1 /* $NetBSD: if_sip.c,v 1.191 2024/02/10 09:30:06 andvar Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1999 Network Computer, Inc. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of Network Computer, Inc. nor the names of its 45 * contributors may be used to endorse or promote products derived 46 * from this software without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS 49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 58 * POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 /* 62 * Device driver for the Silicon Integrated Systems SiS 900, 63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and 64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet 65 * controllers. 66 * 67 * Originally written to support the SiS 900 by Jason R. Thorpe for 68 * Network Computer, Inc. 69 * 70 * TODO: 71 * 72 * - Reduce the Rx interrupt load. 73 */ 74 75 #include <sys/cdefs.h> 76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.191 2024/02/10 09:30:06 andvar Exp $"); 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/callout.h> 81 #include <sys/mbuf.h> 82 #include <sys/kernel.h> 83 #include <sys/socket.h> 84 #include <sys/ioctl.h> 85 #include <sys/errno.h> 86 #include <sys/device.h> 87 #include <sys/queue.h> 88 #include <sys/rndsource.h> 89 90 #include <net/if.h> 91 #include <net/if_dl.h> 92 #include <net/if_media.h> 93 #include <net/if_ether.h> 94 #include <net/bpf.h> 95 96 #include <sys/bus.h> 97 #include <sys/intr.h> 98 #include <machine/endian.h> 99 100 #include <dev/mii/mii.h> 101 #include <dev/mii/miivar.h> 102 #include <dev/mii/mii_bitbang.h> 103 104 #include <dev/pci/pcireg.h> 105 #include <dev/pci/pcivar.h> 106 #include <dev/pci/pcidevs.h> 107 108 #include <dev/pci/if_sipreg.h> 109 110 /* 111 * Transmit descriptor list size. This is arbitrary, but allocate 112 * enough descriptors for 128 pending transmissions, and 8 segments 113 * per packet (64 for DP83820 for jumbo frames). 114 * 115 * This MUST work out to a power of 2. 116 */ 117 #define GSIP_NTXSEGS_ALLOC 16 118 #define SIP_NTXSEGS_ALLOC 8 119 120 #define SIP_TXQUEUELEN 256 121 #define MAX_SIP_NTXDESC \ 122 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC)) 123 124 /* 125 * Receive descriptor list size. We have one Rx buffer per incoming 126 * packet, so this logic is a little simpler. 127 * 128 * Actually, on the DP83820, we allow the packet to consume more than 129 * one buffer, in order to support jumbo Ethernet frames. In that 130 * case, a packet may consume up to 5 buffers (assuming a 2048 byte 131 * mbuf cluster). 256 receive buffers is only 51 maximum size packets, 132 * so we'd better be quick about handling receive interrupts. 133 */ 134 #define GSIP_NRXDESC 256 135 #define SIP_NRXDESC 128 136 137 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC) 138 139 /* 140 * Set this to 1 to force-disable using the 64-bit data path 141 * on DP83820. 142 */ 143 static int gsip_disable_data64 = 0; 144 145 /* 146 * Control structures are DMA'd to the SiS900 chip. We allocate them in 147 * a single clump that maps to a single DMA segment to make several things 148 * easier. 149 */ 150 struct sip_control_data { 151 /* 152 * The transmit descriptors. 153 */ 154 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC]; 155 156 /* 157 * The receive descriptors. 158 */ 159 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC]; 160 }; 161 162 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x) 163 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)]) 164 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)]) 165 166 /* 167 * Software state for transmit jobs. 168 */ 169 struct sip_txsoft { 170 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 171 bus_dmamap_t txs_dmamap; /* our DMA map */ 172 int txs_firstdesc; /* first descriptor in packet */ 173 int txs_lastdesc; /* last descriptor in packet */ 174 SIMPLEQ_ENTRY(sip_txsoft) txs_q; 175 }; 176 177 SIMPLEQ_HEAD(sip_txsq, sip_txsoft); 178 179 /* 180 * Software state for receive jobs. 181 */ 182 struct sip_rxsoft { 183 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 184 bus_dmamap_t rxs_dmamap; /* our DMA map */ 185 }; 186 187 enum sip_attach_stage { 188 SIP_ATTACH_FIN = 0 189 , SIP_ATTACH_CREATE_RXMAP 190 , SIP_ATTACH_CREATE_TXMAP 191 , SIP_ATTACH_LOAD_MAP 192 , SIP_ATTACH_CREATE_MAP 193 , SIP_ATTACH_MAP_MEM 194 , SIP_ATTACH_ALLOC_MEM 195 , SIP_ATTACH_INTR 196 , SIP_ATTACH_MAP 197 }; 198 199 /* 200 * Software state per device. 201 */ 202 struct sip_softc { 203 device_t sc_dev; /* generic device information */ 204 device_suspensor_t sc_suspensor; 205 pmf_qual_t sc_qual; 206 207 bus_space_tag_t sc_st; /* bus space tag */ 208 bus_space_handle_t sc_sh; /* bus space handle */ 209 bus_size_t sc_sz; /* bus space size */ 210 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 211 pci_chipset_tag_t sc_pc; 212 bus_dma_segment_t sc_seg; 213 struct ethercom sc_ethercom; /* ethernet common data */ 214 215 const struct sip_product *sc_model; /* which model are we? */ 216 bool sc_gigabit; /* 1: 83820, 0: other */ 217 bool sc_dma64; /* using 64-bit DMA addresses */ 218 int sc_rev; /* chip revision */ 219 220 unsigned int sc_bufptr_idx; 221 unsigned int sc_cmdsts_idx; 222 unsigned int sc_extsts_idx; /* DP83820 only */ 223 224 void *sc_ih; /* interrupt cookie */ 225 226 struct mii_data sc_mii; /* MII/media information */ 227 228 callout_t sc_tick_ch; /* tick callout */ 229 230 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 231 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 232 233 /* 234 * Software state for transmit and receive descriptors. 235 */ 236 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN]; 237 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC]; 238 239 /* 240 * Control data structures. 241 */ 242 struct sip_control_data *sc_control_data; 243 #define sc_txdescs sc_control_data->scd_txdescs 244 #define sc_rxdescs sc_control_data->scd_rxdescs 245 246 #ifdef SIP_EVENT_COUNTERS 247 /* 248 * Event counters. 249 */ 250 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 251 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */ 252 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */ 253 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */ 254 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 255 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */ 256 struct evcnt sc_ev_rxpause; /* PAUSE received */ 257 /* DP83820 only */ 258 struct evcnt sc_ev_txpause; /* PAUSE transmitted */ 259 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ 260 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */ 261 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */ 262 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ 263 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */ 264 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */ 265 #endif /* SIP_EVENT_COUNTERS */ 266 267 uint32_t sc_txcfg; /* prototype TXCFG register */ 268 uint32_t sc_rxcfg; /* prototype RXCFG register */ 269 uint32_t sc_imr; /* prototype IMR register */ 270 uint32_t sc_rfcr; /* prototype RFCR register */ 271 272 uint32_t sc_cfg; /* prototype CFG register */ 273 274 uint32_t sc_gpior; /* prototype GPIOR register */ 275 276 uint32_t sc_tx_fill_thresh; /* transmit fill threshold */ 277 uint32_t sc_tx_drain_thresh; /* transmit drain threshold */ 278 279 uint32_t sc_rx_drain_thresh; /* receive drain threshold */ 280 281 int sc_flowflags; /* 802.3x flow control flags */ 282 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */ 283 int sc_paused; /* paused indication */ 284 285 int sc_txfree; /* number of free Tx descriptors */ 286 int sc_txnext; /* next ready Tx descriptor */ 287 int sc_txwin; /* Tx descriptors since last intr */ 288 289 struct sip_txsq sc_txfreeq; /* free Tx descsofts */ 290 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */ 291 292 /* values of interface state at last init */ 293 struct { 294 /* if_capenable */ 295 uint64_t if_capenable; 296 /* ec_capenable */ 297 int ec_capenable; 298 /* VLAN_ATTACHED */ 299 int is_vlan; 300 } sc_prev; 301 302 u_short sc_if_flags; 303 304 int sc_rxptr; /* next ready Rx descriptor/descsoft */ 305 int sc_rxdiscard; 306 int sc_rxlen; 307 struct mbuf *sc_rxhead; 308 struct mbuf *sc_rxtail; 309 struct mbuf **sc_rxtailp; 310 311 int sc_ntxdesc; 312 int sc_ntxdesc_mask; 313 314 int sc_nrxdesc_mask; 315 316 const struct sip_parm { 317 const struct sip_regs { 318 int r_rxcfg; 319 int r_txcfg; 320 } p_regs; 321 322 const struct sip_bits { 323 uint32_t b_txcfg_mxdma_8; 324 uint32_t b_txcfg_mxdma_16; 325 uint32_t b_txcfg_mxdma_32; 326 uint32_t b_txcfg_mxdma_64; 327 uint32_t b_txcfg_mxdma_128; 328 uint32_t b_txcfg_mxdma_256; 329 uint32_t b_txcfg_mxdma_512; 330 uint32_t b_txcfg_flth_mask; 331 uint32_t b_txcfg_drth_mask; 332 333 uint32_t b_rxcfg_mxdma_8; 334 uint32_t b_rxcfg_mxdma_16; 335 uint32_t b_rxcfg_mxdma_32; 336 uint32_t b_rxcfg_mxdma_64; 337 uint32_t b_rxcfg_mxdma_128; 338 uint32_t b_rxcfg_mxdma_256; 339 uint32_t b_rxcfg_mxdma_512; 340 341 uint32_t b_isr_txrcmp; 342 uint32_t b_isr_rxrcmp; 343 uint32_t b_isr_dperr; 344 uint32_t b_isr_sserr; 345 uint32_t b_isr_rmabt; 346 uint32_t b_isr_rtabt; 347 348 uint32_t b_cmdsts_size_mask; 349 } p_bits; 350 int p_filtmem; 351 int p_rxbuf_len; 352 bus_size_t p_tx_dmamap_size; 353 int p_ntxsegs; 354 int p_ntxsegs_alloc; 355 int p_nrxdesc; 356 } *sc_parm; 357 358 void (*sc_rxintr)(struct sip_softc *); 359 360 krndsource_t rnd_source; /* random source */ 361 }; 362 363 #define sc_bits sc_parm->p_bits 364 #define sc_regs sc_parm->p_regs 365 366 static const struct sip_parm sip_parm = { 367 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM 368 , .p_rxbuf_len = MCLBYTES - 1 /* field width */ 369 , .p_tx_dmamap_size = MCLBYTES 370 , .p_ntxsegs = 16 371 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC 372 , .p_nrxdesc = SIP_NRXDESC 373 , .p_bits = { 374 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */ 375 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */ 376 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */ 377 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */ 378 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */ 379 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */ 380 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */ 381 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */ 382 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */ 383 384 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */ 385 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */ 386 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */ 387 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */ 388 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */ 389 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */ 390 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */ 391 392 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */ 393 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */ 394 , .b_isr_dperr = 0x00800000 /* detected parity error */ 395 , .b_isr_sserr = 0x00400000 /* signalled system error */ 396 , .b_isr_rmabt = 0x00200000 /* received master abort */ 397 , .b_isr_rtabt = 0x00100000 /* received target abort */ 398 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK 399 } 400 , .p_regs = { 401 .r_rxcfg = OTHER_SIP_RXCFG, 402 .r_txcfg = OTHER_SIP_TXCFG 403 } 404 }, gsip_parm = { 405 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM 406 , .p_rxbuf_len = MCLBYTES - 8 407 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO 408 , .p_ntxsegs = 64 409 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC 410 , .p_nrxdesc = GSIP_NRXDESC 411 , .p_bits = { 412 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */ 413 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */ 414 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */ 415 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */ 416 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */ 417 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */ 418 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */ 419 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */ 420 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */ 421 422 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */ 423 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */ 424 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */ 425 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */ 426 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */ 427 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */ 428 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */ 429 430 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */ 431 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */ 432 , .b_isr_dperr = 0x00100000 /* detected parity error */ 433 , .b_isr_sserr = 0x00080000 /* signalled system error */ 434 , .b_isr_rmabt = 0x00040000 /* received master abort */ 435 , .b_isr_rtabt = 0x00020000 /* received target abort */ 436 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK 437 } 438 , .p_regs = { 439 .r_rxcfg = DP83820_SIP_RXCFG, 440 .r_txcfg = DP83820_SIP_TXCFG 441 } 442 }; 443 444 static inline int 445 sip_nexttx(const struct sip_softc *sc, int x) 446 { 447 return (x + 1) & sc->sc_ntxdesc_mask; 448 } 449 450 static inline int 451 sip_nextrx(const struct sip_softc *sc, int x) 452 { 453 return (x + 1) & sc->sc_nrxdesc_mask; 454 } 455 456 /* 83820 only */ 457 static inline void 458 sip_rxchain_reset(struct sip_softc *sc) 459 { 460 sc->sc_rxtailp = &sc->sc_rxhead; 461 *sc->sc_rxtailp = NULL; 462 sc->sc_rxlen = 0; 463 } 464 465 /* 83820 only */ 466 static inline void 467 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m) 468 { 469 *sc->sc_rxtailp = sc->sc_rxtail = m; 470 sc->sc_rxtailp = &m->m_next; 471 } 472 473 #ifdef SIP_EVENT_COUNTERS 474 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++ 475 #else 476 #define SIP_EVCNT_INCR(ev) /* nothing */ 477 #endif 478 479 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x))) 480 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x))) 481 482 static inline void 483 sip_set_rxdp(struct sip_softc *sc, bus_addr_t addr) 484 { 485 if (sc->sc_gigabit) 486 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP_HI, 487 BUS_ADDR_HI32(addr)); 488 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP, BUS_ADDR_LO32(addr)); 489 } 490 491 static inline void 492 sip_set_txdp(struct sip_softc *sc, bus_addr_t addr) 493 { 494 if (sc->sc_gigabit) 495 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP_HI, 496 BUS_ADDR_HI32(addr)); 497 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, BUS_ADDR_LO32(addr)); 498 } 499 500 static inline void 501 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops) 502 { 503 int x, n; 504 505 x = x0; 506 n = n0; 507 508 /* If it will wrap around, sync to the end of the ring. */ 509 if (x + n > sc->sc_ntxdesc) { 510 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 511 SIP_CDTXOFF(x), sizeof(struct sip_desc) * 512 (sc->sc_ntxdesc - x), ops); 513 n -= (sc->sc_ntxdesc - x); 514 x = 0; 515 } 516 517 /* Now sync whatever is left. */ 518 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 519 