xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 17dd36da8292193180754d5047c0926dbb56818c)
1 /*	$NetBSD: if_sip.c,v 1.27 2001/03/24 19:40:51 briggs Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 Network Computer, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of Network Computer, Inc. nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Silicon Integrated Systems SiS 900 and
34  * SiS 7016 10/100 PCI Ethernet controllers.
35  *
36  * Written by Jason R. Thorpe for Network Computer, Inc.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #include <sys/queue.h>
54 
55 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
56 
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61 
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65 
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70 
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75 
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 #include <machine/endian.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/pcidevs.h>
86 
87 #include <dev/pci/if_sipreg.h>
88 
89 /*
90  * Transmit descriptor list size.  This is arbitrary, but allocate
91  * enough descriptors for 64 pending transmissions, and 16 segments
92  * per packet.  This MUST work out to a power of 2.
93  */
94 #define	SIP_NTXSEGS		16
95 
96 #define	SIP_TXQUEUELEN		64
97 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
98 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
99 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
100 
101 /*
102  * Receive descriptor list size.  We have one Rx buffer per incoming
103  * packet, so this logic is a little simpler.
104  */
105 #define	SIP_NRXDESC		64
106 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
107 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
108 
109 /*
110  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
111  * a single clump that maps to a single DMA segment to make several things
112  * easier.
113  */
114 struct sip_control_data {
115 	/*
116 	 * The transmit descriptors.
117 	 */
118 	struct sip_desc scd_txdescs[SIP_NTXDESC];
119 
120 	/*
121 	 * The receive descriptors.
122 	 */
123 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
124 };
125 
126 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
127 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
128 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
129 
130 /*
131  * Software state for transmit jobs.
132  */
133 struct sip_txsoft {
134 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
135 	bus_dmamap_t txs_dmamap;	/* our DMA map */
136 	int txs_firstdesc;		/* first descriptor in packet */
137 	int txs_lastdesc;		/* last descriptor in packet */
138 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
139 };
140 
141 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
142 
143 /*
144  * Software state for receive jobs.
145  */
146 struct sip_rxsoft {
147 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
148 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
149 };
150 
151 /*
152  * Software state per device.
153  */
154 struct sip_softc {
155 	struct device sc_dev;		/* generic device information */
156 	bus_space_tag_t sc_st;		/* bus space tag */
157 	bus_space_handle_t sc_sh;	/* bus space handle */
158 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
159 	struct ethercom sc_ethercom;	/* ethernet common data */
160 	void *sc_sdhook;		/* shutdown hook */
161 
162 	const struct sip_product *sc_model; /* which model are we? */
163 
164 	void *sc_ih;			/* interrupt cookie */
165 
166 	struct mii_data sc_mii;		/* MII/media information */
167 
168 	struct callout sc_tick_ch;	/* tick callout */
169 
170 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
171 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
172 
173 	/*
174 	 * Software state for transmit and receive descriptors.
175 	 */
176 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
177 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
178 
179 	/*
180 	 * Control data structures.
181 	 */
182 	struct sip_control_data *sc_control_data;
183 #define	sc_txdescs	sc_control_data->scd_txdescs
184 #define	sc_rxdescs	sc_control_data->scd_rxdescs
185 
186 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
187 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
188 	u_int32_t sc_imr;		/* prototype IMR register */
189 	u_int32_t sc_rfcr;		/* prototype RFCR register */
190 
191 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
192 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
193 
194 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
195 
196 	int	sc_flags;		/* misc. flags; see below */
197 
198 	int	sc_txfree;		/* number of free Tx descriptors */
199 	int	sc_txnext;		/* next ready Tx descriptor */
200 
201 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
202 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
203 
204 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
205 };
206 
207 /* sc_flags */
208 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
209 
210 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
211 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
212 
213 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
214 do {									\
215 	int __x, __n;							\
216 									\
217 	__x = (x);							\
218 	__n = (n);							\
219 									\
220 	/* If it will wrap around, sync to the end of the ring. */	\
221 	if ((__x + __n) > SIP_NTXDESC) {				\
222 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
223 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
224 		    (SIP_NTXDESC - __x), (ops));			\
225 		__n -= (SIP_NTXDESC - __x);				\
226 		__x = 0;						\
227 	}								\
228 									\
229 	/* Now sync whatever is left. */				\
230 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
231 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
232 } while (0)
233 
234 #define	SIP_CDRXSYNC(sc, x, ops)					\
235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
236 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
237 
238 /*
239  * Note we rely on MCLBYTES being a power of two below.
240  */
241 #define	SIP_INIT_RXDESC(sc, x)						\
242 do {									\
243 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
244 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
245 									\
246 	__sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
247 	__sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
248 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
249 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK));			\
250 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
251 } while (0)
252 
253 #define SIP_TIMEOUT 1000
254 
255 void	sip_start __P((struct ifnet *));
256 void	sip_watchdog __P((struct ifnet *));
257 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
258 int	sip_init __P((struct ifnet *));
259 void	sip_stop __P((struct ifnet *, int));
260 
261 void	sip_shutdown __P((void *));
262 
263 void	sip_reset __P((struct sip_softc *));
264 void	sip_rxdrain __P((struct sip_softc *));
265 int	sip_add_rxbuf __P((struct sip_softc *, int));
266 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
267 void	sip_tick __P((void *));
268 
269 void	sip_sis900_set_filter __P((struct sip_softc *));
270 void	sip_dp83815_set_filter __P((struct sip_softc *));
271 
272 void	sip_sis900_read_macaddr __P((struct sip_softc *, u_int8_t *));
273 void	sip_dp83815_read_macaddr __P((struct sip_softc *, u_int8_t *));
274 
275 int	sip_intr __P((void *));
276 void	sip_txintr __P((struct sip_softc *));
277 void	sip_rxintr __P((struct sip_softc *));
278 
279 int	sip_sis900_mii_readreg __P((struct device *, int, int));
280 void	sip_sis900_mii_writereg __P((struct device *, int, int, int));
281 void	sip_sis900_mii_statchg __P((struct device *));
282 
283 int	sip_dp83815_mii_readreg __P((struct device *, int, int));
284 void	sip_dp83815_mii_writereg __P((struct device *, int, int, int));
285 void	sip_dp83815_mii_statchg __P((struct device *));
286 
287 int	sip_mediachange __P((struct ifnet *));
288 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
289 
290 int	sip_match __P((struct device *, struct cfdata *, void *));
291 void	sip_attach __P((struct device *, struct device *, void *));
292 
293 int	sip_copy_small = 0;
294 
295 struct cfattach sip_ca = {
296 	sizeof(struct sip_softc), sip_match, sip_attach,
297 };
298 
299 /*
300  * Descriptions of the variants of the SiS900.
301  */
302 struct sip_variant {
303 	int	(*sipv_mii_readreg) __P((struct device *, int, int));
304 	void	(*sipv_mii_writereg) __P((struct device *, int, int, int));
305 	void	(*sipv_mii_statchg) __P((struct device *));
306 	void	(*sipv_set_filter) __P((struct sip_softc *));
307 	void	(*sipv_read_macaddr) __P((struct sip_softc *, u_int8_t *));
308 };
309 
310 const struct sip_variant sip_variant_sis900 = {
311 	sip_sis900_mii_readreg, sip_sis900_mii_writereg,
312 	    sip_sis900_mii_statchg, sip_sis900_set_filter,
313 	    sip_sis900_read_macaddr
314 };
315 
316 const struct sip_variant sip_variant_dp83815 = {
317 	sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
318 	    sip_dp83815_mii_statchg, sip_dp83815_set_filter,
319 	    sip_dp83815_read_macaddr
320 };
321 
322 /*
323  * Devices supported by this driver.
