xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 0df165c04d0a9ca1adde9ed2b890344c937954a6)
1 /*	$NetBSD: if_sip.c,v 1.115 2007/10/19 12:00:48 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.115 2007/10/19 12:00:48 ad Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/pci/if_sipreg.h>
128 
129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
131 #else			/* SiS900 and DP83815 */
132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
133 #endif
134 
135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
136 
137 /*
138  * Transmit descriptor list size.  This is arbitrary, but allocate
139  * enough descriptors for 128 pending transmissions, and 8 segments
140  * per packet (64 for DP83820 for jumbo frames).
141  *
142  * This MUST work out to a power of 2.
143  */
144 #ifdef DP83820
145 #define	SIP_NTXSEGS		64
146 #define	SIP_NTXSEGS_ALLOC	16
147 #else
148 #define	SIP_NTXSEGS		16
149 #define	SIP_NTXSEGS_ALLOC	8
150 #endif
151 
152 #define	SIP_TXQUEUELEN		256
153 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
155 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
156 
157 #if defined(DP83820)
158 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
159 #else
160 #define	TX_DMAMAP_SIZE		MCLBYTES
161 #endif
162 
163 /*
164  * Receive descriptor list size.  We have one Rx buffer per incoming
165  * packet, so this logic is a little simpler.
166  *
167  * Actually, on the DP83820, we allow the packet to consume more than
168  * one buffer, in order to support jumbo Ethernet frames.  In that
169  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
171  * so we'd better be quick about handling receive interrupts.
172  */
173 #if defined(DP83820)
174 #define	SIP_NRXDESC		256
175 #else
176 #define	SIP_NRXDESC		128
177 #endif /* DP83820 */
178 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
179 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
180 
181 /*
182  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
183  * a single clump that maps to a single DMA segment to make several things
184  * easier.
185  */
186 struct sip_control_data {
187 	/*
188 	 * The transmit descriptors.
189 	 */
190 	struct sip_desc scd_txdescs[SIP_NTXDESC];
191 
192 	/*
193 	 * The receive descriptors.
194 	 */
195 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197 
198 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
199 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
200 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
201 
202 /*
203  * Software state for transmit jobs.
204  */
205 struct sip_txsoft {
206 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
207 	bus_dmamap_t txs_dmamap;	/* our DMA map */
208 	int txs_firstdesc;		/* first descriptor in packet */
209 	int txs_lastdesc;		/* last descriptor in packet */
210 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212 
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214 
215 /*
216  * Software state for receive jobs.
217  */
218 struct sip_rxsoft {
219 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
220 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
221 };
222 
223 /*
224  * Software state per device.
225  */
226 struct sip_softc {
227 	struct device sc_dev;		/* generic device information */
228 	bus_space_tag_t sc_st;		/* bus space tag */
229 	bus_space_handle_t sc_sh;	/* bus space handle */
230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
231 	struct ethercom sc_ethercom;	/* ethernet common data */
232 	void *sc_sdhook;		/* shutdown hook */
233 
234 	const struct sip_product *sc_model; /* which model are we? */
235 	int sc_rev;			/* chip revision */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	struct mii_data sc_mii;		/* MII/media information */
240 
241 	callout_t sc_tick_ch;		/* tick callout */
242 
243 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
244 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
245 
246 	/*
247 	 * Software state for transmit and receive descriptors.
248 	 */
249 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251 
252 	/*
253 	 * Control data structures.
254 	 */
255 	struct sip_control_data *sc_control_data;
256 #define	sc_txdescs	sc_control_data->scd_txdescs
257 #define	sc_rxdescs	sc_control_data->scd_rxdescs
258 
259 #ifdef SIP_EVENT_COUNTERS
260 	/*
261 	 * Event counters.
262 	 */
263 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
264 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
265 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
266 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
267 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
268 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
269 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
270 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
271 #ifdef DP83820
272 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
273 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
274 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
275 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
277 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
278 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281 
282 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
283 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
284 	u_int32_t sc_imr;		/* prototype IMR register */
285 	u_int32_t sc_rfcr;		/* prototype RFCR register */
286 
287 	u_int32_t sc_cfg;		/* prototype CFG register */
288 
289 #ifdef DP83820
290 	u_int32_t sc_gpior;		/* prototype GPIOR register */
291 #endif /* DP83820 */
292 
293 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
294 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
295 
296 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
297 
298 	int	sc_flowflags;		/* 802.3x flow control flags */
299 #ifdef DP83820
300 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
301 #else
302 	int	sc_paused;		/* paused indication */
303 #endif
304 
305 	int	sc_txfree;		/* number of free Tx descriptors */
306 	int	sc_txnext;		/* next ready Tx descriptor */
307 	int	sc_txwin;		/* Tx descriptors since last intr */
308 
309 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
310 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
311 
312 	/* values of interface state at last init */
313 	struct {
314 		/* if_capenable */
315 		uint64_t	if_capenable;
316 		/* ec_capenable */
317 		int		ec_capenable;
318 		/* VLAN_ATTACHED */
319 		int		is_vlan;
320 	}	sc_prev;
321 
322 	short	sc_if_flags;
323 
324 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
325 #if defined(DP83820)
326 	int	sc_rxdiscard;
327 	int	sc_rxlen;
328 	struct mbuf *sc_rxhead;
329 	struct mbuf *sc_rxtail;
330 	struct mbuf **sc_rxtailp;
331 #endif /* DP83820 */
332 
333 #if NRND > 0
334 	rndsource_element_t rnd_source;	/* random source */
335 #endif
336 };
337 
338 #ifdef DP83820
339 #define	SIP_RXCHAIN_RESET(sc)						\
340 do {									\
341 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
342 	*(sc)->sc_rxtailp = NULL;					\
343 	(sc)->sc_rxlen = 0;						\
344 } while (/*CONSTCOND*/0)
345 
346 #define	SIP_RXCHAIN_LINK(sc, m)						\
347 do {									\
348 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
349 	(sc)->sc_rxtailp = &(m)->m_next;				\
350 } while (/*CONSTCOND*/0)
351 #endif /* DP83820 */
352 
353 #ifdef SIP_EVENT_COUNTERS
354 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
355 #else
356 #define	SIP_EVCNT_INCR(ev)	/* nothing */
357 #endif
358 
359 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
360 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
361 
362 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
363 do {									\
364 	int __x, __n;							\
365 									\
366 	__x = (x);							\
367 	__n = (n);							\
368 									\
369 	/* If it will wrap around, sync to the end of the ring. */	\
370 	if ((__x + __n) > SIP_NTXDESC) {				\
371 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
372 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
373 		    (SIP_NTXDESC - __x), (ops));			\
374 		__n -= (SIP_NTXDESC - __x);				\
375 		__x = 0;						\
376 	}								\
377 									\
378 	/* Now sync whatever is left. */				\
379 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
380 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
381 } while (0)
382 
383 #define	SIP_CDRXSYNC(sc, x, ops)					\
384 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
385 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
386 
387 #ifdef DP83820
388 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
389 #define	SIP_RXBUF_LEN		(MCLBYTES - 8)
390 #else
391 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
392 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
393 #endif
394 #define	SIP_INIT_RXDESC(sc, x)						\
395 do {									\
396 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
397 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
398 									\
399 	__sipd->sipd_link =						\
400 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
401 	__sipd->sipd_bufptr =						\
402 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
403 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
404 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
405 	SIP_INIT_RXDESC_EXTSTS						\
406 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
407 } while (0)
408 
409 #define	SIP_CHIP_VERS(sc, v, p, r)					\
410 	((sc)->sc_model->sip_vendor == (v) &&				\
411 	 (sc)->sc_model->sip_product == (p) &&				\
412 	 (sc)->sc_rev == (r))
413 
414 #define	SIP_CHIP_MODEL(sc, v, p)					\
415 	((sc)->sc_model->sip_vendor == (v) &&				\
416 	 (sc)->sc_model->sip_product == (p))
417 
418 #if !defined(DP83820)
419 #define	SIP_SIS900_REV(sc, rev)						\
420 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
421 #endif
422 
423 #define SIP_TIMEOUT 1000
424 
425 static void	SIP_DECL(start)(struct ifnet *);
426 static void	SIP_DECL(watchdog)(struct ifnet *);
427 static int	SIP_DECL(ioctl)(struct ifnet *, u_long, void *);
428 static int	SIP_DECL(init)(struct ifnet *);
429 static void	SIP_DECL(stop)(struct ifnet *, int);
430 
431 static void	SIP_DECL(shutdown)(void *);
432 
433 static void	SIP_DECL(reset)(struct sip_softc *);
434 static void	SIP_DECL(rxdrain)(struct sip_softc *);
435 static int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
436 static void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
437 				      u_int16_t *);
438 static void	SIP_DECL(tick)(void *);
439 
440 #if !defined(DP83820)
441 static void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
442 #endif /* ! DP83820 */
443 static void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
444 
445 #if defined(DP83820)
446 static void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
447 		    const struct pci_attach_args *, u_int8_t *);
448 #else
449 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
450 static void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
451 		    const struct pci_attach_args *, u_int8_t *);
452 static void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
453 		    const struct pci_attach_args *, u_int8_t *);
454 #endif /* DP83820 */
455 
456 static int	SIP_DECL(intr)(void *);
457 static void	SIP_DECL(txintr)(struct sip_softc *);
458 static void	SIP_DECL(rxintr)(struct sip_softc *);
459 
460 #if defined(DP83820)
461 static int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
462 static void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
463 static void	SIP_DECL(dp83820_mii_statchg)(struct device *);
464 #else
465 static int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
466 static void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
467 static void	SIP_DECL(sis900_mii_statchg)(struct device *);
468 
469 static int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
470 static void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
471 static void	SIP_DECL(dp83815_mii_statchg)(struct device *);
472 #endif /* DP83820 */
473 
474 static int	SIP_DECL(mediachange)(struct ifnet *);
475 static void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
476 
477 static int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
478 static void	SIP_DECL(attach)(struct device *, struct device *, void *);
479 
480 int	SIP_DECL(copy_small) = 0;
481 
482 #ifdef DP83820
483 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
484     gsip_match, gsip_attach, NULL, NULL);
485 #else
486 CFATTACH_DECL(sip, sizeof(struct sip_softc),
487     sip_match, sip_attach, NULL, NULL);
488 #endif
489 
490 /*
491  * Descriptions of the variants of the SiS900.