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops); 520 } 521 522 static inline void 523 sip_cdrxsync(struct sip_softc *sc, int x, int ops) 524 { 525 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 526 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops); 527 } 528 529 static void 530 sip_init_txring(struct sip_softc *sc) 531 { 532 struct sip_desc *sipd; 533 bus_addr_t next_desc; 534 int i; 535 536 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 537 for (i = 0; i < sc->sc_ntxdesc; i++) { 538 sipd = &sc->sc_txdescs[i]; 539 next_desc = SIP_CDTXADDR(sc, sip_nexttx(sc, i)); 540 if (sc->sc_dma64) { 541 sipd->sipd_words[GSIP64_DESC_LINK_LO] = 542 htole32(BUS_ADDR_LO32(next_desc)); 543 sipd->sipd_words[GSIP64_DESC_LINK_HI] = 544 htole32(BUS_ADDR_HI32(next_desc)); 545 } else { 546 /* SIP_DESC_LINK == GSIP_DESC_LINK */ 547 sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc); 548 } 549 } 550 sip_cdtxsync(sc, 0, sc->sc_ntxdesc, 551 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 552 sc->sc_txfree = sc->sc_ntxdesc; 553 sc->sc_txnext = 0; 554 sc->sc_txwin = 0; 555 } 556 557 static inline void 558 sip_init_txdesc(struct sip_softc *sc, int x, bus_addr_t bufptr, uint32_t cmdsts) 559 { 560 struct sip_desc *sipd = &sc->sc_txdescs[x]; 561 562 if (sc->sc_dma64) { 563 sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] = 564 htole32(BUS_ADDR_LO32(bufptr)); 565 sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] = 566 htole32(BUS_ADDR_HI32(bufptr)); 567 } else { 568 sipd->sipd_words[sc->sc_bufptr_idx] = htole32(bufptr); 569 } 570 sipd->sipd_words[sc->sc_extsts_idx] = 0; 571 sipd->sipd_words[sc->sc_cmdsts_idx] = htole32(cmdsts); 572 /* sip_cdtxsync() will be done later. */ 573 } 574 575 static inline void 576 sip_init_rxdesc(struct sip_softc *sc, int x) 577 { 578 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x]; 579 struct sip_desc *sipd = &sc->sc_rxdescs[x]; 580 const bus_addr_t next_desc = SIP_CDRXADDR(sc, sip_nextrx(sc, x)); 581 582 if (sc->sc_dma64) { 583 sipd->sipd_words[GSIP64_DESC_LINK_LO] = 584 htole32(BUS_ADDR_LO32(next_desc)); 585 sipd->sipd_words[GSIP64_DESC_LINK_HI] = 586 htole32(BUS_ADDR_HI32(next_desc)); 587 sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] = 588 htole32(BUS_ADDR_LO32(rxs->rxs_dmamap->dm_segs[0].ds_addr)); 589 sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] = 590 htole32(BUS_ADDR_HI32(rxs->rxs_dmamap->dm_segs[0].ds_addr)); 591 } else { 592 sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc); 593 sipd->sipd_words[sc->sc_bufptr_idx] = 594 htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr); 595 } 596 sipd->sipd_words[sc->sc_extsts_idx] = 0; 597 sip_cdrxsync(sc, x, BUS_DMASYNC_PREWRITE); 598 sipd->sipd_words[sc->sc_cmdsts_idx] = 599 htole32(CMDSTS_INTR | (sc->sc_parm->p_rxbuf_len & 600 sc->sc_bits.b_cmdsts_size_mask)); 601 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 602 } 603 604 #define SIP_CHIP_VERS(sc, v, p, r) \ 605 ((sc)->sc_model->sip_vendor == (v) && \ 606 (sc)->sc_model->sip_product == (p) && \ 607 (sc)->sc_rev == (r)) 608 609 #define SIP_CHIP_MODEL(sc, v, p) \ 610 ((sc)->sc_model->sip_vendor == (v) && \ 611 (sc)->sc_model->sip_product == (p)) 612 613 #define SIP_SIS900_REV(sc, rev) \ 614 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev)) 615 616 #define SIP_TIMEOUT 1000 617 618 static int sip_ifflags_cb(struct ethercom *); 619 static void sipcom_start(struct ifnet *); 620 static void sipcom_watchdog(struct ifnet *); 621 static int sipcom_ioctl(struct ifnet *, u_long, void *); 622 static int sipcom_init(struct ifnet *); 623 static void sipcom_stop(struct ifnet *, int); 624 625 static bool sipcom_reset(struct sip_softc *); 626 static void sipcom_rxdrain(struct sip_softc *); 627 static int sipcom_add_rxbuf(struct sip_softc *, int); 628 static void sipcom_read_eeprom(struct sip_softc *, int, int, 629 uint16_t *); 630 static void sipcom_tick(void *); 631 632 static void sipcom_sis900_set_filter(struct sip_softc *); 633 static void sipcom_dp83815_set_filter(struct sip_softc *); 634 635 static void sipcom_dp83820_read_macaddr(struct sip_softc *, 636 const struct pci_attach_args *, uint8_t *); 637 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc); 638 static void sipcom_sis900_read_macaddr(struct sip_softc *, 639 const struct pci_attach_args *, uint8_t *); 640 static void sipcom_dp83815_read_macaddr(struct sip_softc *, 641 const struct pci_attach_args *, uint8_t *); 642 643 static int sipcom_intr(void *); 644 static void sipcom_txintr(struct sip_softc *); 645 static void sip_rxintr(struct sip_softc *); 646 static void gsip_rxintr(struct sip_softc *); 647 648 static int sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *); 649 static int sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t); 650 static void sipcom_dp83820_mii_statchg(struct ifnet *); 651 652 static int sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *); 653 static int sipcom_sis900_mii_writereg(device_t, int, int, uint16_t); 654 static void sipcom_sis900_mii_statchg(struct ifnet *); 655 656 static int sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *); 657 static int sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t); 658 static void sipcom_dp83815_mii_statchg(struct ifnet *); 659 660 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *); 661 662 static int sipcom_match(device_t, cfdata_t, void *); 663 static void sipcom_attach(device_t, device_t, void *); 664 static void sipcom_do_detach(device_t, enum sip_attach_stage); 665 static int sipcom_detach(device_t, int); 666 static bool sipcom_resume(device_t, const pmf_qual_t *); 667 static bool sipcom_suspend(device_t, const pmf_qual_t *); 668 669 int gsip_copy_small = 0; 670 int sip_copy_small = 0; 671 672 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc), 673 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL, 674 DVF_DETACH_SHUTDOWN); 675 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc), 676 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL, 677 DVF_DETACH_SHUTDOWN); 678 679 /* 680 * Descriptions of the variants of the SiS900. 681 */ 682 struct sip_variant { 683 int (*sipv_mii_readreg)(device_t, int, int, uint16_t *); 684 int (*sipv_mii_writereg)(device_t, int, int, uint16_t); 685 void (*sipv_mii_statchg)(struct ifnet *); 686 void (*sipv_set_filter)(struct sip_softc *); 687 void (*sipv_read_macaddr)(struct sip_softc *, 688 const struct pci_attach_args *, uint8_t *); 689 }; 690 691 static uint32_t sipcom_mii_bitbang_read(device_t); 692 static void sipcom_mii_bitbang_write(device_t, uint32_t); 693 694 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = { 695 sipcom_mii_bitbang_read, 696 sipcom_mii_bitbang_write, 697 { 698 EROMAR_MDIO, /* MII_BIT_MDO */ 699 EROMAR_MDIO, /* MII_BIT_MDI */ 700 EROMAR_MDC, /* MII_BIT_MDC */ 701 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */ 702 0, /* MII_BIT_DIR_PHY_HOST */ 703 } 704 }; 705 706 static const struct sip_variant sipcom_variant_dp83820 = { 707 sipcom_dp83820_mii_readreg, 708 sipcom_dp83820_mii_writereg, 709 sipcom_dp83820_mii_statchg, 710 sipcom_dp83815_set_filter, 711 sipcom_dp83820_read_macaddr, 712 }; 713 714 static const struct sip_variant sipcom_variant_sis900 = { 715 sipcom_sis900_mii_readreg, 716 sipcom_sis900_mii_writereg, 717 sipcom_sis900_mii_statchg, 718 sipcom_sis900_set_filter, 719 sipcom_sis900_read_macaddr, 720 }; 721 722 static const struct sip_variant sipcom_variant_dp83815 = { 723 sipcom_dp83815_mii_readreg, 724 sipcom_dp83815_mii_writereg, 725 sipcom_dp83815_mii_statchg, 726 sipcom_dp83815_set_filter, 727 sipcom_dp83815_read_macaddr, 728 }; 729 730 731 /* 732 * Devices supported by this driver. 733 */ 734 static const struct sip_product { 735 pci_vendor_id_t sip_vendor; 736 pci_product_id_t sip_product; 737 const char *sip_name; 738 const struct sip_variant *sip_variant; 739 bool sip_gigabit; 740 } sipcom_products[] = { 741 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820, 742 "NatSemi DP83820 Gigabit Ethernet", 743 &sipcom_variant_dp83820, true }, 744 745 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, 746 "SiS 900 10/100 Ethernet", 747 &sipcom_variant_sis900, false }, 748 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, 749 "SiS 7016 10/100 Ethernet", 750 &sipcom_variant_sis900, false }, 751 752 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, 753 "NatSemi DP83815 10/100 Ethernet", 754 &sipcom_variant_dp83815, false }, 755 756 { 0, 0, 757 NULL, 758 NULL, false }, 759 }; 760 761 static const struct sip_product * 762 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit) 763 { 764 const struct sip_product *sip; 765 766 for (sip = sipcom_products; sip->sip_name != NULL; sip++) { 767 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor && 768 PCI_PRODUCT(pa->pa_id) == sip->sip_product && 769 sip->sip_gigabit == gigabit) 770 return sip; 771 } 772 return NULL; 773 } 774 775 /* 776 * I really hate stupid hardware vendors. There's a bit in the EEPROM 777 * which indicates if the card can do 64-bit data transfers. Unfortunately, 778 * several vendors of 32-bit cards fail to clear this bit in the EEPROM, 779 * which means we try to use 64-bit data transfers on those cards if we 780 * happen to be plugged into a 32-bit slot. 781 * 782 * What we do is use this table of cards known to be 64-bit cards. If 783 * you have a 64-bit card who's subsystem ID is not listed in this table, 784 * send the output of "pcictl dump ..." of the device to me so that your 785 * card will use the 64-bit data path when plugged into a 64-bit slot. 786 * 787 * -- Jason R. Thorpe <thorpej@NetBSD.org> 788 * June 30, 2002 789 */ 790 static int 791 sipcom_check_64bit(const struct pci_attach_args *pa) 792 { 793 static const struct { 794 pci_vendor_id_t c64_vendor; 795 pci_product_id_t c64_product; 796 } card64[] = { 797 /* Asante GigaNIX */ 798 { 0x128a, 0x0002 }, 799 800 /* Accton EN1407-T, Planex GN-1000TE */ 801 { 0x1113, 0x1407 }, 802 803 /* Netgear GA621 */ 804 { 0x1385, 0x621a }, 805 806 /* Netgear GA622 */ 807 { 0x1385, 0x622a }, 808 809 /* SMC EZ Card 1000 (9462TX) */ 810 { 0x10b8, 0x9462 }, 811 812 { 0, 0} 813 }; 814 pcireg_t subsys; 815 int i; 816 817 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); 818 819 for (i = 0; card64[i].c64_vendor != 0; i++) { 820 if (PCI_VENDOR(subsys) == card64[i].c64_vendor && 821 PCI_PRODUCT(subsys) == card64[i].c64_product) 822 return 1; 823 } 824 825 return 0; 826 } 827 828 static int 829 sipcom_match(device_t parent, cfdata_t cf, void *aux) 830 { 831 struct pci_attach_args *pa = aux; 832 833 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL) 834 return 1; 835 836 return 0; 837 } 838 839 static void 840 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa) 841 { 842 uint32_t reg; 843 int i; 844 845 /* 846 * Cause the chip to load configuration data from the EEPROM. 847 */ 848 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN); 849 for (i = 0; i < 10000; i++) { 850 delay(10); 851 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 852 PTSCR_EELOAD_EN) == 0) 853 break; 854 } 855 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 856 PTSCR_EELOAD_EN) { 857 printf("%s: timeout loading configuration from EEPROM\n", 858 device_xname(sc->sc_dev)); 859 return; 860 } 861 862 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR); 863 864 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG); 865 if (reg & CFG_PCI64_DET) { 866 const char *using64 = NULL; 867 868 if (reg & CFG_DATA64_EN) { 869 /* 870 * Check to see if this card is 64-bit. If so, 871 * enable 64-bit data transfers. 872 * 873 * We can't trust the DATA64_EN bit in the EEPROM, 874 * because vendors of 32-bit cards fail to clear 875 * that bit in many cases (yet the card still detects 876 * that it's in a 64-bit slot because I guess they 877 * wired up ACK64# and REQ64#). 878 */ 879 if (gsip_disable_data64) 880 using64 = "force-disabled"; 881 else if (sipcom_check_64bit(pa)) { 882 sc->sc_cfg |= CFG_DATA64_EN; 883 using64 = "enabled"; 884 } else 885 using64 = "disabled (32-bit card)"; 886 } else { 887 using64 = "disabled in EEPROM"; 888 } 889 printf("%s: 64-bit slot detected, 64-bit transfers %s\n", 890 device_xname(sc->sc_dev), using64); 891 } 892 893 /* 894 * The T64ADDR bit is loaded by the chip from the EEPROM and 895 * is read-only. 896 */ 897 if (reg & CFG_T64ADDR) 898 sc->sc_cfg |= CFG_T64ADDR; 899 900 /* 901 * We can use 64-bit DMA addressing regardless of what 902 * sort of slot we're in. 903 */ 904 if (pci_dma64_available(pa)) { 905 sc->sc_dmat = pa->pa_dmat64; 906 sc->sc_cfg |= CFG_M64ADDR; 907 sc->sc_dma64 = true; 908 } 909 910 if (reg & (CFG_TBI_EN | CFG_EXT_125)) { 911 const char *sep = ""; 912 printf("%s: using ", device_xname(sc->sc_dev)); 913 if (reg & CFG_EXT_125) { 914 sc->sc_cfg |= CFG_EXT_125; 915 printf("%sexternal 125MHz clock", sep); 916 sep = ", "; 917 } 918 if (reg & CFG_TBI_EN) { 919 sc->sc_cfg |= CFG_TBI_EN; 920 printf("%sten-bit interface", sep); 921 sep = ", "; 922 } 923 printf("\n"); 924 } 925 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 || 926 (reg & CFG_MRM_DIS) != 0) 927 sc->sc_cfg |= CFG_MRM_DIS; 928 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 || 929 (reg & CFG_MWI_DIS) != 0) 930 sc->sc_cfg |= CFG_MWI_DIS; 931 932 /* 933 * Use the extended descriptor format on the DP83820. This 934 * gives us an interface to VLAN tagging and IPv4/TCP/UDP 935 * checksumming. 936 */ 937 sc->sc_cfg |= CFG_EXTSTS_EN; 938 } 939 940 static int 941 sipcom_detach(device_t self, int flags) 942 { 943 int s; 944 945 s = splnet(); 946 sipcom_do_detach(self, SIP_ATTACH_FIN); 947 splx(s); 948 949 return 0; 950 } 951 952 static void 953 sipcom_do_detach(device_t self, enum sip_attach_stage stage) 954 { 955 int i; 956 struct sip_softc *sc = device_private(self); 957 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 958 959 /* 960 * Free any resources we've allocated during attach. 961 * Do this in reverse order and fall through. 962 */ 963 switch (stage) { 964 case SIP_ATTACH_FIN: 965 sipcom_stop(ifp, 1); 966 pmf_device_deregister(self); 967 #ifdef SIP_EVENT_COUNTERS 968 /* 969 * Attach event counters. 