xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 17306b8fd0952c7489f93f0230818481e5a1e2c9)
1 /*	$NetBSD: if_sip.c,v 1.34 2001/06/18 01:58:08 simonb Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Support the 10-bit interface on the DP83820 (for fiber).
80  *
81  *	- Support jumbo packets on the DP83820.
82  *
83  *	- Reduce the interrupt load.
84  */
85 
86 #include "bpfilter.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #include <net/if.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 #include <net/if_ether.h>
106 
107 #if NBPFILTER > 0
108 #include <net/bpf.h>
109 #endif
110 
111 #include <machine/bus.h>
112 #include <machine/intr.h>
113 #include <machine/endian.h>
114 
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 #ifdef DP83820
118 #include <dev/mii/mii_bitbang.h>
119 #endif /* DP83820 */
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124 
125 #include <dev/pci/if_sipreg.h>
126 
127 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
128 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
129 #else			/* SiS900 and DP83815 */
130 #define	SIP_DECL(x)	__CONCAT(sip_,x)
131 #endif
132 
133 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
134 
135 /*
136  * Transmit descriptor list size.  This is arbitrary, but allocate
137  * enough descriptors for 128 pending transmissions, and 8 segments
138  * per packet.  This MUST work out to a power of 2.
139  */
140 #define	SIP_NTXSEGS		8
141 
142 #define	SIP_TXQUEUELEN		256
143 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
144 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
145 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
146 
147 /*
148  * Receive descriptor list size.  We have one Rx buffer per incoming
149  * packet, so this logic is a little simpler.
150  */
151 #define	SIP_NRXDESC		128
152 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
153 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
154 
155 /*
156  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
157  * a single clump that maps to a single DMA segment to make several things
158  * easier.
159  */
160 struct sip_control_data {
161 	/*
162 	 * The transmit descriptors.
163 	 */
164 	struct sip_desc scd_txdescs[SIP_NTXDESC];
165 
166 	/*
167 	 * The receive descriptors.
168 	 */
169 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
170 };
171 
172 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
173 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
174 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
175 
176 /*
177  * Software state for transmit jobs.
178  */
179 struct sip_txsoft {
180 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
181 	bus_dmamap_t txs_dmamap;	/* our DMA map */
182 	int txs_firstdesc;		/* first descriptor in packet */
183 	int txs_lastdesc;		/* last descriptor in packet */
184 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
185 };
186 
187 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
188 
189 /*
190  * Software state for receive jobs.
191  */
192 struct sip_rxsoft {
193 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
194 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
195 };
196 
197 /*
198  * Software state per device.
199  */
200 struct sip_softc {
201 	struct device sc_dev;		/* generic device information */
202 	bus_space_tag_t sc_st;		/* bus space tag */
203 	bus_space_handle_t sc_sh;	/* bus space handle */
204 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
205 	struct ethercom sc_ethercom;	/* ethernet common data */
206 	void *sc_sdhook;		/* shutdown hook */
207 
208 	const struct sip_product *sc_model; /* which model are we? */
209 
210 	void *sc_ih;			/* interrupt cookie */
211 
212 	struct mii_data sc_mii;		/* MII/media information */
213 
214 	struct callout sc_tick_ch;	/* tick callout */
215 
216 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
217 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
218 
219 	/*
220 	 * Software state for transmit and receive descriptors.
221 	 */
222 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
223 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
224 
225 	/*
226 	 * Control data structures.
227 	 */
228 	struct sip_control_data *sc_control_data;
229 #define	sc_txdescs	sc_control_data->scd_txdescs
230 #define	sc_rxdescs	sc_control_data->scd_rxdescs
231 
232 #ifdef SIP_EVENT_COUNTERS
233 	/*
234 	 * Event counters.
235 	 */
236 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
237 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
238 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
239 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
240 #ifdef DP83820
241 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
242 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
243 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
244 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
245 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
246 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
247 #endif /* DP83820 */
248 #endif /* SIP_EVENT_COUNTERS */
249 
250 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
251 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
252 	u_int32_t sc_imr;		/* prototype IMR register */
253 	u_int32_t sc_rfcr;		/* prototype RFCR register */
254 
255 	u_int32_t sc_cfg;		/* prototype CFG register */
256 
257 #ifdef DP83820
258 	u_int32_t sc_gpior;		/* prototype GPIOR register */
259 #endif /* DP83820 */
260 
261 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
262 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
263 
264 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
265 
266 	int	sc_flags;		/* misc. flags; see below */
267 
268 	int	sc_txfree;		/* number of free Tx descriptors */
269 	int	sc_txnext;		/* next ready Tx descriptor */
270 
271 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
272 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
273 
274 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
275 };
276 
277 /* sc_flags */
278 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
279 
280 #ifdef SIP_EVENT_COUNTERS
281 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
282 #else
283 #define	SIP_EVCNT_INCR(ev)	/* nothing */
284 #endif
285 
286 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
287 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
288 
289 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
290 do {									\
291 	int __x, __n;							\
292 									\
293 	__x = (x);							\
294 	__n = (n);							\
295 									\
296 	/* If it will wrap around, sync to the end of the ring. */	\
297 	if ((__x + __n) > SIP_NTXDESC) {				\
298 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
299 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
300 		    (SIP_NTXDESC - __x), (ops));			\
301 		__n -= (SIP_NTXDESC - __x);				\
302 		__x = 0;						\
303 	}								\
304 									\
305 	/* Now sync whatever is left. */				\
306 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
307 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
308 } while (0)
309 
310 #define	SIP_CDRXSYNC(sc, x, ops)					\
311 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
312 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
313 
314 /*
315  * Note we rely on MCLBYTES being a power of two below.
316  */
317 #ifdef DP83820
318 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
319 #else
320 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
321 #endif
322 #define	SIP_INIT_RXDESC(sc, x)						\
323 do {									\
324 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
325 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
326 									\
327 	__sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
328 	__sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
329 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
330 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK));			\
331 	SIP_INIT_RXDESC_EXTSTS						\
332 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
333 } while (0)
334 
335 #define SIP_TIMEOUT 1000
336 
337 void	SIP_DECL(start)(struct ifnet *);
338 void	SIP_DECL(watchdog)(struct ifnet *);
339 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
340 int	SIP_DECL(init)(struct ifnet *);
341 void	SIP_DECL(stop)(struct ifnet *, int);
342 
343 void	SIP_DECL(shutdown)(void *);
344 
345 void	SIP_DECL(reset)(struct sip_softc *);
346 void	SIP_DECL(rxdrain)(struct sip_softc *);
347 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
348 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
349 void	SIP_DECL(tick)(void *);
350 
351 #if !defined(DP83820)
352 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
353 #endif /* ! DP83820 */
354 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
355 
356 #if defined(DP83820)
357 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *, u_int8_t *);
358 #else
359 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *, u_int8_t *);
360 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *, u_int8_t *);
361 #endif /* DP83820 */
362 
363 int	SIP_DECL(intr)(void *);
364 void	SIP_DECL(txintr)(struct sip_softc *);
365 void	SIP_DECL(rxintr)(struct sip_softc *);
366 
367 #if defined(DP83820)
368 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
369 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
370 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
371 #else
372 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
373 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
374 void	SIP_DECL(sis900_mii_statchg)(struct device *);
375 
376 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
377 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
378 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
379 #endif /* DP83820 */
380 
381 int	SIP_DECL(mediachange)(struct ifnet *);
382 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
383 
384 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
385 void	SIP_DECL(attach)(struct device *, struct device *, void *);
386 
387 int	SIP_DECL(copy_small) = 0;
388 
389 struct cfattach SIP_DECL(ca) = {
390 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
391 };
392 
393 /*
394  * Descriptions of the variants of the SiS900.
395  */
396 struct sip_variant {
397 	int	(*sipv_mii_readreg)(struct device *, int, int);
398 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
399 	void	(*sipv_mii_statchg)(struct device *);
400 	void	(*sipv_set_filter)(struct sip_softc *);
401 	void	(*sipv_read_macaddr)(struct sip_softc *, u_int8_t *);
402 };
403 
404 #if defined(DP83820)
405 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
406 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
407 
408 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
409 	SIP_DECL(dp83820_mii_bitbang_read),
410 	SIP_DECL(dp83820_mii_bitbang_write),
411 	{
412 		EROMAR_MDIO,		/* MII_BIT_MDO */
413 		EROMAR_MDIO,		/* MII_BIT_MDI */
414 		EROMAR_MDC,		/* MII_BIT_MDC */
415 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
416 		0,			/* MII_BIT_DIR_PHY_HOST */
417 	}
418 };
419 #endif /* DP83820 */
420 
421 #if defined(DP83820)
422 const struct sip_variant SIP_DECL(variant_dp83820) = {
423 	SIP_DECL(dp83820_mii_readreg),
424 	SIP_DECL(dp83820_mii_writereg),
425 	SIP_DECL(dp83820_mii_statchg),
426 	SIP_DECL(dp83815_set_filter),
427 	SIP_DECL(dp83820_read_macaddr),
428 };
429 #else
430 const struct sip_variant SIP_DECL(variant_sis900) = {
431 	SIP_DECL(sis900_mii_readreg),
432 	SIP_DECL(sis900_mii_writereg),
433 	SIP_DECL(sis900_mii_statchg),
434 	SIP_DECL(sis900_set_filter),
435 	SIP_DECL(sis900_read_macaddr),
436 };
437 
438 const struct sip_variant SIP_DECL(variant_dp83815) = {
439 	SIP_DECL(dp83815_mii_readreg),
440 	SIP_DECL(dp83815_mii_writereg),
441 	SIP_DECL(dp83815_mii_statchg),
442 	SIP_DECL(dp83815_set_filter),
443 	SIP_DECL(dp83815_read_macaddr),
444 };
445 #endif /* DP83820 */
446 
447 /*
448  * Devices supported by this driver.