324  */
325 const struct sip_product {
326 	pci_vendor_id_t		sip_vendor;
327 	pci_product_id_t	sip_product;
328 	const char		*sip_name;
329 	const struct sip_variant *sip_variant;
330 } sip_products[] = {
331 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
332 	  "SiS 900 10/100 Ethernet",
333 	  &sip_variant_sis900 },
334 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
335 	  "SiS 7016 10/100 Ethernet",
336 	  &sip_variant_sis900 },
337 
338 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
339 	  "NatSemi DP83815 10/100 Ethernet",
340 	  &sip_variant_dp83815 },
341 
342 	{ 0,			0,
343 	  NULL,
344 	  NULL },
345 };
346 
347 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
348 
349 const struct sip_product *
350 sip_lookup(pa)
351 	const struct pci_attach_args *pa;
352 {
353 	const struct sip_product *sip;
354 
355 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
356 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
357 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
358 			return (sip);
359 	}
360 	return (NULL);
361 }
362 
363 int
364 sip_match(parent, cf, aux)
365 	struct device *parent;
366 	struct cfdata *cf;
367 	void *aux;
368 {
369 	struct pci_attach_args *pa = aux;
370 
371 	if (sip_lookup(pa) != NULL)
372 		return (1);
373 
374 	return (0);
375 }
376 
377 void
378 sip_attach(parent, self, aux)
379 	struct device *parent, *self;
380 	void *aux;
381 {
382 	struct sip_softc *sc = (struct sip_softc *) self;
383 	struct pci_attach_args *pa = aux;
384 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
385 	pci_chipset_tag_t pc = pa->pa_pc;
386 	pci_intr_handle_t ih;
387 	const char *intrstr = NULL;
388 	bus_space_tag_t iot, memt;
389 	bus_space_handle_t ioh, memh;
390 	bus_dma_segment_t seg;
391 	int ioh_valid, memh_valid;
392 	int i, rseg, error;
393 	const struct sip_product *sip;
394 	pcireg_t pmode;
395 	u_int8_t enaddr[ETHER_ADDR_LEN];
396 	int pmreg;
397 
398 	callout_init(&sc->sc_tick_ch);
399 
400 	sip = sip_lookup(pa);
401 	if (sip == NULL) {
402 		printf("\n");
403 		panic("sip_attach: impossible");
404 	}
405 
406 	printf(": %s\n", sip->sip_name);
407 
408 	sc->sc_model = sip;
409 
410 	/*
411 	 * Map the device.
412 	 */
413 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
414 	    PCI_MAPREG_TYPE_IO, 0,
415 	    &iot, &ioh, NULL, NULL) == 0);
416 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
417 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
418 	    &memt, &memh, NULL, NULL) == 0);
419 
420 	if (memh_valid) {
421 		sc->sc_st = memt;
422 		sc->sc_sh = memh;
423 	} else if (ioh_valid) {
424 		sc->sc_st = iot;
425 		sc->sc_sh = ioh;
426 	} else {
427 		printf("%s: unable to map device registers\n",
428 		    sc->sc_dev.dv_xname);
429 		return;
430 	}
431 
432 	sc->sc_dmat = pa->pa_dmat;
433 
434 	/* Enable bus mastering. */
435 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
436 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
437 	    PCI_COMMAND_MASTER_ENABLE);
438 
439 	/* Get it out of power save mode if needed. */
440 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
441 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
442 		if (pmode == 3) {
443 			/*
444 			 * The card has lost all configuration data in
445 			 * this state, so punt.
446 			 */
447 			printf("%s: unable to wake up from power state D3\n",
448 			    sc->sc_dev.dv_xname);
449 			return;
450 		}
451 		if (pmode != 0) {
452 			printf("%s: waking up from power state D%d\n",
453 			    sc->sc_dev.dv_xname, pmode);
454 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
455 		}
456 	}
457 
458 	/*
459 	 * Map and establish our interrupt.
460 	 */
461 	if (pci_intr_map(pa, &ih)) {
462 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
463 		return;
464 	}
465 	intrstr = pci_intr_string(pc, ih);
466 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
467 	if (sc->sc_ih == NULL) {
468 		printf("%s: unable to establish interrupt",
469 		    sc->sc_dev.dv_xname);
470 		if (intrstr != NULL)
471 			printf(" at %s", intrstr);
472 		printf("\n");
473 		return;
474 	}
475 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
476 
477 	SIMPLEQ_INIT(&sc->sc_txfreeq);
478 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
479 
480 	/*
481 	 * Allocate the control data structures, and create and load the
482 	 * DMA map for it.
483 	 */
484 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
485 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
486 	    0)) != 0) {
487 		printf("%s: unable to allocate control data, error = %d\n",
488 		    sc->sc_dev.dv_xname, error);
489 		goto fail_0;
490 	}
491 
492 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
493 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
494 	    BUS_DMA_COHERENT)) != 0) {
495 		printf("%s: unable to map control data, error = %d\n",
496 		    sc->sc_dev.dv_xname, error);
497 		goto fail_1;
498 	}
499 
500 	if ((error = bus_dmamap_create(sc->sc_dmat,
501 	    sizeof(struct sip_control_data), 1,
502 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
503 		printf("%s: unable to create control data DMA map, "
504 		    "error = %d\n", sc->sc_dev.dv_xname, error);
505 		goto fail_2;
506 	}
507 
508 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
509 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
510 	    0)) != 0) {
511 		printf("%s: unable to load control data DMA map, error = %d\n",
512 		    sc->sc_dev.dv_xname, error);
513 		goto fail_3;
514 	}
515 
516 	/*
517 	 * Create the transmit buffer DMA maps.
518 	 */
519 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
520 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
521 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
522 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
523 			printf("%s: unable to create tx DMA map %d, "
524 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
525 			goto fail_4;
526 		}
527 	}
528 
529 	/*
530 	 * Create the receive buffer DMA maps.
531 	 */
532 	for (i = 0; i < SIP_NRXDESC; i++) {
533 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
534 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
535 			printf("%s: unable to create rx DMA map %d, "
536 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
537 			goto fail_5;
538 		}
539 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
540 	}
541 
542 	/*
543 	 * Reset the chip to a known state.
544 	 */
545 	sip_reset(sc);
546 
547 	/*
548 	 * Read the Ethernet address from the EEPROM.
549 	 */
550 	sip->sip_variant->sipv_read_macaddr(sc, enaddr);
551 
552 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
553 	    ether_sprintf(enaddr));
554 
555 	/*
556 	 * Initialize our media structures and probe the MII.
557 	 */
558 	sc->sc_mii.mii_ifp = ifp;
559 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
560 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
561 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
562 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
563 	    sip_mediastatus);
564 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
565 	    MII_OFFSET_ANY, 0);
566 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
567 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
568 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
569 	} else
570 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
571 
572 	ifp = &sc->sc_ethercom.ec_if;
573 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
574 	ifp->if_softc = sc;
575 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
576 	ifp->if_ioctl = sip_ioctl;
577 	ifp->if_start = sip_start;
578 	ifp->if_watchdog = sip_watchdog;
579 	ifp->if_init = sip_init;
580 	ifp->if_stop = sip_stop;
581 	IFQ_SET_READY(&ifp->if_snd);
582 
583 	/*
584 	 * Attach the interface.
585 	 */
586 	if_attach(ifp);
587 	ether_ifattach(ifp, enaddr);
588 
589 	/*
590 	 * Make sure the interface is shutdown during reboot.
591 	 */
592 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
593 	if (sc->sc_sdhook == NULL)
594 		printf("%s: WARNING: unable to establish shutdown hook\n",
595 		    sc->sc_dev.dv_xname);
596 	return;
597 
598 	/*
599 	 * Free any resources we've allocated during the failed attach
600 	 * attempt.  Do this in reverse order and fall through.
601 	 */
602  fail_5:
603 	for (i = 0; i < SIP_NRXDESC; i++) {
604 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
605 			bus_dmamap_destroy(sc->sc_dmat,
606 			    sc->sc_rxsoft[i].rxs_dmamap);
607 	}
608  fail_4:
609 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
610 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
611 			bus_dmamap_destroy(sc->sc_dmat,
612 			    sc->sc_txsoft[i].txs_dmamap);
613 	}
614 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
615  fail_3:
616 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
617  fail_2:
618 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
619 	    sizeof(struct sip_control_data));
620  fail_1:
621 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
622  fail_0:
623 	return;
624 }
625 
626 /*
627  * sip_shutdown:
628  *
629  *	Make sure the interface is stopped at reboot time.
630  */
631 void
632 sip_shutdown(arg)
633 	void *arg;
634 {
635 	struct sip_softc *sc = arg;
636 
637 	sip_stop(&sc->sc_ethercom.ec_if, 1);
638 }
639 
640 /*
641  * sip_start:		[ifnet interface function]
642  *
643  *	Start packet transmission on the interface.