970 */ 971 evcnt_detach(&sc->sc_ev_txforceintr); 972 evcnt_detach(&sc->sc_ev_txdstall); 973 evcnt_detach(&sc->sc_ev_hiberr); 974 evcnt_detach(&sc->sc_ev_rxintr); 975 evcnt_detach(&sc->sc_ev_txiintr); 976 evcnt_detach(&sc->sc_ev_txdintr); 977 if (!sc->sc_gigabit) { 978 evcnt_detach(&sc->sc_ev_rxpause); 979 } else { 980 evcnt_detach(&sc->sc_ev_txudpsum); 981 evcnt_detach(&sc->sc_ev_txtcpsum); 982 evcnt_detach(&sc->sc_ev_txipsum); 983 evcnt_detach(&sc->sc_ev_rxudpsum); 984 evcnt_detach(&sc->sc_ev_rxtcpsum); 985 evcnt_detach(&sc->sc_ev_rxipsum); 986 evcnt_detach(&sc->sc_ev_txpause); 987 evcnt_detach(&sc->sc_ev_rxpause); 988 } 989 #endif /* SIP_EVENT_COUNTERS */ 990 991 rnd_detach_source(&sc->rnd_source); 992 993 ether_ifdetach(ifp); 994 if_detach(ifp); 995 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 996 ifmedia_fini(&sc->sc_mii.mii_media); 997 998 /*FALLTHROUGH*/ 999 case SIP_ATTACH_CREATE_RXMAP: 1000 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 1001 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 1002 bus_dmamap_destroy(sc->sc_dmat, 1003 sc->sc_rxsoft[i].rxs_dmamap); 1004 } 1005 /*FALLTHROUGH*/ 1006 case SIP_ATTACH_CREATE_TXMAP: 1007 for (i = 0; i < SIP_TXQUEUELEN; i++) { 1008 if (sc->sc_txsoft[i].txs_dmamap != NULL) 1009 bus_dmamap_destroy(sc->sc_dmat, 1010 sc->sc_txsoft[i].txs_dmamap); 1011 } 1012 /*FALLTHROUGH*/ 1013 case SIP_ATTACH_LOAD_MAP: 1014 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 1015 /*FALLTHROUGH*/ 1016 case SIP_ATTACH_CREATE_MAP: 1017 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 1018 /*FALLTHROUGH*/ 1019 case SIP_ATTACH_MAP_MEM: 1020 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 1021 sizeof(struct sip_control_data)); 1022 /*FALLTHROUGH*/ 1023 case SIP_ATTACH_ALLOC_MEM: 1024 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1); 1025 /* FALLTHROUGH*/ 1026 case SIP_ATTACH_INTR: 1027 pci_intr_disestablish(sc->sc_pc, sc->sc_ih); 1028 /* FALLTHROUGH*/ 1029 case SIP_ATTACH_MAP: 1030 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 1031 break; 1032 default: 1033 break; 1034 } 1035 return; 1036 } 1037 1038 static bool 1039 sipcom_resume(device_t self, const pmf_qual_t *qual) 1040 { 1041 struct sip_softc *sc = device_private(self); 1042 1043 return sipcom_reset(sc); 1044 } 1045 1046 static bool 1047 sipcom_suspend(device_t self, const pmf_qual_t *qual) 1048 { 1049 struct sip_softc *sc = device_private(self); 1050 1051 sipcom_rxdrain(sc); 1052 return true; 1053 } 1054 1055 static void 1056 sipcom_attach(device_t parent, device_t self, void *aux) 1057 { 1058 struct sip_softc *sc = device_private(self); 1059 struct pci_attach_args *pa = aux; 1060 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1061 struct mii_data * const mii = &sc->sc_mii; 1062 pci_chipset_tag_t pc = pa->pa_pc; 1063 pci_intr_handle_t ih; 1064 const char *intrstr = NULL; 1065 bus_space_tag_t iot, memt; 1066 bus_space_handle_t ioh, memh; 1067 bus_size_t iosz, memsz; 1068 int ioh_valid, memh_valid; 1069 int i, rseg, error; 1070 const struct sip_product *sip; 1071 uint8_t enaddr[ETHER_ADDR_LEN]; 1072 pcireg_t csr; 1073 pcireg_t memtype; 1074 bus_size_t tx_dmamap_size; 1075 int ntxsegs_alloc; 1076 cfdata_t cf = device_cfdata(self); 1077 char intrbuf[PCI_INTRSTR_LEN]; 1078 1079 callout_init(&sc->sc_tick_ch, 0); 1080 callout_setfunc(&sc->sc_tick_ch, sipcom_tick, sc); 1081 1082 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0); 1083 if (sip == NULL) { 1084 aprint_error("\n"); 1085 panic("%s: impossible", __func__); 1086 } 1087 sc->sc_dev = self; 1088 sc->sc_gigabit = sip->sip_gigabit; 1089 sc->sc_dma64 = false; 1090 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual); 1091 sc->sc_pc = pc; 1092 1093 if (sc->sc_gigabit) { 1094 if (sc->sc_dma64) { 1095 sc->sc_bufptr_idx = GSIP64_DESC_BUFPTR_LO; 1096 sc->sc_cmdsts_idx = GSIP64_DESC_CMDSTS; 1097 sc->sc_extsts_idx = GSIP64_DESC_EXTSTS; 1098 } else { 1099 sc->sc_bufptr_idx = GSIP_DESC_BUFPTR; 1100 sc->sc_cmdsts_idx = GSIP_DESC_CMDSTS; 1101 sc->sc_extsts_idx = GSIP_DESC_EXTSTS; 1102 } 1103 sc->sc_rxintr = gsip_rxintr; 1104 sc->sc_parm = &gsip_parm; 1105 } else { 1106 sc->sc_rxintr = sip_rxintr; 1107 sc->sc_parm = &sip_parm; 1108 sc->sc_bufptr_idx = SIP_DESC_BUFPTR; 1109 sc->sc_cmdsts_idx = SIP_DESC_CMDSTS; 1110 /* 1111 * EXTSTS doesn't really exist on non-GigE parts, 1112 * but we initialize the index for simplicity later. 1113 */ 1114 sc->sc_extsts_idx = GSIP_DESC_EXTSTS; 1115 } 1116 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size; 1117 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc; 1118 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc; 1119 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1; 1120 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1; 1121 1122 sc->sc_rev = PCI_REVISION(pa->pa_class); 1123 1124 aprint_naive("\n"); 1125 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev); 1126 1127 sc->sc_model = sip; 1128 1129 /* 1130 * XXX Work-around broken PXE firmware on some boards. 1131 * 1132 * The DP83815 shares an address decoder with the MEM BAR 1133 * and the ROM BAR. Make sure the ROM BAR is disabled, 1134 * so that memory mapped access works. 1135 */ 1136 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, 1137 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) & 1138 ~PCI_MAPREG_ROM_ENABLE); 1139 1140 /* 1141 * Map the device. 1142 */ 1143 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA, 1144 PCI_MAPREG_TYPE_IO, 0, 1145 &iot, &ioh, NULL, &iosz) == 0); 1146 if (sc->sc_gigabit) { 1147 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA); 1148 switch (memtype) { 1149 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 1150 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 1151 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 1152 memtype, 0, &memt, &memh, NULL, &memsz) == 0); 1153 break; 1154 default: 1155 memh_valid = 0; 1156 } 1157 } else { 1158 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 1159 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, 1160 &memt, &memh, NULL, &memsz) == 0); 1161 } 1162 1163 if (memh_valid) { 1164 sc->sc_st = memt; 1165 sc->sc_sh = memh; 1166 sc->sc_sz = memsz; 1167 } else if (ioh_valid) { 1168 sc->sc_st = iot; 1169 sc->sc_sh = ioh; 1170 sc->sc_sz = iosz; 1171 } else { 1172 aprint_error_dev(self, "unable to map device registers\n"); 1173 return; 1174 } 1175 1176 sc->sc_dmat = pa->pa_dmat; 1177 1178 /* 1179 * Make sure bus mastering is enabled. Also make sure 1180 * Write/Invalidate is enabled if we're allowed to use it. 1181 */ 1182 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1183 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY) 1184 csr |= PCI_COMMAND_INVALIDATE_ENABLE; 1185 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 1186 csr | PCI_COMMAND_MASTER_ENABLE); 1187 1188 /* Power up chip */ 1189 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null); 1190 if (error != 0 && error != EOPNOTSUPP) { 1191 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error); 1192 return; 1193 } 1194 1195 /* 1196 * Map and establish our interrupt. 1197 */ 1198 if (pci_intr_map(pa, &ih)) { 1199 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n"); 1200 return; 1201 } 1202 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 1203 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc, 1204 device_xname(self)); 1205 if (sc->sc_ih == NULL) { 1206 aprint_error_dev(sc->sc_dev, "unable to establish interrupt"); 1207 if (intrstr != NULL) 1208 aprint_error(" at %s", intrstr); 1209 aprint_error("\n"); 1210 sipcom_do_detach(self, SIP_ATTACH_MAP); 1211 return; 1212 } 1213 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); 1214 1215 SIMPLEQ_INIT(&sc->sc_txfreeq); 1216 SIMPLEQ_INIT(&sc->sc_txdirtyq); 1217 1218 /* 1219 * Allocate the control data structures, and create and load the 1220 * DMA map for it. 1221 */ 1222 if ((error = bus_dmamem_alloc(sc->sc_dmat, 1223 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1, 1224 &rseg, 0)) != 0) { 1225 aprint_error_dev(sc->sc_dev, 1226 "unable to allocate control data, error = %d\n", error); 1227 sipcom_do_detach(self, SIP_ATTACH_INTR); 1228 return; 1229 } 1230 1231 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg, 1232 sizeof(struct sip_control_data), (void **)&sc->sc_control_data, 1233 BUS_DMA_COHERENT)) != 0) { 1234 aprint_error_dev(sc->sc_dev, 1235 "unable to map control data, error = %d\n", error); 1236 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM); 1237 } 1238 1239 if ((error = bus_dmamap_create(sc->sc_dmat, 1240 sizeof(struct sip_control_data), 1, 1241 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 1242 aprint_error_dev(self, "unable to create control data DMA map" 1243 ", error = %d\n", error); 1244 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM); 1245 } 1246 1247 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 1248 sc->sc_control_data, sizeof(struct sip_control_data), NULL, 1249 0)) != 0) { 1250 aprint_error_dev(self, "unable to load control data DMA map" 1251 ", error = %d\n", error); 1252 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP); 1253 } 1254 1255 /* 1256 * Create the transmit buffer DMA maps. 1257 */ 1258 for (i = 0; i < SIP_TXQUEUELEN; i++) { 1259 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size, 1260 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0, 1261 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 1262 aprint_error_dev(self, "unable to create tx DMA map %d" 1263 ", error = %d\n", i, error); 1264 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP); 1265 } 1266 } 1267 1268 /* 1269 * Create the receive buffer DMA maps. 1270 */ 1271 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 1272 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1273 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 1274 aprint_error_dev(self, "unable to create rx DMA map %d" 1275 ", error = %d\n", i, error); 1276 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP); 1277 } 1278 sc->sc_rxsoft[i].rxs_mbuf = NULL; 1279 } 1280 1281 /* 1282 * Reset the chip to a known state. 1283 */ 1284 sipcom_reset(sc); 1285 1286 /* 1287 * Read the Ethernet address from the EEPROM. This might 1288 * also fetch other stuff from the EEPROM and stash it 1289 * in the softc. 1290 */ 1291 sc->sc_cfg = 0; 1292 if (!sc->sc_gigabit) { 1293 if (SIP_SIS900_REV(sc, SIS_REV_635) || 1294 SIP_SIS900_REV(sc, SIS_REV_900B)) 1295 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT); 1296 1297 if (SIP_SIS900_REV(sc, SIS_REV_635) || 1298 SIP_SIS900_REV(sc, SIS_REV_960) || 1299 SIP_SIS900_REV(sc, SIS_REV_900B)) 1300 sc->sc_cfg |= 1301 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & 1302 CFG_EDBMASTEN); 1303 } 1304 1305 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr); 1306 1307 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr)); 1308 1309 /* 1310 * Initialize the configuration register: aggressive PCI 1311 * bus request algorithm, default backoff, default OW timer, 1312 * default parity error detection. 1313 * 1314 * NOTE: "Big endian mode" is useless on the SiS900 and 1315 * friends -- it affects packet data, not descriptors. 1316 */ 1317 if (sc->sc_gigabit) 1318 sipcom_dp83820_attach(sc, pa); 1319 1320 /* 1321 * Initialize our media structures and probe the MII. 1322 */ 1323 mii->mii_ifp = ifp; 1324 mii->mii_readreg = sip->sip_variant->sipv_mii_readreg; 1325 mii->mii_writereg = sip->sip_variant->sipv_mii_writereg; 1326 mii->mii_statchg = sip->sip_variant->sipv_mii_statchg; 1327 sc->sc_ethercom.ec_mii = mii; 1328 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange, 1329 sipcom_mediastatus); 1330 1331 /* 1332 * XXX We cannot handle flow control on the DP83815. 1333 */ 1334 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) 1335 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 1336 MII_OFFSET_ANY, 0); 1337 else 1338 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 1339 MII_OFFSET_ANY, MIIF_DOPAUSE); 1340 if (LIST_FIRST(&mii->mii_phys) == NULL) { 1341 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 1342 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 1343 } else 1344 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 1345 1346 ifp = &sc->sc_ethercom.ec_if; 1347 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 1348 ifp->if_softc = sc; 1349 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1350 sc->sc_if_flags = ifp->if_flags; 1351 ifp->if_ioctl = sipcom_ioctl; 1352 ifp->if_start = sipcom_start; 1353 ifp->if_watchdog = sipcom_watchdog; 1354 ifp->if_init = sipcom_init; 1355 ifp->if_stop = sipcom_stop; 1356 IFQ_SET_READY(&ifp->if_snd); 1357 1358 /* 1359 * We can support 802.1Q VLAN-sized frames. 1360 */ 1361 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 1362 1363 if (sc->sc_gigabit) { 1364 /* 1365 * And the DP83820 can do VLAN tagging in hardware, and 1366 * support the jumbo Ethernet MTU. 1367 */ 1368 sc->sc_ethercom.ec_capabilities |= 1369 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU; 1370 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING; 1371 1372 /* 1373 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums 1374 * in hardware. 1375 */ 1376 ifp->if_capabilities |= 1377 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 1378 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 1379 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 1380 } 1381 1382 /* 1383 * Attach the interface. 1384 */ 1385 if_attach(ifp); 1386 if_deferred_start_init(ifp, NULL); 1387 ether_ifattach(ifp, enaddr); 1388 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb); 1389 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable; 1390 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom); 1391 sc->sc_prev.if_capenable = ifp->if_capenable; 1392 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 1393 RND_TYPE_NET, RND_FLAG_DEFAULT); 1394 1395 /* 1396 * The number of bytes that must be available in 1397 * the Tx FIFO before the bus master can DMA more 1398 * data into the FIFO. 1399 */ 1400 sc->sc_tx_fill_thresh = 64 / 32; 1401 1402 /* 1403 * Start at a drain threshold of 512 bytes. We will 1404 * increase it if a DMA underrun occurs. 1405 * 1406 * XXX The minimum value of this variable should be 1407 * tuned. We may be able to improve performance 1408 * by starting with a lower value. That, however, 1409 * may trash the first few outgoing packets if the 1410 * PCI bus is saturated. 1411 */ 1412 if (sc->sc_gigabit) 1413 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */ 1414 else 1415 sc->sc_tx_drain_thresh = 1504 / 32; 1416 1417 /* 1418 * Initialize the Rx FIFO drain threshold. 1419 * 1420 * This is in units of 8 bytes. 1421 * 1422 * We should never set this value lower than 2; 14 bytes are 1423 * required to filter the packet. 1424 */ 1425 sc->sc_rx_drain_thresh = 128 / 8; 1426 1427 #ifdef SIP_EVENT_COUNTERS 1428 /* 1429 * Attach event counters. 1430 */ 1431 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 1432 NULL, device_xname(sc->sc_dev), "txdstall"); 1433 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR, 1434 NULL, device_xname(sc->sc_dev), "txforceintr"); 1435 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR, 1436 NULL, device_xname(sc->sc_dev), "txdintr"); 1437 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR, 1438 NULL, device_xname(sc->sc_dev), "txiintr"); 1439 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 1440 NULL, device_xname(sc->sc_dev), "rxintr"); 1441 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR, 1442 NULL, device_xname(sc->sc_dev), "hiberr"); 1443 if (!sc->sc_gigabit) { 1444 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR, 1445 NULL, device_xname(sc->sc_dev), "rxpause"); 1446 } else { 1447 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC, 1448 NULL, device_xname(sc->sc_dev), "rxpause"); 1449 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC, 1450 NULL, device_xname(sc->sc_dev), "txpause"); 1451 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, 1452 NULL, device_xname(sc->sc_dev), "rxipsum"); 1453 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC, 1454 NULL, device_xname(sc->sc_dev), "rxtcpsum"); 1455 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC, 1456 NULL, device_xname(sc->sc_dev), "rxudpsum"); 1457 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, 1458 NULL, device_xname(sc->sc_dev), "txipsum"); 1459 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC, 1460 NULL, device_xname(sc->sc_dev), "txtcpsum"); 1461 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC, 1462 NULL, device_xname(sc->sc_dev), "txudpsum"); 1463 } 1464 #endif /* SIP_EVENT_COUNTERS */ 1465 1466 if (pmf_device_register(self, sipcom_suspend, sipcom_resume)) 1467 pmf_class_network_register(self, ifp); 1468 else 1469 aprint_error_dev(self, "couldn't establish power handler\n"); 1470 } 1471 1472 static inline void 1473 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0, 1474 uint64_t capenable) 1475 { 1476 uint32_t extsts = 0; 1477 #ifdef DEBUG 1478 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1479 #endif 1480 /* 1481 * If VLANs are enabled and the packet has a VLAN tag, set 1482 * up the descriptor to encapsulate the packet for us. 1483 * 1484 * This apparently has to be on the last descriptor of 1485 * the packet. 