAR_EECS; 2959 data[i] = 0; 2960 for (x = 16; x > 0; x--) { 2961 bus_space_write_4(st, sh, SIP_EROMAR, 2962 reg | EROMAR_EESK); 2963 delay(4); 2964 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO) 2965 data[i] |= (1 << (x - 1)); 2966 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2967 delay(4); 2968 } 2969 2970 /* Clear CHIP SELECT. */ 2971 bus_space_write_4(st, sh, SIP_EROMAR, 0); 2972 delay(4); 2973 } 2974 } 2975 2976 /* 2977 * sipcom_add_rxbuf: 2978 * 2979 * Add a receive buffer to the indicated descriptor. 2980 */ 2981 static int 2982 sipcom_add_rxbuf(struct sip_softc *sc, int idx) 2983 { 2984 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx]; 2985 struct mbuf *m; 2986 int error; 2987 2988 MGETHDR(m, M_DONTWAIT, MT_DATA); 2989 if (m == NULL) 2990 return (ENOBUFS); 2991 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2992 2993 MCLGET(m, M_DONTWAIT); 2994 if ((m->m_flags & M_EXT) == 0) { 2995 m_freem(m); 2996 return (ENOBUFS); 2997 } 2998 2999 /* XXX I don't believe this is necessary. --dyoung */ 3000 if (sc->sc_gigabit) 3001 m->m_len = sc->sc_parm->p_rxbuf_len; 3002 3003 if (rxs->rxs_mbuf != NULL) 3004 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 3005 3006 rxs->rxs_mbuf = m; 3007 3008 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 3009 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 3010 BUS_DMA_READ|BUS_DMA_NOWAIT); 3011 if (error) { 3012 printf("%s: can't load rx DMA map %d, error = %d\n", 3013 device_xname(sc->sc_dev), idx, error); 3014 panic("%s", __func__); /* XXX */ 3015 } 3016 3017 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 3018 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3019 3020 sip_init_rxdesc(sc, idx); 3021 3022 return (0); 3023 } 3024 3025 /* 3026 * sip_sis900_set_filter: 3027 * 3028 * Set up the receive filter. 3029 */ 3030 static void 3031 sipcom_sis900_set_filter(struct sip_softc *sc) 3032 { 3033 bus_space_tag_t st = sc->sc_st; 3034 bus_space_handle_t sh = sc->sc_sh; 3035 struct ethercom *ec = &sc->sc_ethercom; 3036 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3037 struct ether_multi *enm; 3038 const u_int8_t *cp; 3039 struct ether_multistep step; 3040 u_int32_t crc, mchash[16]; 3041 3042 /* 3043 * Initialize the prototype RFCR. 3044 */ 3045 sc->sc_rfcr = RFCR_RFEN; 3046 if (ifp->if_flags & IFF_BROADCAST) 3047 sc->sc_rfcr |= RFCR_AAB; 3048 if (ifp->if_flags & IFF_PROMISC) { 3049 sc->sc_rfcr |= RFCR_AAP; 3050 goto allmulti; 3051 } 3052 3053 /* 3054 * Set up the multicast address filter by passing all multicast 3055 * addresses through a CRC generator, and then using the high-order 3056 * 6 bits as an index into the 128 bit multicast hash table (only 3057 * the lower 16 bits of each 32 bit multicast hash register are 3058 * valid). The high order bits select the register, while the 3059 * rest of the bits select the bit within the register. 3060 */ 3061 3062 memset(mchash, 0, sizeof(mchash)); 3063 3064 /* 3065 * SiS900 (at least SiS963) requires us to register the address of 3066 * the PAUSE packet (01:80:c2:00:00:01) into the address filter. 3067 */ 3068 crc = 0x0ed423f9; 3069 3070 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3071 SIP_SIS900_REV(sc, SIS_REV_960) || 3072 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3073 /* Just want the 8 most significant bits. */ 3074 crc >>= 24; 3075 } else { 3076 /* Just want the 7 most significant bits. */ 3077 crc >>= 25; 3078 } 3079 3080 /* Set the corresponding bit in the hash table. */ 3081 mchash[crc >> 4] |= 1 << (crc & 0xf); 3082 3083 ETHER_FIRST_MULTI(step, ec, enm); 3084 while (enm != NULL) { 3085 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 3086 /* 3087 * We must listen to a range of multicast addresses. 