449  */
450 const struct sip_product {
451 	pci_vendor_id_t		sip_vendor;
452 	pci_product_id_t	sip_product;
453 	const char		*sip_name;
454 	const struct sip_variant *sip_variant;
455 } SIP_DECL(products)[] = {
456 #if defined(DP83820)
457 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
458 	  "NatSemi DP83820 Gigabit Ethernet",
459 	  &SIP_DECL(variant_dp83820) },
460 #else
461 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
462 	  "SiS 900 10/100 Ethernet",
463 	  &SIP_DECL(variant_sis900) },
464 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
465 	  "SiS 7016 10/100 Ethernet",
466 	  &SIP_DECL(variant_sis900) },
467 
468 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
469 	  "NatSemi DP83815 10/100 Ethernet",
470 	  &SIP_DECL(variant_dp83815) },
471 #endif /* DP83820 */
472 
473 	{ 0,			0,
474 	  NULL,
475 	  NULL },
476 };
477 
478 static const struct sip_product *
479 SIP_DECL(lookup)(const struct pci_attach_args *pa)
480 {
481 	const struct sip_product *sip;
482 
483 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
484 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
485 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
486 			return (sip);
487 	}
488 	return (NULL);
489 }
490 
491 int
492 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
493 {
494 	struct pci_attach_args *pa = aux;
495 
496 	if (SIP_DECL(lookup)(pa) != NULL)
497 		return (1);
498 
499 	return (0);
500 }
501 
502 void
503 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
504 {
505 	struct sip_softc *sc = (struct sip_softc *) self;
506 	struct pci_attach_args *pa = aux;
507 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
508 	pci_chipset_tag_t pc = pa->pa_pc;
509 	pci_intr_handle_t ih;
510 	const char *intrstr = NULL;
511 	bus_space_tag_t iot, memt;
512 	bus_space_handle_t ioh, memh;
513 	bus_dma_segment_t seg;
514 	int ioh_valid, memh_valid;
515 	int i, rseg, error;
516 	const struct sip_product *sip;
517 	pcireg_t pmode;
518 	u_int8_t enaddr[ETHER_ADDR_LEN];
519 	int pmreg;
520 #ifdef DP83820
521 	pcireg_t memtype;
522 	u_int32_t reg;
523 #endif /* DP83820 */
524 
525 	callout_init(&sc->sc_tick_ch);
526 
527 	sip = SIP_DECL(lookup)(pa);
528 	if (sip == NULL) {
529 		printf("\n");
530 		panic(SIP_STR(attach) ": impossible");
531 	}
532 
533 	printf(": %s\n", sip->sip_name);
534 
535 	sc->sc_model = sip;
536 
537 	/*
538 	 * Map the device.
539 	 */
540 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
541 	    PCI_MAPREG_TYPE_IO, 0,
542 	    &iot, &ioh, NULL, NULL) == 0);
543 #ifdef DP83820
544 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
545 	switch (memtype) {
546 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
547 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
548 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
549 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
550 		break;
551 	default:
552 		memh_valid = 0;
553 	}
554 #else
555 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
556 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
557 	    &memt, &memh, NULL, NULL) == 0);
558 #endif /* DP83820 */
559 
560 	if (memh_valid) {
561 		sc->sc_st = memt;
562 		sc->sc_sh = memh;
563 	} else if (ioh_valid) {
564 		sc->sc_st = iot;
565 		sc->sc_sh = ioh;
566 	} else {
567 		printf("%s: unable to map device registers\n",
568 		    sc->sc_dev.dv_xname);
569 		return;
570 	}
571 
572 	sc->sc_dmat = pa->pa_dmat;
573 
574 	/* Enable bus mastering. */
575 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
576 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
577 	    PCI_COMMAND_MASTER_ENABLE);
578 
579 	/* Get it out of power save mode if needed. */
580 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
581 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
582 		if (pmode == 3) {
583 			/*
584 			 * The card has lost all configuration data in
585 			 * this state, so punt.
586 			 */
587 			printf("%s: unable to wake up from power state D3\n",
588 			    sc->sc_dev.dv_xname);
589 			return;
590 		}
591 		if (pmode != 0) {
592 			printf("%s: waking up from power state D%d\n",
593 			    sc->sc_dev.dv_xname, pmode);
594 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
595 		}
596 	}
597 
598 	/*
599 	 * Map and establish our interrupt.
600 	 */
601 	if (pci_intr_map(pa, &ih)) {
602 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
603 		return;
604 	}
605 	intrstr = pci_intr_string(pc, ih);
606 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
607 	if (sc->sc_ih == NULL) {
608 		printf("%s: unable to establish interrupt",
609 		    sc->sc_dev.dv_xname);
610 		if (intrstr != NULL)
611 			printf(" at %s", intrstr);
612 		printf("\n");
613 		return;
614 	}
615 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
616 
617 	SIMPLEQ_INIT(&sc->sc_txfreeq);
618 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
619 
620 	/*
621 	 * Allocate the control data structures, and create and load the
622 	 * DMA map for it.
623 	 */
624 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
625 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
626 	    0)) != 0) {
627 		printf("%s: unable to allocate control data, error = %d\n",
628 		    sc->sc_dev.dv_xname, error);
629 		goto fail_0;
630 	}
631 
632 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
633 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
634 	    BUS_DMA_COHERENT)) != 0) {
635 		printf("%s: unable to map control data, error = %d\n",
636 		    sc->sc_dev.dv_xname, error);
637 		goto fail_1;
638 	}
639 
640 	if ((error = bus_dmamap_create(sc->sc_dmat,
641 	    sizeof(struct sip_control_data), 1,
642 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
643 		printf("%s: unable to create control data DMA map, "
644 		    "error = %d\n", sc->sc_dev.dv_xname, error);
645 		goto fail_2;
646 	}
647 
648 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
649 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
650 	    0)) != 0) {
651 		printf("%s: unable to load control data DMA map, error = %d\n",
652 		    sc->sc_dev.dv_xname, error);
653 		goto fail_3;
654 	}
655 
656 	/*
657 	 * Create the transmit buffer DMA maps.
658 	 */
659 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
660 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
661 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
662 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
663 			printf("%s: unable to create tx DMA map %d, "
664 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
665 			goto fail_4;
666 		}
667 	}
668 
669 	/*
670 	 * Create the receive buffer DMA maps.
671 	 */
672 	for (i = 0; i < SIP_NRXDESC; i++) {
673 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
674 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
675 			printf("%s: unable to create rx DMA map %d, "
676 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
677 			goto fail_5;
678 		}
679 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
680 	}
681 
682 	/*
683 	 * Reset the chip to a known state.
684 	 */
685 	SIP_DECL(reset)(sc);
686 
687 	/*
688 	 * Read the Ethernet address from the EEPROM.  This might
689 	 * also fetch other stuff from the EEPROM and stash it
690 	 * in the softc.
691 	 */
692 	sc->sc_cfg = 0;
693 	(*sip->sip_variant->sipv_read_macaddr)(sc, enaddr);
694 
695 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
696 	    ether_sprintf(enaddr));
697 
698 	/*
699 	 * Initialize the configuration register: aggressive PCI
700 	 * bus request algorithm, default backoff, default OW timer,
701 	 * default parity error detection.
702 	 *
703 	 * NOTE: "Big endian mode" is useless on the SiS900 and
704 	 * friends -- it affects packet data, not descriptors.
705 	 */
706 #ifdef DP83820
707 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
708 	if (reg & CFG_PCI64_DET) {
709 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
710 		/*
711 		 * XXX Need some PCI flags indicating support for
712 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
713 		 * XXX data path.
714 		 */
715 	}
716 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
717 		const char *sep = "";
718 		printf("%s: using ", sc->sc_dev.dv_xname);
719 		if (sc->sc_cfg & CFG_EXT_125) {
720 			printf("%s125MHz clock", sep);
721 			sep = ", ";
722 		}
723 		if (sc->sc_cfg & CFG_TBI_EN) {
724 			printf("%sten-bit interface", sep);
725 			sep = ", ";
726 		}
727 		printf("\n");
728 	}
729 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
730 		sc->sc_cfg |= CFG_MRM_DIS;
731 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
732 		sc->sc_cfg |= CFG_MWI_DIS;
733 
734 	/*
735 	 * Use the extended descriptor format on the DP83820.  This
736 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
737 	 * checksumming.
738 	 */
739 	sc->sc_cfg |= CFG_EXTSTS_EN;
740 #endif /* DP83820 */
741 
742 	/*
743 	 * Initialize our media structures and probe the MII.
744 	 */
745 	sc->sc_mii.mii_ifp = ifp;
746 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
747 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
748 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
749 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
750 	    SIP_DECL(mediastatus));
751 #ifdef DP83820
752 	if (sc->sc_cfg & CFG_TBI_EN) {
753 		/* Using ten-bit interface. */
754 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
755 	} else {
756 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
757 		    MII_OFFSET_ANY, 0);
758 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
759 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
760 			    0, NULL);
761 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
762 		} else
763 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
764 	}
765 #else
766 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
767 	    MII_OFFSET_ANY, 0);
768 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
769 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
770 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
771 	} else
772 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
773 #endif /* DP83820 */
774 
775 	ifp = &sc->sc_ethercom.ec_if;
776 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
777 	ifp->if_softc = sc;
778 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
779 	ifp->if_ioctl = SIP_DECL(ioctl);
780 	ifp->if_start = SIP_DECL(start);
781 	ifp->if_watchdog = SIP_DECL(watchdog);
782 	ifp->if_init = SIP_DECL(init);
783 	ifp->if_stop = SIP_DECL(stop);
784 	IFQ_SET_READY(&ifp->if_snd);
785 
786 	/*
787 	 * We can support 802.1Q VLAN-sized frames.
788 	 */
789 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
790 
791 #ifdef DP83820
792 	/*
793 	 * And the DP83820 can do VLAN tagging in hardware.
794 	 */
795 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
796 
797 	/*
798 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
799 	 * in hardware.
800 	 */
801 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
802 	    IFCAP_CSUM_UDPv4;
803 #endif /* DP83820 */
804 
805 	/*
806 	 * Attach the interface.
807 	 */
808 	if_attach(ifp);
809 	ether_ifattach(ifp, enaddr);
810 
811 #ifdef SIP_EVENT_COUNTERS
812 	/*
813 	 * Attach event counters.