492  */
493 struct sip_variant {
494 	int	(*sipv_mii_readreg)(struct device *, int, int);
495 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
496 	void	(*sipv_mii_statchg)(struct device *);
497 	void	(*sipv_set_filter)(struct sip_softc *);
498 	void	(*sipv_read_macaddr)(struct sip_softc *,
499 		    const struct pci_attach_args *, u_int8_t *);
500 };
501 
502 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
503 static void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
504 
505 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
506 	SIP_DECL(mii_bitbang_read),
507 	SIP_DECL(mii_bitbang_write),
508 	{
509 		EROMAR_MDIO,		/* MII_BIT_MDO */
510 		EROMAR_MDIO,		/* MII_BIT_MDI */
511 		EROMAR_MDC,		/* MII_BIT_MDC */
512 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
513 		0,			/* MII_BIT_DIR_PHY_HOST */
514 	}
515 };
516 
517 #if defined(DP83820)
518 static const struct sip_variant SIP_DECL(variant_dp83820) = {
519 	SIP_DECL(dp83820_mii_readreg),
520 	SIP_DECL(dp83820_mii_writereg),
521 	SIP_DECL(dp83820_mii_statchg),
522 	SIP_DECL(dp83815_set_filter),
523 	SIP_DECL(dp83820_read_macaddr),
524 };
525 #else
526 static const struct sip_variant SIP_DECL(variant_sis900) = {
527 	SIP_DECL(sis900_mii_readreg),
528 	SIP_DECL(sis900_mii_writereg),
529 	SIP_DECL(sis900_mii_statchg),
530 	SIP_DECL(sis900_set_filter),
531 	SIP_DECL(sis900_read_macaddr),
532 };
533 
534 static const struct sip_variant SIP_DECL(variant_dp83815) = {
535 	SIP_DECL(dp83815_mii_readreg),
536 	SIP_DECL(dp83815_mii_writereg),
537 	SIP_DECL(dp83815_mii_statchg),
538 	SIP_DECL(dp83815_set_filter),
539 	SIP_DECL(dp83815_read_macaddr),
540 };
541 #endif /* DP83820 */
542 
543 /*
544  * Devices supported by this driver.
545  */
546 static const struct sip_product {
547 	pci_vendor_id_t		sip_vendor;
548 	pci_product_id_t	sip_product;
549 	const char		*sip_name;
550 	const struct sip_variant *sip_variant;
551 } SIP_DECL(products)[] = {
552 #if defined(DP83820)
553 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
554 	  "NatSemi DP83820 Gigabit Ethernet",
555 	  &SIP_DECL(variant_dp83820) },
556 #else
557 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
558 	  "SiS 900 10/100 Ethernet",
559 	  &SIP_DECL(variant_sis900) },
560 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
561 	  "SiS 7016 10/100 Ethernet",
562 	  &SIP_DECL(variant_sis900) },
563 
564 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
565 	  "NatSemi DP83815 10/100 Ethernet",
566 	  &SIP_DECL(variant_dp83815) },
567 #endif /* DP83820 */
568 
569 	{ 0,			0,
570 	  NULL,
571 	  NULL },
572 };
573 
574 static const struct sip_product *
575 SIP_DECL(lookup)(const struct pci_attach_args *pa)
576 {
577 	const struct sip_product *sip;
578 
579 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
580 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
581 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
582 			return (sip);
583 	}
584 	return (NULL);
585 }
586 
587 #ifdef DP83820
588 /*
589  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
590  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
591  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
592  * which means we try to use 64-bit data transfers on those cards if we
593  * happen to be plugged into a 32-bit slot.
594  *
595  * What we do is use this table of cards known to be 64-bit cards.  If
596  * you have a 64-bit card who's subsystem ID is not listed in this table,
597  * send the output of "pcictl dump ..." of the device to me so that your
598  * card will use the 64-bit data path when plugged into a 64-bit slot.
599  *
600  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
601  *	   June 30, 2002
602  */
603 static int
604 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
605 {
606 	static const struct {
607 		pci_vendor_id_t c64_vendor;
608 		pci_product_id_t c64_product;
609 	} card64[] = {
610 		/* Asante GigaNIX */
611 		{ 0x128a,	0x0002 },
612 
613 		/* Accton EN1407-T, Planex GN-1000TE */
614 		{ 0x1113,	0x1407 },
615 
616 		/* Netgear GA-621 */
617 		{ 0x1385,	0x621a },
618 
619 		/* SMC EZ Card */
620 		{ 0x10b8,	0x9462 },
621 
622 		{ 0, 0}
623 	};
624 	pcireg_t subsys;
625 	int i;
626 
627 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
628 
629 	for (i = 0; card64[i].c64_vendor != 0; i++) {
630 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
631 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
632 			return (1);
633 	}
634 
635 	return (0);
636 }
637 #endif /* DP83820 */
638 
639 static int
640 SIP_DECL(match)(struct device *parent, struct cfdata *cf,
641     void *aux)
642 {
643 	struct pci_attach_args *pa = aux;
644 
645 	if (SIP_DECL(lookup)(pa) != NULL)
646 		return (1);
647 
648 	return (0);
649 }
650 
651 static void
652 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
653 {
654 	struct sip_softc *sc = (struct sip_softc *) self;
655 	struct pci_attach_args *pa = aux;
656 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
657 	pci_chipset_tag_t pc = pa->pa_pc;
658 	pci_intr_handle_t ih;
659 	const char *intrstr = NULL;
660 	bus_space_tag_t iot, memt;
661 	bus_space_handle_t ioh, memh;
662 	bus_dma_segment_t seg;
663 	int ioh_valid, memh_valid;
664 	int i, rseg, error;
665 	const struct sip_product *sip;
666 	u_int8_t enaddr[ETHER_ADDR_LEN];
667 	pcireg_t pmreg;
668 #ifdef DP83820
669 	pcireg_t memtype;
670 	u_int32_t reg;
671 #endif /* DP83820 */
672 
673 	callout_init(&sc->sc_tick_ch, 0);
674 
675 	sip = SIP_DECL(lookup)(pa);
676 	if (sip == NULL) {
677 		printf("\n");
678 		panic(SIP_STR(attach) ": impossible");
679 	}
680 	sc->sc_rev = PCI_REVISION(pa->pa_class);
681 
682 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
683 
684 	sc->sc_model = sip;
685 
686 	/*
687 	 * XXX Work-around broken PXE firmware on some boards.