3088 * For now, just accept all multicasts, rather than 3089 * trying to set only those filter bits needed to match 3090 * the range. (At this time, the only use of address 3091 * ranges is for IP multicast routing, for which the 3092 * range is big enough to require all bits set.) 3093 */ 3094 goto allmulti; 3095 } 3096 3097 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 3098 3099 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3100 SIP_SIS900_REV(sc, SIS_REV_960) || 3101 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3102 /* Just want the 8 most significant bits. */ 3103 crc >>= 24; 3104 } else { 3105 /* Just want the 7 most significant bits. */ 3106 crc >>= 25; 3107 } 3108 3109 /* Set the corresponding bit in the hash table. */ 3110 mchash[crc >> 4] |= 1 << (crc & 0xf); 3111 3112 ETHER_NEXT_MULTI(step, enm); 3113 } 3114 3115 ifp->if_flags &= ~IFF_ALLMULTI; 3116 goto setit; 3117 3118 allmulti: 3119 ifp->if_flags |= IFF_ALLMULTI; 3120 sc->sc_rfcr |= RFCR_AAM; 3121 3122 setit: 3123 #define FILTER_EMIT(addr, data) \ 3124 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 3125 delay(1); \ 3126 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 3127 delay(1) 3128 3129 /* 3130 * Disable receive filter, and program the node address. 3131 */ 3132 cp = CLLADDR(ifp->if_sadl); 3133 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]); 3134 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]); 3135 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]); 3136 3137 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3138 /* 3139 * Program the multicast hash table. 3140 */ 3141 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]); 3142 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]); 3143 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]); 3144 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]); 3145 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]); 3146 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]); 3147 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]); 3148 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]); 3149 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3150 SIP_SIS900_REV(sc, SIS_REV_960) || 3151 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3152 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]); 3153 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]); 3154 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]); 3155 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]); 3156 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]); 3157 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]); 3158 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]); 3159 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]); 3160 } 3161 } 3162 #undef FILTER_EMIT 3163 3164 /* 3165 * Re-enable the receiver filter. 3166 */ 3167 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 3168 } 3169 3170 /* 3171 * sip_dp83815_set_filter: 3172 * 3173 * Set up the receive filter. 3174 */ 3175 static void 3176 sipcom_dp83815_set_filter(struct sip_softc *sc) 3177 { 3178 bus_space_tag_t st = sc->sc_st; 3179 bus_space_handle_t sh = sc->sc_sh; 3180 struct ethercom *ec = &sc->sc_ethercom; 3181 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3182 struct ether_multi *enm; 3183 const u_int8_t *cp; 3184 struct ether_multistep step; 3185 u_int32_t crc, hash, slot, bit; 3186 #define MCHASH_NWORDS_83820 128 3187 #define MCHASH_NWORDS_83815 32 3188 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815) 3189 u_int16_t mchash[MCHASH_NWORDS]; 3190 int i; 3191 3192 /* 3193 * Initialize the prototype RFCR. 3194 * Enable the receive filter, and accept on 3195 * Perfect (destination address) Match 3196 * If IFF_BROADCAST, also accept all broadcast packets. 3197 * If IFF_PROMISC, accept all unicast packets (and later, set 3198 * IFF_ALLMULTI and accept all multicast, too). 3199 */ 3200 sc->sc_rfcr = RFCR_RFEN | RFCR_APM; 3201 if (ifp->if_flags & IFF_BROADCAST) 3202 sc->sc_rfcr |= RFCR_AAB; 3203 if (ifp->if_flags & IFF_PROMISC) { 3204 sc->sc_rfcr |= RFCR_AAP; 3205 goto allmulti; 3206 } 3207 3208 /* 3209 * Set up the DP83820/DP83815 multicast address filter by 3210 * passing all multicast addresses through a CRC generator, 3211 * and then using the high-order 11/9 bits as an index into 3212 * the 2048/512 bit multicast hash table. The high-order 3213 * 7/5 bits select the slot, while the low-order 4 bits 3214 * select the bit within the slot. Note that only the low 3215 * 16-bits of each filter word are used, and there are 3216 * 128/32 filter words. 3217 */ 3218 3219 memset(mchash, 0, sizeof(mchash)); 3220 3221 ifp->if_flags &= ~IFF_ALLMULTI; 3222 ETHER_FIRST_MULTI(step, ec, enm); 3223 if (enm == NULL) 3224 goto setit; 3225 while (enm != NULL) { 3226 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 3227 /* 3228 * We must listen to a range of multicast addresses. 