644  */
645 void
646 sip_start(ifp)
647 	struct ifnet *ifp;
648 {
649 	struct sip_softc *sc = ifp->if_softc;
650 	struct mbuf *m0, *m;
651 	struct sip_txsoft *txs;
652 	bus_dmamap_t dmamap;
653 	int error, firsttx, nexttx, lasttx, ofree, seg;
654 
655 	/*
656 	 * If we've been told to pause, don't transmit any more packets.
657 	 */
658 	if (sc->sc_flags & SIPF_PAUSED)
659 		ifp->if_flags |= IFF_OACTIVE;
660 
661 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
662 		return;
663 
664 	/*
665 	 * Remember the previous number of free descriptors and
666 	 * the first descriptor we'll use.
667 	 */
668 	ofree = sc->sc_txfree;
669 	firsttx = sc->sc_txnext;
670 
671 	/*
672 	 * Loop through the send queue, setting up transmit descriptors
673 	 * until we drain the queue, or use up all available transmit
674 	 * descriptors.
675 	 */
676 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
677 	       sc->sc_txfree != 0) {
678 		/*
679 		 * Grab a packet off the queue.
680 		 */
681 		IFQ_POLL(&ifp->if_snd, m0);
682 		if (m0 == NULL)
683 			break;
684 		m = NULL;
685 
686 		dmamap = txs->txs_dmamap;
687 
688 		/*
689 		 * Load the DMA map.  If this fails, the packet either
690 		 * didn't fit in the alloted number of segments, or we
691 		 * were short on resources.  In this case, we'll copy
692 		 * and try again.
693 		 */
694 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
695 		    BUS_DMA_NOWAIT) != 0) {
696 			MGETHDR(m, M_DONTWAIT, MT_DATA);
697 			if (m == NULL) {
698 				printf("%s: unable to allocate Tx mbuf\n",
699 				    sc->sc_dev.dv_xname);
700 				break;
701 			}
702 			if (m0->m_pkthdr.len > MHLEN) {
703 				MCLGET(m, M_DONTWAIT);
704 				if ((m->m_flags & M_EXT) == 0) {
705 					printf("%s: unable to allocate Tx "
706 					    "cluster\n", sc->sc_dev.dv_xname);
707 					m_freem(m);
708 					break;
709 				}
710 			}
711 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
712 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
713 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
714 			    m, BUS_DMA_NOWAIT);
715 			if (error) {
716 				printf("%s: unable to load Tx buffer, "
717 				    "error = %d\n", sc->sc_dev.dv_xname, error);
718 				break;
719 			}
720 		}
721 
722 		/*
723 		 * Ensure we have enough descriptors free to describe
724 		 * the packet.
725 		 */
726 		if (dmamap->dm_nsegs > sc->sc_txfree) {
727 			/*
728 			 * Not enough free descriptors to transmit this
729 			 * packet.  We haven't committed anything yet,
730 			 * so just unload the DMA map, put the packet
731 			 * back on the queue, and punt.  Notify the upper
732 			 * layer that there are not more slots left.
733 			 *
734 			 * XXX We could allocate an mbuf and copy, but
735 			 * XXX is it worth it?
736 			 */
737 			ifp->if_flags |= IFF_OACTIVE;
738 			bus_dmamap_unload(sc->sc_dmat, dmamap);
739 			if (m != NULL)
740 				m_freem(m);
741 			break;
742 		}
743 
744 		IFQ_DEQUEUE(&ifp->if_snd, m0);
745 		if (m != NULL) {
746 			m_freem(m0);
747 			m0 = m;
748 		}
749 
750 		/*
751 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
752 		 */
753 
754 		/* Sync the DMA map. */
755 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
756 		    BUS_DMASYNC_PREWRITE);
757 
758 		/*
759 		 * Initialize the transmit descriptors.
760 		 */
761 		for (nexttx = sc->sc_txnext, seg = 0;
762 		     seg < dmamap->dm_nsegs;
763 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
764 			/*
765 			 * If this is the first descriptor we're
766 			 * enqueueing, don't set the OWN bit just
767 			 * yet.  That could cause a race condition.
768 			 * We'll do it below.
769 			 */
770 			sc->sc_txdescs[nexttx].sipd_bufptr =
771 			    htole32(dmamap->dm_segs[seg].ds_addr);
772 			sc->sc_txdescs[nexttx].sipd_cmdsts =
773 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
774 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
775 			lasttx = nexttx;
776 		}
777 
778 		/* Clear the MORE bit on the last segment. */
779 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
780 
781 		/* Sync the descriptors we're using. */
782 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
783 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
784 
785 		/*
786 		 * Store a pointer to the packet so we can free it later,
787 		 * and remember what txdirty will be once the packet is
788 		 * done.
789 		 */
790 		txs->txs_mbuf = m0;
791 		txs->txs_firstdesc = sc->sc_txnext;
792 		txs->txs_lastdesc = lasttx;
793 
794 		/* Advance the tx pointer. */
795 		sc->sc_txfree -= dmamap->dm_nsegs;
796 		sc->sc_txnext = nexttx;
797 
798 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
799 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
800 
801 #if NBPFILTER > 0
802 		/*
803 		 * Pass the packet to any BPF listeners.
804 		 */
805 		if (ifp->if_bpf)
806 			bpf_mtap(ifp->if_bpf, m0);
807 #endif /* NBPFILTER > 0 */
808 	}
809 
810 	if (txs == NULL || sc->sc_txfree == 0) {
811 		/* No more slots left; notify upper layer. */
812 		ifp->if_flags |= IFF_OACTIVE;
813 	}
814 
815 	if (sc->sc_txfree != ofree) {
816 		/*
817 		 * Cause a descriptor interrupt to happen on the
818 		 * last packet we enqueued.
819 		 */
820 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
821 		SIP_CDTXSYNC(sc, lasttx, 1,
822 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
823 
824 		/*
825 		 * The entire packet chain is set up.  Give the
826 		 * first descrptor to the chip now.
827 		 */
828 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
829 		SIP_CDTXSYNC(sc, firsttx, 1,
830 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
831 
832 		/* Start the transmit process. */
833 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
834 		     CR_TXE) == 0) {
835 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
836 			    SIP_CDTXADDR(sc, firsttx));
837 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
838 		}
839 
840 		/* Set a watchdog timer in case the chip flakes out. */
841 		ifp->if_timer = 5;
842 	}
843 }
844 
845 /*
846  * sip_watchdog:	[ifnet interface function]
847  *
848  *	Watchdog timer handler.
849  */
850 void
851 sip_watchdog(ifp)
852 	struct ifnet *ifp;
853 {
854 	struct sip_softc *sc = ifp->if_softc;
855 
856 	/*
857 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
858 	 * If we get a timeout, try and sweep up transmit descriptors.
859 	 * If we manage to sweep them all up, ignore the lack of
860 	 * interrupt.
861 	 */
862 	sip_txintr(sc);
863 
864 	if (sc->sc_txfree != SIP_NTXDESC) {
865 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
866 		ifp->if_oerrors++;
867 
868 		/* Reset the interface. */
869 		(void) sip_init(ifp);
870 	} else if (ifp->if_flags & IFF_DEBUG)
871 		printf("%s: recovered from device timeout\n",
872 		    sc->sc_dev.dv_xname);
873 
874 	/* Try to get more packets going. */
875 	sip_start(ifp);
876 }
877 
878 /*
879  * sip_ioctl:		[ifnet interface function]
880  *
881  *	Handle control requests from the operator.
882  */
883 int
884 sip_ioctl(ifp, cmd, data)
885 	struct ifnet *ifp;
886 	u_long cmd;
887 	caddr_t data;
888 {
889 	struct sip_softc *sc = ifp->if_softc;
890 	struct ifreq *ifr = (struct ifreq *)data;
891 	int s, error;
892 
893 	s = splnet();
894 
895 	switch (cmd) {
896 	case SIOCSIFMEDIA:
897 	case SIOCGIFMEDIA:
898 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
899 		break;
900 
901 	default:
902 		error = ether_ioctl(ifp, cmd, data);
903 		if (error == ENETRESET) {
904 			/*
905 			 * Multicast list has changed; set the hardware filter
906 			 * accordingly.