1486 */ 1487 1488 /* 1489 * Byte swapping is tricky. We need to provide the tag 1490 * in a network byte order. On a big-endian machine, 1491 * the byteorder is correct, but we need to swap it 1492 * anyway, because this will be undone by the outside 1493 * htole32(). That's why there must be an 1494 * unconditional swap instead of htons() inside. 1495 */ 1496 if (vlan_has_tag(m0)) { 1497 sc->sc_txdescs[lasttx].sipd_words[sc->sc_extsts_idx] |= 1498 htole32(EXTSTS_VPKT | 1499 (bswap16(vlan_get_tag(m0)) & 1500 EXTSTS_VTCI)); 1501 } 1502 1503 /* 1504 * If the upper-layer has requested IPv4/TCPv4/UDPv4 1505 * checksumming, set up the descriptor to do this work 1506 * for us. 1507 * 1508 * This apparently has to be on the first descriptor of 1509 * the packet. 1510 * 1511 * Byte-swap constants so the compiler can optimize. 1512 */ 1513 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { 1514 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx); 1515 SIP_EVCNT_INCR(&sc->sc_ev_txipsum); 1516 extsts |= htole32(EXTSTS_IPPKT); 1517 } 1518 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 1519 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx); 1520 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum); 1521 extsts |= htole32(EXTSTS_TCPPKT); 1522 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) { 1523 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx); 1524 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum); 1525 extsts |= htole32(EXTSTS_UDPPKT); 1526 } 1527 sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_extsts_idx] |= extsts; 1528 } 1529 1530 /* 1531 * sip_start: [ifnet interface function] 1532 * 1533 * Start packet transmission on the interface. 1534 */ 1535 static void 1536 sipcom_start(struct ifnet *ifp) 1537 { 1538 struct sip_softc *sc = ifp->if_softc; 1539 struct mbuf *m0; 1540 struct mbuf *m; 1541 struct sip_txsoft *txs; 1542 bus_dmamap_t dmamap; 1543 int error, nexttx, lasttx, seg; 1544 int ofree = sc->sc_txfree; 1545 uint32_t cmdsts; 1546 #if 0 1547 int firsttx = sc->sc_txnext; 1548 #endif 1549 1550 /* 1551 * If we've been told to pause, don't transmit any more packets. 1552 */ 1553 if (!sc->sc_gigabit && sc->sc_paused) 1554 return; 1555 1556 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING) 1557 return; 1558 1559 /* 1560 * Loop through the send queue, setting up transmit descriptors 1561 * until we drain the queue, or use up all available transmit 1562 * descriptors. 1563 */ 1564 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL) { 1565 /* 1566 * Grab a packet off the queue. 1567 */ 1568 IFQ_POLL(&ifp->if_snd, m0); 1569 if (m0 == NULL) 1570 break; 1571 m = NULL; 1572 1573 dmamap = txs->txs_dmamap; 1574 1575 /* 1576 * Load the DMA map. If this fails, the packet either 1577 * didn't fit in the allotted number of segments, or we 1578 * were short on resources. 1579 */ 1580 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1581 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1582 /* In the non-gigabit case, we'll copy and try again. */ 1583 if (error != 0 && !sc->sc_gigabit) { 1584 MGETHDR(m, M_DONTWAIT, MT_DATA); 1585 if (m == NULL) { 1586 printf("%s: unable to allocate Tx mbuf\n", 1587 device_xname(sc->sc_dev)); 1588 break; 1589 } 1590 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); 1591 if (m0->m_pkthdr.len > MHLEN) { 1592 MCLGET(m, M_DONTWAIT); 1593 if ((m->m_flags & M_EXT) == 0) { 1594 printf("%s: unable to allocate Tx " 1595 "cluster\n", 1596 device_xname(sc->sc_dev)); 1597 m_freem(m); 1598 break; 1599 } 1600 } 1601 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 1602 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 1603 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 1604 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1605 if (error) { 1606 printf("%s: unable to load Tx buffer, error = " 1607 "%d\n", device_xname(sc->sc_dev), error); 1608 break; 1609 } 1610 } else if (error == EFBIG) { 1611 /* 1612 * For the too-many-segments case, we simply 1613 * report an error and drop the packet, 1614 * since we can't sanely copy a jumbo packet 1615 * to a single buffer. 1616 */ 1617 printf("%s: Tx packet consumes too many DMA segments, " 1618 "dropping...\n", device_xname(sc->sc_dev)); 1619 IFQ_DEQUEUE(&ifp->if_snd, m0); 1620 m_freem(m0); 1621 continue; 1622 } else if (error != 0) { 1623 /* 1624 * Short on resources, just stop for now. 1625 */ 1626 break; 1627 } 1628 1629 /* 1630 * Ensure we have enough descriptors free to describe 1631 * the packet. Note, we always reserve one descriptor 1632 * at the end of the ring as a termination point, to 1633 * prevent wrap-around. 1634 */ 1635 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { 1636 /* 1637 * Not enough free descriptors to transmit this 1638 * packet. 1639 */ 1640 bus_dmamap_unload(sc->sc_dmat, dmamap); 1641 if (m != NULL) 1642 m_freem(m); 1643 SIP_EVCNT_INCR(&sc->sc_ev_txdstall); 1644 break; 1645 } 1646 1647 IFQ_DEQUEUE(&ifp->if_snd, m0); 1648 if (m != NULL) { 1649 m_freem(m0); 1650 m0 = m; 1651 } 1652 1653 /* 1654 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1655 */ 1656 1657 /* Sync the DMA map. */ 1658 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1659 BUS_DMASYNC_PREWRITE); 1660 1661 /* 1662 * Initialize the transmit descriptors. 1663 */ 1664 for (nexttx = lasttx = sc->sc_txnext, seg = 0; 1665 seg < dmamap->dm_nsegs; 1666 seg++, nexttx = sip_nexttx(sc, nexttx)) { 1667 /* 1668 * If this is the first descriptor we're 1669 * enqueueing, don't set the OWN bit just 1670 * yet. That could cause a race condition. 1671 * We'll do it below. 1672 */ 1673 1674 cmdsts = dmamap->dm_segs[seg].ds_len; 1675 if (nexttx != sc->sc_txnext) 1676 cmdsts |= CMDSTS_OWN; 1677 if (seg < dmamap->dm_nsegs - 1) 1678 cmdsts |= CMDSTS_MORE; 1679 sip_init_txdesc(sc, nexttx, 1680 dmamap->dm_segs[seg].ds_addr, cmdsts); 1681 lasttx = nexttx; 1682 } 1683 1684 /* 1685 * If we're in the interrupt delay window, delay the 1686 * interrupt. 1687 */ 1688 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) { 1689 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr); 1690 sc->sc_txdescs[lasttx].sipd_words[sc->sc_cmdsts_idx] |= 1691 htole32(CMDSTS_INTR); 1692 sc->sc_txwin = 0; 1693 } 1694 1695 if (sc->sc_gigabit) 1696 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable); 1697 1698 /* Sync the descriptors we're using. */ 1699 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs, 1700 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1701 1702 /* 1703 * The entire packet is set up. Give the first descriptor 1704 * to the chip now. 1705 */ 1706 sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_cmdsts_idx] |= 1707 htole32(CMDSTS_OWN); 1708 sip_cdtxsync(sc, sc->sc_txnext, 1, 1709 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1710 1711 /* 1712 * Store a pointer to the packet so we can free it later, 1713 * and remember what txdirty will be once the packet is 1714 * done. 1715 */ 1716 txs->txs_mbuf = m0; 1717 txs->txs_firstdesc = sc->sc_txnext; 1718 txs->txs_lastdesc = lasttx; 1719 1720 /* Advance the tx pointer. */ 1721 sc->sc_txfree -= dmamap->dm_nsegs; 1722 sc->sc_txnext = nexttx; 1723 1724 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1725 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1726 1727 /* Pass the packet to any BPF listeners. */ 1728 bpf_mtap(ifp, m0, BPF_D_OUT); 1729 } 1730 1731 if (sc->sc_txfree != ofree) { 1732 /* 1733 * Start the transmit process. Note, the manual says 1734 * that if there are no pending transmissions in the 1735 * chip's internal queue (indicated by TXE being clear), 1736 * then the driver software must set the TXDP to the 1737 * first descriptor to be transmitted. However, if we 1738 * do this, it causes serious performance degradation on 1739 * the DP83820 under load, not setting TXDP doesn't seem 1740 * to adversely affect the SiS 900 or DP83815. 1741 * 1742 * Well, I guess it wouldn't be the first time a manual 1743 * has lied -- and they could be speaking of the NULL- 1744 * terminated descriptor list case, rather than OWN- 1745 * terminated rings. 1746 */ 1747 #if 0 1748 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) & 1749 CR_TXE) == 0) { 1750 sip_set_txdp(sc, SIP_CDTXADDR(sc, firsttx)); 1751 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1752 } 1753 #else 1754 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1755 #endif 1756 1757 /* Set a watchdog timer in case the chip flakes out. */ 1758 /* Gigabit autonegotiation takes 5 seconds. */ 1759 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5; 1760 } 1761 } 1762 1763 /* 1764 * sip_watchdog: [ifnet interface function] 1765 * 1766 * Watchdog timer handler. 1767 */ 1768 static void 1769 sipcom_watchdog(struct ifnet *ifp) 1770 { 1771 struct sip_softc *sc = ifp->if_softc; 1772 1773 /* 1774 * The chip seems to ignore the CMDSTS_INTR bit sometimes! 1775 * If we get a timeout, try and sweep up transmit descriptors. 1776 * If we manage to sweep them all up, ignore the lack of 1777 * interrupt. 1778 */ 1779 sipcom_txintr(sc); 1780 1781 if (sc->sc_txfree != sc->sc_ntxdesc) { 1782 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1783 if_statinc(ifp, if_oerrors); 1784 1785 /* Reset the interface. */ 1786 (void) sipcom_init(ifp); 1787 } else if (ifp->if_flags & IFF_DEBUG) 1788 printf("%s: recovered from device timeout\n", 1789 device_xname(sc->sc_dev)); 1790 1791 /* Try to get more packets going. */ 1792 sipcom_start(ifp); 1793 } 1794 1795 /* If the interface is up and running, only modify the receive 1796 * filter when setting promiscuous or debug mode. Otherwise fall 1797 * through to ether_ioctl, which will reset the chip. 1798 */ 1799 static int 1800 sip_ifflags_cb(struct ethercom *ec) 1801 { 1802 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \ 1803 == (sc)->sc_ethercom.ec_capenable) \ 1804 && ((sc)->sc_prev.is_vlan == \ 1805 VLAN_ATTACHED(&(sc)->sc_ethercom) )) 1806 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable) 1807 struct ifnet *ifp = &ec->ec_if; 1808 struct sip_softc *sc = ifp->if_softc; 1809 u_short change = ifp->if_flags ^ sc->sc_if_flags; 1810 1811 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) || 1812 !COMPARE_IC(sc, ifp)) 1813 return ENETRESET; 1814 /* Set up the receive filter. */ 1815 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1816 return 0; 1817 } 1818 1819 /* 1820 * sip_ioctl: [ifnet interface function] 1821 * 1822 * Handle control requests from the operator. 1823 */ 1824 static int 1825 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1826 { 1827 struct sip_softc *sc = ifp->if_softc; 1828 struct ifreq *ifr = (struct ifreq *)data; 1829 int s, error; 1830 1831 s = splnet(); 1832 1833 switch (cmd) { 1834 case SIOCSIFMEDIA: 1835 /* Flow control requires full-duplex mode. */ 1836 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 1837 (ifr->ifr_media & IFM_FDX) == 0) 1838 ifr->ifr_media &= ~IFM_ETH_FMASK; 1839 1840 /* XXX */ 1841 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) 1842 ifr->ifr_media &= ~IFM_ETH_FMASK; 1843 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 1844 if (sc->sc_gigabit && 1845 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 1846 /* We can do both TXPAUSE and RXPAUSE. */ 1847 ifr->ifr_media |= 1848 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1849 } else if (ifr->ifr_media & IFM_FLOW) { 1850 /* 1851 * Both TXPAUSE and RXPAUSE must be set. 1852 * (SiS900 and DP83815 don't have PAUSE_ASYM 1853 * feature.) 1854 * 1855 * XXX Can SiS900 and DP83815 send PAUSE? 1856 */ 1857 ifr->ifr_media |= 1858 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1859 } 1860 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 1861 } 1862 /*FALLTHROUGH*/ 1863 default: 1864 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 1865 break; 1866 1867 error = 0; 1868 1869 if (cmd == SIOCSIFCAP) 1870 error = if_init(ifp); 1871 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 1872 ; 1873 else if (ifp->if_flags & IFF_RUNNING) { 1874 /* 1875 * Multicast list has changed; set the hardware filter 1876 * accordingly. 1877 */ 1878 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1879 } 1880 break; 1881 } 1882 1883 /* Try to get more packets going. */ 1884 sipcom_start(ifp); 1885 1886 sc->sc_if_flags = ifp->if_flags; 1887 splx(s); 1888 return error; 1889 } 1890 1891 /* 1892 * sip_intr: 1893 * 1894 * Interrupt service routine. 