688 	 *
689 	 * The DP83815 shares an address decoder with the MEM BAR
690 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
691 	 * so that memory mapped access works.
692 	 */
693 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
694 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
695 	    ~PCI_MAPREG_ROM_ENABLE);
696 
697 	/*
698 	 * Map the device.
699 	 */
700 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
701 	    PCI_MAPREG_TYPE_IO, 0,
702 	    &iot, &ioh, NULL, NULL) == 0);
703 #ifdef DP83820
704 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
705 	switch (memtype) {
706 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
707 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
708 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
709 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
710 		break;
711 	default:
712 		memh_valid = 0;
713 	}
714 #else
715 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
716 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
717 	    &memt, &memh, NULL, NULL) == 0);
718 #endif /* DP83820 */
719 
720 	if (memh_valid) {
721 		sc->sc_st = memt;
722 		sc->sc_sh = memh;
723 	} else if (ioh_valid) {
724 		sc->sc_st = iot;
725 		sc->sc_sh = ioh;
726 	} else {
727 		printf("%s: unable to map device registers\n",
728 		    sc->sc_dev.dv_xname);
729 		return;
730 	}
731 
732 	sc->sc_dmat = pa->pa_dmat;
733 
734 	/*
735 	 * Make sure bus mastering is enabled.  Also make sure
736 	 * Write/Invalidate is enabled if we're allowed to use it.
737 	 */
738 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
739 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
740 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
741 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
742 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
743 
744 	/* power up chip */
745 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
746 	    NULL)) && error != EOPNOTSUPP) {
747 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
748 		    error);
749 		return;
750 	}
751 
752 	/*
753 	 * Map and establish our interrupt.
754 	 */
755 	if (pci_intr_map(pa, &ih)) {
756 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
757 		return;
758 	}
759 	intrstr = pci_intr_string(pc, ih);
760 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
761 	if (sc->sc_ih == NULL) {
762 		printf("%s: unable to establish interrupt",
763 		    sc->sc_dev.dv_xname);
764 		if (intrstr != NULL)
765 			printf(" at %s", intrstr);
766 		printf("\n");
767 		return;
768 	}
769 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
770 
771 	SIMPLEQ_INIT(&sc->sc_txfreeq);
772 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
773 
774 	/*
775 	 * Allocate the control data structures, and create and load the
776 	 * DMA map for it.
777 	 */
778 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
779 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
780 	    0)) != 0) {
781 		printf("%s: unable to allocate control data, error = %d\n",
782 		    sc->sc_dev.dv_xname, error);
783 		goto fail_0;
784 	}
785 
786 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
787 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
788 	    BUS_DMA_COHERENT)) != 0) {
789 		printf("%s: unable to map control data, error = %d\n",
790 		    sc->sc_dev.dv_xname, error);
791 		goto fail_1;
792 	}
793 
794 	if ((error = bus_dmamap_create(sc->sc_dmat,
795 	    sizeof(struct sip_control_data), 1,
796 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
797 		printf("%s: unable to create control data DMA map, "
798 		    "error = %d\n", sc->sc_dev.dv_xname, error);
799 		goto fail_2;
800 	}
801 
802 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
803 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
804 	    0)) != 0) {
805 		printf("%s: unable to load control data DMA map, error = %d\n",
806 		    sc->sc_dev.dv_xname, error);
807 		goto fail_3;
808 	}
809 
810 	/*
811 	 * Create the transmit buffer DMA maps.
812 	 */
813 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
814 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
815 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
816 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
817 			printf("%s: unable to create tx DMA map %d, "
818 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
819 			goto fail_4;
820 		}
821 	}
822 
823 	/*
824 	 * Create the receive buffer DMA maps.
825 	 */
826 	for (i = 0; i < SIP_NRXDESC; i++) {
827 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
828 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
829 			printf("%s: unable to create rx DMA map %d, "
830 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
831 			goto fail_5;
832 		}
833 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
834 	}
835 
836 	/*
837 	 * Reset the chip to a known state.
838 	 */
839 	SIP_DECL(reset)(sc);
840 
841 	/*
842 	 * Read the Ethernet address from the EEPROM.  This might
843 	 * also fetch other stuff from the EEPROM and stash it
844 	 * in the softc.
845 	 */
846 	sc->sc_cfg = 0;
847 #if !defined(DP83820)
848 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
849 	    SIP_SIS900_REV(sc,SIS_REV_900B))
850 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
851 
852 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
853 	    SIP_SIS900_REV(sc,SIS_REV_960) ||
854 	    SIP_SIS900_REV(sc,SIS_REV_900B))
855 		sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
856 						SIP_CFG) & CFG_EDBMASTEN);
857 #endif
858 
859 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
860 
861 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
862 	    ether_sprintf(enaddr));
863 
864 	/*
865 	 * Initialize the configuration register: aggressive PCI
866 	 * bus request algorithm, default backoff, default OW timer,
867 	 * default parity error detection.
868 	 *
869 	 * NOTE: "Big endian mode" is useless on the SiS900 and
870 	 * friends -- it affects packet data, not descriptors.
871 	 */
872 #ifdef DP83820
873 	/*
874 	 * Cause the chip to load configuration data from the EEPROM.
875 	 */
876 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
877 	for (i = 0; i < 10000; i++) {
878 		delay(10);
879 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
880 		    PTSCR_EELOAD_EN) == 0)
881 			break;
882 	}
883 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
884 	    PTSCR_EELOAD_EN) {
885 		printf("%s: timeout loading configuration from EEPROM\n",
886 		    sc->sc_dev.dv_xname);
887 		return;
888 	}
889 
890 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
891 
892 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
893 	if (reg & CFG_PCI64_DET) {
894 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
895 		/*
896 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
897 		 * data transfers.
898 		 *
899 		 * We can't use the DATA64_EN bit in the EEPROM, because
900 		 * vendors of 32-bit cards fail to clear that bit in many
901 		 * cases (yet the card still detects that it's in a 64-bit
902 		 * slot; go figure).
903 		 */
904 		if (SIP_DECL(check_64bit)(pa)) {
905 			sc->sc_cfg |= CFG_DATA64_EN;
906 			printf(", using 64-bit data transfers");
907 		}
908 		printf("\n");
909 	}
910 
911 	/*
912 	 * XXX Need some PCI flags indicating support for
913 	 * XXX 64-bit addressing.
914 	 */
915 #if 0
916 	if (reg & CFG_M64ADDR)
917 		sc->sc_cfg |= CFG_M64ADDR;
918 	if (reg & CFG_T64ADDR)
919 		sc->sc_cfg |= CFG_T64ADDR;
920 #endif
921 
922 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
923 		const char *sep = "";
924 		printf("%s: using ", sc->sc_dev.dv_xname);
925 		if (reg & CFG_EXT_125) {
926 			sc->sc_cfg |= CFG_EXT_125;
927 			printf("%s125MHz clock", sep);
928 			sep = ", ";
929 		}
930 		if (reg & CFG_TBI_EN) {
931 			sc->sc_cfg |= CFG_TBI_EN;
932 			printf("%sten-bit interface", sep);
933 			sep = ", ";
934 		}
935 		printf("\n");
936 	}
937 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
938 	    (reg & CFG_MRM_DIS) != 0)
939 		sc->sc_cfg |= CFG_MRM_DIS;
940 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
941 	    (reg & CFG_MWI_DIS) != 0)
942 		sc->sc_cfg |= CFG_MWI_DIS;
943 
944 	/*
945 	 * Use the extended descriptor format on the DP83820.  This
946 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
947 	 * checksumming.
948 	 */
949 	sc->sc_cfg |= CFG_EXTSTS_EN;
950 #endif /* DP83820 */
951 
952 	/*
953 	 * Initialize our media structures and probe the MII.
954 	 */
955 	sc->sc_mii.mii_ifp = ifp;
956 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
957 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
958 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
959 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
960 	    SIP_DECL(mediastatus));
961 
962 	/*
963 	 * XXX We cannot handle flow control on the DP83815.