814 	 */
815 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
816 	    NULL, sc->sc_dev.dv_xname, "txsstall");
817 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
818 	    NULL, sc->sc_dev.dv_xname, "txdstall");
819 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
820 	    NULL, sc->sc_dev.dv_xname, "txintr");
821 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
822 	    NULL, sc->sc_dev.dv_xname, "rxintr");
823 #ifdef DP83820
824 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
825 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
826 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
827 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
828 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
829 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
830 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
831 	    NULL, sc->sc_dev.dv_xname, "txipsum");
832 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
833 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
834 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
835 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
836 #endif /* DP83820 */
837 #endif /* SIP_EVENT_COUNTERS */
838 
839 	/*
840 	 * Make sure the interface is shutdown during reboot.
841 	 */
842 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
843 	if (sc->sc_sdhook == NULL)
844 		printf("%s: WARNING: unable to establish shutdown hook\n",
845 		    sc->sc_dev.dv_xname);
846 	return;
847 
848 	/*
849 	 * Free any resources we've allocated during the failed attach
850 	 * attempt.  Do this in reverse order and fall through.
851 	 */
852  fail_5:
853 	for (i = 0; i < SIP_NRXDESC; i++) {
854 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
855 			bus_dmamap_destroy(sc->sc_dmat,
856 			    sc->sc_rxsoft[i].rxs_dmamap);
857 	}
858  fail_4:
859 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
860 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
861 			bus_dmamap_destroy(sc->sc_dmat,
862 			    sc->sc_txsoft[i].txs_dmamap);
863 	}
864 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
865  fail_3:
866 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
867  fail_2:
868 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
869 	    sizeof(struct sip_control_data));
870  fail_1:
871 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
872  fail_0:
873 	return;
874 }
875 
876 /*
877  * sip_shutdown:
878  *
879  *	Make sure the interface is stopped at reboot time.
880  */
881 void
882 SIP_DECL(shutdown)(void *arg)
883 {
884 	struct sip_softc *sc = arg;
885 
886 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
887 }
888 
889 /*
890  * sip_start:		[ifnet interface function]
891  *
892  *	Start packet transmission on the interface.
893  */
894 void
895 SIP_DECL(start)(struct ifnet *ifp)
896 {
897 	struct sip_softc *sc = ifp->if_softc;
898 	struct mbuf *m0, *m;
899 	struct sip_txsoft *txs;
900 	bus_dmamap_t dmamap;
901 	int error, firsttx, nexttx, lasttx, ofree, seg;
902 #ifdef DP83820
903 	u_int32_t extsts;
904 #endif
905 
906 	/*
907 	 * If we've been told to pause, don't transmit any more packets.
908 	 */
909 	if (sc->sc_flags & SIPF_PAUSED)
910 		ifp->if_flags |= IFF_OACTIVE;
911 
912 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
913 		return;
914 
915 	/*
916 	 * Remember the previous number of free descriptors and
917 	 * the first descriptor we'll use.
918 	 */
919 	ofree = sc->sc_txfree;
920 	firsttx = sc->sc_txnext;
921 
922 	/*
923 	 * Loop through the send queue, setting up transmit descriptors
924 	 * until we drain the queue, or use up all available transmit
925 	 * descriptors.
926 	 */
927 	for (;;) {
928 		/* Get a work queue entry. */
929 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
930 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
931 			break;
932 		}
933 
934 		/*
935 		 * Grab a packet off the queue.
936 		 */
937 		IFQ_POLL(&ifp->if_snd, m0);
938 		if (m0 == NULL)
939 			break;
940 		m = NULL;
941 
942 		dmamap = txs->txs_dmamap;
943 
944 		/*
945 		 * Load the DMA map.  If this fails, the packet either
946 		 * didn't fit in the alloted number of segments, or we
947 		 * were short on resources.  In this case, we'll copy
948 		 * and try again.
949 		 */
950 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
951 		    BUS_DMA_NOWAIT) != 0) {
952 			MGETHDR(m, M_DONTWAIT, MT_DATA);
953 			if (m == NULL) {
954 				printf("%s: unable to allocate Tx mbuf\n",
955 				    sc->sc_dev.dv_xname);
956 				break;
957 			}
958 			if (m0->m_pkthdr.len > MHLEN) {
959 				MCLGET(m, M_DONTWAIT);
960 				if ((m->m_flags & M_EXT) == 0) {
961 					printf("%s: unable to allocate Tx "
962 					    "cluster\n", sc->sc_dev.dv_xname);
963 					m_freem(m);
964 					break;
965 				}
966 			}
967 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
968 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
969 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
970 			    m, BUS_DMA_NOWAIT);
971 			if (error) {
972 				printf("%s: unable to load Tx buffer, "
973 				    "error = %d\n", sc->sc_dev.dv_xname, error);
974 				break;
975 			}
976 		}
977 
978 		/*
979 		 * Ensure we have enough descriptors free to describe
980 		 * the packet.  Note, we always reserve one descriptor
981 		 * at the end of the ring as a termination point, to
982 		 * prevent wrap-around.
983 		 */
984 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
985 			/*
986 			 * Not enough free descriptors to transmit this
987 			 * packet.  We haven't committed anything yet,
988 			 * so just unload the DMA map, put the packet
989 			 * back on the queue, and punt.  Notify the upper
990 			 * layer that there are not more slots left.
991 			 *
992 			 * XXX We could allocate an mbuf and copy, but
993 			 * XXX is it worth it?
994 			 */
995 			ifp->if_flags |= IFF_OACTIVE;
996 			bus_dmamap_unload(sc->sc_dmat, dmamap);
997 			if (m != NULL)
998 				m_freem(m);
999 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1000 			break;
1001 		}
1002 
1003 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1004 		if (m != NULL) {
1005 			m_freem(m0);
1006 			m0 = m;
1007 		}
1008 
1009 		/*
1010 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1011 		 */
1012 
1013 		/* Sync the DMA map. */
1014 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1015 		    BUS_DMASYNC_PREWRITE);
1016 
1017 		/*
1018 		 * Initialize the transmit descriptors.
1019 		 */
1020 		for (nexttx = sc->sc_txnext, seg = 0;
1021 		     seg < dmamap->dm_nsegs;
1022 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1023 			/*
1024 			 * If this is the first descriptor we're
1025 			 * enqueueing, don't set the OWN bit just
1026 			 * yet.  That could cause a race condition.
1027 			 * We'll do it below.
1028 			 */
1029 			sc->sc_txdescs[nexttx].sipd_bufptr =
1030 			    htole32(dmamap->dm_segs[seg].ds_addr);
1031 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1032 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1033 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1034 #ifdef DP83820
1035 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1036 #endif /* DP83820 */
1037 			lasttx = nexttx;
1038 		}
1039 
1040 		/* Clear the MORE bit on the last segment. */
1041 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1042 
1043 #ifdef DP83820
1044 		/*
1045 		 * If VLANs are enabled and the packet has a VLAN tag, set
1046 		 * up the descriptor to encapsulate the packet for us.
1047 		 *
1048 		 * This apparently has to be on the last descriptor of
1049 		 * the packet.
1050 		 */
1051 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1052 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1053 			sc->sc_txdescs[lasttx].sipd_extsts |=
1054 			    htole32(EXTSTS_VPKT |
1055 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
1056 		}
1057 
1058 		/*
1059 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1060 		 * checksumming, set up the descriptor to do this work
1061 		 * for us.
1062 		 *
1063 		 * This apparently has to be on the first descriptor of
1064 		 * the packet.
1065 		 *
1066 		 * Byte-swap constants so the compiler can optimize.
1067 		 */
1068 		extsts = 0;
1069 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1070 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1071 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1072 			extsts |= htole32(EXTSTS_IPPKT);
1073 		}
1074 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1075 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1076 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1077 			extsts |= htole32(EXTSTS_TCPPKT);
1078 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1079 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1080 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1081 			extsts |= htole32(EXTSTS_UDPPKT);
1082 		}
1083 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1084 #endif /* DP83820 */
1085 
1086 		/* Sync the descriptors we're using. */
1087 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1088 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1089 
1090 		/*
1091 		 * Store a pointer to the packet so we can free it later,
1092 		 * and remember what txdirty will be once the packet is
1093 		 * done.
1094 		 */
1095 		txs->txs_mbuf = m0;
1096 		txs->txs_firstdesc = sc->sc_txnext;
1097 		txs->txs_lastdesc = lasttx;
1098 
1099 		/* Advance the tx pointer. */
1100 		sc->sc_txfree -= dmamap->dm_nsegs;
1101 		sc->sc_txnext = nexttx;
1102 
1103 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1104 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1105 
1106 #if NBPFILTER > 0
1107 		/*
1108 		 * Pass the packet to any BPF listeners.
1109 		 */
1110 		if (ifp->if_bpf)
1111 			bpf_mtap(ifp->if_bpf, m0);
1112 #endif /* NBPFILTER > 0 */
1113 	}
1114 
1115 	if (txs == NULL || sc->sc_txfree == 0) {
1116 		/* No more slots left; notify upper layer. */
1117 		ifp->if_flags |= IFF_OACTIVE;
1118 	}
1119 
1120 	if (sc->sc_txfree != ofree) {
1121 		/*
1122 		 * Cause a descriptor interrupt to happen on the
1123 		 * last packet we enqueued.
1124 		 */
1125 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1126 		SIP_CDTXSYNC(sc, lasttx, 1,
1127 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1128 
1129 		/*
1130 		 * The entire packet chain is set up.  Give the
1131 		 * first descrptor to the chip now.
1132 		 */
1133 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1134 		SIP_CDTXSYNC(sc, firsttx, 1,
1135 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1136 
1137 		/*
1138 		 * Start the transmit process.  Note, the manual says
1139 		 * that if there are no pending transmissions in the
1140 		 * chip's internal queue (indicated by TXE being clear),
1141 		 * then the driver software must set the TXDP to the
1142 		 * first descriptor to be transmitted.  However, if we
1143 		 * do this, it causes serious performance degredation on
1144 		 * the DP83820 under load, not setting TXDP doesn't seem
1145 		 * to adversely affect the SiS 900 or DP83815.