907 			 */
908 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
909 			error = 0;
910 		}
911 		break;
912 	}
913 
914 	/* Try to get more packets going. */
915 	sip_start(ifp);
916 
917 	splx(s);
918 	return (error);
919 }
920 
921 /*
922  * sip_intr:
923  *
924  *	Interrupt service routine.
925  */
926 int
927 sip_intr(arg)
928 	void *arg;
929 {
930 	struct sip_softc *sc = arg;
931 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
932 	u_int32_t isr;
933 	int handled = 0;
934 
935 	for (;;) {
936 		/* Reading clears interrupt. */
937 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
938 		if ((isr & sc->sc_imr) == 0)
939 			break;
940 
941 		handled = 1;
942 
943 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
944 			/* Grab any new packets. */
945 			sip_rxintr(sc);
946 
947 			if (isr & ISR_RXORN) {
948 				printf("%s: receive FIFO overrun\n",
949 				    sc->sc_dev.dv_xname);
950 
951 				/* XXX adjust rx_drain_thresh? */
952 			}
953 
954 			if (isr & ISR_RXIDLE) {
955 				printf("%s: receive ring overrun\n",
956 				    sc->sc_dev.dv_xname);
957 
958 				/* Get the receive process going again. */
959 				bus_space_write_4(sc->sc_st, sc->sc_sh,
960 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
961 				bus_space_write_4(sc->sc_st, sc->sc_sh,
962 				    SIP_CR, CR_RXE);
963 			}
964 		}
965 
966 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
967 			/* Sweep up transmit descriptors. */
968 			sip_txintr(sc);
969 
970 			if (isr & ISR_TXURN) {
971 				u_int32_t thresh;
972 
973 				printf("%s: transmit FIFO underrun",
974 				    sc->sc_dev.dv_xname);
975 
976 				thresh = sc->sc_tx_drain_thresh + 1;
977 				if (thresh <= TXCFG_DRTH &&
978 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
979 				     (sc->sc_tx_fill_thresh * 32))) {
980 					printf("; increasing Tx drain "
981 					    "threshold to %u bytes\n",
982 					    thresh * 32);
983 					sc->sc_tx_drain_thresh = thresh;
984 					(void) sip_init(ifp);
985 				} else {
986 					(void) sip_init(ifp);
987 					printf("\n");
988 				}
989 			}
990 		}
991 
992 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
993 			if (isr & ISR_PAUSE_ST) {
994 				sc->sc_flags |= SIPF_PAUSED;
995 				ifp->if_flags |= IFF_OACTIVE;
996 			}
997 			if (isr & ISR_PAUSE_END) {
998 				sc->sc_flags &= ~SIPF_PAUSED;
999 				ifp->if_flags &= ~IFF_OACTIVE;
1000 			}
1001 		}
1002 
1003 		if (isr & ISR_HIBERR) {
1004 #define	PRINTERR(bit, str)						\
1005 			if (isr & (bit))				\
1006 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1007 			PRINTERR(ISR_DPERR, "parity error");
1008 			PRINTERR(ISR_SSERR, "system error");
1009 			PRINTERR(ISR_RMABT, "master abort");
1010 			PRINTERR(ISR_RTABT, "target abort");
1011 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1012 			(void) sip_init(ifp);
1013 #undef PRINTERR
1014 		}
1015 	}
1016 
1017 	/* Try to get more packets going. */
1018 	sip_start(ifp);
1019 
1020 	return (handled);
1021 }
1022 
1023 /*
1024  * sip_txintr:
1025  *
1026  *	Helper; handle transmit interrupts.
1027  */
1028 void
1029 sip_txintr(sc)
1030 	struct sip_softc *sc;
1031 {
1032 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1033 	struct sip_txsoft *txs;
1034 	u_int32_t cmdsts;
1035 
1036 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1037 		ifp->if_flags &= ~IFF_OACTIVE;
1038 
1039 	/*
1040 	 * Go through our Tx list and free mbufs for those
1041 	 * frames which have been transmitted.
1042 	 */
1043 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1044 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1045 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1046 
1047 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1048 		if (cmdsts & CMDSTS_OWN)
1049 			break;
1050 
1051 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1052 
1053 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1054 
1055 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1056 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1057 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1058 		m_freem(txs->txs_mbuf);
1059 		txs->txs_mbuf = NULL;
1060 
1061 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1062 
1063 		/*
1064 		 * Check for errors and collisions.
1065 		 */
1066 		if (cmdsts &
1067 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1068 			if (ifp->if_flags & IFF_DEBUG) {
1069 				if (CMDSTS_Tx_ED)
1070 					printf("%s: excessive deferral\n",
1071 					    sc->sc_dev.dv_xname);
1072 				if (CMDSTS_Tx_EC) {
1073 					printf("%s: excessive collisions\n",
1074 					    sc->sc_dev.dv_xname);
1075 					ifp->if_collisions += 16;
1076 				}
1077 			}
1078 		} else {
1079 			/* Packet was transmitted successfully. */
1080 			ifp->if_opackets++;
1081 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * If there are no more pending transmissions, cancel the watchdog
1087 	 * timer.
1088 	 */
1089 	if (txs == NULL)
1090 		ifp->if_timer = 0;
1091 }
1092 
1093 /*
1094  * sip_rxintr:
1095  *
1096  *	Helper; handle receive interrupts.
1097  */
1098 void
1099 sip_rxintr(sc)
1100 	struct sip_softc *sc;
1101 {
1102 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1103 	struct sip_rxsoft *rxs;
1104 	struct mbuf *m;
1105 	u_int32_t cmdsts;
1106 	int i, len;
1107 
1108 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1109 		rxs = &sc->sc_rxsoft[i];
1110 
1111 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1112 
1113 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1114 
1115 		/*
1116 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1117 		 * consumer of the receive ring, so if the bit is clear,
1118 		 * we have processed all of the packets.
1119 		 */
1120 		if ((cmdsts & CMDSTS_OWN) == 0) {
1121 			/*
1122 			 * We have processed all of the receive buffers.
1123 			 */
1124 			break;
1125 		}
1126 
1127 		/*
1128 		 * If any collisions were seen on the wire, count one.
1129 		 */
1130 		if (cmdsts & CMDSTS_Rx_COL)
1131 			ifp->if_collisions++;
1132 
1133 		/*
1134 		 * If an error occurred, update stats, clear the status
1135 		 * word, and leave the packet buffer in place.  It will
1136 		 * simply be reused the next time the ring comes around.
1137 		 */
1138 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1139 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1140 			ifp->if_ierrors++;
1141 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1142 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1143 				/* Receive overrun handled elsewhere. */
1144 				printf("%s: receive descriptor error\n",
1145 				    sc->sc_dev.dv_xname);
1146 			}
1147 #define	PRINTERR(bit, str)						\
1148 			if (cmdsts & (bit))				\
1149 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1150 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1151 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1152 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1153 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1154 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1155 #undef PRINTERR
1156 			SIP_INIT_RXDESC(sc, i);
1157 			continue;
1158 		}
1159 
1160 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1161 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1162 
1163 		/*
1164 		 * No errors; receive the packet.  Note, the SiS 900
1165 		 * includes the CRC with every packet.
1166 		 */
1167 		len = CMDSTS_SIZE(cmdsts);
1168 
1169 #ifdef __NO_STRICT_ALIGNMENT
1170 		/*
1171 		 * If the packet is small enough to fit in a
1172 		 * single header mbuf, allocate one and copy
1173 		 * the data into it.  This greatly reduces
1174 		 * memory consumption when we receive lots
1175 		 * of small packets.
1176 		 *
1177 		 * Otherwise, we add a new buffer to the receive
1178 		 * chain.  If this fails, we drop the packet and
1179 		 * recycle the old buffer.
1180 		 */
1181 		if (sip_copy_small != 0 && len <= MHLEN) {
1182 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1183 			if (m == NULL)
1184 				goto dropit;
1185 			memcpy(mtod(m, caddr_t),
1186 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1187 			SIP_INIT_RXDESC(sc, i);
1188 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1189 			    rxs->rxs_dmamap->dm_mapsize,
1190 			    BUS_DMASYNC_PREREAD);
1191 		} else {
1192 			m = rxs->rxs_mbuf;
1193 			if (sip_add_rxbuf(sc, i) != 0) {
1194  dropit:
1195 				ifp->if_ierrors++;
1196 				SIP_INIT_RXDESC(sc, i);
1197 				bus_dmamap_sync(sc->sc_dmat,
1198 				    rxs->rxs_dmamap, 0,
1199 				    rxs->rxs_dmamap->dm_mapsize,
1200 				    BUS_DMASYNC_PREREAD);
1201 				continue;
1202 			}
1203 		}
1204 #else
1205 		/*
1206 		 * The SiS 900's receive buffers must be 4-byte aligned.