3229 * For now, just accept all multicasts, rather than 3230 * trying to set only those filter bits needed to match 3231 * the range. (At this time, the only use of address 3232 * ranges is for IP multicast routing, for which the 3233 * range is big enough to require all bits set.) 3234 */ 3235 goto allmulti; 3236 } 3237 3238 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 3239 3240 if (sc->sc_gigabit) { 3241 /* Just want the 11 most significant bits. */ 3242 hash = crc >> 21; 3243 } else { 3244 /* Just want the 9 most significant bits. */ 3245 hash = crc >> 23; 3246 } 3247 3248 slot = hash >> 4; 3249 bit = hash & 0xf; 3250 3251 /* Set the corresponding bit in the hash table. */ 3252 mchash[slot] |= 1 << bit; 3253 3254 ETHER_NEXT_MULTI(step, enm); 3255 } 3256 sc->sc_rfcr |= RFCR_MHEN; 3257 goto setit; 3258 3259 allmulti: 3260 ifp->if_flags |= IFF_ALLMULTI; 3261 sc->sc_rfcr |= RFCR_AAM; 3262 3263 setit: 3264 #define FILTER_EMIT(addr, data) \ 3265 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 3266 delay(1); \ 3267 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 3268 delay(1) 3269 3270 /* 3271 * Disable receive filter, and program the node address. 3272 */ 3273 cp = CLLADDR(ifp->if_sadl); 3274 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]); 3275 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]); 3276 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]); 3277 3278 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3279 int nwords = 3280 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815; 3281 /* 3282 * Program the multicast hash table. 3283 */ 3284 for (i = 0; i < nwords; i++) { 3285 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]); 3286 } 3287 } 3288 #undef FILTER_EMIT 3289 #undef MCHASH_NWORDS 3290 #undef MCHASH_NWORDS_83815 3291 #undef MCHASH_NWORDS_83820 3292 3293 /* 3294 * Re-enable the receiver filter. 3295 */ 3296 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 3297 } 3298 3299 /* 3300 * sip_dp83820_mii_readreg: [mii interface function] 3301 * 3302 * Read a PHY register on the MII of the DP83820. 3303 */ 3304 static int 3305 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg) 3306 { 3307 struct sip_softc *sc = device_private(self); 3308 3309 if (sc->sc_cfg & CFG_TBI_EN) { 3310 bus_addr_t tbireg; 3311 int rv; 3312 3313 if (phy != 0) 3314 return (0); 3315 3316 switch (reg) { 3317 case MII_BMCR: tbireg = SIP_TBICR; break; 3318 case MII_BMSR: tbireg = SIP_TBISR; break; 3319 case MII_ANAR: tbireg = SIP_TANAR; break; 3320 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 3321 case MII_ANER: tbireg = SIP_TANER; break; 3322 case MII_EXTSR: 3323 /* 3324 * Don't even bother reading the TESR register. 3325 * The manual documents that the device has 3326 * 1000baseX full/half capability, but the 3327 * register itself seems read back 0 on some 3328 * boards. Just hard-code the result. 3329 */ 3330 return (EXTSR_1000XFDX|EXTSR_1000XHDX); 3331 3332 default: 3333 return (0); 3334 } 3335 3336 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff; 3337 if (tbireg == SIP_TBISR) { 3338 /* LINK and ACOMP are switched! */ 3339 int val = rv; 3340 3341 rv = 0; 3342 if (val & TBISR_MR_LINK_STATUS) 3343 rv |= BMSR_LINK; 3344 if (val & TBISR_MR_AN_COMPLETE) 3345 rv |= BMSR_ACOMP; 3346 3347 /* 3348 * The manual claims this register reads back 0 3349 * on hard and soft reset. But we want to let 3350 * the gentbi driver know that we support auto- 3351 * negotiation, so hard-code this bit in the 3352 * result. 3353 */ 3354 rv |= BMSR_ANEG | BMSR_EXTSTAT; 3355 } 3356 3357 return (rv); 3358 } 3359 3360 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg); 3361 } 3362 3363 /* 3364 * sip_dp83820_mii_writereg: [mii interface function] 3365 * 3366 * Write a PHY register on the MII of the DP83820. 