1146 		 *
1147 		 * Well, I guess it wouldn't be the first time a manual
1148 		 * has lied -- and they could be speaking of the NULL-
1149 		 * terminated descriptor list case, rather than OWN-
1150 		 * terminated rings.
1151 		 */
1152 #if 0
1153 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1154 		     CR_TXE) == 0) {
1155 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1156 			    SIP_CDTXADDR(sc, firsttx));
1157 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1158 		}
1159 #else
1160 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1161 #endif
1162 
1163 		/* Set a watchdog timer in case the chip flakes out. */
1164 		ifp->if_timer = 5;
1165 	}
1166 }
1167 
1168 /*
1169  * sip_watchdog:	[ifnet interface function]
1170  *
1171  *	Watchdog timer handler.
1172  */
1173 void
1174 SIP_DECL(watchdog)(struct ifnet *ifp)
1175 {
1176 	struct sip_softc *sc = ifp->if_softc;
1177 
1178 	/*
1179 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1180 	 * If we get a timeout, try and sweep up transmit descriptors.
1181 	 * If we manage to sweep them all up, ignore the lack of
1182 	 * interrupt.
1183 	 */
1184 	SIP_DECL(txintr)(sc);
1185 
1186 	if (sc->sc_txfree != SIP_NTXDESC) {
1187 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1188 		ifp->if_oerrors++;
1189 
1190 		/* Reset the interface. */
1191 		(void) SIP_DECL(init)(ifp);
1192 	} else if (ifp->if_flags & IFF_DEBUG)
1193 		printf("%s: recovered from device timeout\n",
1194 		    sc->sc_dev.dv_xname);
1195 
1196 	/* Try to get more packets going. */
1197 	SIP_DECL(start)(ifp);
1198 }
1199 
1200 /*
1201  * sip_ioctl:		[ifnet interface function]
1202  *
1203  *	Handle control requests from the operator.
1204  */
1205 int
1206 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1207 {
1208 	struct sip_softc *sc = ifp->if_softc;
1209 	struct ifreq *ifr = (struct ifreq *)data;
1210 	int s, error;
1211 
1212 	s = splnet();
1213 
1214 	switch (cmd) {
1215 	case SIOCSIFMEDIA:
1216 	case SIOCGIFMEDIA:
1217 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1218 		break;
1219 
1220 	default:
1221 		error = ether_ioctl(ifp, cmd, data);
1222 		if (error == ENETRESET) {
1223 			/*
1224 			 * Multicast list has changed; set the hardware filter
1225 			 * accordingly.
1226 			 */
1227 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1228 			error = 0;
1229 		}
1230 		break;
1231 	}
1232 
1233 	/* Try to get more packets going. */
1234 	SIP_DECL(start)(ifp);
1235 
1236 	splx(s);
1237 	return (error);
1238 }
1239 
1240 /*
1241  * sip_intr:
1242  *
1243  *	Interrupt service routine.
1244  */
1245 int
1246 SIP_DECL(intr)(void *arg)
1247 {
1248 	struct sip_softc *sc = arg;
1249 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1250 	u_int32_t isr;
1251 	int handled = 0;
1252 
1253 	for (;;) {
1254 		/* Reading clears interrupt. */
1255 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1256 		if ((isr & sc->sc_imr) == 0)
1257 			break;
1258 
1259 		handled = 1;
1260 
1261 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1262 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1263 
1264 			/* Grab any new packets. */
1265 			SIP_DECL(rxintr)(sc);
1266 
1267 			if (isr & ISR_RXORN) {
1268 				printf("%s: receive FIFO overrun\n",
1269 				    sc->sc_dev.dv_xname);
1270 
1271 				/* XXX adjust rx_drain_thresh? */
1272 			}
1273 
1274 			if (isr & ISR_RXIDLE) {
1275 				printf("%s: receive ring overrun\n",
1276 				    sc->sc_dev.dv_xname);
1277 
1278 				/* Get the receive process going again. */
1279 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1280 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1281 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1282 				    SIP_CR, CR_RXE);
1283 			}
1284 		}
1285 
1286 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
1287 			SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1288 
1289 			/* Sweep up transmit descriptors. */
1290 			SIP_DECL(txintr)(sc);
1291 
1292 			if (isr & ISR_TXURN) {
1293 				u_int32_t thresh;
1294 
1295 				printf("%s: transmit FIFO underrun",
1296 				    sc->sc_dev.dv_xname);
1297 
1298 				thresh = sc->sc_tx_drain_thresh + 1;
1299 				if (thresh <= TXCFG_DRTH &&
1300 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1301 				     (sc->sc_tx_fill_thresh * 32))) {
1302 					printf("; increasing Tx drain "
1303 					    "threshold to %u bytes\n",
1304 					    thresh * 32);
1305 					sc->sc_tx_drain_thresh = thresh;
1306 					(void) SIP_DECL(init)(ifp);
1307 				} else {
1308 					(void) SIP_DECL(init)(ifp);
1309 					printf("\n");
1310 				}
1311 			}
1312 		}
1313 
1314 #if !defined(DP83820)
1315 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1316 			if (isr & ISR_PAUSE_ST) {
1317 				sc->sc_flags |= SIPF_PAUSED;
1318 				ifp->if_flags |= IFF_OACTIVE;
1319 			}
1320 			if (isr & ISR_PAUSE_END) {
1321 				sc->sc_flags &= ~SIPF_PAUSED;
1322 				ifp->if_flags &= ~IFF_OACTIVE;
1323 			}
1324 		}
1325 #endif /* ! DP83820 */
1326 
1327 		if (isr & ISR_HIBERR) {
1328 #define	PRINTERR(bit, str)						\
1329 			if (isr & (bit))				\
1330 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1331 			PRINTERR(ISR_DPERR, "parity error");
1332 			PRINTERR(ISR_SSERR, "system error");
1333 			PRINTERR(ISR_RMABT, "master abort");
1334 			PRINTERR(ISR_RTABT, "target abort");
1335 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1336 			(void) SIP_DECL(init)(ifp);
1337 #undef PRINTERR
1338 		}
1339 	}
1340 
1341 	/* Try to get more packets going. */
1342 	SIP_DECL(start)(ifp);
1343 
1344 	return (handled);
1345 }
1346 
1347 /*
1348  * sip_txintr:
1349  *
1350  *	Helper; handle transmit interrupts.
1351  */
1352 void
1353 SIP_DECL(txintr)(struct sip_softc *sc)
1354 {
1355 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1356 	struct sip_txsoft *txs;
1357 	u_int32_t cmdsts;
1358 
1359 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1360 		ifp->if_flags &= ~IFF_OACTIVE;
1361 
1362 	/*
1363 	 * Go through our Tx list and free mbufs for those
1364 	 * frames which have been transmitted.
1365 	 */
1366 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1367 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1368 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1369 
1370 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1371 		if (cmdsts & CMDSTS_OWN)
1372 			break;
1373 
1374 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1375 
1376 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1377 
1378 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1379 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1380 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1381 		m_freem(txs->txs_mbuf);
1382 		txs->txs_mbuf = NULL;
1383 
1384 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1385 
1386 		/*
1387 		 * Check for errors and collisions.
1388 		 */
1389 		if (cmdsts &
1390 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1391 			ifp->if_oerrors++;
1392 			if (cmdsts & CMDSTS_Tx_EC)
1393 				ifp->if_collisions += 16;
1394 			if (ifp->if_flags & IFF_DEBUG) {
1395 				if (cmdsts & CMDSTS_Tx_ED)
1396 					printf("%s: excessive deferral\n",
1397 					    sc->sc_dev.dv_xname);
1398 				if (cmdsts & CMDSTS_Tx_EC)
1399 					printf("%s: excessive collisions\n",
1400 					    sc->sc_dev.dv_xname);
1401 			}
1402 		} else {
1403 			/* Packet was transmitted successfully. */
1404 			ifp->if_opackets++;
1405 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1406 		}
1407 	}
1408 
1409 	/*
1410 	 * If there are no more pending transmissions, cancel the watchdog
1411 	 * timer.
1412 	 */
1413 	if (txs == NULL)
1414 		ifp->if_timer = 0;
1415 }
1416 
1417 /*
1418  * sip_rxintr:
1419  *
1420  *	Helper; handle receive interrupts.
1421  */
1422 void
1423 SIP_DECL(rxintr)(struct sip_softc *sc)
1424 {
1425 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1426 	struct sip_rxsoft *rxs;
1427 	struct mbuf *m;
1428 	u_int32_t cmdsts;
1429 #ifdef DP83820
1430 	u_int32_t extsts;
1431 #endif /* DP83820 */
1432 	int i, len;
1433 
1434 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1435 		rxs = &sc->sc_rxsoft[i];
1436 
1437 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1438 
1439 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1440 #ifdef DP83820
1441 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1442 #endif /* DP83820 */
1443 
1444 		/*
1445 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1446 		 * consumer of the receive ring, so if the bit is clear,
1447 		 * we have processed all of the packets.
1448 		 */
1449 		if ((cmdsts & CMDSTS_OWN) == 0) {
1450 			/*
1451 			 * We have processed all of the receive buffers.
1452 			 */
1453 			break;
1454 		}
1455 
1456 #if !defined(DP83820)
1457 		/*
1458 		 * If any collisions were seen on the wire, count one.
1459 		 */
1460 		if (cmdsts & CMDSTS_Rx_COL)
1461 			ifp->if_collisions++;
1462 #endif /* ! DP83820 */
1463 
1464 		/*
1465 		 * If an error occurred, update stats, clear the status
1466 		 * word, and leave the packet buffer in place.  It will
1467 		 * simply be reused the next time the ring comes around.
1468 		 */
1469 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1470 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1471 			ifp->if_ierrors++;
1472 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1473 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1474 				/* Receive overrun handled elsewhere. */
1475 				printf("%s: receive descriptor error\n",
1476 				    sc->sc_dev.dv_xname);
1477 			}
1478 #define	PRINTERR(bit, str)						\
1479 			if (cmdsts & (bit))				\
1480 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1481 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1482 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1483 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1484 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1485 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1486 #undef PRINTERR
1487 			SIP_INIT_RXDESC(sc, i);
1488 			continue;
1489 		}
1490 
1491 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1492 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1493 
1494 		/*
1495 		 * No errors; receive the packet.  Note, the SiS 900
1496 		 * includes the CRC with every packet.