1207 		 * But this means that the data after the Ethernet header
1208 		 * is misaligned.  We must allocate a new buffer and
1209 		 * copy the data, shifted forward 2 bytes.
1210 		 */
1211 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1212 		if (m == NULL) {
1213  dropit:
1214 			ifp->if_ierrors++;
1215 			SIP_INIT_RXDESC(sc, i);
1216 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1217 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1218 			continue;
1219 		}
1220 		if (len > (MHLEN - 2)) {
1221 			MCLGET(m, M_DONTWAIT);
1222 			if ((m->m_flags & M_EXT) == 0) {
1223 				m_freem(m);
1224 				goto dropit;
1225 			}
1226 		}
1227 		m->m_data += 2;
1228 
1229 		/*
1230 		 * Note that we use clusters for incoming frames, so the
1231 		 * buffer is virtually contiguous.
1232 		 */
1233 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1234 
1235 		/* Allow the receive descriptor to continue using its mbuf. */
1236 		SIP_INIT_RXDESC(sc, i);
1237 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1238 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1239 #endif /* __NO_STRICT_ALIGNMENT */
1240 
1241 		ifp->if_ipackets++;
1242 		m->m_flags |= M_HASFCS;
1243 		m->m_pkthdr.rcvif = ifp;
1244 		m->m_pkthdr.len = m->m_len = len;
1245 
1246 #if NBPFILTER > 0
1247 		/*
1248 		 * Pass this up to any BPF listeners, but only
1249 		 * pass if up the stack if it's for us.
1250 		 */
1251 		if (ifp->if_bpf)
1252 			bpf_mtap(ifp->if_bpf, m);
1253 #endif /* NBPFILTER > 0 */
1254 
1255 		/* Pass it on. */
1256 		(*ifp->if_input)(ifp, m);
1257 	}
1258 
1259 	/* Update the receive pointer. */
1260 	sc->sc_rxptr = i;
1261 }
1262 
1263 /*
1264  * sip_tick:
1265  *
1266  *	One second timer, used to tick the MII.
1267  */
1268 void
1269 sip_tick(arg)
1270 	void *arg;
1271 {
1272 	struct sip_softc *sc = arg;
1273 	int s;
1274 
1275 	s = splnet();
1276 	mii_tick(&sc->sc_mii);
1277 	splx(s);
1278 
1279 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1280 }
1281 
1282 /*
1283  * sip_reset:
1284  *
1285  *	Perform a soft reset on the SiS 900.
1286  */
1287 void
1288 sip_reset(sc)
1289 	struct sip_softc *sc;
1290 {
1291 	bus_space_tag_t st = sc->sc_st;
1292 	bus_space_handle_t sh = sc->sc_sh;
1293 	int i;
1294 
1295 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1296 
1297 	for (i = 0; i < SIP_TIMEOUT; i++) {
1298 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1299 			break;
1300 		delay(2);
1301 	}
1302 
1303 	if (i == SIP_TIMEOUT)
1304 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1305 
1306 	delay(1000);
1307 }
1308 
1309 /*
1310  * sip_init:		[ ifnet interface function ]
1311  *
1312  *	Initialize the interface.  Must be called at splnet().
1313  */
1314 int
1315 sip_init(ifp)
1316 	struct ifnet *ifp;
1317 {
1318 	struct sip_softc *sc = ifp->if_softc;
1319 	bus_space_tag_t st = sc->sc_st;
1320 	bus_space_handle_t sh = sc->sc_sh;
1321 	struct sip_txsoft *txs;
1322 	struct sip_rxsoft *rxs;
1323 	struct sip_desc *sipd;
1324 	u_int32_t cfg;
1325 	int i, error = 0;
1326 
1327 	/*
1328 	 * Cancel any pending I/O.
1329 	 */
1330 	sip_stop(ifp, 0);
1331 
1332 	/*
1333 	 * Reset the chip to a known state.
1334 	 */
1335 	sip_reset(sc);
1336 
1337 	if (   sc->sc_model->sip_vendor == PCI_VENDOR_NS
1338 	    && sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1339 		/*
1340 		 * DP83815 manual, page 78:
1341 		 *    4.4 Recommended Registers Configuration
1342 		 *    For optimum performance of the DP83815, version noted
1343 		 *    as DP83815CVNG (SRR = 203h), the listed register
1344 		 *    modifications must be followed in sequence...
1345 		 *
1346 		 * It's not clear if this should be 302h or 203h because that
1347 		 * chip name is listed as SRR 302h in the description of the
1348 		 * SRR register.  However, my revision 302h DP83815 on the
1349 		 * Netgear FA311 purchased in 02/2001 needs these settings
1350 		 * to avoid tons of errors in AcceptPerfectMatch (non-
1351 		 * IFF_PROMISC) mode.  I do not know if other revisions need
1352 		 * this set or not.  [briggs -- 09 March 2001]
1353 		 *
1354 		 * Note that only the low-order 12 bits of 0xe4 are documented
1355 		 * and that this sets reserved bits in that register.
1356 		 */
1357 		cfg = bus_space_read_4(st, sh, SIP_NS_SRR);
1358 		if (cfg == 0x302) {
1359 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
1360 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
1361 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
1362 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
1363 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * Initialize the transmit descriptor ring.
1369 	 */
1370 	for (i = 0; i < SIP_NTXDESC; i++) {
1371 		sipd = &sc->sc_txdescs[i];
1372 		memset(sipd, 0, sizeof(struct sip_desc));
1373 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1374 	}
1375 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1376 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1377 	sc->sc_txfree = SIP_NTXDESC;
1378 	sc->sc_txnext = 0;
1379 
1380 	/*
1381 	 * Initialize the transmit job descriptors.
1382 	 */
1383 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1384 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1385 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1386 		txs = &sc->sc_txsoft[i];
1387 		txs->txs_mbuf = NULL;
1388 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1389 	}
1390 
1391 	/*
1392 	 * Initialize the receive descriptor and receive job
1393 	 * descriptor rings.
1394 	 */
1395 	for (i = 0; i < SIP_NRXDESC; i++) {
1396 		rxs = &sc->sc_rxsoft[i];
1397 		if (rxs->rxs_mbuf == NULL) {
1398 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
1399 				printf("%s: unable to allocate or map rx "
1400 				    "buffer %d, error = %d\n",
1401 				    sc->sc_dev.dv_xname, i, error);
1402 				/*
1403 				 * XXX Should attempt to run with fewer receive
1404 				 * XXX buffers instead of just failing.
1405 				 */
1406 				sip_rxdrain(sc);
1407 				goto out;
1408 			}
1409 		}
1410 	}
1411 	sc->sc_rxptr = 0;
1412 
1413 	/*
1414 	 * Initialize the configuration register: aggressive PCI
1415 	 * bus request algorithm, default backoff, default OW timer,
1416 	 * default parity error detection.
1417 	 */
1418 	cfg = 0;
1419 #if BYTE_ORDER == BIG_ENDIAN
1420 	/*
1421 	 * ...descriptors in big-endian mode.
1422 	 */
1423 #if 0
1424 	/* "Big endian mode" does not work properly. */
1425 	cfg |= CFG_BEM;
1426 #endif
1427 #endif
1428 	bus_space_write_4(st, sh, SIP_CFG, cfg);
1429 
1430 	/*
1431 	 * Initialize the transmit fill and drain thresholds if
1432 	 * we have never done so.
1433 	 */
1434 	if (sc->sc_tx_fill_thresh == 0) {
1435 		/*
1436 		 * XXX This value should be tuned.  This is the
1437 		 * minimum (32 bytes), and we may be able to
1438 		 * improve performance by increasing it.
1439 		 */
1440 		sc->sc_tx_fill_thresh = 1;
1441 	}
1442 	if (sc->sc_tx_drain_thresh == 0) {
1443 		/*
1444 		 * Start at a drain threshold of 512 bytes.  We will
1445 		 * increase it if a DMA underrun occurs.