964 	 */
965 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
966 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
967 			   MII_OFFSET_ANY, 0);
968 	else
969 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
970 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
971 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
972 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
973 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
974 	} else
975 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
976 
977 	ifp = &sc->sc_ethercom.ec_if;
978 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
979 	ifp->if_softc = sc;
980 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
981 	sc->sc_if_flags = ifp->if_flags;
982 	ifp->if_ioctl = SIP_DECL(ioctl);
983 	ifp->if_start = SIP_DECL(start);
984 	ifp->if_watchdog = SIP_DECL(watchdog);
985 	ifp->if_init = SIP_DECL(init);
986 	ifp->if_stop = SIP_DECL(stop);
987 	IFQ_SET_READY(&ifp->if_snd);
988 
989 	/*
990 	 * We can support 802.1Q VLAN-sized frames.
991 	 */
992 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
993 
994 #ifdef DP83820
995 	/*
996 	 * And the DP83820 can do VLAN tagging in hardware, and
997 	 * support the jumbo Ethernet MTU.
998 	 */
999 	sc->sc_ethercom.ec_capabilities |=
1000 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1001 
1002 	/*
1003 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1004 	 * in hardware.
1005 	 */
1006 	ifp->if_capabilities |=
1007 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1008 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1009 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1010 #endif /* DP83820 */
1011 
1012 	/*
1013 	 * Attach the interface.
1014 	 */
1015 	if_attach(ifp);
1016 	ether_ifattach(ifp, enaddr);
1017 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1018 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1019 	sc->sc_prev.if_capenable = ifp->if_capenable;
1020 #if NRND > 0
1021 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1022 	    RND_TYPE_NET, 0);
1023 #endif
1024 
1025 	/*
1026 	 * The number of bytes that must be available in
1027 	 * the Tx FIFO before the bus master can DMA more
1028 	 * data into the FIFO.
1029 	 */
1030 	sc->sc_tx_fill_thresh = 64 / 32;
1031 
1032 	/*
1033 	 * Start at a drain threshold of 512 bytes.  We will
1034 	 * increase it if a DMA underrun occurs.
1035 	 *
1036 	 * XXX The minimum value of this variable should be
1037 	 * tuned.  We may be able to improve performance
1038 	 * by starting with a lower value.  That, however,
1039 	 * may trash the first few outgoing packets if the
1040 	 * PCI bus is saturated.
1041 	 */
1042 #ifdef DP83820
1043 	sc->sc_tx_drain_thresh = 6400 / 32;	/* from FreeBSD nge(4) */
1044 #else
1045 	sc->sc_tx_drain_thresh = 1504 / 32;
1046 #endif
1047 
1048 	/*
1049 	 * Initialize the Rx FIFO drain threshold.
1050 	 *
1051 	 * This is in units of 8 bytes.
1052 	 *
1053 	 * We should never set this value lower than 2; 14 bytes are
1054 	 * required to filter the packet.
1055 	 */
1056 	sc->sc_rx_drain_thresh = 128 / 8;
1057 
1058 #ifdef SIP_EVENT_COUNTERS
1059 	/*
1060 	 * Attach event counters.
1061 	 */
1062 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1063 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1064 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1065 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1066 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1067 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1068 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1069 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1070 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1071 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1072 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1073 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1074 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1075 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1076 #ifndef DP83820
1077 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1078 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1079 #endif /* !DP83820 */
1080 #ifdef DP83820
1081 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1082 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1083 	evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1084 	    NULL, sc->sc_dev.dv_xname, "txpause");
1085 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1086 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1087 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1088 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1089 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1090 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1091 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1092 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1093 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1094 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1095 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1096 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
1097 #endif /* DP83820 */
1098 #endif /* SIP_EVENT_COUNTERS */
1099 
1100 	/*
1101 	 * Make sure the interface is shutdown during reboot.
1102 	 */
1103 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1104 	if (sc->sc_sdhook == NULL)
1105 		printf("%s: WARNING: unable to establish shutdown hook\n",
1106 		    sc->sc_dev.dv_xname);
1107 	return;
1108 
1109 	/*
1110 	 * Free any resources we've allocated during the failed attach
1111 	 * attempt.  Do this in reverse order and fall through.
1112 	 */
1113  fail_5:
1114 	for (i = 0; i < SIP_NRXDESC; i++) {
1115 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1116 			bus_dmamap_destroy(sc->sc_dmat,
1117 			    sc->sc_rxsoft[i].rxs_dmamap);
1118 	}
1119  fail_4:
1120 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1121 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1122 			bus_dmamap_destroy(sc->sc_dmat,
1123 			    sc->sc_txsoft[i].txs_dmamap);
1124 	}
1125 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1126  fail_3:
1127 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1128  fail_2:
1129 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1130 	    sizeof(struct sip_control_data));
1131  fail_1:
1132 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1133  fail_0:
1134 	return;
1135 }
1136 
1137 /*
1138  * sip_shutdown:
1139  *
1140  *	Make sure the interface is stopped at reboot time.
1141  */
1142 static void
1143 SIP_DECL(shutdown)(void *arg)
1144 {
1145 	struct sip_softc *sc = arg;
1146 
1147 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1148 }
1149 
1150 /*
1151  * sip_start:		[ifnet interface function]
1152  *
1153  *	Start packet transmission on the interface.
1154  */
1155 static void
1156 SIP_DECL(start)(struct ifnet *ifp)
1157 {
1158 	struct sip_softc *sc = ifp->if_softc;
1159 	struct mbuf *m0;
1160 #ifndef DP83820
1161 	struct mbuf *m;
1162 #endif
1163 	struct sip_txsoft *txs;
1164 	bus_dmamap_t dmamap;
1165 	int error, nexttx, lasttx, seg;
1166 	int ofree = sc->sc_txfree;
1167 #if 0
1168 	int firsttx = sc->sc_txnext;
1169 #endif
1170 #ifdef DP83820
1171 	struct m_tag *mtag;
1172 	u_int32_t extsts;
1173 #endif
1174 
1175 #ifndef DP83820
1176 	/*
1177 	 * If we've been told to pause, don't transmit any more packets.
1178 	 */
1179 	if (sc->sc_paused)
1180 		ifp->if_flags |= IFF_OACTIVE;
1181 #endif
1182 
1183 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1184 		return;
1185 
1186 	/*
1187 	 * Loop through the send queue, setting up transmit descriptors
1188 	 * until we drain the queue, or use up all available transmit
1189 	 * descriptors.
1190 	 */
1191 	for (;;) {
1192 		/* Get a work queue entry. */
1193 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1194 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1195 			break;
1196 		}
1197 
1198 		/*
1199 		 * Grab a packet off the queue.
1200 		 */
1201 		IFQ_POLL(&ifp->if_snd, m0);
1202 		if (m0 == NULL)
1203 			break;
1204 #ifndef DP83820
1205 		m = NULL;
1206 #endif
1207 
1208 		dmamap = txs->txs_dmamap;
1209 
1210 #ifdef DP83820
1211 		/*
1212 		 * Load the DMA map.  If this fails, the packet either
1213 		 * didn't fit in the allotted number of segments, or we
1214 		 * were short on resources.  For the too-many-segments
1215 		 * case, we simply report an error and drop the packet,
1216 		 * since we can't sanely copy a jumbo packet to a single
1217 		 * buffer.
1218 		 */
1219 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1220 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1221 		if (error) {
1222 			if (error == EFBIG) {
1223 				printf("%s: Tx packet consumes too many "
1224 				    "DMA segments, dropping...\n",
1225 				    sc->sc_dev.dv_xname);
1226 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1227 				m_freem(m0);
1228 				continue;
1229 			}
1230 			/*
1231 			 * Short on resources, just stop for now.
1232 			 */
1233 			break;
1234 		}
1235 #else /* DP83820 */
1236 		/*
1237 		 * Load the DMA map.  If this fails, the packet either
1238 		 * didn't fit in the alloted number of segments, or we
1239 		 * were short on resources.  In this case, we'll copy
1240 		 * and try again.