1497 		 */
1498 		len = CMDSTS_SIZE(cmdsts);
1499 
1500 #ifdef __NO_STRICT_ALIGNMENT
1501 		/*
1502 		 * If the packet is small enough to fit in a
1503 		 * single header mbuf, allocate one and copy
1504 		 * the data into it.  This greatly reduces
1505 		 * memory consumption when we receive lots
1506 		 * of small packets.
1507 		 *
1508 		 * Otherwise, we add a new buffer to the receive
1509 		 * chain.  If this fails, we drop the packet and
1510 		 * recycle the old buffer.
1511 		 */
1512 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1513 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1514 			if (m == NULL)
1515 				goto dropit;
1516 			memcpy(mtod(m, caddr_t),
1517 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1518 			SIP_INIT_RXDESC(sc, i);
1519 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1520 			    rxs->rxs_dmamap->dm_mapsize,
1521 			    BUS_DMASYNC_PREREAD);
1522 		} else {
1523 			m = rxs->rxs_mbuf;
1524 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1525  dropit:
1526 				ifp->if_ierrors++;
1527 				SIP_INIT_RXDESC(sc, i);
1528 				bus_dmamap_sync(sc->sc_dmat,
1529 				    rxs->rxs_dmamap, 0,
1530 				    rxs->rxs_dmamap->dm_mapsize,
1531 				    BUS_DMASYNC_PREREAD);
1532 				continue;
1533 			}
1534 		}
1535 #else
1536 		/*
1537 		 * The SiS 900's receive buffers must be 4-byte aligned.
1538 		 * But this means that the data after the Ethernet header
1539 		 * is misaligned.  We must allocate a new buffer and
1540 		 * copy the data, shifted forward 2 bytes.
1541 		 */
1542 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1543 		if (m == NULL) {
1544  dropit:
1545 			ifp->if_ierrors++;
1546 			SIP_INIT_RXDESC(sc, i);
1547 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1548 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1549 			continue;
1550 		}
1551 		if (len > (MHLEN - 2)) {
1552 			MCLGET(m, M_DONTWAIT);
1553 			if ((m->m_flags & M_EXT) == 0) {
1554 				m_freem(m);
1555 				goto dropit;
1556 			}
1557 		}
1558 		m->m_data += 2;
1559 
1560 		/*
1561 		 * Note that we use clusters for incoming frames, so the
1562 		 * buffer is virtually contiguous.
1563 		 */
1564 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1565 
1566 		/* Allow the receive descriptor to continue using its mbuf. */
1567 		SIP_INIT_RXDESC(sc, i);
1568 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1569 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1570 #endif /* __NO_STRICT_ALIGNMENT */
1571 
1572 		ifp->if_ipackets++;
1573 		m->m_flags |= M_HASFCS;
1574 		m->m_pkthdr.rcvif = ifp;
1575 		m->m_pkthdr.len = m->m_len = len;
1576 
1577 #if NBPFILTER > 0
1578 		/*
1579 		 * Pass this up to any BPF listeners, but only
1580 		 * pass if up the stack if it's for us.
1581 		 */
1582 		if (ifp->if_bpf)
1583 			bpf_mtap(ifp->if_bpf, m);
1584 #endif /* NBPFILTER > 0 */
1585 
1586 #ifdef DP83820
1587 		/*
1588 		 * If VLANs are enabled, VLAN packets have been unwrapped
1589 		 * for us.  Associate the tag with the packet.
1590 		 */
1591 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1592 		    (extsts & EXTSTS_VPKT) != 0) {
1593 			struct mbuf *vtag;
1594 
1595 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1596 			if (vtag == NULL) {
1597 				printf("%s: unable to allocate VLAN tag\n",
1598 				    sc->sc_dev.dv_xname);
1599 				m_freem(m);
1600 				continue;
1601 			}
1602 
1603 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1604 			vtag->m_len = sizeof(int);
1605 		}
1606 
1607 		/*
1608 		 * Set the incoming checksum information for the
1609 		 * packet.
1610 		 */
1611 		if ((extsts & EXTSTS_IPPKT) != 0) {
1612 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1613 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1614 			if (extsts & EXTSTS_Rx_IPERR)
1615 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1616 			if (extsts & EXTSTS_TCPPKT) {
1617 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1618 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1619 				if (extsts & EXTSTS_Rx_TCPERR)
1620 					m->m_pkthdr.csum_flags |=
1621 					    M_CSUM_TCP_UDP_BAD;
1622 			} else if (extsts & EXTSTS_UDPPKT) {
1623 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1624 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1625 				if (extsts & EXTSTS_Rx_UDPERR)
1626 					m->m_pkthdr.csum_flags |=
1627 					    M_CSUM_TCP_UDP_BAD;
1628 			}
1629 		}
1630 #endif /* DP83820 */
1631 
1632 		/* Pass it on. */
1633 		(*ifp->if_input)(ifp, m);
1634 	}
1635 
1636 	/* Update the receive pointer. */
1637 	sc->sc_rxptr = i;
1638 }
1639 
1640 /*
1641  * sip_tick:
1642  *
1643  *	One second timer, used to tick the MII.
1644  */
1645 void
1646 SIP_DECL(tick)(void *arg)
1647 {
1648 	struct sip_softc *sc = arg;
1649 	int s;
1650 
1651 	s = splnet();
1652 	mii_tick(&sc->sc_mii);
1653 	splx(s);
1654 
1655 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1656 }
1657 
1658 /*
1659  * sip_reset:
1660  *
1661  *	Perform a soft reset on the SiS 900.
1662  */
1663 void
1664 SIP_DECL(reset)(struct sip_softc *sc)
1665 {
1666 	bus_space_tag_t st = sc->sc_st;
1667 	bus_space_handle_t sh = sc->sc_sh;
1668 	int i;
1669 
1670 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1671 
1672 	for (i = 0; i < SIP_TIMEOUT; i++) {
1673 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1674 			break;
1675 		delay(2);
1676 	}
1677 
1678 	if (i == SIP_TIMEOUT)
1679 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1680 
1681 	delay(1000);
1682 
1683 #ifdef DP83820
1684 	/*
1685 	 * Set the general purpose I/O bits.  Do it here in case we
1686 	 * need to have GPIO set up to talk to the media interface.
1687 	 */
1688 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
1689 	delay(1000);
1690 #endif /* DP83820 */
1691 }
1692 
1693 /*
1694  * sip_init:		[ ifnet interface function ]
1695  *
1696  *	Initialize the interface.  Must be called at splnet().
1697  */
1698 int
1699 SIP_DECL(init)(struct ifnet *ifp)
1700 {
1701 	struct sip_softc *sc = ifp->if_softc;
1702 	bus_space_tag_t st = sc->sc_st;
1703 	bus_space_handle_t sh = sc->sc_sh;
1704 	struct sip_txsoft *txs;
1705 	struct sip_rxsoft *rxs;
1706 	struct sip_desc *sipd;
1707 	u_int32_t reg;
1708 	int i, error = 0;
1709 
1710 	/*
1711 	 * Cancel any pending I/O.
1712 	 */
1713 	SIP_DECL(stop)(ifp, 0);
1714 
1715 	/*
1716 	 * Reset the chip to a known state.
1717 	 */
1718 	SIP_DECL(reset)(sc);
1719 
1720 #if !defined(DP83820)
1721 	if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
1722 	    sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1723 		/*
1724 		 * DP83815 manual, page 78:
1725 		 *    4.4 Recommended Registers Configuration
1726 		 *    For optimum performance of the DP83815, version noted
1727 		 *    as DP83815CVNG (SRR = 203h), the listed register
1728 		 *    modifications must be followed in sequence...
1729 		 *
1730 		 * It's not clear if this should be 302h or 203h because that
1731 		 * chip name is listed as SRR 302h in the description of the
1732 		 * SRR register.  However, my revision 302h DP83815 on the
1733 		 * Netgear FA311 purchased in 02/2001 needs these settings
1734 		 * to avoid tons of errors in AcceptPerfectMatch (non-
1735 		 * IFF_PROMISC) mode.  I do not know if other revisions need
1736 		 * this set or not.  [briggs -- 09 March 2001]
1737 		 *
1738 		 * Note that only the low-order 12 bits of 0xe4 are documented
1739 		 * and that this sets reserved bits in that register.
1740 		 */
1741 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
1742 		if (reg == 0x302) {
1743 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
1744 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
1745 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
1746 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
1747 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
1748 		}
1749 	}
1750 #endif /* ! DP83820 */
1751 
1752 	/*
1753 	 * Initialize the transmit descriptor ring.
1754 	 */
1755 	for (i = 0; i < SIP_NTXDESC; i++) {
1756 		sipd = &sc->sc_txdescs[i];
1757 		memset(sipd, 0, sizeof(struct sip_desc));
1758 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1759 	}
1760 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1761 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1762 	sc->sc_txfree = SIP_NTXDESC;
1763 	sc->sc_txnext = 0;
1764 
1765 	/*
1766 	 * Initialize the transmit job descriptors.
1767 	 */
1768 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1769 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1770 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1771 		txs = &sc->sc_txsoft[i];
1772 		txs->txs_mbuf = NULL;
1773 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1774 	}
1775 
1776 	/*
1777 	 * Initialize the receive descriptor and receive job
1778 	 * descriptor rings.
1779 	 */
1780 	for (i = 0; i < SIP_NRXDESC; i++) {
1781 		rxs = &sc->sc_rxsoft[i];
1782 		if (rxs->rxs_mbuf == NULL) {
1783 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
1784 				printf("%s: unable to allocate or map rx "
1785 				    "buffer %d, error = %d\n",
1786 				    sc->sc_dev.dv_xname, i, error);
1787 				/*
1788 				 * XXX Should attempt to run with fewer receive
1789 				 * XXX buffers instead of just failing.