3367 */ 3368 static void 3369 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val) 3370 { 3371 struct sip_softc *sc = device_private(self); 3372 3373 if (sc->sc_cfg & CFG_TBI_EN) { 3374 bus_addr_t tbireg; 3375 3376 if (phy != 0) 3377 return; 3378 3379 switch (reg) { 3380 case MII_BMCR: tbireg = SIP_TBICR; break; 3381 case MII_ANAR: tbireg = SIP_TANAR; break; 3382 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 3383 default: 3384 return; 3385 } 3386 3387 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val); 3388 return; 3389 } 3390 3391 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val); 3392 } 3393 3394 /* 3395 * sip_dp83820_mii_statchg: [mii interface function] 3396 * 3397 * Callback from MII layer when media changes. 3398 */ 3399 static void 3400 sipcom_dp83820_mii_statchg(device_t self) 3401 { 3402 struct sip_softc *sc = device_private(self); 3403 struct mii_data *mii = &sc->sc_mii; 3404 u_int32_t cfg, pcr; 3405 3406 /* 3407 * Get flow control negotiation result. 3408 */ 3409 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 3410 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 3411 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 3412 mii->mii_media_active &= ~IFM_ETH_FMASK; 3413 } 3414 3415 /* 3416 * Update TXCFG for full-duplex operation. 3417 */ 3418 if ((mii->mii_media_active & IFM_FDX) != 0) 3419 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3420 else 3421 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3422 3423 /* 3424 * Update RXCFG for full-duplex or loopback. 3425 */ 3426 if ((mii->mii_media_active & IFM_FDX) != 0 || 3427 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) 3428 sc->sc_rxcfg |= RXCFG_ATX; 3429 else 3430 sc->sc_rxcfg &= ~RXCFG_ATX; 3431 3432 /* 3433 * Update CFG for MII/GMII. 3434 */ 3435 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) 3436 cfg = sc->sc_cfg | CFG_MODE_1000; 3437 else 3438 cfg = sc->sc_cfg; 3439 3440 /* 3441 * 802.3x flow control. 3442 */ 3443 pcr = 0; 3444 if (sc->sc_flowflags & IFM_FLOW) { 3445 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) 3446 pcr |= sc->sc_rx_flow_thresh; 3447 if (sc->sc_flowflags & IFM_ETH_RXPAUSE) 3448 pcr |= PCR_PSEN | PCR_PS_MCAST; 3449 } 3450 3451 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg); 3452 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3453 sc->sc_txcfg); 3454 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3455 sc->sc_rxcfg); 3456 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr); 3457 } 3458 3459 /* 3460 * sip_mii_bitbang_read: [mii bit-bang interface function] 3461 * 3462 * Read the MII serial port for the MII bit-bang module. 3463 */ 3464 static u_int32_t 3465 sipcom_mii_bitbang_read(device_t self) 3466 { 3467 struct sip_softc *sc = device_private(self); 3468 3469 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR)); 3470 } 3471 3472 /* 3473 * sip_mii_bitbang_write: [mii big-bang interface function] 3474 * 3475 * Write the MII serial port for the MII bit-bang module. 3476 */ 3477 static void 3478 sipcom_mii_bitbang_write(device_t self, u_int32_t val) 3479 { 3480 struct sip_softc *sc = device_private(self); 3481 3482 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val); 3483 } 3484 3485 /* 3486 * sip_sis900_mii_readreg: [mii interface function] 3487 * 3488 * Read a PHY register on the MII. 3489 */ 3490 static int 3491 sipcom_sis900_mii_readreg(device_t self, int phy, int reg) 3492 { 3493 struct sip_softc *sc = device_private(self); 3494 u_int32_t enphy; 3495 3496 /* 3497 * The PHY of recent SiS chipsets is accessed through bitbang 3498 * operations. 3499 */ 3500 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) 3501 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, 3502 phy, reg); 3503 3504 #ifndef SIS900_MII_RESTRICT 3505 /* 3506 * The SiS 900 has only an internal PHY on the MII. Only allow 3507 * MII address 0. 3508 */ 3509 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 3510 return (0); 3511 #endif 3512 3513 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3514 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) | 3515 ENPHY_RWCMD | ENPHY_ACCESS); 3516 do { 3517 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3518 } while (enphy & ENPHY_ACCESS); 3519 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT); 3520 } 3521 3522 /* 3523 * sip_sis900_mii_writereg: [mii interface function] 3524 * 3525 * Write a PHY register on the MII. 3526 */ 3527 static void 3528 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val) 3529 { 3530 struct sip_softc *sc = device_private(self); 3531 u_int32_t enphy; 3532 3533 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) { 3534 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, 3535 phy, reg, val); 3536 return; 3537 } 3538 3539 #ifndef SIS900_MII_RESTRICT 3540 /* 3541 * The SiS 900 has only an internal PHY on the MII. Only allow 3542 * MII address 0. 