1446 		 *
1447 		 * XXX The minimum value of this variable should be
1448 		 * tuned.  We may be able to improve performance
1449 		 * by starting with a lower value.  That, however,
1450 		 * may trash the first few outgoing packets if the
1451 		 * PCI bus is saturated.
1452 		 */
1453 		sc->sc_tx_drain_thresh = 512 / 32;
1454 	}
1455 
1456 	/*
1457 	 * Initialize the prototype TXCFG register.
1458 	 */
1459 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1460 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1461 	    sc->sc_tx_drain_thresh;
1462 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1463 
1464 	/*
1465 	 * Initialize the receive drain threshold if we have never
1466 	 * done so.
1467 	 */
1468 	if (sc->sc_rx_drain_thresh == 0) {
1469 		/*
1470 		 * XXX This value should be tuned.  This is set to the
1471 		 * maximum of 248 bytes, and we may be able to improve
1472 		 * performance by decreasing it (although we should never
1473 		 * set this value lower than 2; 14 bytes are required to
1474 		 * filter the packet).
1475 		 */
1476 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1477 	}
1478 
1479 	/*
1480 	 * Initialize the prototype RXCFG register.
1481 	 */
1482 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
1483 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1484 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1485 
1486 	/* Set up the receive filter. */
1487 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1488 
1489 	/*
1490 	 * Give the transmit and receive rings to the chip.
1491 	 */
1492 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1493 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1494 
1495 	/*
1496 	 * Initialize the interrupt mask.
1497 	 */
1498 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1499 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1500 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1501 
1502 	/*
1503 	 * Set the current media.  Do this after initializing the prototype
1504 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1505 	 * control.
1506 	 */
1507 	mii_mediachg(&sc->sc_mii);
1508 
1509 	/*
1510 	 * Enable interrupts.
1511 	 */
1512 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
1513 
1514 	/*
1515 	 * Start the transmit and receive processes.
1516 	 */
1517 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1518 
1519 	/*
1520 	 * Start the one second MII clock.
1521 	 */
1522 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1523 
1524 	/*
1525 	 * ...all done!
1526 	 */
1527 	ifp->if_flags |= IFF_RUNNING;
1528 	ifp->if_flags &= ~IFF_OACTIVE;
1529 
1530  out:
1531 	if (error)
1532 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1533 	return (error);
1534 }
1535 
1536 /*
1537  * sip_drain:
1538  *
1539  *	Drain the receive queue.
1540  */
1541 void
1542 sip_rxdrain(sc)
1543 	struct sip_softc *sc;
1544 {
1545 	struct sip_rxsoft *rxs;
1546 	int i;
1547 
1548 	for (i = 0; i < SIP_NRXDESC; i++) {
1549 		rxs = &sc->sc_rxsoft[i];
1550 		if (rxs->rxs_mbuf != NULL) {
1551 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1552 			m_freem(rxs->rxs_mbuf);
1553 			rxs->rxs_mbuf = NULL;
1554 		}
1555 	}
1556 }
1557 
1558 /*
1559  * sip_stop:		[ ifnet interface function ]
1560  *
1561  *	Stop transmission on the interface.
1562  */
1563 void
1564 sip_stop(ifp, disable)
1565 	struct ifnet *ifp;
1566 	int disable;
1567 {
1568 	struct sip_softc *sc = ifp->if_softc;
1569 	bus_space_tag_t st = sc->sc_st;
1570 	bus_space_handle_t sh = sc->sc_sh;
1571 	struct sip_txsoft *txs;
1572 	u_int32_t cmdsts = 0;		/* DEBUG */
1573 
1574 	/*
1575 	 * Stop the one second clock.
1576 	 */
1577 	callout_stop(&sc->sc_tick_ch);
1578 
1579 	/* Down the MII. */
1580 	mii_down(&sc->sc_mii);
1581 
1582 	/*
1583 	 * Disable interrupts.
1584 	 */
1585 	bus_space_write_4(st, sh, SIP_IER, 0);
1586 
1587 	/*
1588 	 * Stop receiver and transmitter.
1589 	 */
1590 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1591 
1592 	/*
1593 	 * Release any queued transmit buffers.
1594 	 */
1595 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1596 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1597 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1598 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
1599 		     CMDSTS_INTR) == 0)
1600 			printf("%s: sip_stop: last descriptor does not "
1601 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
1602 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1603 #ifdef DIAGNOSTIC
1604 		if (txs->txs_mbuf == NULL) {
1605 			printf("%s: dirty txsoft with no mbuf chain\n",
1606 			    sc->sc_dev.dv_xname);
1607 			panic("sip_stop");
1608 		}
1609 #endif
1610 		cmdsts |=		/* DEBUG */
1611 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1612 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1613 		m_freem(txs->txs_mbuf);
1614 		txs->txs_mbuf = NULL;
1615 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1616 	}
1617 
1618 	if (disable)
1619 		sip_rxdrain(sc);
1620 
1621 	/*
1622 	 * Mark the interface down and cancel the watchdog timer.
1623 	 */
1624 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1625 	ifp->if_timer = 0;
1626 
1627 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1628 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1629 		printf("%s: sip_stop: no INTR bits set in dirty tx "
1630 		    "descriptors\n", sc->sc_dev.dv_xname);
1631 }
1632 
1633 /*
1634  * sip_read_eeprom:
1635  *
1636  *	Read data from the serial EEPROM.
1637  */
1638 void
1639 sip_read_eeprom(sc, word, wordcnt, data)
1640 	struct sip_softc *sc;
1641 	int word, wordcnt;
1642 	u_int16_t *data;
1643 {
1644 	bus_space_tag_t st = sc->sc_st;
1645 	bus_space_handle_t sh = sc->sc_sh;
1646 	u_int16_t reg;
1647 	int i, x;
1648 
1649 	for (i = 0; i < wordcnt; i++) {
1650 		/* Send CHIP SELECT. */
1651 		reg = EROMAR_EECS;
1652 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
1653 
1654 		/* Shift in the READ opcode. */
1655 		for (x = 3; x > 0; x--) {
1656 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1657 				reg |= EROMAR_EEDI;
1658 			else
1659 				reg &= ~EROMAR_EEDI;
1660 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1661 			bus_space_write_4(st, sh, SIP_EROMAR,
1662 			    reg | EROMAR_EESK);
1663 			delay(4);
1664 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1665 			delay(4);
1666 		}
1667 
1668 		/* Shift in address. */
1669 		for (x = 6; x > 0; x--) {
1670 			if ((word + i) & (1 << (x - 1)))
1671 				reg |= EROMAR_EEDI;
1672 			else
1673 				reg &= ~EROMAR_EEDI;
1674 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1675 			bus_space_write_4(st, sh, SIP_EROMAR,
1676 			    reg | EROMAR_EESK);
1677 			delay(4);
1678 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1679 			delay(4);
1680 		}
1681 
1682 		/* Shift out data. */
1683 		reg = EROMAR_EECS;
1684 		data[i] = 0;
1685 		for (x = 16; x > 0; x--) {
1686 			bus_space_write_4(st, sh, SIP_EROMAR,
1687 			    reg | EROMAR_EESK);
1688 			delay(4);
1689 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1690 				data[i] |= (1 << (x - 1));
1691 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1692 			delay(4);
1693 		}
1694 
1695 		/* Clear CHIP SELECT. */
1696 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
1697 		delay(4);
1698 	}
1699 }
1700 
1701 /*
1702  * sip_add_rxbuf:
1703  *
1704  *	Add a receive buffer to the indicated descriptor.
1705  */
1706 int
1707 sip_add_rxbuf(sc, idx)
1708 	struct sip_softc *sc;
1709 	int idx;
1710 {
1711 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1712 	struct mbuf *m;
1713 	int error;
1714 
1715 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1716 	if (m == NULL)
1717 		return (ENOBUFS);
1718 
1719 	MCLGET(m, M_DONTWAIT);
1720 	if ((m->m_flags & M_EXT) == 0) {
1721 		m_freem(m);
1722 		return (ENOBUFS);
1723 	}
1724 
1725 	if (rxs->rxs_mbuf != NULL)
1726 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1727 
1728 	rxs->rxs_mbuf = m;
1729 
1730 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1731 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1732 	if (error) {
1733 		printf("%s: can't load rx DMA map %d, error = %d\n",
1734 		    sc->sc_dev.dv_xname, idx, error);
1735 		panic("sip_add_rxbuf");		/* XXX */
1736 	}
1737 
1738 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1739 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1740 
1741 	SIP_INIT_RXDESC(sc, idx);
1742 
1743 	return (0);
1744 }
1745 
1746 /*
1747  * sip_sis900_set_filter:
1748  *
1749  *	Set up the receive filter.