1895 */ 1896 static int 1897 sipcom_intr(void *arg) 1898 { 1899 struct sip_softc *sc = arg; 1900 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1901 uint32_t isr; 1902 int handled = 0; 1903 1904 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) 1905 return 0; 1906 1907 /* Disable interrupts. */ 1908 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0); 1909 1910 for (;;) { 1911 /* Reading clears interrupt. */ 1912 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR); 1913 if ((isr & sc->sc_imr) == 0) 1914 break; 1915 1916 rnd_add_uint32(&sc->rnd_source, isr); 1917 1918 handled = 1; 1919 1920 if ((ifp->if_flags & IFF_RUNNING) == 0) 1921 break; 1922 1923 if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) { 1924 SIP_EVCNT_INCR(&sc->sc_ev_rxintr); 1925 1926 /* Grab any new packets. */ 1927 (*sc->sc_rxintr)(sc); 1928 1929 if (isr & ISR_RXORN) { 1930 printf("%s: receive FIFO overrun\n", 1931 device_xname(sc->sc_dev)); 1932 1933 /* XXX adjust rx_drain_thresh? */ 1934 } 1935 1936 if (isr & ISR_RXIDLE) { 1937 printf("%s: receive ring overrun\n", 1938 device_xname(sc->sc_dev)); 1939 1940 /* Get the receive process going again. */ 1941 sip_set_rxdp(sc, 1942 SIP_CDRXADDR(sc, sc->sc_rxptr)); 1943 bus_space_write_4(sc->sc_st, sc->sc_sh, 1944 SIP_CR, CR_RXE); 1945 } 1946 } 1947 1948 if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) { 1949 #ifdef SIP_EVENT_COUNTERS 1950 if (isr & ISR_TXDESC) 1951 SIP_EVCNT_INCR(&sc->sc_ev_txdintr); 1952 else if (isr & ISR_TXIDLE) 1953 SIP_EVCNT_INCR(&sc->sc_ev_txiintr); 1954 #endif 1955 1956 /* Sweep up transmit descriptors. */ 1957 sipcom_txintr(sc); 1958 1959 if (isr & ISR_TXURN) { 1960 uint32_t thresh; 1961 int txfifo_size = (sc->sc_gigabit) 1962 ? DP83820_SIP_TXFIFO_SIZE 1963 : OTHER_SIP_TXFIFO_SIZE; 1964 1965 printf("%s: transmit FIFO underrun", 1966 device_xname(sc->sc_dev)); 1967 thresh = sc->sc_tx_drain_thresh + 1; 1968 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask) 1969 && (thresh * 32) <= (txfifo_size - 1970 (sc->sc_tx_fill_thresh * 32))) { 1971 printf("; increasing Tx drain " 1972 "threshold to %u bytes\n", 1973 thresh * 32); 1974 sc->sc_tx_drain_thresh = thresh; 1975 (void) sipcom_init(ifp); 1976 } else { 1977 (void) sipcom_init(ifp); 1978 printf("\n"); 1979 } 1980 } 1981 } 1982 1983 if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) { 1984 if (isr & ISR_PAUSE_ST) { 1985 sc->sc_paused = 1; 1986 SIP_EVCNT_INCR(&sc->sc_ev_rxpause); 1987 } 1988 if (isr & ISR_PAUSE_END) { 1989 sc->sc_paused = 0; 1990 } 1991 } 1992 1993 if (isr & ISR_HIBERR) { 1994 int want_init = 0; 1995 1996 SIP_EVCNT_INCR(&sc->sc_ev_hiberr); 1997 1998 #define PRINTERR(bit, str) \ 1999 do { \ 2000 if ((isr & (bit)) != 0) { \ 2001 if ((ifp->if_flags & IFF_DEBUG) != 0) \ 2002 printf("%s: %s\n", \ 2003 device_xname(sc->sc_dev), str); \ 2004 want_init = 1; \ 2005 } \ 2006 } while (/*CONSTCOND*/0) 2007 2008 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error"); 2009 PRINTERR(sc->sc_bits.b_isr_sserr, "system error"); 2010 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort"); 2011 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort"); 2012 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun"); 2013 /* 2014 * Ignore: 2015 * Tx reset complete 2016 * Rx reset complete 2017 */ 2018 if (want_init) 2019 (void) sipcom_init(ifp); 2020 #undef PRINTERR 2021 } 2022 } 2023 2024 /* Re-enable interrupts. */ 2025 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE); 2026 2027 /* Try to get more packets going. */ 2028 if_schedule_deferred_start(ifp); 2029 2030 return handled; 2031 } 2032 2033 /* 2034 * sip_txintr: 2035 * 2036 * Helper; handle transmit interrupts. 2037 */ 2038 static void 2039 sipcom_txintr(struct sip_softc *sc) 2040 { 2041 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2042 struct sip_txsoft *txs; 2043 uint32_t cmdsts; 2044 2045 /* 2046 * Go through our Tx list and free mbufs for those 2047 * frames which have been transmitted. 2048 */ 2049 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 2050 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 2051 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2052 2053 cmdsts = le32toh(sc->sc_txdescs[ 2054 txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]); 2055 if (cmdsts & CMDSTS_OWN) 2056 break; 2057 2058 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 2059 2060 sc->sc_txfree += txs->txs_dmamap->dm_nsegs; 2061 2062 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 2063 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2064 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2065 m_freem(txs->txs_mbuf); 2066 txs->txs_mbuf = NULL; 2067 2068 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2069 2070 /* Check for errors and collisions. */ 2071 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 2072 if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED | 2073 CMDSTS_Tx_EC)) { 2074 if_statinc_ref(nsr, if_oerrors); 2075 if (cmdsts & CMDSTS_Tx_EC) 2076 if_statadd_ref(nsr, if_collisions, 16); 2077 if (ifp->if_flags & IFF_DEBUG) { 2078 if (cmdsts & CMDSTS_Tx_ED) 2079 printf("%s: excessive deferral\n", 2080 device_xname(sc->sc_dev)); 2081 if (cmdsts & CMDSTS_Tx_EC) 2082 printf("%s: excessive collisions\n", 2083 device_xname(sc->sc_dev)); 2084 } 2085 } else { 2086 /* Packet was transmitted successfully. */ 2087 if_statinc_ref(nsr, if_opackets); 2088 if (CMDSTS_COLLISIONS(cmdsts)) 2089 if_statadd_ref(nsr, if_collisions, 2090 CMDSTS_COLLISIONS(cmdsts)); 2091 } 2092 IF_STAT_PUTREF(ifp); 2093 } 2094 2095 /* 2096 * If there are no more pending transmissions, cancel the watchdog 2097 * timer. 2098 */ 2099 if (txs == NULL) { 2100 ifp->if_timer = 0; 2101 sc->sc_txwin = 0; 2102 } 2103 } 2104 2105 /* 2106 * gsip_rxintr: 2107 * 2108 * Helper; handle receive interrupts on gigabit parts. 2109 */ 2110 static void 2111 gsip_rxintr(struct sip_softc *sc) 2112 { 2113 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2114 struct sip_rxsoft *rxs; 2115 struct mbuf *m; 2116 uint32_t cmdsts, extsts; 2117 int i, len; 2118 2119 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) { 2120 rxs = &sc->sc_rxsoft[i]; 2121 2122 sip_cdrxsync(sc, i, 2123 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2124 2125 cmdsts = 2126 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]); 2127 2128 /* 2129 * NOTE: OWN is set if owned by _consumer_. We're the 2130 * consumer of the receive ring, so if the bit is clear, 2131 * we have processed all of the packets. 2132 */ 2133 if ((cmdsts & CMDSTS_OWN) == 0) { 2134 /* 2135 * We have processed all of the receive buffers. 2136 */ 2137 break; 2138 } 2139 2140 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD); 2141 2142 extsts = 2143 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_extsts_idx]); 2144 len = CMDSTS_SIZE(sc, cmdsts); 2145 2146 if (__predict_false(sc->sc_rxdiscard)) { 2147 sip_init_rxdesc(sc, i); 2148 if ((cmdsts & CMDSTS_MORE) == 0) { 2149 /* Reset our state. */ 2150 sc->sc_rxdiscard = 0; 2151 } 2152 continue; 2153 } 2154 2155 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2156 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2157 2158 m = rxs->rxs_mbuf; 2159 2160 /* 2161 * Add a new receive buffer to the ring. 2162 */ 2163 if (sipcom_add_rxbuf(sc, i) != 0) { 2164 /* 2165 * Failed, throw away what we've done so 2166 * far, and discard the rest of the packet. 2167 */ 2168 if_statinc(ifp, if_ierrors); 2169 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2170 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2171 sip_init_rxdesc(sc, i); 2172 if (cmdsts & CMDSTS_MORE) 2173 sc->sc_rxdiscard = 1; 2174 if (sc->sc_rxhead != NULL) 2175 m_freem(sc->sc_rxhead); 2176 sip_rxchain_reset(sc); 2177 continue; 2178 } 2179 2180 sip_rxchain_link(sc, m); 2181 2182 m->m_len = len; 2183 2184 /* 2185 * If this is not the end of the packet, keep 2186 * looking. 2187 */ 2188 if (cmdsts & CMDSTS_MORE) { 2189 sc->sc_rxlen += len; 2190 continue; 2191 } 2192 2193 /* 2194 * Okay, we have the entire packet now. The chip includes 2195 * the FCS, so we need to trim it. 2196 */ 2197 m->m_len -= ETHER_CRC_LEN; 2198 2199 *sc->sc_rxtailp = NULL; 2200 len = m->m_len + sc->sc_rxlen; 2201 m = sc->sc_rxhead; 2202 2203 sip_rxchain_reset(sc); 2204 2205 /* If an error occurred, update stats and drop the packet. */ 2206 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_LONG | CMDSTS_Rx_RUNT | 2207 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) { 2208 if_statinc(ifp, if_ierrors); 2209 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 2210 (cmdsts & CMDSTS_Rx_RXO) == 0) { 2211 /* Receive overrun handled elsewhere. */ 2212 printf("%s: receive descriptor error\n", 2213 device_xname(sc->sc_dev)); 2214 } 2215 #define PRINTERR(bit, str) \ 2216 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 2217 (cmdsts & (bit)) != 0) \ 2218 printf("%s: %s\n", device_xname(sc->sc_dev), str) 2219 PRINTERR(CMDSTS_Rx_LONG, "Too long packet"); 2220 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 2221 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 2222 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 2223 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 2224 #undef PRINTERR 2225 m_freem(m); 2226 continue; 2227 } 2228 2229 /* 2230 * If the packet is small enough to fit in a 2231 * single header mbuf, allocate one and copy 2232 * the data into it. This greatly reduces 2233 * memory consumption when we receive lots 2234 * of small packets. 2235 */ 2236 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) { 2237 struct mbuf *nm; 2238 MGETHDR(nm, M_DONTWAIT, MT_DATA); 2239 if (nm == NULL) { 2240 if_statinc(ifp, if_ierrors); 2241 m_freem(m); 2242 continue; 2243 } 2244 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2245 nm->m_data += 2; 2246 nm->m_pkthdr.len = nm->m_len = len; 2247 m_copydata(m, 0, len, mtod(nm, void *)); 2248 m_freem(m); 2249 m = nm; 2250 } 2251 #ifndef __NO_STRICT_ALIGNMENT 2252 else { 2253 /* 2254 * The DP83820's receive buffers must be 4-byte 2255 * aligned. But this means that the data after 2256 * the Ethernet header is misaligned. To compensate, 2257 * we have artificially shortened the buffer size 2258 * in the descriptor, and we do an overlapping copy 2259 * of the data two bytes further in (in the first 2260 * buffer of the chain only). 2261 */ 2262 memmove(mtod(m, char *) + 2, mtod(m, void *), 2263 m->m_len); 2264 m->m_data += 2; 2265 } 2266 #endif /* ! __NO_STRICT_ALIGNMENT */ 2267 2268 /* 2269 * If VLANs are enabled, VLAN packets have been unwrapped 2270 * for us. Associate the tag with the packet. 2271 */ 2272 2273 /* 2274 * Again, byte swapping is tricky. Hardware provided 2275 * the tag in the network byte order, but extsts was 2276 * passed through le32toh() in the meantime. On a 2277 * big-endian machine, we need to swap it again. On a 2278 * little-endian machine, we need to convert from the 2279 * network to host byte order. This means that we must 2280 * swap it in any case, so unconditional swap instead 2281 * of htons() is used. 2282 */ 2283 if ((extsts & EXTSTS_VPKT) != 0) { 2284 vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI)); 2285 } 2286 2287 /* 2288 * Set the incoming checksum information for the 2289 * packet. 2290 */ 2291 if ((extsts & EXTSTS_IPPKT) != 0) { 2292 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum); 2293 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 2294 if (extsts & EXTSTS_Rx_IPERR) 2295 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 2296 if (extsts & EXTSTS_TCPPKT) { 2297 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum); 2298 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 2299 if (extsts & EXTSTS_Rx_TCPERR) 2300 m->m_pkthdr.csum_flags |= 2301 M_CSUM_TCP_UDP_BAD; 2302 } else if (extsts & EXTSTS_UDPPKT) { 2303 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum); 2304 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 2305 if (extsts & EXTSTS_Rx_UDPERR) 2306 m->m_pkthdr.csum_flags |= 2307 M_CSUM_TCP_UDP_BAD; 2308 } 2309 } 2310 2311 m_set_rcvif(m, ifp); 2312 m->m_pkthdr.len = len; 2313 2314 /* Pass it on. */ 2315 if_percpuq_enqueue(ifp->if_percpuq, m); 2316 } 2317 2318 /* Update the receive pointer. */ 2319 sc->sc_rxptr = i; 2320 } 2321 2322 /* 2323 * sip_rxintr: 2324 * 2325 * Helper; handle receive interrupts on 10/100 parts. 2326 */ 2327 static void 2328 sip_rxintr(struct sip_softc *sc) 2329 { 2330 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2331 struct sip_rxsoft *rxs; 2332 struct mbuf *m; 2333 uint32_t cmdsts; 2334 int i, len; 2335 2336 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) { 2337 rxs = &sc->sc_rxsoft[i]; 2338 2339 sip_cdrxsync(sc, i, 2340 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2341 2342 cmdsts = 2343 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]); 2344 2345 /* 2346 * NOTE: OWN is set if owned by _consumer_. We're the 2347 * consumer of the receive ring, so if the bit is clear, 2348 * we have processed all of the packets. 2349 */ 2350 if ((cmdsts & CMDSTS_OWN) == 0) { 2351 /* 2352 * We have processed all of the receive buffers. 2353 */ 2354 break; 2355 } 2356 2357 /* If any collisions were seen on the wire, count one. */ 2358 if (cmdsts & CMDSTS_Rx_COL) 2359 if_statinc(ifp, if_collisions); 2360 2361 /* 2362 * If an error occurred, update stats, clear the status 2363 * word, and leave the packet buffer in place. It will 2364 * simply be reused the next time the ring comes around. 2365 */ 2366 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_LONG | CMDSTS_Rx_RUNT | 2367 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) { 2368 if_statinc(ifp, if_ierrors); 2369 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 2370 (cmdsts & CMDSTS_Rx_RXO) == 0) { 2371 /* Receive overrun handled elsewhere. */ 2372 printf("%s: receive descriptor error\n", 2373 device_xname(sc->sc_dev)); 2374 } 2375 #define PRINTERR(bit, str) \ 2376 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 2377 (cmdsts & (bit)) != 0) \ 2378 printf("%s: %s\n", device_xname(sc->sc_dev), str) 2379 PRINTERR(CMDSTS_Rx_LONG, "Too long packet"); 2380 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 2381 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 2382 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 2383 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 2384 #undef PRINTERR 2385 sip_init_rxdesc(sc, i); 2386 continue; 2387 } 2388 2389 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2390 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2391 2392 /* 2393 * No errors; receive the packet. Note, the SiS 900 2394 * includes the CRC with every packet. 2395 */ 2396 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN; 2397 2398 #ifdef __NO_STRICT_ALIGNMENT 2399 /* 2400 * If the packet is small enough to fit in a 2401 * single header mbuf, allocate one and copy 2402 * the data into it. This greatly reduces 2403 * memory consumption when we receive lots 2404 * of small packets. 2405 * 2406 * Otherwise, we add a new buffer to the receive 2407 * chain. If this fails, we drop the packet and 2408 * recycle the old buffer. 2409 */ 2410 if (sip_copy_small != 0 && len <= MHLEN) { 2411 MGETHDR(m, M_DONTWAIT, MT_DATA); 2412 if (m == NULL) 2413 goto dropit; 2414 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2415 memcpy(mtod(m, void *), 2416 mtod(rxs->rxs_mbuf, void *), len); 2417 sip_init_rxdesc(sc, i); 2418 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2419 rxs->rxs_dmamap->dm_mapsize, 2420 BUS_DMASYNC_PREREAD); 2421 } else { 2422 m = rxs->rxs_mbuf; 2423 if (sipcom_add_rxbuf(sc, i) != 0) { 2424 dropit: 2425 if_statinc(ifp, if_ierrors); 2426 sip_init_rxdesc(sc, i); 2427 bus_dmamap_sync(sc->sc_dmat, 2428 rxs->rxs_dmamap, 0, 2429 rxs->rxs_dmamap->dm_mapsize, 2430 BUS_DMASYNC_PREREAD); 2431 continue; 2432 } 2433 } 2434 #else 2435 /* 2436 * The SiS 900's receive buffers must be 4-byte aligned. 2437 * But this means that the data after the Ethernet header 2438 * is misaligned. We must allocate a new buffer and 2439 * copy the data, shifted forward 2 bytes. 2440 */ 2441 MGETHDR(m, M_DONTWAIT, MT_DATA); 2442 if (m == NULL) { 2443 dropit: 2444 if_statinc(ifp, if_ierrors); 2445 sip_init_rxdesc(sc, i); 2446 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2447 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2448 continue; 2449 } 2450 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2451 if (len > (MHLEN - 2)) { 2452 MCLGET(m, M_DONTWAIT); 2453 if ((m->m_flags & M_EXT) == 0) { 2454 m_freem(m); 2455 goto dropit; 2456 } 2457 } 2458 m->m_data += 2; 2459 2460 /* 2461 * Note that we use clusters for incoming frames, so the 2462 * buffer is virtually contiguous. 