3543 */ 3544 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 3545 return; 3546 #endif 3547 3548 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3549 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) | 3550 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS); 3551 do { 3552 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3553 } while (enphy & ENPHY_ACCESS); 3554 } 3555 3556 /* 3557 * sip_sis900_mii_statchg: [mii interface function] 3558 * 3559 * Callback from MII layer when media changes. 3560 */ 3561 static void 3562 sipcom_sis900_mii_statchg(device_t self) 3563 { 3564 struct sip_softc *sc = device_private(self); 3565 struct mii_data *mii = &sc->sc_mii; 3566 u_int32_t flowctl; 3567 3568 /* 3569 * Get flow control negotiation result. 3570 */ 3571 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 3572 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 3573 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 3574 mii->mii_media_active &= ~IFM_ETH_FMASK; 3575 } 3576 3577 /* 3578 * Update TXCFG for full-duplex operation. 3579 */ 3580 if ((mii->mii_media_active & IFM_FDX) != 0) 3581 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3582 else 3583 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3584 3585 /* 3586 * Update RXCFG for full-duplex or loopback. 3587 */ 3588 if ((mii->mii_media_active & IFM_FDX) != 0 || 3589 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) 3590 sc->sc_rxcfg |= RXCFG_ATX; 3591 else 3592 sc->sc_rxcfg &= ~RXCFG_ATX; 3593 3594 /* 3595 * Update IMR for use of 802.3x flow control. 3596 */ 3597 if (sc->sc_flowflags & IFM_FLOW) { 3598 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST); 3599 flowctl = FLOWCTL_FLOWEN; 3600 } else { 3601 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST); 3602 flowctl = 0; 3603 } 3604 3605 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3606 sc->sc_txcfg); 3607 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3608 sc->sc_rxcfg); 3609 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr); 3610 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl); 3611 } 3612 3613 /* 3614 * sip_dp83815_mii_readreg: [mii interface function] 3615 * 3616 * Read a PHY register on the MII. 3617 */ 3618 static int 3619 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg) 3620 { 3621 struct sip_softc *sc = device_private(self); 3622 u_int32_t val; 3623 3624 /* 3625 * The DP83815 only has an internal PHY. Only allow 3626 * MII address 0. 3627 */ 3628 if (phy != 0) 3629 return (0); 3630 3631 /* 3632 * Apparently, after a reset, the DP83815 can take a while 3633 * to respond. During this recovery period, the BMSR returns 3634 * a value of 0. Catch this -- it's not supposed to happen 3635 * (the BMSR has some hardcoded-to-1 bits), and wait for the 3636 * PHY to come back to life. 3637 * 3638 * This works out because the BMSR is the first register 3639 * read during the PHY probe process. 3640 */ 3641 do { 3642 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg)); 3643 } while (reg == MII_BMSR && val == 0); 3644 3645 return (val & 0xffff); 3646 } 3647 3648 /* 3649 * sip_dp83815_mii_writereg: [mii interface function] 3650 * 3651 * Write a PHY register to the MII. 3652 */ 3653 static void 3654 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val) 3655 { 3656 struct sip_softc *sc = device_private(self); 3657 3658 /* 3659 * The DP83815 only has an internal PHY. Only allow 3660 * MII address 0. 3661 */ 3662 if (phy != 0) 3663 return; 3664 3665 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val); 3666 } 3667 3668 /* 3669 * sip_dp83815_mii_statchg: [mii interface function] 3670 * 3671 * Callback from MII layer when media changes. 3672 */ 3673 static void 3674 sipcom_dp83815_mii_statchg(device_t self) 3675 { 3676 struct sip_softc *sc = device_private(self); 3677 3678 /* 3679 * Update TXCFG for full-duplex operation. 