1750  */
1751 void
1752 sip_sis900_set_filter(sc)
1753 	struct sip_softc *sc;
1754 {
1755 	bus_space_tag_t st = sc->sc_st;
1756 	bus_space_handle_t sh = sc->sc_sh;
1757 	struct ethercom *ec = &sc->sc_ethercom;
1758 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1759 	struct ether_multi *enm;
1760 	u_int8_t *cp;
1761 	struct ether_multistep step;
1762 	u_int32_t crc, mchash[8];
1763 
1764 	/*
1765 	 * Initialize the prototype RFCR.
1766 	 */
1767 	sc->sc_rfcr = RFCR_RFEN;
1768 	if (ifp->if_flags & IFF_BROADCAST)
1769 		sc->sc_rfcr |= RFCR_AAB;
1770 	if (ifp->if_flags & IFF_PROMISC) {
1771 		sc->sc_rfcr |= RFCR_AAP;
1772 		goto allmulti;
1773 	}
1774 
1775 	/*
1776 	 * Set up the multicast address filter by passing all multicast
1777 	 * addresses through a CRC generator, and then using the high-order
1778 	 * 6 bits as an index into the 128 bit multicast hash table (only
1779 	 * the lower 16 bits of each 32 bit multicast hash register are
1780 	 * valid).  The high order bits select the register, while the
1781 	 * rest of the bits select the bit within the register.
1782 	 */
1783 
1784 	memset(mchash, 0, sizeof(mchash));
1785 
1786 	ETHER_FIRST_MULTI(step, ec, enm);
1787 	while (enm != NULL) {
1788 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1789 			/*
1790 			 * We must listen to a range of multicast addresses.
1791 			 * For now, just accept all multicasts, rather than
1792 			 * trying to set only those filter bits needed to match
1793 			 * the range.  (At this time, the only use of address
1794 			 * ranges is for IP multicast routing, for which the
1795 			 * range is big enough to require all bits set.)
1796 			 */
1797 			goto allmulti;
1798 		}
1799 
1800 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1801 
1802 		/* Just want the 7 most significant bits. */
1803 		crc >>= 25;
1804 
1805 		/* Set the corresponding bit in the hash table. */
1806 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1807 
1808 		ETHER_NEXT_MULTI(step, enm);
1809 	}
1810 
1811 	ifp->if_flags &= ~IFF_ALLMULTI;
1812 	goto setit;
1813 
1814  allmulti:
1815 	ifp->if_flags |= IFF_ALLMULTI;
1816 	sc->sc_rfcr |= RFCR_AAM;
1817 
1818  setit:
1819 #define	FILTER_EMIT(addr, data)						\
1820 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
1821 	delay(1);							\
1822 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
1823 	delay(1)
1824 
1825 	/*
1826 	 * Disable receive filter, and program the node address.
1827 	 */
1828 	cp = LLADDR(ifp->if_sadl);
1829 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1830 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1831 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1832 
1833 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1834 		/*
1835 		 * Program the multicast hash table.
1836 		 */
1837 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1838 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1839 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1840 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1841 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1842 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1843 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1844 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1845 	}
1846 #undef FILTER_EMIT
1847 
1848 	/*
1849 	 * Re-enable the receiver filter.
1850 	 */
1851 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1852 }
1853 
1854 /*
1855  * sip_dp83815_set_filter:
1856  *
1857  *	Set up the receive filter.
1858  */
1859 void
1860 sip_dp83815_set_filter(sc)
1861 	struct sip_softc *sc;
1862 {
1863 	bus_space_tag_t st = sc->sc_st;
1864 	bus_space_handle_t sh = sc->sc_sh;
1865 	struct ethercom *ec = &sc->sc_ethercom;
1866 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1867 	struct ether_multi *enm;
1868 	u_int8_t *cp;
1869 	struct ether_multistep step;
1870 	u_int32_t crc, mchash[16];
1871 	int i;
1872 
1873 	/*
1874 	 * Initialize the prototype RFCR.
1875 	 * Enable the receive filter, and accept on
1876 	 *    Perfect (destination address) Match
1877 	 * If IFF_BROADCAST, also accept all broadcast packets.
1878 	 * If IFF_PROMISC, accept all unicast packets (and later, set
1879 	 *    IFF_ALLMULTI and accept all multicast, too).
1880 	 */
1881 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
1882 	if (ifp->if_flags & IFF_BROADCAST)
1883 		sc->sc_rfcr |= RFCR_AAB;
1884 	if (ifp->if_flags & IFF_PROMISC) {
1885 		sc->sc_rfcr |= RFCR_AAP;
1886 		goto allmulti;
1887 	}
1888 
1889 	/*
1890 	 * Set up the multicast address filter by passing all multicast
1891 	 * addresses through a CRC generator, and then using the high-order
1892 	 * 9 bits as an index into the 512 bit multicast hash table.  The
1893 	 * high-order bits select the slot, while the rest of the bits
1894 	 * select the bit within the slot.  Note that only the low 16-bits
1895 	 * of each filter word are used, and there are 64 filter words.
1896 	 */
1897 
1898 	memset(mchash, 0, sizeof(mchash));
1899 
1900 	ifp->if_flags &= ~IFF_ALLMULTI;
1901 	ETHER_FIRST_MULTI(step, ec, enm);
1902 	if (enm != NULL) {
1903 		while (enm != NULL) {
1904 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1905 			    ETHER_ADDR_LEN)) {
1906 			/*
1907 			 * We must listen to a range of multicast addresses.
1908 			 * For now, just accept all multicasts, rather than
1909 			 * trying to set only those filter bits needed to match
1910 			 * the range.  (At this time, the only use of address
1911 			 * ranges is for IP multicast routing, for which the
1912 			 * range is big enough to require all bits set.)
1913 			 */
1914 				goto allmulti;
1915 			}
1916 
1917 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1918 
1919 			/* Just want the 9 most significant bits. */
1920 			crc >>= 23;
1921 
1922 			/* Set the corresponding bit in the hash table. */
1923 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
1924 
1925 			ETHER_NEXT_MULTI(step, enm);
1926 		}
1927 
1928 		sc->sc_rfcr |= RFCR_MHEN;
1929 	}
1930 	goto setit;
1931 
1932  allmulti:
1933 	ifp->if_flags |= IFF_ALLMULTI;
1934 	sc->sc_rfcr |= RFCR_AAM;
1935 
1936  setit:
1937 #define	FILTER_EMIT(addr, data)						\
1938 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
1939 	delay(1);							\
1940 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
1941 	delay(1);
1942 
1943 	/*
1944 	 * Disable receive filter, and program the node address.
1945 	 */
1946 	cp = LLADDR(ifp->if_sadl);
1947 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
1948 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
1949 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
1950 
1951 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1952 		/*
1953 		 * Program the multicast hash table.
1954 		 */
1955 		for (i = 0; i < 16; i++) {
1956 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
1957 			    mchash[i] & 0xffff);
1958 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
1959 			    (mchash[i] >> 16) & 0xffff);
1960 		}
1961 	}
1962 #undef FILTER_EMIT
1963 
1964 	/*
1965 	 * Re-enable the receiver filter.
1966 	 */
1967 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1968 }
1969 
1970 /*
1971  * sip_sis900_mii_readreg:	[mii interface function]
1972  *
1973  *	Read a PHY register on the MII.
1974  */
1975 int
1976 sip_sis900_mii_readreg(self, phy, reg)
1977 	struct device *self;
1978 	int phy, reg;
1979 {
1980 	struct sip_softc *sc = (struct sip_softc *) self;
1981 	u_int32_t enphy;
1982 
1983 	/*
1984 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
1985 	 * MII address 0.
1986 	 */
1987 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
1988 		return (0);
1989 
1990 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1991 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
1992 	    ENPHY_RWCMD | ENPHY_ACCESS);
1993 	do {
1994 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1995 	} while (enphy & ENPHY_ACCESS);
1996 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
1997 }
1998 
1999 /*
2000  * sip_sis900_mii_writereg:	[mii interface function]
2001  *
2002  *	Write a PHY register on the MII.