1241 		 */
1242 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1243 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1244 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1245 			if (m == NULL) {
1246 				printf("%s: unable to allocate Tx mbuf\n",
1247 				    sc->sc_dev.dv_xname);
1248 				break;
1249 			}
1250 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1251 			if (m0->m_pkthdr.len > MHLEN) {
1252 				MCLGET(m, M_DONTWAIT);
1253 				if ((m->m_flags & M_EXT) == 0) {
1254 					printf("%s: unable to allocate Tx "
1255 					    "cluster\n", sc->sc_dev.dv_xname);
1256 					m_freem(m);
1257 					break;
1258 				}
1259 			}
1260 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1261 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1262 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1263 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1264 			if (error) {
1265 				printf("%s: unable to load Tx buffer, "
1266 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1267 				break;
1268 			}
1269 		}
1270 #endif /* DP83820 */
1271 
1272 		/*
1273 		 * Ensure we have enough descriptors free to describe
1274 		 * the packet.  Note, we always reserve one descriptor
1275 		 * at the end of the ring as a termination point, to
1276 		 * prevent wrap-around.
1277 		 */
1278 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1279 			/*
1280 			 * Not enough free descriptors to transmit this
1281 			 * packet.  We haven't committed anything yet,
1282 			 * so just unload the DMA map, put the packet
1283 			 * back on the queue, and punt.  Notify the upper
1284 			 * layer that there are not more slots left.
1285 			 *
1286 			 * XXX We could allocate an mbuf and copy, but
1287 			 * XXX is it worth it?
1288 			 */
1289 			ifp->if_flags |= IFF_OACTIVE;
1290 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1291 #ifndef DP83820
1292 			if (m != NULL)
1293 				m_freem(m);
1294 #endif
1295 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1296 			break;
1297 		}
1298 
1299 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1300 #ifndef DP83820
1301 		if (m != NULL) {
1302 			m_freem(m0);
1303 			m0 = m;
1304 		}
1305 #endif
1306 
1307 		/*
1308 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1309 		 */
1310 
1311 		/* Sync the DMA map. */
1312 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1313 		    BUS_DMASYNC_PREWRITE);
1314 
1315 		/*
1316 		 * Initialize the transmit descriptors.
1317 		 */
1318 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1319 		     seg < dmamap->dm_nsegs;
1320 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1321 			/*
1322 			 * If this is the first descriptor we're
1323 			 * enqueueing, don't set the OWN bit just
1324 			 * yet.  That could cause a race condition.
1325 			 * We'll do it below.
1326 			 */
1327 			sc->sc_txdescs[nexttx].sipd_bufptr =
1328 			    htole32(dmamap->dm_segs[seg].ds_addr);
1329 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1330 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1331 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1332 #ifdef DP83820
1333 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1334 #endif /* DP83820 */
1335 			lasttx = nexttx;
1336 		}
1337 
1338 		/* Clear the MORE bit on the last segment. */
1339 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1340 
1341 		/*
1342 		 * If we're in the interrupt delay window, delay the
1343 		 * interrupt.
1344 		 */
1345 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1346 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1347 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
1348 			    htole32(CMDSTS_INTR);
1349 			sc->sc_txwin = 0;
1350 		}
1351 
1352 #ifdef DP83820
1353 		/*
1354 		 * If VLANs are enabled and the packet has a VLAN tag, set
1355 		 * up the descriptor to encapsulate the packet for us.
1356 		 *
1357 		 * This apparently has to be on the last descriptor of
1358 		 * the packet.
1359 		 */
1360 
1361 		/*
1362 		 * Byte swapping is tricky. We need to provide the tag
1363 		 * in a network byte order. On a big-endian machine,
1364 		 * the byteorder is correct, but we need to swap it
1365 		 * anyway, because this will be undone by the outside
1366 		 * htole32(). That's why there must be an
1367 		 * unconditional swap instead of htons() inside.
1368 		 */
1369 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1370 			sc->sc_txdescs[lasttx].sipd_extsts |=
1371 			    htole32(EXTSTS_VPKT |
1372 					(bswap16(VLAN_TAG_VALUE(mtag)) &
1373 					 EXTSTS_VTCI));
1374 		}
1375 
1376 		/*
1377 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1378 		 * checksumming, set up the descriptor to do this work
1379 		 * for us.
1380 		 *
1381 		 * This apparently has to be on the first descriptor of
1382 		 * the packet.
1383 		 *
1384 		 * Byte-swap constants so the compiler can optimize.
1385 		 */
1386 		extsts = 0;
1387 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1388 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1389 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1390 			extsts |= htole32(EXTSTS_IPPKT);
1391 		}
1392 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1393 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1394 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1395 			extsts |= htole32(EXTSTS_TCPPKT);
1396 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1397 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1398 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1399 			extsts |= htole32(EXTSTS_UDPPKT);
1400 		}
1401 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1402 #endif /* DP83820 */
1403 
1404 		/* Sync the descriptors we're using. */
1405 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1406 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1407 
1408 		/*
1409 		 * The entire packet is set up.  Give the first descrptor
1410 		 * to the chip now.
1411 		 */
1412 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1413 		    htole32(CMDSTS_OWN);
1414 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1415 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1416 
1417 		/*
1418 		 * Store a pointer to the packet so we can free it later,
1419 		 * and remember what txdirty will be once the packet is
1420 		 * done.
1421 		 */
1422 		txs->txs_mbuf = m0;
1423 		txs->txs_firstdesc = sc->sc_txnext;
1424 		txs->txs_lastdesc = lasttx;
1425 
1426 		/* Advance the tx pointer. */
1427 		sc->sc_txfree -= dmamap->dm_nsegs;
1428 		sc->sc_txnext = nexttx;
1429 
1430 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1431 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1432 
1433 #if NBPFILTER > 0
1434 		/*
1435 		 * Pass the packet to any BPF listeners.
1436 		 */
1437 		if (ifp->if_bpf)
1438 			bpf_mtap(ifp->if_bpf, m0);
1439 #endif /* NBPFILTER > 0 */
1440 	}
1441 
1442 	if (txs == NULL || sc->sc_txfree == 0) {
1443 		/* No more slots left; notify upper layer. */
1444 		ifp->if_flags |= IFF_OACTIVE;
1445 	}
1446 
1447 	if (sc->sc_txfree != ofree) {
1448 		/*
1449 		 * Start the transmit process.  Note, the manual says
1450 		 * that if there are no pending transmissions in the
1451 		 * chip's internal queue (indicated by TXE being clear),
1452 		 * then the driver software must set the TXDP to the
1453 		 * first descriptor to be transmitted.  However, if we
1454 		 * do this, it causes serious performance degredation on
1455 		 * the DP83820 under load, not setting TXDP doesn't seem
1456 		 * to adversely affect the SiS 900 or DP83815.
1457 		 *
1458 		 * Well, I guess it wouldn't be the first time a manual
1459 		 * has lied -- and they could be speaking of the NULL-
1460 		 * terminated descriptor list case, rather than OWN-
1461 		 * terminated rings.
1462 		 */
1463 #if 0
1464 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1465 		     CR_TXE) == 0) {
1466 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1467 			    SIP_CDTXADDR(sc, firsttx));
1468 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1469 		}
1470 #else
1471 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1472 #endif
1473 
1474 		/* Set a watchdog timer in case the chip flakes out. */
1475 #ifdef DP83820
1476 		/* Gigabit autonegotiation takes 5 seconds. */
1477 		ifp->if_timer = 10;
1478 #else
1479 		ifp->if_timer = 5;
1480 #endif
1481 	}
1482 }
1483 
1484 /*
1485  * sip_watchdog:	[ifnet interface function]
1486  *
1487  *	Watchdog timer handler.
1488  */
1489 static void
1490 SIP_DECL(watchdog)(struct ifnet *ifp)
1491 {
1492 	struct sip_softc *sc = ifp->if_softc;
1493 
1494 	/*
1495 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1496 	 * If we get a timeout, try and sweep up transmit descriptors.
1497 	 * If we manage to sweep them all up, ignore the lack of
1498 	 * interrupt.
1499 	 */
1500 	SIP_DECL(txintr)(sc);
1501 
1502 	if (sc->sc_txfree != SIP_NTXDESC) {
1503 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1504 		ifp->if_oerrors++;
1505 
1506 		/* Reset the interface. */
1507 		(void) SIP_DECL(init)(ifp);
1508 	} else if (ifp->if_flags & IFF_DEBUG)
1509 		printf("%s: recovered from device timeout\n",
1510 		    sc->sc_dev.dv_xname);
1511 
1512 	/* Try to get more packets going. */
1513 	SIP_DECL(start)(ifp);
1514 }
1515 
1516 /*
1517  * sip_ioctl:		[ifnet interface function]
1518  *
1519  *	Handle control requests from the operator.