3680 */ 3681 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 3682 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3683 else 3684 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3685 3686 /* 3687 * Update RXCFG for full-duplex or loopback. 3688 */ 3689 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || 3690 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) 3691 sc->sc_rxcfg |= RXCFG_ATX; 3692 else 3693 sc->sc_rxcfg &= ~RXCFG_ATX; 3694 3695 /* 3696 * XXX 802.3x flow control. 3697 */ 3698 3699 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3700 sc->sc_txcfg); 3701 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3702 sc->sc_rxcfg); 3703 3704 /* 3705 * Some DP83815s experience problems when used with short 3706 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This 3707 * sequence adjusts the DSP's signal attenuation to fix the 3708 * problem. 3709 */ 3710 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) { 3711 uint32_t reg; 3712 3713 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001); 3714 3715 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); 3716 reg &= 0x0fff; 3717 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000); 3718 delay(100); 3719 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc); 3720 reg &= 0x00ff; 3721 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) { 3722 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc, 3723 0x00e8); 3724 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); 3725 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, 3726 reg | 0x20); 3727 } 3728 3729 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0); 3730 } 3731 } 3732 3733 static void 3734 sipcom_dp83820_read_macaddr(struct sip_softc *sc, 3735 const struct pci_attach_args *pa, u_int8_t *enaddr) 3736 { 3737 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2]; 3738 u_int8_t cksum, *e, match; 3739 int i; 3740 3741 /* 3742 * EEPROM data format for the DP83820 can be found in 3743 * the DP83820 manual, section 4.2.4. 3744 */ 3745 3746 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data); 3747 3748 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8; 3749 match = ~(match - 1); 3750 3751 cksum = 0x55; 3752 e = (u_int8_t *) eeprom_data; 3753 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++) 3754 cksum += *e++; 3755 3756 if (cksum != match) 3757 printf("%s: Checksum (%x) mismatch (%x)", 3758 device_xname(sc->sc_dev), cksum, match); 3759 3760 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff; 3761 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8; 3762 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff; 3763 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8; 3764 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff; 3765 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8; 3766 } 3767 3768 static void 3769 sipcom_sis900_eeprom_delay(struct sip_softc *sc) 3770 { 3771 int i; 3772 3773 /* 3774 * FreeBSD goes from (300/33)+1 [10] to 0. There must be 3775 * a reason, but I don't know it. 3776 */ 3777 for (i = 0; i < 10; i++) 3778 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR); 3779 } 3780 3781 static void 3782 sipcom_sis900_read_macaddr(struct sip_softc *sc, 3783 const struct pci_attach_args *pa, u_int8_t *enaddr) 3784 { 3785 u_int16_t myea[ETHER_ADDR_LEN / 2]; 3786 3787 switch (sc->sc_rev) { 3788 case SIS_REV_630S: 3789 case SIS_REV_630E: 3790 case SIS_REV_630EA1: 3791 case SIS_REV_630ET: 3792 case SIS_REV_635: 3793 /* 3794 * The MAC address for the on-board Ethernet of 3795 * the SiS 630 chipset is in the NVRAM. Kick 3796 * the chip into re-loading it from NVRAM, and 3797 * read the MAC address out of the filter registers. 