2003  */
2004 void
2005 sip_sis900_mii_writereg(self, phy, reg, val)
2006 	struct device *self;
2007 	int phy, reg, val;
2008 {
2009 	struct sip_softc *sc = (struct sip_softc *) self;
2010 	u_int32_t enphy;
2011 
2012 	/*
2013 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2014 	 * MII address 0.
2015 	 */
2016 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2017 		return;
2018 
2019 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2020 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2021 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2022 	do {
2023 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2024 	} while (enphy & ENPHY_ACCESS);
2025 }
2026 
2027 /*
2028  * sip_sis900_mii_statchg:	[mii interface function]
2029  *
2030  *	Callback from MII layer when media changes.
2031  */
2032 void
2033 sip_sis900_mii_statchg(self)
2034 	struct device *self;
2035 {
2036 	struct sip_softc *sc = (struct sip_softc *) self;
2037 	u_int32_t flowctl;
2038 
2039 	/*
2040 	 * Update TXCFG for full-duplex operation.
2041 	 */
2042 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2043 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2044 	else
2045 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2046 
2047 	/*
2048 	 * Update RXCFG for full-duplex or loopback.
2049 	 */
2050 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2051 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2052 		sc->sc_rxcfg |= RXCFG_ATX;
2053 	else
2054 		sc->sc_rxcfg &= ~RXCFG_ATX;
2055 
2056 	/*
2057 	 * Update IMR for use of 802.3x flow control.
2058 	 */
2059 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2060 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2061 		flowctl = FLOWCTL_FLOWEN;
2062 	} else {
2063 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2064 		flowctl = 0;
2065 	}
2066 
2067 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2068 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2069 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2070 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2071 }
2072 
2073 /*
2074  * sip_dp83815_mii_readreg:	[mii interface function]
2075  *
2076  *	Read a PHY register on the MII.
2077  */
2078 int
2079 sip_dp83815_mii_readreg(self, phy, reg)
2080 	struct device *self;
2081 	int phy, reg;
2082 {
2083 	struct sip_softc *sc = (struct sip_softc *) self;
2084 	u_int32_t val;
2085 
2086 	/*
2087 	 * The DP83815 only has an internal PHY.  Only allow
2088 	 * MII address 0.
2089 	 */
2090 	if (phy != 0)
2091 		return (0);
2092 
2093 	/*
2094 	 * Apparently, after a reset, the DP83815 can take a while
2095 	 * to respond.  During this recovery period, the BMSR returns
2096 	 * a value of 0.  Catch this -- it's not supposed to happen
2097 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2098 	 * PHY to come back to life.
2099 	 *
2100 	 * This works out because the BMSR is the first register
2101 	 * read during the PHY probe process.
2102 	 */
2103 	do {
2104 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2105 	} while (reg == MII_BMSR && val == 0);
2106 
2107 	return (val & 0xffff);
2108 }
2109 
2110 /*
2111  * sip_dp83815_mii_writereg:	[mii interface function]
2112  *
2113  *	Write a PHY register to the MII.
2114  */
2115 void
2116 sip_dp83815_mii_writereg(self, phy, reg, val)
2117 	struct device *self;
2118 	int phy, reg, val;
2119 {
2120 	struct sip_softc *sc = (struct sip_softc *) self;
2121 
2122 	/*
2123 	 * The DP83815 only has an internal PHY.  Only allow
2124 	 * MII address 0.
2125 	 */
2126 	if (phy != 0)
2127 		return;
2128 
2129 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2130 }
2131 
2132 /*
2133  * sip_dp83815_mii_statchg:	[mii interface function]
2134  *
2135  *	Callback from MII layer when media changes.
2136  */
2137 void
2138 sip_dp83815_mii_statchg(self)
2139 	struct device *self;
2140 {
2141 	struct sip_softc *sc = (struct sip_softc *) self;
2142 
2143 	/*
2144 	 * Update TXCFG for full-duplex operation.
2145 	 */
2146 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2147 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2148 	else
2149 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2150 
2151 	/*
2152 	 * Update RXCFG for full-duplex or loopback.
2153 	 */
2154 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2155 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2156 		sc->sc_rxcfg |= RXCFG_ATX;
2157 	else
2158 		sc->sc_rxcfg &= ~RXCFG_ATX;
2159 
2160 	/*
2161 	 * XXX 802.3x flow control.
2162 	 */
2163 
2164 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2165 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2166 }
2167 
2168 void
2169 sip_sis900_read_macaddr(sc, enaddr)
2170 	struct sip_softc *sc;
2171 	u_int8_t *enaddr;
2172 {
2173 	u_int16_t myea[ETHER_ADDR_LEN / 2];
2174 
2175 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
2176 	    sizeof(myea) / sizeof(myea[0]), myea);
2177 
2178 	enaddr[0] = myea[0] & 0xff;
2179 	enaddr[1] = myea[0] >> 8;
2180 	enaddr[2] = myea[1] & 0xff;
2181 	enaddr[3] = myea[1] >> 8;
2182 	enaddr[4] = myea[2] & 0xff;
2183 	enaddr[5] = myea[2] >> 8;
2184 }
2185 
2186 static u_char bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
2187 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
2188 
2189 void
2190 sip_dp83815_read_macaddr(sc, enaddr)
2191 	struct sip_softc *sc;
2192 	u_int8_t *enaddr;
2193 {
2194 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
2195 	u_int8_t cksum, *e, match;
2196 	int i;
2197 
2198 	sip_read_eeprom(sc, 0, sizeof(eeprom_data) / sizeof(eeprom_data[0]),
2199 	    eeprom_data);
2200 
2201 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
2202 	match = ~(match - 1);
2203 
2204 	cksum = 0x55;
2205 	e = (u_int8_t *) eeprom_data;
2206 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
2207 		cksum += *e++;
2208 	}
2209 	if (cksum != match) {
2210 		printf("%s: Checksum (%x) mismatch (%x)",
2211 		    sc->sc_dev.dv_xname, cksum, match);
2212 	}
2213 
2214 	/*
2215 	 * Unrolled because it makes slightly more sense this way.
2216 	 * The DP83815 stores the MAC address in bit 0 of word 6
2217 	 * through bit 15 of word 8.
2218 	 */
2219 	ea = &eeprom_data[6];
2220 	enaddr[0] = ((*ea & 0x1) << 7);
2221 	ea++;
2222 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
2223 	enaddr[1] = ((*ea & 0x1FE) >> 1);
2224 	enaddr[2] = ((*ea & 0x1) << 7);
2225 	ea++;
2226 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
2227 	enaddr[3] = ((*ea & 0x1FE) >> 1);
2228 	enaddr[4] = ((*ea & 0x1) << 7);
2229 	ea++;
2230 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
2231 	enaddr[5] = ((*ea & 0x1FE) >> 1);
2232 
2233 	/*
2234 	 * In case that's not weird enough, we also need to reverse
2235 	 * the bits in each byte.  This all actually makes more sense
2236 	 * if you think about the EEPROM storage as an array of bits
2237 	 * being shifted into bytes, but that's not how we're looking
2238 	 * at it here...
2239 	 */
2240 	for (i=0 ; i<6 ; i++)
2241 		enaddr[i] = bbr(enaddr[i]);
2242 }
2243 
2244 /*
2245  * sip_mediastatus:	[ifmedia interface function]
2246  *
2247  *	Get the current interface media status.
2248  */
2249 void
2250 sip_mediastatus(ifp, ifmr)
2251 	struct ifnet *ifp;
2252 	struct ifmediareq *ifmr;
2253 {
2254 	struct sip_softc *sc = ifp->if_softc;
2255 
2256 	mii_pollstat(&sc->sc_mii);
2257 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2258 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2259 }
2260 
2261 /*
2262  * sip_mediachange:	[ifmedia interface function]
2263  *
2264  *	Set hardware to newly-selected media.
2265  */
2266 int
2267 sip_mediachange(ifp)
2268 	struct ifnet *ifp;
2269 {
2270 	struct sip_softc *sc = ifp->if_softc;
2271 
2272 	if (ifp->if_flags & IFF_UP)
2273 		mii_mediachg(&sc->sc_mii);
2274 	return (0);
2275 }
2276