1790 				 */
1791 				SIP_DECL(rxdrain)(sc);
1792 				goto out;
1793 			}
1794 		}
1795 	}
1796 	sc->sc_rxptr = 0;
1797 
1798 	/*
1799 	 * Set the configuration register; it's already initialized
1800 	 * in sip_attach().
1801 	 */
1802 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
1803 
1804 	/*
1805 	 * Initialize the transmit fill and drain thresholds if
1806 	 * we have never done so.
1807 	 */
1808 	if (sc->sc_tx_fill_thresh == 0) {
1809 		/*
1810 		 * XXX This value should be tuned.  This is the
1811 		 * minimum (32 bytes), and we may be able to
1812 		 * improve performance by increasing it.
1813 		 */
1814 		sc->sc_tx_fill_thresh = 1;
1815 	}
1816 	if (sc->sc_tx_drain_thresh == 0) {
1817 		/*
1818 		 * Start at a drain threshold of 512 bytes.  We will
1819 		 * increase it if a DMA underrun occurs.
1820 		 *
1821 		 * XXX The minimum value of this variable should be
1822 		 * tuned.  We may be able to improve performance
1823 		 * by starting with a lower value.  That, however,
1824 		 * may trash the first few outgoing packets if the
1825 		 * PCI bus is saturated.
1826 		 */
1827 		sc->sc_tx_drain_thresh = 512 / 32;
1828 	}
1829 
1830 	/*
1831 	 * Initialize the prototype TXCFG register.
1832 	 */
1833 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1834 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1835 	    sc->sc_tx_drain_thresh;
1836 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1837 
1838 	/*
1839 	 * Initialize the receive drain threshold if we have never
1840 	 * done so.
1841 	 */
1842 	if (sc->sc_rx_drain_thresh == 0) {
1843 		/*
1844 		 * XXX This value should be tuned.  This is set to the
1845 		 * maximum of 248 bytes, and we may be able to improve
1846 		 * performance by decreasing it (although we should never
1847 		 * set this value lower than 2; 14 bytes are required to
1848 		 * filter the packet).
1849 		 */
1850 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1851 	}
1852 
1853 	/*
1854 	 * Initialize the prototype RXCFG register.
1855 	 */
1856 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
1857 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1858 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1859 
1860 	/* Set up the receive filter. */
1861 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1862 
1863 #ifdef DP83820
1864 	/*
1865 	 * Initialize the VLAN/IP receive control register.
1866 	 * We enable checksum computation on all incoming
1867 	 * packets, and do not reject packets w/ bad checksums.
1868 	 */
1869 	reg = 0;
1870 	if (ifp->if_capenable &
1871 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1872 		reg |= VRCR_IPEN;
1873 	if (sc->sc_ethercom.ec_nvlans != 0)
1874 		reg |= VRCR_VTDEN|VRCR_VTREN;
1875 	bus_space_write_4(st, sh, SIP_VRCR, reg);
1876 
1877 	/*
1878 	 * Initialize the VLAN/IP transmit control register.
1879 	 * We enable outgoing checksum computation on a
1880 	 * per-packet basis.
1881 	 */
1882 	reg = 0;
1883 	if (ifp->if_capenable &
1884 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1885 		reg |= VTCR_PPCHK;
1886 	if (sc->sc_ethercom.ec_nvlans != 0)
1887 		reg |= VTCR_VPPTI;
1888 	bus_space_write_4(st, sh, SIP_VTCR, reg);
1889 
1890 	/*
1891 	 * If we're using VLANs, initialize the VLAN data register.
1892 	 * To understand why we bswap the VLAN Ethertype, see section
1893 	 * 4.2.36 of the DP83820 manual.
1894 	 */
1895 	if (sc->sc_ethercom.ec_nvlans != 0)
1896 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
1897 #endif /* DP83820 */
1898 
1899 	/*
1900 	 * Give the transmit and receive rings to the chip.
1901 	 */
1902 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1903 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1904 
1905 	/*
1906 	 * Initialize the interrupt mask.
1907 	 */
1908 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1909 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1910 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1911 
1912 	/*
1913 	 * Set the current media.  Do this after initializing the prototype
1914 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1915 	 * control.
1916 	 */
1917 	mii_mediachg(&sc->sc_mii);
1918 
1919 	/*
1920 	 * Enable interrupts.
1921 	 */
1922 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
1923 
1924 	/*
1925 	 * Start the transmit and receive processes.
1926 	 */
1927 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1928 
1929 	/*
1930 	 * Start the one second MII clock.
1931 	 */
1932 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1933 
1934 	/*
1935 	 * ...all done!
1936 	 */
1937 	ifp->if_flags |= IFF_RUNNING;
1938 	ifp->if_flags &= ~IFF_OACTIVE;
1939 
1940  out:
1941 	if (error)
1942 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1943 	return (error);
1944 }
1945 
1946 /*
1947  * sip_drain:
1948  *
1949  *	Drain the receive queue.
1950  */
1951 void
1952 SIP_DECL(rxdrain)(struct sip_softc *sc)
1953 {
1954 	struct sip_rxsoft *rxs;
1955 	int i;
1956 
1957 	for (i = 0; i < SIP_NRXDESC; i++) {
1958 		rxs = &sc->sc_rxsoft[i];
1959 		if (rxs->rxs_mbuf != NULL) {
1960 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1961 			m_freem(rxs->rxs_mbuf);
1962 			rxs->rxs_mbuf = NULL;
1963 		}
1964 	}
1965 }
1966 
1967 /*
1968  * sip_stop:		[ ifnet interface function ]
1969  *
1970  *	Stop transmission on the interface.
1971  */
1972 void
1973 SIP_DECL(stop)(struct ifnet *ifp, int disable)
1974 {
1975 	struct sip_softc *sc = ifp->if_softc;
1976 	bus_space_tag_t st = sc->sc_st;
1977 	bus_space_handle_t sh = sc->sc_sh;
1978 	struct sip_txsoft *txs;
1979 	u_int32_t cmdsts = 0;		/* DEBUG */
1980 
1981 	/*
1982 	 * Stop the one second clock.
1983 	 */
1984 	callout_stop(&sc->sc_tick_ch);
1985 
1986 	/* Down the MII. */
1987 	mii_down(&sc->sc_mii);
1988 
1989 	/*
1990 	 * Disable interrupts.
1991 	 */
1992 	bus_space_write_4(st, sh, SIP_IER, 0);
1993 
1994 	/*
1995 	 * Stop receiver and transmitter.
1996 	 */
1997 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1998 
1999 	/*
2000 	 * Release any queued transmit buffers.
2001 	 */
2002 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2003 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2004 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2005 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2006 		     CMDSTS_INTR) == 0)
2007 			printf("%s: sip_stop: last descriptor does not "
2008 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2009 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2010 #ifdef DIAGNOSTIC
2011 		if (txs->txs_mbuf == NULL) {
2012 			printf("%s: dirty txsoft with no mbuf chain\n",
2013 			    sc->sc_dev.dv_xname);
2014 			panic("sip_stop");
2015 		}
2016 #endif
2017 		cmdsts |=		/* DEBUG */
2018 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2019 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2020 		m_freem(txs->txs_mbuf);
2021 		txs->txs_mbuf = NULL;
2022 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2023 	}
2024 
2025 	if (disable)
2026 		SIP_DECL(rxdrain)(sc);
2027 
2028 	/*
2029 	 * Mark the interface down and cancel the watchdog timer.
2030 	 */
2031 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2032 	ifp->if_timer = 0;
2033 
2034 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2035 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2036 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2037 		    "descriptors\n", sc->sc_dev.dv_xname);
2038 }
2039 
2040 /*
2041  * sip_read_eeprom:
2042  *
2043  *	Read data from the serial EEPROM.
2044  */
2045 void
2046 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2047     u_int16_t *data)
2048 {
2049 	bus_space_tag_t st = sc->sc_st;
2050 	bus_space_handle_t sh = sc->sc_sh;
2051 	u_int16_t reg;
2052 	int i, x;
2053 
2054 	for (i = 0; i < wordcnt; i++) {
2055 		/* Send CHIP SELECT. */
2056 		reg = EROMAR_EECS;
2057 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2058 
2059 		/* Shift in the READ opcode. */
2060 		for (x = 3; x > 0; x--) {
2061 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2062 				reg |= EROMAR_EEDI;
2063 			else
2064 				reg &= ~EROMAR_EEDI;
2065 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2066 			bus_space_write_4(st, sh, SIP_EROMAR,
2067 			    reg | EROMAR_EESK);
2068 			delay(4);
2069 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2070 			delay(4);
2071 		}
2072 
2073 		/* Shift in address. */
2074 		for (x = 6; x > 0; x--) {
2075 			if ((word + i) & (1 << (x - 1)))
2076 				reg |= EROMAR_EEDI;
2077 			else
2078 				reg &= ~EROMAR_EEDI;
2079 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2080 			bus_space_write_4(st, sh, SIP_EROMAR,
2081 			    reg | EROMAR_EESK);
2082 			delay(4);
2083 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2084 			delay(4);
2085 		}
2086 
2087 		/* Shift out data. */
2088 		reg = EROMAR_EECS;
2089 		data[i] = 0;
2090 		for (x = 16; x > 0; x--) {
2091 			bus_space_write_4(st, sh, SIP_EROMAR,
2092 			    reg | EROMAR_EESK);
2093 			delay(4);
2094 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2095 				data[i] |= (1 << (x - 1));
2096 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2097 			delay(4);
2098 		}
2099 
2100 		/* Clear CHIP SELECT. */
2101 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2102 		delay(4);
2103 	}
2104 }
2105 
2106 /*
2107  * sip_add_rxbuf:
2108  *
2109  *	Add a receive buffer to the indicated descriptor.