3798 */ 3799 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD); 3800 3801 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3802 RFCR_RFADDR_NODE0); 3803 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3804 0xffff; 3805 3806 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3807 RFCR_RFADDR_NODE2); 3808 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3809 0xffff; 3810 3811 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3812 RFCR_RFADDR_NODE4); 3813 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3814 0xffff; 3815 break; 3816 3817 case SIS_REV_960: 3818 { 3819 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ 3820 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y)) 3821 3822 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ 3823 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y)) 3824 3825 int waittime, i; 3826 3827 /* Allow to read EEPROM from LAN. It is shared 3828 * between a 1394 controller and the NIC and each 3829 * time we access it, we need to set SIS_EECMD_REQ. 3830 */ 3831 SIS_SET_EROMAR(sc, EROMAR_REQ); 3832 3833 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */ 3834 /* Force EEPROM to idle state. */ 3835 3836 /* 3837 * XXX-cube This is ugly. I'll look for docs about it. 3838 */ 3839 SIS_SET_EROMAR(sc, EROMAR_EECS); 3840 sipcom_sis900_eeprom_delay(sc); 3841 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */ 3842 SIS_SET_EROMAR(sc, EROMAR_EESK); 3843 sipcom_sis900_eeprom_delay(sc); 3844 SIS_CLR_EROMAR(sc, EROMAR_EESK); 3845 sipcom_sis900_eeprom_delay(sc); 3846 } 3847 SIS_CLR_EROMAR(sc, EROMAR_EECS); 3848 sipcom_sis900_eeprom_delay(sc); 3849 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0); 3850 3851 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) { 3852 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, 3853 sizeof(myea) / sizeof(myea[0]), myea); 3854 break; 3855 } 3856 DELAY(1); 3857 } 3858 3859 /* 3860 * Set SIS_EECTL_CLK to high, so a other master 3861 * can operate on the i2c bus. 3862 */ 3863 SIS_SET_EROMAR(sc, EROMAR_EESK); 3864 3865 /* Refuse EEPROM access by LAN */ 3866 SIS_SET_EROMAR(sc, EROMAR_DONE); 3867 } break; 3868 3869 default: 3870 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, 3871 sizeof(myea) / sizeof(myea[0]), myea); 3872 } 3873 3874 enaddr[0] = myea[0] & 0xff; 3875 enaddr[1] = myea[0] >> 8; 3876 enaddr[2] = myea[1] & 0xff; 3877 enaddr[3] = myea[1] >> 8; 3878 enaddr[4] = myea[2] & 0xff; 3879 enaddr[5] = myea[2] >> 8; 3880 } 3881 3882 /* Table and macro to bit-reverse an octet. */ 3883 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}; 3884 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf]) 3885 3886 static void 3887 sipcom_dp83815_read_macaddr(struct sip_softc *sc, 3888 const struct pci_attach_args *pa, u_int8_t *enaddr) 3889 { 3890 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea; 3891 u_int8_t cksum, *e, match; 3892 int i; 3893 3894 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) / 3895 sizeof(eeprom_data[0]), eeprom_data); 3896 3897 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8; 3898 match = ~(match - 1); 3899 3900 cksum = 0x55; 3901 e = (u_int8_t *) eeprom_data; 3902 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) { 3903 cksum += *e++; 3904 } 3905 if (cksum != match) { 3906 printf("%s: Checksum (%x) mismatch (%x)", 3907 device_xname(sc->sc_dev), cksum, match); 3908 } 3909 3910 /* 3911 * Unrolled because it makes slightly more sense this way. 3912 * The DP83815 stores the MAC address in bit 0 of word 6 3913 * through bit 15 of word 8. 3914 */ 3915 ea = &eeprom_data[6]; 3916 enaddr[0] = ((*ea & 0x1) << 7); 3917 ea++; 3918 enaddr[0] |= ((*ea & 0xFE00) >> 9); 3919 enaddr[1] = ((*ea & 0x1FE) >> 1); 3920 enaddr[2] = ((*ea & 0x1) << 7); 3921 ea++; 3922 enaddr[2] |= ((*ea & 0xFE00) >> 9); 3923 enaddr[3] = ((*ea & 0x1FE) >> 1); 3924 enaddr[4] = ((*ea & 0x1) << 7); 3925 ea++; 3926 enaddr[4] |= ((*ea & 0xFE00) >> 9); 3927 enaddr[5] = ((*ea & 0x1FE) >> 1); 3928 3929 /* 3930 * In case that's not weird enough, we also need to reverse 3931 * the bits in each byte. This all actually makes more sense 3932 * if you think about the EEPROM storage as an array of bits 3933 * being shifted into bytes, but that's not how we're looking 3934 * at it here... 3935 */ 3936 for (i = 0; i < 6 ;i++) 3937 enaddr[i] = bbr(enaddr[i]); 3938 } 3939 3940 /* 3941 * sip_mediastatus: [ifmedia interface function] 3942 * 3943 * Get the current interface media status. 3944 */ 3945 static void 3946 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 3947 { 3948 struct sip_softc *sc = ifp->if_softc; 3949 3950 if (!device_is_active(sc->sc_dev)) { 3951 ifmr->ifm_active = IFM_ETHER | IFM_NONE; 3952 ifmr->ifm_status = 0; 3953 return; 3954 } 3955 ether_mediastatus(ifp, ifmr); 3956 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) | 3957 sc->sc_flowflags; 3958 } 3959