1520  */
1521 static int
1522 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, void *data)
1523 {
1524 	struct sip_softc *sc = ifp->if_softc;
1525 	struct ifreq *ifr = (struct ifreq *)data;
1526 	int s, error;
1527 
1528 	s = splnet();
1529 
1530 	switch (cmd) {
1531 	case SIOCSIFMEDIA:
1532 		/* Flow control requires full-duplex mode. */
1533 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1534 		    (ifr->ifr_media & IFM_FDX) == 0)
1535 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1536 #ifdef DP83820
1537 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1538 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1539 				/* We can do both TXPAUSE and RXPAUSE. */
1540 				ifr->ifr_media |=
1541 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1542 			}
1543 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1544 		}
1545 #else
1546 		/* XXX */
1547 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1548 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1549 
1550 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1551 			if (ifr->ifr_media & IFM_FLOW) {
1552 				/*
1553 				 * Both TXPAUSE and RXPAUSE must be set.
1554 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1555 				 * feature.)
1556 				 *
1557 				 * XXX Can SiS900 and DP83815 send PAUSE?
1558 				 */
1559 				ifr->ifr_media |=
1560 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1561 			}
1562 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1563 		}
1564 #endif
1565 		/* FALLTHROUGH */
1566 	case SIOCGIFMEDIA:
1567 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1568 		break;
1569 	case SIOCSIFFLAGS:
1570 		/* If the interface is up and running, only modify the receive
1571 		 * filter when setting promiscuous or debug mode.  Otherwise
1572 		 * fall through to ether_ioctl, which will reset the chip.
1573 		 */
1574 
1575 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1576 			 == (sc)->sc_ethercom.ec_capenable)		\
1577 			&& ((sc)->sc_prev.is_vlan ==			\
1578 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1579 
1580 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1581 
1582 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1583 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1584 		    == (IFF_UP|IFF_RUNNING))
1585 		    && ((ifp->if_flags & (~RESETIGN))
1586 		    == (sc->sc_if_flags & (~RESETIGN)))
1587 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1588 			/* Set up the receive filter. */
1589 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1590 			error = 0;
1591 			break;
1592 #undef RESETIGN
1593 		}
1594 		/* FALLTHROUGH */
1595 	default:
1596 		error = ether_ioctl(ifp, cmd, data);
1597 		if (error == ENETRESET) {
1598 			/*
1599 			 * Multicast list has changed; set the hardware filter
1600 			 * accordingly.
1601 			 */
1602 			if (ifp->if_flags & IFF_RUNNING)
1603 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1604 			error = 0;
1605 		}
1606 		break;
1607 	}
1608 
1609 	/* Try to get more packets going. */
1610 	SIP_DECL(start)(ifp);
1611 
1612 	sc->sc_if_flags = ifp->if_flags;
1613 	splx(s);
1614 	return (error);
1615 }
1616 
1617 /*
1618  * sip_intr:
1619  *
1620  *	Interrupt service routine.
1621  */
1622 static int
1623 SIP_DECL(intr)(void *arg)
1624 {
1625 	struct sip_softc *sc = arg;
1626 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1627 	u_int32_t isr;
1628 	int handled = 0;
1629 
1630 	/* Disable interrupts. */
1631 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1632 
1633 	for (;;) {
1634 		/* Reading clears interrupt. */
1635 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1636 		if ((isr & sc->sc_imr) == 0)
1637 			break;
1638 
1639 #if NRND > 0
1640 		if (RND_ENABLED(&sc->rnd_source))
1641 			rnd_add_uint32(&sc->rnd_source, isr);
1642 #endif
1643 
1644 		handled = 1;
1645 
1646 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1647 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1648 
1649 			/* Grab any new packets. */
1650 			SIP_DECL(rxintr)(sc);
1651 
1652 			if (isr & ISR_RXORN) {
1653 				printf("%s: receive FIFO overrun\n",
1654 				    sc->sc_dev.dv_xname);
1655 
1656 				/* XXX adjust rx_drain_thresh? */
1657 			}
1658 
1659 			if (isr & ISR_RXIDLE) {
1660 				printf("%s: receive ring overrun\n",
1661 				    sc->sc_dev.dv_xname);
1662 
1663 				/* Get the receive process going again. */
1664 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1665 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1666 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1667 				    SIP_CR, CR_RXE);
1668 			}
1669 		}
1670 
1671 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1672 #ifdef SIP_EVENT_COUNTERS
1673 			if (isr & ISR_TXDESC)
1674 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1675 			else if (isr & ISR_TXIDLE)
1676 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1677 #endif
1678 
1679 			/* Sweep up transmit descriptors. */
1680 			SIP_DECL(txintr)(sc);
1681 
1682 			if (isr & ISR_TXURN) {
1683 				u_int32_t thresh;
1684 
1685 				printf("%s: transmit FIFO underrun",
1686 				    sc->sc_dev.dv_xname);
1687 
1688 				thresh = sc->sc_tx_drain_thresh + 1;
1689 				if (thresh <= TXCFG_DRTH &&
1690 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1691 				     (sc->sc_tx_fill_thresh * 32))) {
1692 					printf("; increasing Tx drain "
1693 					    "threshold to %u bytes\n",
1694 					    thresh * 32);
1695 					sc->sc_tx_drain_thresh = thresh;
1696 					(void) SIP_DECL(init)(ifp);
1697 				} else {
1698 					(void) SIP_DECL(init)(ifp);
1699 					printf("\n");
1700 				}
1701 			}
1702 		}
1703 
1704 #if !defined(DP83820)
1705 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1706 			if (isr & ISR_PAUSE_ST) {
1707 				sc->sc_paused = 1;
1708 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1709 				ifp->if_flags |= IFF_OACTIVE;
1710 			}
1711 			if (isr & ISR_PAUSE_END) {
1712 				sc->sc_paused = 0;
1713 				ifp->if_flags &= ~IFF_OACTIVE;
1714 			}
1715 		}
1716 #endif /* ! DP83820 */
1717 
1718 		if (isr & ISR_HIBERR) {
1719 			int want_init = 0;
1720 
1721 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1722 
1723 #define	PRINTERR(bit, str)						\
1724 			do {						\
1725 				if ((isr & (bit)) != 0) {		\
1726 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1727 						printf("%s: %s\n",	\
1728 						    sc->sc_dev.dv_xname, str); \
1729 					want_init = 1;			\
1730 				}					\
1731 			} while (/*CONSTCOND*/0)
1732 
1733 			PRINTERR(ISR_DPERR, "parity error");
1734 			PRINTERR(ISR_SSERR, "system error");
1735 			PRINTERR(ISR_RMABT, "master abort");
1736 			PRINTERR(ISR_RTABT, "target abort");
1737 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1738 			/*
1739 			 * Ignore:
1740 			 *	Tx reset complete
1741 			 *	Rx reset complete
1742 			 */
1743 			if (want_init)
1744 				(void) SIP_DECL(init)(ifp);
1745 #undef PRINTERR
1746 		}
1747 	}
1748 
1749 	/* Re-enable interrupts. */
1750 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1751 
1752 	/* Try to get more packets going. */
1753 	SIP_DECL(start)(ifp);
1754 
1755 	return (handled);
1756 }
1757 
1758 /*
1759  * sip_txintr:
1760  *
1761  *	Helper; handle transmit interrupts.
1762  */
1763 static void
1764 SIP_DECL(txintr)(struct sip_softc *sc)
1765 {
1766 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1767 	struct sip_txsoft *txs;
1768 	u_int32_t cmdsts;
1769 
1770 #ifndef DP83820
1771 	if (sc->sc_paused == 0)
1772 #endif
1773 		ifp->if_flags &= ~IFF_OACTIVE;
1774 
1775 	/*
1776 	 * Go through our Tx list and free mbufs for those
1777 	 * frames which have been transmitted.