2110  */
2111 int
2112 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2113 {
2114 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2115 	struct mbuf *m;
2116 	int error;
2117 
2118 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2119 	if (m == NULL)
2120 		return (ENOBUFS);
2121 
2122 	MCLGET(m, M_DONTWAIT);
2123 	if ((m->m_flags & M_EXT) == 0) {
2124 		m_freem(m);
2125 		return (ENOBUFS);
2126 	}
2127 
2128 	if (rxs->rxs_mbuf != NULL)
2129 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2130 
2131 	rxs->rxs_mbuf = m;
2132 
2133 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2134 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
2135 	if (error) {
2136 		printf("%s: can't load rx DMA map %d, error = %d\n",
2137 		    sc->sc_dev.dv_xname, idx, error);
2138 		panic("sip_add_rxbuf");		/* XXX */
2139 	}
2140 
2141 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2142 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2143 
2144 	SIP_INIT_RXDESC(sc, idx);
2145 
2146 	return (0);
2147 }
2148 
2149 #if !defined(DP83820)
2150 /*
2151  * sip_sis900_set_filter:
2152  *
2153  *	Set up the receive filter.
2154  */
2155 void
2156 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2157 {
2158 	bus_space_tag_t st = sc->sc_st;
2159 	bus_space_handle_t sh = sc->sc_sh;
2160 	struct ethercom *ec = &sc->sc_ethercom;
2161 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2162 	struct ether_multi *enm;
2163 	u_int8_t *cp;
2164 	struct ether_multistep step;
2165 	u_int32_t crc, mchash[8];
2166 
2167 	/*
2168 	 * Initialize the prototype RFCR.
2169 	 */
2170 	sc->sc_rfcr = RFCR_RFEN;
2171 	if (ifp->if_flags & IFF_BROADCAST)
2172 		sc->sc_rfcr |= RFCR_AAB;
2173 	if (ifp->if_flags & IFF_PROMISC) {
2174 		sc->sc_rfcr |= RFCR_AAP;
2175 		goto allmulti;
2176 	}
2177 
2178 	/*
2179 	 * Set up the multicast address filter by passing all multicast
2180 	 * addresses through a CRC generator, and then using the high-order
2181 	 * 6 bits as an index into the 128 bit multicast hash table (only
2182 	 * the lower 16 bits of each 32 bit multicast hash register are
2183 	 * valid).  The high order bits select the register, while the
2184 	 * rest of the bits select the bit within the register.
2185 	 */
2186 
2187 	memset(mchash, 0, sizeof(mchash));
2188 
2189 	ETHER_FIRST_MULTI(step, ec, enm);
2190 	while (enm != NULL) {
2191 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2192 			/*
2193 			 * We must listen to a range of multicast addresses.
2194 			 * For now, just accept all multicasts, rather than
2195 			 * trying to set only those filter bits needed to match
2196 			 * the range.  (At this time, the only use of address
2197 			 * ranges is for IP multicast routing, for which the
2198 			 * range is big enough to require all bits set.)
2199 			 */
2200 			goto allmulti;
2201 		}
2202 
2203 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2204 
2205 		/* Just want the 7 most significant bits. */
2206 		crc >>= 25;
2207 
2208 		/* Set the corresponding bit in the hash table. */
2209 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2210 
2211 		ETHER_NEXT_MULTI(step, enm);
2212 	}
2213 
2214 	ifp->if_flags &= ~IFF_ALLMULTI;
2215 	goto setit;
2216 
2217  allmulti:
2218 	ifp->if_flags |= IFF_ALLMULTI;
2219 	sc->sc_rfcr |= RFCR_AAM;
2220 
2221  setit:
2222 #define	FILTER_EMIT(addr, data)						\
2223 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2224 	delay(1);							\
2225 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2226 	delay(1)
2227 
2228 	/*
2229 	 * Disable receive filter, and program the node address.
2230 	 */
2231 	cp = LLADDR(ifp->if_sadl);
2232 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2233 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2234 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2235 
2236 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2237 		/*
2238 		 * Program the multicast hash table.
2239 		 */
2240 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2241 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2242 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2243 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2244 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2245 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2246 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2247 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2248 	}
2249 #undef FILTER_EMIT
2250 
2251 	/*
2252 	 * Re-enable the receiver filter.
2253 	 */
2254 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2255 }
2256 #endif /* ! DP83820 */
2257 
2258 /*
2259  * sip_dp83815_set_filter:
2260  *
2261  *	Set up the receive filter.
2262  */
2263 void
2264 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2265 {
2266 	bus_space_tag_t st = sc->sc_st;
2267 	bus_space_handle_t sh = sc->sc_sh;
2268 	struct ethercom *ec = &sc->sc_ethercom;
2269 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2270 	struct ether_multi *enm;
2271 	u_int8_t *cp;
2272 	struct ether_multistep step;
2273 	u_int32_t crc, hash, slot, bit;
2274 #ifdef DP83820
2275 #define	MCHASH_NWORDS	128
2276 #else
2277 #define	MCHASH_NWORDS	32
2278 #endif /* DP83820 */
2279 	u_int16_t mchash[MCHASH_NWORDS];
2280 	int i;
2281 
2282 	/*
2283 	 * Initialize the prototype RFCR.
2284 	 * Enable the receive filter, and accept on
2285 	 *    Perfect (destination address) Match
2286 	 * If IFF_BROADCAST, also accept all broadcast packets.
2287 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2288 	 *    IFF_ALLMULTI and accept all multicast, too).
2289 	 */
2290 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2291 	if (ifp->if_flags & IFF_BROADCAST)
2292 		sc->sc_rfcr |= RFCR_AAB;
2293 	if (ifp->if_flags & IFF_PROMISC) {
2294 		sc->sc_rfcr |= RFCR_AAP;
2295 		goto allmulti;
2296 	}
2297 
2298 #ifdef DP83820
2299 	/*
2300 	 * Set up the DP83820 multicast address filter by passing all multicast
2301 	 * addresses through a CRC generator, and then using the high-order
2302 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2303 	 * high-order 7 bits select the slot, while the low-order 4 bits
2304 	 * select the bit within the slot.  Note that only the low 16-bits
2305 	 * of each filter word are used, and there are 128 filter words.
2306 	 */
2307 #else
2308 	/*
2309 	 * Set up the DP83815 multicast address filter by passing all multicast
2310 	 * addresses through a CRC generator, and then using the high-order
2311 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2312 	 * high-order 5 bits select the slot, while the low-order 4 bits
2313 	 * select the bit within the slot.  Note that only the low 16-bits
2314 	 * of each filter word are used, and there are 32 filter words.
2315 	 */
2316 #endif /* DP83820 */
2317 
2318 	memset(mchash, 0, sizeof(mchash));
2319 
2320 	ifp->if_flags &= ~IFF_ALLMULTI;
2321 	ETHER_FIRST_MULTI(step, ec, enm);
2322 	if (enm != NULL) {
2323 		while (enm != NULL) {
2324 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2325 			    ETHER_ADDR_LEN)) {
2326 			/*
2327 			 * We must listen to a range of multicast addresses.
2328 			 * For now, just accept all multicasts, rather than
2329 			 * trying to set only those filter bits needed to match
2330 			 * the range.  (At this time, the only use of address
2331 			 * ranges is for IP multicast routing, for which the
2332 			 * range is big enough to require all bits set.)
2333 			 */
2334 				goto allmulti;
2335 			}
2336 
2337 #ifdef DP83820
2338 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2339 
2340 			/* Just want the 11 most significant bits. */
2341 			hash = crc >> 21;
2342 #else
2343 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2344 
2345 			/* Just want the 9 most significant bits. */
2346 			hash = crc >> 23;
2347 #endif /* DP83820 */
2348 			slot = hash >> 4;
2349 			bit = hash & 0xf;
2350 
2351 			/* Set the corresponding bit in the hash table. */
2352 			mchash[slot] |= 1 << bit;
2353 
2354 			ETHER_NEXT_MULTI(step, enm);
2355 		}
2356 
2357 		sc->sc_rfcr |= RFCR_MHEN;
2358 	}
2359 	goto setit;
2360 
2361  allmulti:
2362 	ifp->if_flags |= IFF_ALLMULTI;
2363 	sc->sc_rfcr |= RFCR_AAM;
2364 
2365  setit:
2366 #define	FILTER_EMIT(addr, data)						\
2367 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2368 	delay(1);							\
2369 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2370 	delay(1);
2371 
2372 	/*
2373 	 * Disable receive filter, and program the node address.
2374 	 */
2375 	cp = LLADDR(ifp->if_sadl);
2376 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2377 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2378 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2379 
2380 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2381 		/*
2382 		 * Program the multicast hash table.
2383 		 */
2384 		for (i = 0; i < MCHASH_NWORDS; i++)
2385 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2386 			    mchash[i]);
2387 	}
2388 #undef FILTER_EMIT
2389 #undef MCHASH_NWORDS
2390 
2391 	/*
2392 	 * Re-enable the receiver filter.
2393 	 */
2394 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2395 }
2396 
2397 #if defined(DP83820)
2398 /*
2399  * sip_dp83820_mii_readreg:	[mii interface function]
2400  *
2401  *	Read a PHY register on the MII of the DP83820.
2402  */
2403 int
2404 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2405 {
2406 
2407 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2408 	    phy, reg));
2409 }
2410 
2411 /*
2412  * sip_dp83820_mii_writereg:	[mii interface function]
2413  *
2414  *	Write a PHY register on the MII of the DP83820.
2415  */
2416 void
2417 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2418 {
2419 
2420 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2421 	    phy, reg, val);
2422 }
2423 
2424 /*
2425  * sip_dp83815_mii_statchg:	[mii interface function]
2426  *
2427  *	Callback from MII layer when media changes.
2428  */
2429 void
2430 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2431 {
2432 	struct sip_softc *sc = (struct sip_softc *) self;
2433 	u_int32_t cfg;
2434 
2435 	/*
2436 	 * Update TXCFG for full-duplex operation.
2437 	 */
2438 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2439 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2440 	else
2441 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2442 
2443 	/*
2444 	 * Update RXCFG for full-duplex or loopback.
2445 	 */
2446 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2447 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2448 		sc->sc_rxcfg |= RXCFG_ATX;
2449 	else
2450 		sc->sc_rxcfg &= ~RXCFG_ATX;
2451 
2452 	/*
2453 	 * Update CFG for MII/GMII.
2454 	 */
2455 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2456 		cfg = sc->sc_cfg | CFG_MODE_1000;
2457 	else
2458 		cfg = sc->sc_cfg;
2459 
2460 	/*
2461 	 * XXX 802.3x flow control.