2463 */ 2464 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len); 2465 2466 /* Allow the receive descriptor to continue using its mbuf. */ 2467 sip_init_rxdesc(sc, i); 2468 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2469 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2470 #endif /* __NO_STRICT_ALIGNMENT */ 2471 2472 m_set_rcvif(m, ifp); 2473 m->m_pkthdr.len = m->m_len = len; 2474 2475 /* Pass it on. */ 2476 if_percpuq_enqueue(ifp->if_percpuq, m); 2477 } 2478 2479 /* Update the receive pointer. */ 2480 sc->sc_rxptr = i; 2481 } 2482 2483 /* 2484 * sip_tick: 2485 * 2486 * One second timer, used to tick the MII. 2487 */ 2488 static void 2489 sipcom_tick(void *arg) 2490 { 2491 struct sip_softc *sc = arg; 2492 int s; 2493 2494 s = splnet(); 2495 #ifdef SIP_EVENT_COUNTERS 2496 if (sc->sc_gigabit) { 2497 /* Read PAUSE related counts from MIB registers. */ 2498 sc->sc_ev_rxpause.ev_count += 2499 bus_space_read_4(sc->sc_st, sc->sc_sh, 2500 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff; 2501 sc->sc_ev_txpause.ev_count += 2502 bus_space_read_4(sc->sc_st, sc->sc_sh, 2503 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff; 2504 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR); 2505 } 2506 #endif /* SIP_EVENT_COUNTERS */ 2507 mii_tick(&sc->sc_mii); 2508 splx(s); 2509 2510 callout_schedule(&sc->sc_tick_ch, hz); 2511 } 2512 2513 /* 2514 * sip_reset: 2515 * 2516 * Perform a soft reset on the SiS 900. 2517 */ 2518 static bool 2519 sipcom_reset(struct sip_softc *sc) 2520 { 2521 bus_space_tag_t st = sc->sc_st; 2522 bus_space_handle_t sh = sc->sc_sh; 2523 int i; 2524 2525 bus_space_write_4(st, sh, SIP_IER, 0); 2526 bus_space_write_4(st, sh, SIP_IMR, 0); 2527 bus_space_write_4(st, sh, SIP_RFCR, 0); 2528 bus_space_write_4(st, sh, SIP_CR, CR_RST); 2529 2530 for (i = 0; i < SIP_TIMEOUT; i++) { 2531 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0) 2532 break; 2533 delay(2); 2534 } 2535 2536 if (i == SIP_TIMEOUT) { 2537 printf("%s: reset failed to complete\n", 2538 device_xname(sc->sc_dev)); 2539 return false; 2540 } 2541 2542 delay(1000); 2543 2544 if (sc->sc_gigabit) { 2545 /* 2546 * Set the general purpose I/O bits. Do it here in case we 2547 * need to have GPIO set up to talk to the media interface. 2548 */ 2549 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior); 2550 delay(1000); 2551 } 2552 return true; 2553 } 2554 2555 static void 2556 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable) 2557 { 2558 uint32_t reg; 2559 bus_space_tag_t st = sc->sc_st; 2560 bus_space_handle_t sh = sc->sc_sh; 2561 /* 2562 * Initialize the VLAN/IP receive control register. 2563 * We enable checksum computation on all incoming 2564 * packets, and do not reject packets w/ bad checksums. 2565 */ 2566 reg = 0; 2567 if (capenable & 2568 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) 2569 reg |= VRCR_IPEN; 2570 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2571 reg |= VRCR_VTDEN | VRCR_VTREN; 2572 bus_space_write_4(st, sh, SIP_VRCR, reg); 2573 2574 /* 2575 * Initialize the VLAN/IP transmit control register. 2576 * We enable outgoing checksum computation on a 2577 * per-packet basis. 2578 */ 2579 reg = 0; 2580 if (capenable & 2581 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx)) 2582 reg |= VTCR_PPCHK; 2583 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2584 reg |= VTCR_VPPTI; 2585 bus_space_write_4(st, sh, SIP_VTCR, reg); 2586 2587 /* 2588 * If we're using VLANs, initialize the VLAN data register. 2589 * To understand why we bswap the VLAN Ethertype, see section 2590 * 4.2.36 of the DP83820 manual. 2591 */ 2592 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2593 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN)); 2594 } 2595 2596 /* 2597 * sip_init: [ ifnet interface function ] 2598 * 2599 * Initialize the interface. Must be called at splnet(). 2600 */ 2601 static int 2602 sipcom_init(struct ifnet *ifp) 2603 { 2604 struct sip_softc *sc = ifp->if_softc; 2605 bus_space_tag_t st = sc->sc_st; 2606 bus_space_handle_t sh = sc->sc_sh; 2607 struct sip_txsoft *txs; 2608 struct sip_rxsoft *rxs; 2609 int i, error = 0; 2610 2611 if (device_is_active(sc->sc_dev)) { 2612 /* 2613 * Cancel any pending I/O. 2614 */ 2615 sipcom_stop(ifp, 0); 2616 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || 2617 !device_is_active(sc->sc_dev)) 2618 return 0; 2619 2620 /* 2621 * Reset the chip to a known state. 2622 */ 2623 if (!sipcom_reset(sc)) 2624 return EBUSY; 2625 2626 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) { 2627 /* 2628 * DP83815 manual, page 78: 2629 * 4.4 Recommended Registers Configuration 2630 * For optimum performance of the DP83815, version noted 2631 * as DP83815CVNG (SRR = 203h), the listed register 2632 * modifications must be followed in sequence... 2633 * 2634 * It's not clear if this should be 302h or 203h because that 2635 * chip name is listed as SRR 302h in the description of the 2636 * SRR register. However, my revision 302h DP83815 on the 2637 * Netgear FA311 purchased in 02/2001 needs these settings 2638 * to avoid tons of errors in AcceptPerfectMatch (non- 2639 * IFF_PROMISC) mode. I do not know if other revisions need 2640 * this set or not. [briggs -- 09 March 2001] 2641 * 2642 * Note that only the low-order 12 bits of 0xe4 are documented 2643 * and that this sets reserved bits in that register. 2644 */ 2645 bus_space_write_4(st, sh, 0x00cc, 0x0001); 2646 2647 bus_space_write_4(st, sh, 0x00e4, 0x189C); 2648 bus_space_write_4(st, sh, 0x00fc, 0x0000); 2649 bus_space_write_4(st, sh, 0x00f4, 0x5040); 2650 bus_space_write_4(st, sh, 0x00f8, 0x008c); 2651 2652 bus_space_write_4(st, sh, 0x00cc, 0x0000); 2653 } 2654 2655 /* Initialize the transmit descriptor ring. */ 2656 sip_init_txring(sc); 2657 2658 /* 2659 * Initialize the transmit job descriptors. 2660 */ 2661 SIMPLEQ_INIT(&sc->sc_txfreeq); 2662 SIMPLEQ_INIT(&sc->sc_txdirtyq); 2663 for (i = 0; i < SIP_TXQUEUELEN; i++) { 2664 txs = &sc->sc_txsoft[i]; 2665 txs->txs_mbuf = NULL; 2666 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2667 } 2668 2669 /* 2670 * Initialize the receive descriptor and receive job 2671 * descriptor rings. 2672 */ 2673 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 2674 rxs = &sc->sc_rxsoft[i]; 2675 if (rxs->rxs_mbuf == NULL) { 2676 if ((error = sipcom_add_rxbuf(sc, i)) != 0) { 2677 printf("%s: unable to allocate or map rx " 2678 "buffer %d, error = %d\n", 2679 device_xname(sc->sc_dev), i, error); 2680 /* 2681 * XXX Should attempt to run with fewer receive 2682 * XXX buffers instead of just failing. 2683 */ 2684 sipcom_rxdrain(sc); 2685 goto out; 2686 } 2687 } else 2688 sip_init_rxdesc(sc, i); 2689 } 2690 sc->sc_rxptr = 0; 2691 sc->sc_rxdiscard = 0; 2692 sip_rxchain_reset(sc); 2693 2694 /* 2695 * Set the configuration register; it's already initialized 2696 * in sip_attach(). 2697 */ 2698 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg); 2699 2700 /* 2701 * Initialize the prototype TXCFG register. 2702 */ 2703 if (sc->sc_gigabit) { 2704 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512; 2705 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512; 2706 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) || 2707 SIP_SIS900_REV(sc, SIS_REV_960) || 2708 SIP_SIS900_REV(sc, SIS_REV_900B)) && 2709 (sc->sc_cfg & CFG_EDBMASTEN)) { 2710 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64; 2711 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64; 2712 } else { 2713 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512; 2714 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512; 2715 } 2716 2717 sc->sc_txcfg |= TXCFG_ATP | 2718 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) | 2719 sc->sc_tx_drain_thresh; 2720 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg); 2721 2722 /* 2723 * Initialize the receive drain threshold if we have never 2724 * done so. 2725 */ 2726 if (sc->sc_rx_drain_thresh == 0) { 2727 /* 2728 * XXX This value should be tuned. This is set to the 2729 * maximum of 248 bytes, and we may be able to improve 2730 * performance by decreasing it (although we should never 2731 * set this value lower than 2; 14 bytes are required to 2732 * filter the packet). 2733 */ 2734 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK); 2735 } 2736 2737 /* 2738 * Initialize the prototype RXCFG register. 2739 */ 2740 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK); 2741 /* 2742 * Accept long packets (including FCS) so we can handle 2743 * 802.1q-tagged frames and jumbo frames properly. 2744 */ 2745 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) || 2746 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)) 2747 sc->sc_rxcfg |= RXCFG_ALP; 2748 2749 /* 2750 * Checksum offloading is disabled if the user selects an MTU 2751 * larger than 8109. (FreeBSD says 8152, but there is empirical 2752 * evidence that >8109 does not work on some boards, such as the 2753 * Planex GN-1000TE). 2754 */ 2755 if (sc->sc_gigabit && ifp->if_mtu > 8109 && 2756 (ifp->if_capenable & 2757 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 2758 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 2759 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) { 2760 printf("%s: Checksum offloading does not work if MTU > 8109 - " 2761 "disabled.\n", device_xname(sc->sc_dev)); 2762 ifp->if_capenable &= 2763 ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 2764 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 2765 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx); 2766 ifp->if_csum_flags_tx = 0; 2767 ifp->if_csum_flags_rx = 0; 2768 } 2769 2770 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg); 2771 2772 if (sc->sc_gigabit) 2773 sipcom_dp83820_init(sc, ifp->if_capenable); 2774 2775 /* 2776 * Give the transmit and receive rings to the chip. 2777 */ 2778 sip_set_txdp(sc, SIP_CDTXADDR(sc, sc->sc_txnext)); 2779 sip_set_rxdp(sc, SIP_CDRXADDR(sc, sc->sc_rxptr)); 2780 2781 /* 2782 * Initialize the interrupt mask. 2783 */ 2784 sc->sc_imr = sc->sc_bits.b_isr_dperr | 2785 sc->sc_bits.b_isr_sserr | 2786 sc->sc_bits.b_isr_rmabt | 2787 sc->sc_bits.b_isr_rtabt | 2788 ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN | 2789 ISR_RXIDLE | ISR_RXDESC; 2790 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr); 2791 2792 /* Set up the receive filter. */ 2793 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 2794 2795 /* 2796 * Tune sc_rx_flow_thresh. 2797 * XXX "More than 8KB" is too short for jumbo frames. 2798 * XXX TODO: Threshold value should be user-settable. 2799 */ 2800 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 | 2801 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 | 2802 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK)); 2803 2804 /* 2805 * Set the current media. Do this after initializing the prototype 2806 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow 2807 * control. 2808 */ 2809 if ((error = ether_mediachange(ifp)) != 0) 2810 goto out; 2811 2812 /* 2813 * Set the interrupt hold-off timer to 100us. 2814 */ 2815 if (sc->sc_gigabit) 2816 bus_space_write_4(st, sh, SIP_IHR, 0x01); 2817 2818 /* 2819 * Enable interrupts. 2820 */ 2821 bus_space_write_4(st, sh, SIP_IER, IER_IE); 2822 2823 /* 2824 * Start the transmit and receive processes. 2825 */ 2826 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE); 2827 2828 /* 2829 * Start the one second MII clock. 2830 */ 2831 callout_schedule(&sc->sc_tick_ch, hz); 2832 2833 /* 2834 * ...all done! 2835 */ 2836 ifp->if_flags |= IFF_RUNNING; 2837 sc->sc_if_flags = ifp->if_flags; 2838 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable; 2839 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom); 2840 sc->sc_prev.if_capenable = ifp->if_capenable; 2841 2842 out: 2843 if (error) 2844 printf("%s: interface not running\n", device_xname(sc->sc_dev)); 2845 return error; 2846 } 2847 2848 /* 2849 * sip_drain: 2850 * 2851 * Drain the receive queue. 2852 */ 2853 static void 2854 sipcom_rxdrain(struct sip_softc *sc) 2855 { 2856 struct sip_rxsoft *rxs; 2857 int i; 2858 2859 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 2860 rxs = &sc->sc_rxsoft[i]; 2861 if (rxs->rxs_mbuf != NULL) { 2862 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2863 m_freem(rxs->rxs_mbuf); 2864 rxs->rxs_mbuf = NULL; 2865 } 2866 } 2867 } 2868 2869 /* 2870 * sip_stop: [ ifnet interface function ] 2871 * 2872 * Stop transmission on the interface. 2873 */ 2874 static void 2875 sipcom_stop(struct ifnet *ifp, int disable) 2876 { 2877 struct sip_softc *sc = ifp->if_softc; 2878 bus_space_tag_t st = sc->sc_st; 2879 bus_space_handle_t sh = sc->sc_sh; 2880 struct sip_txsoft *txs; 2881 uint32_t cmdsts = 0; /* DEBUG */ 2882 2883 /* 2884 * Stop the one second clock. 2885 */ 2886 callout_stop(&sc->sc_tick_ch); 2887 2888 /* Down the MII. */ 2889 mii_down(&sc->sc_mii); 2890 2891 if (device_is_active(sc->sc_dev)) { 2892 /* 2893 * Disable interrupts. 2894 */ 2895 bus_space_write_4(st, sh, SIP_IER, 0); 2896 2897 /* 2898 * Stop receiver and transmitter. 2899 */ 2900 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD); 2901 } 2902 2903 /* 2904 * Release any queued transmit buffers. 2905 */ 2906 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 2907 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2908 SIMPLEQ_NEXT(txs, txs_q) == NULL && 2909 (sc->sc_txdescs[ 2910 txs->txs_lastdesc].sipd_words[ 2911 sc->sc_cmdsts_idx] & htole32(CMDSTS_INTR)) == 0) 2912 printf("%s: sip_stop: last descriptor does not " 2913 "have INTR bit set\n", device_xname(sc->sc_dev)); 2914 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 2915 #ifdef DIAGNOSTIC 2916 if (txs->txs_mbuf == NULL) { 2917 printf("%s: dirty txsoft with no mbuf chain\n", 2918 device_xname(sc->sc_dev)); 2919 panic("sip_stop"); 2920 } 2921 #endif 2922 cmdsts |= /* DEBUG */ 2923 le32toh(sc->sc_txdescs[ 2924 txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]); 2925 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2926 m_freem(txs->txs_mbuf); 2927 txs->txs_mbuf = NULL; 2928 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2929 } 2930 2931 /* 2932 * Mark the interface down and cancel the watchdog timer. 2933 */ 2934 ifp->if_flags &= ~IFF_RUNNING; 2935 ifp->if_timer = 0; 2936 2937 if (disable) 2938 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual); 2939 2940 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2941 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc) 2942 printf("%s: sip_stop: no INTR bits set in dirty tx " 2943 "descriptors\n", device_xname(sc->sc_dev)); 2944 } 2945 2946 /* 2947 * sip_read_eeprom: 2948 * 2949 * Read data from the serial EEPROM. 