1778 	 */
1779 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1780 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1781 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1782 
1783 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1784 		if (cmdsts & CMDSTS_OWN)
1785 			break;
1786 
1787 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1788 
1789 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1790 
1791 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1792 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1793 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1794 		m_freem(txs->txs_mbuf);
1795 		txs->txs_mbuf = NULL;
1796 
1797 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1798 
1799 		/*
1800 		 * Check for errors and collisions.
1801 		 */
1802 		if (cmdsts &
1803 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1804 			ifp->if_oerrors++;
1805 			if (cmdsts & CMDSTS_Tx_EC)
1806 				ifp->if_collisions += 16;
1807 			if (ifp->if_flags & IFF_DEBUG) {
1808 				if (cmdsts & CMDSTS_Tx_ED)
1809 					printf("%s: excessive deferral\n",
1810 					    sc->sc_dev.dv_xname);
1811 				if (cmdsts & CMDSTS_Tx_EC)
1812 					printf("%s: excessive collisions\n",
1813 					    sc->sc_dev.dv_xname);
1814 			}
1815 		} else {
1816 			/* Packet was transmitted successfully. */
1817 			ifp->if_opackets++;
1818 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1819 		}
1820 	}
1821 
1822 	/*
1823 	 * If there are no more pending transmissions, cancel the watchdog
1824 	 * timer.
1825 	 */
1826 	if (txs == NULL) {
1827 		ifp->if_timer = 0;
1828 		sc->sc_txwin = 0;
1829 	}
1830 }
1831 
1832 #if defined(DP83820)
1833 /*
1834  * sip_rxintr:
1835  *
1836  *	Helper; handle receive interrupts.
1837  */
1838 static void
1839 SIP_DECL(rxintr)(struct sip_softc *sc)
1840 {
1841 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1842 	struct sip_rxsoft *rxs;
1843 	struct mbuf *m;
1844 	u_int32_t cmdsts, extsts;
1845 	int i, len;
1846 
1847 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1848 		rxs = &sc->sc_rxsoft[i];
1849 
1850 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1851 
1852 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1853 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1854 		len = CMDSTS_SIZE(cmdsts);
1855 
1856 		/*
1857 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1858 		 * consumer of the receive ring, so if the bit is clear,
1859 		 * we have processed all of the packets.
1860 		 */
1861 		if ((cmdsts & CMDSTS_OWN) == 0) {
1862 			/*
1863 			 * We have processed all of the receive buffers.
1864 			 */
1865 			break;
1866 		}
1867 
1868 		if (__predict_false(sc->sc_rxdiscard)) {
1869 			SIP_INIT_RXDESC(sc, i);
1870 			if ((cmdsts & CMDSTS_MORE) == 0) {
1871 				/* Reset our state. */
1872 				sc->sc_rxdiscard = 0;
1873 			}
1874 			continue;
1875 		}
1876 
1877 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1878 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1879 
1880 		m = rxs->rxs_mbuf;
1881 
1882 		/*
1883 		 * Add a new receive buffer to the ring.
1884 		 */
1885 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1886 			/*
1887 			 * Failed, throw away what we've done so
1888 			 * far, and discard the rest of the packet.
1889 			 */
1890 			ifp->if_ierrors++;
1891 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1892 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1893 			SIP_INIT_RXDESC(sc, i);
1894 			if (cmdsts & CMDSTS_MORE)
1895 				sc->sc_rxdiscard = 1;
1896 			if (sc->sc_rxhead != NULL)
1897 				m_freem(sc->sc_rxhead);
1898 			SIP_RXCHAIN_RESET(sc);
1899 			continue;
1900 		}
1901 
1902 		SIP_RXCHAIN_LINK(sc, m);
1903 
1904 		m->m_len = len;
1905 
1906 		/*
1907 		 * If this is not the end of the packet, keep
1908 		 * looking.
1909 		 */
1910 		if (cmdsts & CMDSTS_MORE) {
1911 			sc->sc_rxlen += len;
1912 			continue;
1913 		}
1914 
1915 		/*
1916 		 * Okay, we have the entire packet now.  The chip includes
1917 		 * the FCS, so we need to trim it.
1918 		 */
1919 		m->m_len -= ETHER_CRC_LEN;
1920 
1921 		*sc->sc_rxtailp = NULL;
1922 		len = m->m_len + sc->sc_rxlen;
1923 		m = sc->sc_rxhead;
1924 
1925 		SIP_RXCHAIN_RESET(sc);
1926 
1927 		/*
1928 		 * If an error occurred, update stats and drop the packet.
1929 		 */
1930 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1931 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1932 			ifp->if_ierrors++;
1933 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1934 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1935 				/* Receive overrun handled elsewhere. */
1936 				printf("%s: receive descriptor error\n",
1937 				    sc->sc_dev.dv_xname);
1938 			}
1939 #define	PRINTERR(bit, str)						\
1940 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1941 			    (cmdsts & (bit)) != 0)			\
1942 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1943 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1944 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1945 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1946 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1947 #undef PRINTERR
1948 			m_freem(m);
1949 			continue;
1950 		}
1951 
1952 		/*
1953 		 * If the packet is small enough to fit in a
1954 		 * single header mbuf, allocate one and copy
1955 		 * the data into it.  This greatly reduces
1956 		 * memory consumption when we receive lots
1957 		 * of small packets.
1958 		 */
1959 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1960 			struct mbuf *nm;
1961 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1962 			if (nm == NULL) {
1963 				ifp->if_ierrors++;
1964 				m_freem(m);
1965 				continue;
1966 			}
1967 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1968 			nm->m_data += 2;
1969 			nm->m_pkthdr.len = nm->m_len = len;
1970 			m_copydata(m, 0, len, mtod(nm, void *));
1971 			m_freem(m);
1972 			m = nm;
1973 		}
1974 #ifndef __NO_STRICT_ALIGNMENT
1975 		else {
1976 			/*
1977 			 * The DP83820's receive buffers must be 4-byte
1978 			 * aligned.  But this means that the data after
1979 			 * the Ethernet header is misaligned.  To compensate,
1980 			 * we have artificially shortened the buffer size
1981 			 * in the descriptor, and we do an overlapping copy
1982 			 * of the data two bytes further in (in the first
1983 			 * buffer of the chain only).
1984 			 */
1985 			memmove(mtod(m, char *) + 2, mtod(m, void *),
1986 			    m->m_len);
1987 			m->m_data += 2;
1988 		}
1989 #endif /* ! __NO_STRICT_ALIGNMENT */
1990 
1991 		/*
1992 		 * If VLANs are enabled, VLAN packets have been unwrapped
1993 		 * for us.  Associate the tag with the packet.
1994 		 */
1995 
1996 		/*
1997 		 * Again, byte swapping is tricky. Hardware provided
1998 		 * the tag in the network byte order, but extsts was
1999 		 * passed through le32toh() in the meantime. On a
2000 		 * big-endian machine, we need to swap it again. On a
2001 		 * little-endian machine, we need to convert from the
2002 		 * network to host byte order. This means that we must
2003 		 * swap it in any case, so unconditional swap instead
2004 		 * of htons() is used.
2005 		 */
2006 		if ((extsts & EXTSTS_VPKT) != 0) {
2007 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2008 			    continue);
2009 		}
2010 
2011 		/*
2012 		 * Set the incoming checksum information for the
2013 		 * packet.
2014 		 */
2015 		if ((extsts & EXTSTS_IPPKT) != 0) {
2016 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2017 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2018 			if (extsts & EXTSTS_Rx_IPERR)
2019 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2020 			if (extsts & EXTSTS_TCPPKT) {
2021 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2022 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2023 				if (extsts & EXTSTS_Rx_TCPERR)
2024 					m->m_pkthdr.csum_flags |=
2025 					    M_CSUM_TCP_UDP_BAD;
2026 			} else if (extsts & EXTSTS_UDPPKT) {
2027 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2028 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2029 				if (extsts & EXTSTS_Rx_UDPERR)
2030 					m->m_pkthdr.csum_flags |=
2031 					    M_CSUM_TCP_UDP_BAD;
2032 			}
2033 		}
2034 
2035 		ifp->if_ipackets++;
2036 		m->m_pkthdr.rcvif = ifp;
2037 		m->m_pkthdr.len = len;
2038 
2039 #if NBPFILTER > 0
2040 		/*
2041 		 * Pass this up to any BPF listeners, but only
2042 		 * pass if up the stack if it's for us.