2462 	 */
2463 
2464 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2465 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2466 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2467 }
2468 
2469 /*
2470  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2471  *
2472  *	Read the MII serial port for the MII bit-bang module.
2473  */
2474 u_int32_t
2475 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2476 {
2477 	struct sip_softc *sc = (void *) self;
2478 
2479 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2480 }
2481 
2482 /*
2483  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2484  *
2485  *	Write the MII serial port for the MII bit-bang module.
2486  */
2487 void
2488 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2489 {
2490 	struct sip_softc *sc = (void *) self;
2491 
2492 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2493 }
2494 #else /* ! DP83820 */
2495 /*
2496  * sip_sis900_mii_readreg:	[mii interface function]
2497  *
2498  *	Read a PHY register on the MII.
2499  */
2500 int
2501 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2502 {
2503 	struct sip_softc *sc = (struct sip_softc *) self;
2504 	u_int32_t enphy;
2505 
2506 	/*
2507 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2508 	 * MII address 0.
2509 	 */
2510 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2511 		return (0);
2512 
2513 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2514 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2515 	    ENPHY_RWCMD | ENPHY_ACCESS);
2516 	do {
2517 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2518 	} while (enphy & ENPHY_ACCESS);
2519 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2520 }
2521 
2522 /*
2523  * sip_sis900_mii_writereg:	[mii interface function]
2524  *
2525  *	Write a PHY register on the MII.
2526  */
2527 void
2528 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2529 {
2530 	struct sip_softc *sc = (struct sip_softc *) self;
2531 	u_int32_t enphy;
2532 
2533 	/*
2534 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2535 	 * MII address 0.
2536 	 */
2537 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2538 		return;
2539 
2540 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2541 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2542 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2543 	do {
2544 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2545 	} while (enphy & ENPHY_ACCESS);
2546 }
2547 
2548 /*
2549  * sip_sis900_mii_statchg:	[mii interface function]
2550  *
2551  *	Callback from MII layer when media changes.
2552  */
2553 void
2554 SIP_DECL(sis900_mii_statchg)(struct device *self)
2555 {
2556 	struct sip_softc *sc = (struct sip_softc *) self;
2557 	u_int32_t flowctl;
2558 
2559 	/*
2560 	 * Update TXCFG for full-duplex operation.
2561 	 */
2562 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2563 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2564 	else
2565 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2566 
2567 	/*
2568 	 * Update RXCFG for full-duplex or loopback.
2569 	 */
2570 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2571 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2572 		sc->sc_rxcfg |= RXCFG_ATX;
2573 	else
2574 		sc->sc_rxcfg &= ~RXCFG_ATX;
2575 
2576 	/*
2577 	 * Update IMR for use of 802.3x flow control.
2578 	 */
2579 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2580 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2581 		flowctl = FLOWCTL_FLOWEN;
2582 	} else {
2583 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2584 		flowctl = 0;
2585 	}
2586 
2587 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2588 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2589 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2590 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2591 }
2592 
2593 /*
2594  * sip_dp83815_mii_readreg:	[mii interface function]
2595  *
2596  *	Read a PHY register on the MII.
2597  */
2598 int
2599 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2600 {
2601 	struct sip_softc *sc = (struct sip_softc *) self;
2602 	u_int32_t val;
2603 
2604 	/*
2605 	 * The DP83815 only has an internal PHY.  Only allow
2606 	 * MII address 0.
2607 	 */
2608 	if (phy != 0)
2609 		return (0);
2610 
2611 	/*
2612 	 * Apparently, after a reset, the DP83815 can take a while
2613 	 * to respond.  During this recovery period, the BMSR returns
2614 	 * a value of 0.  Catch this -- it's not supposed to happen
2615 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2616 	 * PHY to come back to life.
2617 	 *
2618 	 * This works out because the BMSR is the first register
2619 	 * read during the PHY probe process.
2620 	 */
2621 	do {
2622 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2623 	} while (reg == MII_BMSR && val == 0);
2624 
2625 	return (val & 0xffff);
2626 }
2627 
2628 /*
2629  * sip_dp83815_mii_writereg:	[mii interface function]
2630  *
2631  *	Write a PHY register to the MII.
2632  */
2633 void
2634 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2635 {
2636 	struct sip_softc *sc = (struct sip_softc *) self;
2637 
2638 	/*
2639 	 * The DP83815 only has an internal PHY.  Only allow
2640 	 * MII address 0.
2641 	 */
2642 	if (phy != 0)
2643 		return;
2644 
2645 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2646 }
2647 
2648 /*
2649  * sip_dp83815_mii_statchg:	[mii interface function]
2650  *
2651  *	Callback from MII layer when media changes.
2652  */
2653 void
2654 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2655 {
2656 	struct sip_softc *sc = (struct sip_softc *) self;
2657 
2658 	/*
2659 	 * Update TXCFG for full-duplex operation.
2660 	 */
2661 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2662 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2663 	else
2664 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2665 
2666 	/*
2667 	 * Update RXCFG for full-duplex or loopback.
2668 	 */
2669 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2670 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2671 		sc->sc_rxcfg |= RXCFG_ATX;
2672 	else
2673 		sc->sc_rxcfg &= ~RXCFG_ATX;
2674 
2675 	/*
2676 	 * XXX 802.3x flow control.
2677 	 */
2678 
2679 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2680 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2681 }
2682 #endif /* DP83820 */
2683 
2684 #if defined(DP83820)
2685 void
2686 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2687 {
2688 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
2689 	u_int8_t cksum, *e, match;
2690 	int i;
2691 
2692 	/*
2693 	 * EEPROM data format for the DP83820 can be found in
2694 	 * the DP83820 manual, section 4.2.4.
2695 	 */
2696 
2697 	SIP_DECL(read_eeprom)(sc, 0,
2698 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
2699 
2700 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
2701 	match = ~(match - 1);
2702 
2703 	cksum = 0x55;
2704 	e = (u_int8_t *) eeprom_data;
2705 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
2706 		cksum += *e++;
2707 
2708 	if (cksum != match)
2709 		printf("%s: Checksum (%x) mismatch (%x)",
2710 		    sc->sc_dev.dv_xname, cksum, match);
2711 
2712 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
2713 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
2714 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
2715 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
2716 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
2717 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
2718 
2719 	/* Get the GPIOR bits. */
2720 	sc->sc_gpior = eeprom_data[0x04];
2721 
2722 	/* Get various CFG related bits. */
2723 	if ((eeprom_data[0x05] >> 0) & 1)
2724 		sc->sc_cfg |= CFG_EXT_125;
2725 	if ((eeprom_data[0x05] >> 9) & 1)
2726 		sc->sc_cfg |= CFG_TBI_EN;
2727 }
2728 #else /* ! DP83820 */
2729 void
2730 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2731 {
2732 	u_int16_t myea[ETHER_ADDR_LEN / 2];
2733 
2734 	SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
2735 	    sizeof(myea) / sizeof(myea[0]), myea);
2736 
2737 	enaddr[0] = myea[0] & 0xff;
2738 	enaddr[1] = myea[0] >> 8;
2739 	enaddr[2] = myea[1] & 0xff;
2740 	enaddr[3] = myea[1] >> 8;
2741 	enaddr[4] = myea[2] & 0xff;
2742 	enaddr[5] = myea[2] >> 8;
2743 }
2744 
2745 /* Table and macro to bit-reverse an octet. */
2746 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
2747 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
2748 
2749 void
2750 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2751 {
2752 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
2753 	u_int8_t cksum, *e, match;
2754 	int i;
2755 
2756 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
2757 	    sizeof(eeprom_data[0]), eeprom_data);
2758 
2759 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
2760 	match = ~(match - 1);
2761 
2762 	cksum = 0x55;
2763 	e = (u_int8_t *) eeprom_data;
2764 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
2765 		cksum += *e++;
2766 	}
2767 	if (cksum != match) {
2768 		printf("%s: Checksum (%x) mismatch (%x)",
2769 		    sc->sc_dev.dv_xname, cksum, match);
2770 	}
2771 
2772 	/*
2773 	 * Unrolled because it makes slightly more sense this way.
2774 	 * The DP83815 stores the MAC address in bit 0 of word 6
2775 	 * through bit 15 of word 8.
2776 	 */
2777 	ea = &eeprom_data[6];
2778 	enaddr[0] = ((*ea & 0x1) << 7);
2779 	ea++;
2780 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
2781 	enaddr[1] = ((*ea & 0x1FE) >> 1);
2782 	enaddr[2] = ((*ea & 0x1) << 7);
2783 	ea++;
2784 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
2785 	enaddr[3] = ((*ea & 0x1FE) >> 1);
2786 	enaddr[4] = ((*ea & 0x1) << 7);
2787 	ea++;
2788 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
2789 	enaddr[5] = ((*ea & 0x1FE) >> 1);
2790 
2791 	/*
2792 	 * In case that's not weird enough, we also need to reverse
2793 	 * the bits in each byte.  This all actually makes more sense
2794 	 * if you think about the EEPROM storage as an array of bits
2795 	 * being shifted into bytes, but that's not how we're looking
2796 	 * at it here...
2797 	 */
2798 	for (i = 0; i < 6 ;i++)
2799 		enaddr[i] = bbr(enaddr[i]);
2800 }
2801 #endif /* DP83820 */
2802 
2803 /*
2804  * sip_mediastatus:	[ifmedia interface function]
2805  *
2806  *	Get the current interface media status.
2807  */
2808 void
2809 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
2810 {
2811 	struct sip_softc *sc = ifp->if_softc;
2812 
2813 	mii_pollstat(&sc->sc_mii);
2814 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2815 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2816 }
2817 
2818 /*
2819  * sip_mediachange:	[ifmedia interface function]
2820  *
2821  *	Set hardware to newly-selected media.
2822  */
2823 int
2824 SIP_DECL(mediachange)(struct ifnet *ifp)
2825 {
2826 	struct sip_softc *sc = ifp->if_softc;
2827 
2828 	if (ifp->if_flags & IFF_UP)
2829 		mii_mediachg(&sc->sc_mii);
2830 	return (0);
2831 }
2832