2950 */ 2951 static void 2952 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt, 2953 uint16_t *data) 2954 { 2955 bus_space_tag_t st = sc->sc_st; 2956 bus_space_handle_t sh = sc->sc_sh; 2957 uint16_t reg; 2958 int i, x; 2959 2960 for (i = 0; i < wordcnt; i++) { 2961 /* Send CHIP SELECT. */ 2962 reg = EROMAR_EECS; 2963 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2964 2965 /* Shift in the READ opcode. */ 2966 for (x = 3; x > 0; x--) { 2967 if (SIP_EEPROM_OPC_READ & (1 << (x - 1))) 2968 reg |= EROMAR_EEDI; 2969 else 2970 reg &= ~EROMAR_EEDI; 2971 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2972 bus_space_write_4(st, sh, SIP_EROMAR, 2973 reg | EROMAR_EESK); 2974 delay(4); 2975 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2976 delay(4); 2977 } 2978 2979 /* Shift in address. */ 2980 for (x = 6; x > 0; x--) { 2981 if ((word + i) & (1 << (x - 1))) 2982 reg |= EROMAR_EEDI; 2983 else 2984 reg &= ~EROMAR_EEDI; 2985 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2986 bus_space_write_4(st, sh, SIP_EROMAR, 2987 reg | EROMAR_EESK); 2988 delay(4); 2989 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2990 delay(4); 2991 } 2992 2993 /* Shift out data. */ 2994 reg = EROMAR_EECS; 2995 data[i] = 0; 2996 for (x = 16; x > 0; x--) { 2997 bus_space_write_4(st, sh, SIP_EROMAR, 2998 reg | EROMAR_EESK); 2999 delay(4); 3000 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO) 3001 data[i] |= (1 << (x - 1)); 3002 bus_space_write_4(st, sh, SIP_EROMAR, reg); 3003 delay(4); 3004 } 3005 3006 /* Clear CHIP SELECT. */ 3007 bus_space_write_4(st, sh, SIP_EROMAR, 0); 3008 delay(4); 3009 } 3010 } 3011 3012 /* 3013 * sipcom_add_rxbuf: 3014 * 3015 * Add a receive buffer to the indicated descriptor. 3016 */ 3017 static int 3018 sipcom_add_rxbuf(struct sip_softc *sc, int idx) 3019 { 3020 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx]; 3021 struct mbuf *m; 3022 int error; 3023 3024 MGETHDR(m, M_DONTWAIT, MT_DATA); 3025 if (m == NULL) 3026 return ENOBUFS; 3027 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 3028 3029 MCLGET(m, M_DONTWAIT); 3030 if ((m->m_flags & M_EXT) == 0) { 3031 m_freem(m); 3032 return ENOBUFS; 3033 } 3034 3035 /* XXX I don't believe this is necessary. --dyoung */ 3036 if (sc->sc_gigabit) 3037 m->m_len = sc->sc_parm->p_rxbuf_len; 3038 3039 if (rxs->rxs_mbuf != NULL) 3040 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 3041 3042 rxs->rxs_mbuf = m; 3043 3044 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 3045 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 3046 BUS_DMA_READ | BUS_DMA_NOWAIT); 3047 if (error) { 3048 printf("%s: can't load rx DMA map %d, error = %d\n", 3049 device_xname(sc->sc_dev), idx, error); 3050 panic("%s", __func__); /* XXX */ 3051 } 3052 3053 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 3054 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3055 3056 sip_init_rxdesc(sc, idx); 3057 3058 return 0; 3059 } 3060 3061 /* 3062 * sip_sis900_set_filter: 3063 * 3064 * Set up the receive filter. 3065 */ 3066 static void 3067 sipcom_sis900_set_filter(struct sip_softc *sc) 3068 { 3069 bus_space_tag_t st = sc->sc_st; 3070 bus_space_handle_t sh = sc->sc_sh; 3071 struct ethercom *ec = &sc->sc_ethercom; 3072 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3073 struct ether_multi *enm; 3074 const uint8_t *cp; 3075 struct ether_multistep step; 3076 uint32_t crc, mchash[16]; 3077 3078 /* 3079 * Initialize the prototype RFCR. 3080 */ 3081 sc->sc_rfcr = RFCR_RFEN; 3082 if (ifp->if_flags & IFF_BROADCAST) 3083 sc->sc_rfcr |= RFCR_AAB; 3084 if (ifp->if_flags & IFF_PROMISC) { 3085 sc->sc_rfcr |= RFCR_AAP; 3086 goto allmulti; 3087 } 3088 3089 /* 3090 * Set up the multicast address filter by passing all multicast 3091 * addresses through a CRC generator, and then using the high-order 3092 * 6 bits as an index into the 128 bit multicast hash table (only 3093 * the lower 16 bits of each 32 bit multicast hash register are 3094 * valid). The high order bits select the register, while the 3095 * rest of the bits select the bit within the register. 3096 */ 3097 3098 memset(mchash, 0, sizeof(mchash)); 3099 3100 /* 3101 * SiS900 (at least SiS963) requires us to register the address of 3102 * the PAUSE packet (01:80:c2:00:00:01) into the address filter. 3103 */ 3104 crc = 0x0ed423f9; 3105 3106 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3107 SIP_SIS900_REV(sc, SIS_REV_960) || 3108 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3109 /* Just want the 8 most significant bits. */ 3110 crc >>= 24; 3111 } else { 3112 /* Just want the 7 most significant bits. */ 3113 crc >>= 25; 3114 } 3115 3116 /* Set the corresponding bit in the hash table. */ 3117 mchash[crc >> 4] |= 1 << (crc & 0xf); 3118 3119 ETHER_LOCK(ec); 3120 ETHER_FIRST_MULTI(step, ec, enm); 3121 while (enm != NULL) { 3122 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 3123 /* 3124 * We must listen to a range of multicast addresses. 3125 * For now, just accept all multicasts, rather than 3126 * trying to set only those filter bits needed to match 3127 * the range. (At this time, the only use of address 3128 * ranges is for IP multicast routing, for which the 3129 * range is big enough to require all bits set.) 3130 */ 3131 ETHER_UNLOCK(ec); 3132 goto allmulti; 3133 } 3134 3135 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 3136 3137 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3138 SIP_SIS900_REV(sc, SIS_REV_960) || 3139 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3140 /* Just want the 8 most significant bits. */ 3141 crc >>= 24; 3142 } else { 3143 /* Just want the 7 most significant bits. */ 3144 crc >>= 25; 3145 } 3146 3147 /* Set the corresponding bit in the hash table. */ 3148 mchash[crc >> 4] |= 1 << (crc & 0xf); 3149 3150 ETHER_NEXT_MULTI(step, enm); 3151 } 3152 ETHER_UNLOCK(ec); 3153 3154 ifp->if_flags &= ~IFF_ALLMULTI; 3155 goto setit; 3156 3157 allmulti: 3158 ifp->if_flags |= IFF_ALLMULTI; 3159 sc->sc_rfcr |= RFCR_AAM; 3160 3161 setit: 3162 #define FILTER_EMIT(addr, data) \ 3163 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 3164 delay(1); \ 3165 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 3166 delay(1) 3167 3168 /* 3169 * Disable receive filter, and program the node address. 3170 */ 3171 cp = CLLADDR(ifp->if_sadl); 3172 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]); 3173 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]); 3174 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]); 3175 3176 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3177 /* 3178 * Program the multicast hash table. 3179 */ 3180 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]); 3181 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]); 3182 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]); 3183 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]); 3184 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]); 3185 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]); 3186 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]); 3187 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]); 3188 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3189 SIP_SIS900_REV(sc, SIS_REV_960) || 3190 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3191 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]); 3192 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]); 3193 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]); 3194 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]); 3195 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]); 3196 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]); 3197 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]); 3198 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]); 3199 } 3200 } 3201 #undef FILTER_EMIT 3202 3203 /* 3204 * Re-enable the receiver filter. 3205 */ 3206 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 3207 } 3208 3209 /* 3210 * sip_dp83815_set_filter: 3211 * 3212 * Set up the receive filter. 3213 */ 3214 static void 3215 sipcom_dp83815_set_filter(struct sip_softc *sc) 3216 { 3217 bus_space_tag_t st = sc->sc_st; 3218 bus_space_handle_t sh = sc->sc_sh; 3219 struct ethercom *ec = &sc->sc_ethercom; 3220 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3221 struct ether_multi *enm; 3222 const uint8_t *cp; 3223 struct ether_multistep step; 3224 uint32_t crc, hash, slot, bit; 3225 #define MCHASH_NWORDS_83820 128 3226 #define MCHASH_NWORDS_83815 32 3227 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815) 3228 uint16_t mchash[MCHASH_NWORDS]; 3229 int i; 3230 3231 /* 3232 * Initialize the prototype RFCR. 3233 * Enable the receive filter, and accept on 3234 * Perfect (destination address) Match 3235 * If IFF_BROADCAST, also accept all broadcast packets. 3236 * If IFF_PROMISC, accept all unicast packets (and later, set 3237 * IFF_ALLMULTI and accept all multicast, too). 3238 */ 3239 sc->sc_rfcr = RFCR_RFEN | RFCR_APM; 3240 if (ifp->if_flags & IFF_BROADCAST) 3241 sc->sc_rfcr |= RFCR_AAB; 3242 if (ifp->if_flags & IFF_PROMISC) { 3243 sc->sc_rfcr |= RFCR_AAP; 3244 goto allmulti; 3245 } 3246 3247 /* 3248 * Set up the DP83820/DP83815 multicast address filter by 3249 * passing all multicast addresses through a CRC generator, 3250 * and then using the high-order 11/9 bits as an index into 3251 * the 2048/512 bit multicast hash table. The high-order 3252 * 7/5 bits select the slot, while the low-order 4 bits 3253 * select the bit within the slot. Note that only the low 3254 * 16-bits of each filter word are used, and there are 3255 * 128/32 filter words. 3256 */ 3257 3258 memset(mchash, 0, sizeof(mchash)); 3259 3260 ifp->if_flags &= ~IFF_ALLMULTI; 3261 ETHER_FIRST_MULTI(step, ec, enm); 3262 if (enm == NULL) 3263 goto setit; 3264 while (enm != NULL) { 3265 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 3266 /* 3267 * We must listen to a range of multicast addresses. 3268 * For now, just accept all multicasts, rather than 3269 * trying to set only those filter bits needed to match 3270 * the range. (At this time, the only use of address 3271 * ranges is for IP multicast routing, for which the 3272 * range is big enough to require all bits set.) 3273 */ 3274 goto allmulti; 3275 } 3276 3277 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 3278 3279 if (sc->sc_gigabit) { 3280 /* Just want the 11 most significant bits. */ 3281 hash = crc >> 21; 3282 } else { 3283 /* Just want the 9 most significant bits. */ 3284 hash = crc >> 23; 3285 } 3286 3287 slot = hash >> 4; 3288 bit = hash & 0xf; 3289 3290 /* Set the corresponding bit in the hash table. */ 3291 mchash[slot] |= 1 << bit; 3292 3293 ETHER_NEXT_MULTI(step, enm); 3294 } 3295 sc->sc_rfcr |= RFCR_MHEN; 3296 goto setit; 3297 3298 allmulti: 3299 ifp->if_flags |= IFF_ALLMULTI; 3300 sc->sc_rfcr |= RFCR_AAM; 3301 3302 setit: 3303 #define FILTER_EMIT(addr, data) \ 3304 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 3305 delay(1); \ 3306 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 3307 delay(1) 3308 3309 /* 3310 * Disable receive filter, and program the node address. 3311 */ 3312 cp = CLLADDR(ifp->if_sadl); 3313 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]); 3314 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]); 3315 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]); 3316 3317 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3318 int nwords = 3319 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815; 3320 /* 3321 * Program the multicast hash table. 3322 */ 3323 for (i = 0; i < nwords; i++) { 3324 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]); 3325 } 3326 } 3327 #undef FILTER_EMIT 3328 #undef MCHASH_NWORDS 3329 #undef MCHASH_NWORDS_83815 3330 #undef MCHASH_NWORDS_83820 3331 3332 /* 3333 * Re-enable the receiver filter. 3334 */ 3335 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 3336 } 3337 3338 /* 3339 * sip_dp83820_mii_readreg: [mii interface function] 3340 * 3341 * Read a PHY register on the MII of the DP83820. 3342 */ 3343 static int 3344 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 3345 { 3346 struct sip_softc *sc = device_private(self); 3347 3348 if (sc->sc_cfg & CFG_TBI_EN) { 3349 bus_addr_t tbireg; 3350 3351 if (phy != 0) 3352 return -1; 3353 3354 switch (reg) { 3355 case MII_BMCR: tbireg = SIP_TBICR; break; 3356 case MII_BMSR: tbireg = SIP_TBISR; break; 3357 case MII_ANAR: tbireg = SIP_TANAR; break; 3358 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 3359 case MII_ANER: tbireg = SIP_TANER; break; 3360 case MII_EXTSR: 3361 /* 3362 * Don't even bother reading the TESR register. 3363 * The manual documents that the device has 3364 * 1000baseX full/half capability, but the 3365 * register itself seems read back 0 on some 3366 * boards. Just hard-code the result. 3367 */ 3368 *val = (EXTSR_1000XFDX | EXTSR_1000XHDX); 3369 return 0; 3370 3371 default: 3372 return 0; 3373 } 3374 3375 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff; 3376 if (tbireg == SIP_TBISR) { 3377 /* LINK and ACOMP are switched! */ 3378 int sr = *val; 3379 3380 *val = 0; 3381 if (sr & TBISR_MR_LINK_STATUS) 3382 *val |= BMSR_LINK; 3383 if (sr & TBISR_MR_AN_COMPLETE) 3384 *val |= BMSR_ACOMP; 3385 3386 /* 3387 * The manual claims this register reads back 0 3388 * on hard and soft reset. But we want to let 3389 * the gentbi driver know that we support auto- 3390 * negotiation, so hard-code this bit in the 3391 * result. 3392 */ 3393 *val |= BMSR_ANEG | BMSR_EXTSTAT; 3394 } 3395 3396 return 0; 3397 } 3398 3399 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg, 3400 val); 3401 } 3402 3403 /* 3404 * sip_dp83820_mii_writereg: [mii interface function] 3405 * 3406 * Write a PHY register on the MII of the DP83820. 3407 */ 3408 static int 3409 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val) 3410 { 3411 struct sip_softc *sc = device_private(self); 3412 3413 if (sc->sc_cfg & CFG_TBI_EN) { 3414 bus_addr_t tbireg; 3415 3416 if (phy != 0) 3417 return -1; 3418 3419 switch (reg) { 3420 case MII_BMCR: tbireg = SIP_TBICR; break; 3421 case MII_ANAR: tbireg = SIP_TANAR; break; 3422 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 3423 default: 3424 return 0; 3425 } 3426 3427 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val); 3428 return 0; 3429 } 3430 3431 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, 3432 val); 3433 } 3434 3435 /* 3436 * sip_dp83820_mii_statchg: [mii interface function] 3437 * 3438 * Callback from MII layer when media changes. 3439 */ 3440 static void 3441 sipcom_dp83820_mii_statchg(struct ifnet *ifp) 3442 { 3443 struct sip_softc *sc = ifp->if_softc; 3444 struct mii_data *mii = &sc->sc_mii; 3445 uint32_t cfg, pcr; 3446 3447 /* 3448 * Get flow control negotiation result. 3449 */ 3450 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 3451 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 3452 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 3453 mii->mii_media_active &= ~IFM_ETH_FMASK; 3454 } 3455 3456 /* 3457 * Update TXCFG for full-duplex operation. 3458 */ 3459 if ((mii->mii_media_active & IFM_FDX) != 0) 3460 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3461 else 3462 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3463 3464 /* 3465 * Update RXCFG for full-duplex or loopback. 3466 */ 3467 if ((mii->mii_media_active & IFM_FDX) != 0 || 3468 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) 3469 sc->sc_rxcfg |= RXCFG_ATX; 3470 else 3471 sc->sc_rxcfg &= ~RXCFG_ATX; 3472 3473 /* 3474 * Update CFG for MII/GMII. 3475 */ 3476 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) 3477 cfg = sc->sc_cfg | CFG_MODE_1000; 3478 else 3479 cfg = sc->sc_cfg; 3480 3481 /* 3482 * 802.3x flow control. 3483 */ 3484 pcr = 0; 3485 if (sc->sc_flowflags & IFM_FLOW) { 3486 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) 3487 pcr |= sc->sc_rx_flow_thresh; 3488 if (sc->sc_flowflags & IFM_ETH_RXPAUSE) 3489 pcr |= PCR_PSEN | PCR_PS_MCAST; 3490 } 3491 3492 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg); 3493 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3494 sc->sc_txcfg); 3495 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3496 sc->sc_rxcfg); 3497 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr); 3498 } 3499 3500 /* 3501 * sip_mii_bitbang_read: [mii bit-bang interface function] 3502 * 3503 * Read the MII serial port for the MII bit-bang module. 3504 */ 3505 static uint32_t 3506 sipcom_mii_bitbang_read(device_t self) 3507 { 3508 struct sip_softc *sc = device_private(self); 3509 3510 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR)); 3511 } 3512 3513 /* 3514 * sip_mii_bitbang_write: [mii big-bang interface function] 3515 * 3516 * Write the MII serial port for the MII bit-bang module. 3517 */ 3518 static void 3519 sipcom_mii_bitbang_write(device_t self, uint32_t val) 3520 { 3521 struct sip_softc *sc = device_private(self); 3522 3523 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val); 3524 } 3525 3526 /* 3527 * sip_sis900_mii_readreg: [mii interface function] 3528 * 3529 * Read a PHY register on the MII. 3530 */ 3531 static int 3532 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 3533 { 3534 struct sip_softc *sc = device_private(self); 3535 uint32_t enphy; 3536 3537 /* 3538 * The PHY of recent SiS chipsets is accessed through bitbang 3539 * operations. 3540 */ 3541 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) 3542 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, 3543 phy, reg, val); 3544 3545 #ifndef SIS900_MII_RESTRICT 3546 /* 3547 * The SiS 900 has only an internal PHY on the MII. Only allow 3548 * MII address 0. 3549 */ 3550 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 3551 return -1; 3552 #endif 3553 3554 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3555 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) | 3556 ENPHY_RWCMD | ENPHY_ACCESS); 3557 do { 3558 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3559 } while (enphy & ENPHY_ACCESS); 3560 3561 *val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT; 3562 return 0; 3563 } 3564 3565 /* 3566 * sip_sis900_mii_writereg: [mii interface function] 3567 * 3568 * Write a PHY register on the MII. 3569 */ 3570 static int 3571 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val) 3572 { 3573 struct sip_softc *sc = device_private(self); 3574 uint32_t enphy; 3575 3576 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) { 3577 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, 3578 phy, reg, val); 3579 } 3580 3581 #ifndef SIS900_MII_RESTRICT 3582 /* 3583 * The SiS 900 has only an internal PHY on the MII. Only allow 3584 * MII address 0. 3585 */ 3586 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 3587 return -1; 3588 #endif 3589 3590 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3591 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) | 3592 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS); 3593 do { 3594 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3595 } while (enphy & ENPHY_ACCESS); 3596 3597 return 0; 3598 } 3599 3600 /* 3601 * sip_sis900_mii_statchg: [mii interface function] 3602 * 3603 * Callback from MII layer when media changes. 3604 */ 3605 static void 3606 sipcom_sis900_mii_statchg(struct ifnet *ifp) 3607 { 3608 struct sip_softc *sc = ifp->if_softc; 3609 struct mii_data *mii = &sc->sc_mii; 3610 uint32_t flowctl; 3611 3612 /* 3613 * Get flow control negotiation result. 3614 */ 3615 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 3616 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 3617 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 3618 mii->mii_media_active &= ~IFM_ETH_FMASK; 3619 } 3620 3621 /* 3622 * Update TXCFG for full-duplex operation. 3623 */ 3624 if ((mii->mii_media_active & IFM_FDX) != 0) 3625 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3626 else 3627 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3628 3629 /* 3630 * Update RXCFG for full-duplex or loopback. 3631 */ 3632 if ((mii->mii_media_active & IFM_FDX) != 0 || 3633 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) 3634 sc->sc_rxcfg |= RXCFG_ATX; 3635 else 3636 sc->sc_rxcfg &= ~RXCFG_ATX; 3637 3638 /* 3639 * Update IMR for use of 802.3x flow control. 3640 */ 3641 if (sc->sc_flowflags & IFM_FLOW) { 3642 sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST); 3643 flowctl = FLOWCTL_FLOWEN; 3644 } else { 3645 sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST); 3646 flowctl = 0; 3647 } 3648 3649 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3650 sc->sc_txcfg); 3651 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3652 sc->sc_rxcfg); 3653 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr); 3654 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl); 3655 } 3656 3657 /* 3658 * sip_dp83815_mii_readreg: [mii interface function] 3659 * 3660 * Read a PHY register on the MII. 3661 */ 3662 static int 3663 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 3664 { 3665 struct sip_softc *sc = device_private(self); 3666 uint32_t data; 3667 3668 /* 3669 * The DP83815 only has an internal PHY. Only allow 3670 * MII address 0. 3671 */ 3672 if (phy != 0) 3673 return -1; 3674 3675 /* 3676 * Apparently, after a reset, the DP83815 can take a while 3677 * to respond. During this recovery period, the BMSR returns 3678 * a value of 0. Catch this -- it's not supposed to happen 3679 * (the BMSR has some hardcoded-to-1 bits), and wait for the 3680 * PHY to come back to life. 3681 * 3682 * This works out because the BMSR is the first register 3683 * read during the PHY probe process. 3684 */ 3685 do { 3686 data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg)); 3687 } while (reg == MII_BMSR && data == 0); 3688 3689 *val = data & 0xffff; 3690 return 0; 3691 } 3692 3693 /* 3694 * sip_dp83815_mii_writereg: [mii interface function] 3695 * 3696 * Write a PHY register to the MII. 3697 */ 3698 static int 3699 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val) 3700 { 3701 struct sip_softc *sc = device_private(self); 3702 3703 /* 3704 * The DP83815 only has an internal PHY. Only allow 3705 * MII address 0. 3706 */ 3707 if (phy != 0) 3708 return -1; 3709 3710 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val); 3711 3712 return 0; 3713 } 3714 3715 /* 3716 * sip_dp83815_mii_statchg: [mii interface function] 3717 * 3718 * Callback from MII layer when media changes. 3719 */ 3720 static void 3721 sipcom_dp83815_mii_statchg(struct ifnet *ifp) 3722 { 3723 struct sip_softc *sc = ifp->if_softc; 3724 3725 /* 3726 * Update TXCFG for full-duplex operation. 3727 */ 3728 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 3729 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3730 else 3731 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3732 3733 /* 3734 * Update RXCFG for full-duplex or loopback. 3735 */ 3736 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || 3737 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) 3738 sc->sc_rxcfg |= RXCFG_ATX; 3739 else 3740 sc->sc_rxcfg &= ~RXCFG_ATX; 3741 3742 /* 3743 * XXX 802.3x flow control. 3744 */ 3745 3746 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3747 sc->sc_txcfg); 3748 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3749 sc->sc_rxcfg); 3750 3751 /* 3752 * Some DP83815s experience problems when used with short 3753 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This 3754 * sequence adjusts the DSP's signal attenuation to fix the 3755 * problem. 3756 */ 3757 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) { 3758 uint32_t reg; 3759 3760 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001); 3761 3762 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); 3763 reg &= 0x0fff; 3764 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000); 3765 delay(100); 3766 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc); 3767 reg &= 0x00ff; 3768 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) { 3769 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc, 3770 0x00e8); 3771 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); 3772 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, 3773 reg | 0x20); 3774 } 3775 3776 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0); 3777 } 3778 } 3779 3780 static void 3781 sipcom_dp83820_read_macaddr(struct sip_softc *sc, 3782 const struct pci_attach_args *pa, uint8_t *enaddr) 3783 { 3784 uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2]; 3785 uint8_t cksum, *e, match; 3786 int i; 3787 3788 /* 3789 * EEPROM data format for the DP83820 can be found in 3790 * the DP83820 manual, section 4.2.4. 3791 */ 3792 3793 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data); 3794 3795 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8; 3796 match = ~(match - 1); 3797 3798 cksum = 0x55; 3799 e = (uint8_t *)eeprom_data; 3800 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++) 3801 cksum += *e++; 3802 3803 if (cksum != match) 3804 printf("%s: Checksum (%x) mismatch (%x)", 3805 device_xname(sc->sc_dev), cksum, match); 3806 3807 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff; 3808 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8; 3809 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff; 3810 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8; 3811 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff; 3812 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8; 3813 } 3814 3815 static void 3816 sipcom_sis900_eeprom_delay(struct sip_softc *sc) 3817 { 3818 int i; 3819 3820 /* 3821 * FreeBSD goes from (300/33)+1 [10] to 0. There must be 3822 * a reason, but I don't know it. 3823 */ 3824 for (i = 0; i < 10; i++) 3825 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR); 3826 } 3827 3828 static void 3829 sipcom_sis900_read_macaddr(struct sip_softc *sc, 3830 const struct pci_attach_args *pa, uint8_t *enaddr) 3831 { 3832 uint16_t myea[ETHER_ADDR_LEN / 2]; 3833 3834 switch (sc->sc_rev) { 3835 case SIS_REV_630S: 3836 case SIS_REV_630E: 3837 case SIS_REV_630EA1: 3838 case SIS_REV_630ET: 3839 case SIS_REV_635: 3840 /* 3841 * The MAC address for the on-board Ethernet of 3842 * the SiS 630 chipset is in the NVRAM. Kick 3843 * the chip into re-loading it from NVRAM, and 3844 * read the MAC address out of the filter registers. 3845 */ 3846 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD); 3847 3848 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3849 RFCR_RFADDR_NODE0); 3850 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3851 0xffff; 3852 3853 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3854 RFCR_RFADDR_NODE2); 3855 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3856 0xffff; 3857 3858 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3859 RFCR_RFADDR_NODE4); 3860 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3861 0xffff; 3862 break; 3863 3864 case SIS_REV_960: 3865 { 3866 #define SIS_SET_EROMAR(x, y) \ 3867 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ 3868 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y)) 3869 3870 #define SIS_CLR_EROMAR(x, y) \ 3871 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ 3872 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y)) 3873 3874 int waittime, i; 3875 3876 /* Allow to read EEPROM from LAN. It is shared 3877 * between a 1394 controller and the NIC and each 3878 * time we access it, we need to set SIS_EECMD_REQ. 3879 */ 3880 SIS_SET_EROMAR(sc, EROMAR_REQ); 3881 3882 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */ 3883 /* Force EEPROM to idle state. */ 3884 3885 /* 3886 * XXX-cube This is ugly. 3887 * I'll look for docs about it. 3888 */ 3889 SIS_SET_EROMAR(sc, EROMAR_EECS); 3890 sipcom_sis900_eeprom_delay(sc); 3891 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */ 3892 SIS_SET_EROMAR(sc, EROMAR_EESK); 3893 sipcom_sis900_eeprom_delay(sc); 3894 SIS_CLR_EROMAR(sc, EROMAR_EESK); 3895 sipcom_sis900_eeprom_delay(sc); 3896 } 3897 SIS_CLR_EROMAR(sc, EROMAR_EECS); 3898 sipcom_sis900_eeprom_delay(sc); 3899 bus_space_write_4(sc->sc_st, sc->sc_sh, 3900 SIP_EROMAR, 0); 3901 3902 if (bus_space_read_4(sc->sc_st, sc->sc_sh, 3903 SIP_EROMAR) & EROMAR_GNT) { 3904 sipcom_read_eeprom(sc, 3905 SIP_EEPROM_ETHERNET_ID0 >> 1, 3906 sizeof(myea) / sizeof(myea[0]), 3907 myea); 3908 break; 3909 } 3910 DELAY(1); 3911 } 3912 3913 /* 3914 * Set SIS_EECTL_CLK to high, so a other master 3915 * can operate on the i2c bus. 3916 */ 3917 SIS_SET_EROMAR(sc, EROMAR_EESK); 3918 3919 /* Refuse EEPROM access by LAN */ 3920 SIS_SET_EROMAR(sc, EROMAR_DONE); 3921 } break; 3922 3923 default: 3924 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, 3925 sizeof(myea) / sizeof(myea[0]), myea); 3926 } 3927 3928 enaddr[0] = myea[0] & 0xff; 3929 enaddr[1] = myea[0] >> 8; 3930 enaddr[2] = myea[1] & 0xff; 3931 enaddr[3] = myea[1] >> 8; 3932 enaddr[4] = myea[2] & 0xff; 3933 enaddr[5] = myea[2] >> 8; 3934 } 3935 3936 /* Table and macro to bit-reverse an octet. */ 3937 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}; 3938 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf]) 3939 3940 static void 3941 sipcom_dp83815_read_macaddr(struct sip_softc *sc, 3942 const struct pci_attach_args *pa, uint8_t *enaddr) 3943 { 3944 uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea; 3945 uint8_t cksum, *e, match; 3946 int i; 3947 3948 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) / 3949 sizeof(eeprom_data[0]), eeprom_data); 3950 3951 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8; 3952 match = ~(match - 1); 3953 3954 cksum = 0x55; 3955 e = (uint8_t *)eeprom_data; 3956 for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++) 3957 cksum += *e++; 3958 3959 if (cksum != match) 3960 printf("%s: Checksum (%x) mismatch (%x)", 3961 device_xname(sc->sc_dev), cksum, match); 3962 3963 /* 3964 * Unrolled because it makes slightly more sense this way. 3965 * The DP83815 stores the MAC address in bit 0 of word 6 3966 * through bit 15 of word 8. 3967 */ 3968 ea = &eeprom_data[6]; 3969 enaddr[0] = ((*ea & 0x1) << 7); 3970 ea++; 3971 enaddr[0] |= ((*ea & 0xFE00) >> 9); 3972 enaddr[1] = ((*ea & 0x1FE) >> 1); 3973 enaddr[2] = ((*ea & 0x1) << 7); 3974 ea++; 3975 enaddr[2] |= ((*ea & 0xFE00) >> 9); 3976 enaddr[3] = ((*ea & 0x1FE) >> 1); 3977 enaddr[4] = ((*ea & 0x1) << 7); 3978 ea++; 3979 enaddr[4] |= ((*ea & 0xFE00) >> 9); 3980 enaddr[5] = ((*ea & 0x1FE) >> 1); 3981 3982 /* 3983 * In case that's not weird enough, we also need to reverse 3984 * the bits in each byte. This all actually makes more sense 3985 * if you think about the EEPROM storage as an array of bits 3986 * being shifted into bytes, but that's not how we're looking 3987 * at it here... 3988 */ 3989 for (i = 0; i < 6 ;i++) 3990 enaddr[i] = bbr(enaddr[i]); 3991 } 3992 3993 /* 3994 * sip_mediastatus: [ifmedia interface function] 3995 * 3996 * Get the current interface media status. 3997 */ 3998 static void 3999 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 4000 { 4001 struct sip_softc *sc = ifp->if_softc; 4002 4003 if (!device_is_active(sc->sc_dev)) { 4004 ifmr->ifm_active = IFM_ETHER | IFM_NONE; 4005 ifmr->ifm_status = 0; 4006 return; 4007 } 4008 ether_mediastatus(ifp, ifmr); 4009 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) | 4010 sc->sc_flowflags; 4011 } 4012