2043 		 */
2044 		if (ifp->if_bpf)
2045 			bpf_mtap(ifp->if_bpf, m);
2046 #endif /* NBPFILTER > 0 */
2047 
2048 		/* Pass it on. */
2049 		(*ifp->if_input)(ifp, m);
2050 	}
2051 
2052 	/* Update the receive pointer. */
2053 	sc->sc_rxptr = i;
2054 }
2055 #else /* ! DP83820 */
2056 /*
2057  * sip_rxintr:
2058  *
2059  *	Helper; handle receive interrupts.
2060  */
2061 static void
2062 SIP_DECL(rxintr)(struct sip_softc *sc)
2063 {
2064 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2065 	struct sip_rxsoft *rxs;
2066 	struct mbuf *m;
2067 	u_int32_t cmdsts;
2068 	int i, len;
2069 
2070 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2071 		rxs = &sc->sc_rxsoft[i];
2072 
2073 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2074 
2075 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2076 
2077 		/*
2078 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2079 		 * consumer of the receive ring, so if the bit is clear,
2080 		 * we have processed all of the packets.
2081 		 */
2082 		if ((cmdsts & CMDSTS_OWN) == 0) {
2083 			/*
2084 			 * We have processed all of the receive buffers.
2085 			 */
2086 			break;
2087 		}
2088 
2089 		/*
2090 		 * If any collisions were seen on the wire, count one.
2091 		 */
2092 		if (cmdsts & CMDSTS_Rx_COL)
2093 			ifp->if_collisions++;
2094 
2095 		/*
2096 		 * If an error occurred, update stats, clear the status
2097 		 * word, and leave the packet buffer in place.  It will
2098 		 * simply be reused the next time the ring comes around.
2099 		 */
2100 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2101 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2102 			ifp->if_ierrors++;
2103 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2104 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2105 				/* Receive overrun handled elsewhere. */
2106 				printf("%s: receive descriptor error\n",
2107 				    sc->sc_dev.dv_xname);
2108 			}
2109 #define	PRINTERR(bit, str)						\
2110 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2111 			    (cmdsts & (bit)) != 0)			\
2112 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2113 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2114 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2115 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2116 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2117 #undef PRINTERR
2118 			SIP_INIT_RXDESC(sc, i);
2119 			continue;
2120 		}
2121 
2122 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2123 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2124 
2125 		/*
2126 		 * No errors; receive the packet.  Note, the SiS 900
2127 		 * includes the CRC with every packet.
2128 		 */
2129 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2130 
2131 #ifdef __NO_STRICT_ALIGNMENT
2132 		/*
2133 		 * If the packet is small enough to fit in a
2134 		 * single header mbuf, allocate one and copy
2135 		 * the data into it.  This greatly reduces
2136 		 * memory consumption when we receive lots
2137 		 * of small packets.
2138 		 *
2139 		 * Otherwise, we add a new buffer to the receive
2140 		 * chain.  If this fails, we drop the packet and
2141 		 * recycle the old buffer.
2142 		 */
2143 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2144 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2145 			if (m == NULL)
2146 				goto dropit;
2147 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2148 			memcpy(mtod(m, void *),
2149 			    mtod(rxs->rxs_mbuf, void *), len);
2150 			SIP_INIT_RXDESC(sc, i);
2151 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2152 			    rxs->rxs_dmamap->dm_mapsize,
2153 			    BUS_DMASYNC_PREREAD);
2154 		} else {
2155 			m = rxs->rxs_mbuf;
2156 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2157  dropit:
2158 				ifp->if_ierrors++;
2159 				SIP_INIT_RXDESC(sc, i);
2160 				bus_dmamap_sync(sc->sc_dmat,
2161 				    rxs->rxs_dmamap, 0,
2162 				    rxs->rxs_dmamap->dm_mapsize,
2163 				    BUS_DMASYNC_PREREAD);
2164 				continue;
2165 			}
2166 		}
2167 #else
2168 		/*
2169 		 * The SiS 900's receive buffers must be 4-byte aligned.
2170 		 * But this means that the data after the Ethernet header
2171 		 * is misaligned.  We must allocate a new buffer and
2172 		 * copy the data, shifted forward 2 bytes.
2173 		 */
2174 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2175 		if (m == NULL) {
2176  dropit:
2177 			ifp->if_ierrors++;
2178 			SIP_INIT_RXDESC(sc, i);
2179 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2180 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2181 			continue;
2182 		}
2183 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2184 		if (len > (MHLEN - 2)) {
2185 			MCLGET(m, M_DONTWAIT);
2186 			if ((m->m_flags & M_EXT) == 0) {
2187 				m_freem(m);
2188 				goto dropit;
2189 			}
2190 		}
2191 		m->m_data += 2;
2192 
2193 		/*
2194 		 * Note that we use clusters for incoming frames, so the
2195 		 * buffer is virtually contiguous.
2196 		 */
2197 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2198 
2199 		/* Allow the receive descriptor to continue using its mbuf. */
2200 		SIP_INIT_RXDESC(sc, i);
2201 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2202 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2203 #endif /* __NO_STRICT_ALIGNMENT */
2204 
2205 		ifp->if_ipackets++;
2206 		m->m_pkthdr.rcvif = ifp;
2207 		m->m_pkthdr.len = m->m_len = len;
2208 
2209 #if NBPFILTER > 0
2210 		/*
2211 		 * Pass this up to any BPF listeners, but only
2212 		 * pass if up the stack if it's for us.
2213 		 */
2214 		if (ifp->if_bpf)
2215 			bpf_mtap(ifp->if_bpf, m);
2216 #endif /* NBPFILTER > 0 */
2217 
2218 		/* Pass it on. */
2219 		(*ifp->if_input)(ifp, m);
2220 	}
2221 
2222 	/* Update the receive pointer. */
2223 	sc->sc_rxptr = i;
2224 }
2225 #endif /* DP83820 */
2226 
2227 /*
2228  * sip_tick:
2229  *
2230  *	One second timer, used to tick the MII.
2231  */
2232 static void
2233 SIP_DECL(tick)(void *arg)
2234 {
2235 	struct sip_softc *sc = arg;
2236 	int s;
2237 
2238 	s = splnet();
2239 #ifdef DP83820
2240 #ifdef SIP_EVENT_COUNTERS
2241 	/* Read PAUSE related counts from MIB registers. */
2242 	sc->sc_ev_rxpause.ev_count +=
2243 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2244 			     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2245 	sc->sc_ev_txpause.ev_count +=
2246 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2247 			     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2248 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2249 #endif /* SIP_EVENT_COUNTERS */
2250 #endif /* DP83820 */
2251 	mii_tick(&sc->sc_mii);
2252 	splx(s);
2253 
2254 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2255 }
2256 
2257 /*
2258  * sip_reset:
2259  *
2260  *	Perform a soft reset on the SiS 900.
2261  */
2262 static void
2263 SIP_DECL(reset)(struct sip_softc *sc)
2264 {
2265 	bus_space_tag_t st = sc->sc_st;
2266 	bus_space_handle_t sh = sc->sc_sh;
2267 	int i;
2268 
2269 	bus_space_write_4(st, sh, SIP_IER, 0);
2270 	bus_space_write_4(st, sh, SIP_IMR, 0);
2271 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2272 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2273 
2274 	for (i = 0; i < SIP_TIMEOUT; i++) {
2275 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2276 			break;
2277 		delay(2);
2278 	}
2279 
2280 	if (i == SIP_TIMEOUT)
2281 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2282 
2283 	delay(1000);
2284 
2285 #ifdef DP83820
2286 	/*
2287 	 * Set the general purpose I/O bits.  Do it here in case we
2288 	 * need to have GPIO set up to talk to the media interface.
2289 	 */
2290 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2291 	delay(1000);
2292 #endif /* DP83820 */
2293 }
2294 
2295 /*
2296  * sip_init:		[ ifnet interface function ]
2297  *
2298  *	Initialize the interface.  Must be called at splnet().
2299  */
2300 static int
2301 SIP_DECL(init)(struct ifnet *ifp)
2302 {
2303 	struct sip_softc *sc = ifp->if_softc;
2304 	bus_space_tag_t st = sc->sc_st;
2305 	bus_space_handle_t sh = sc->sc_sh;
2306 	struct sip_txsoft *txs;
2307 	struct sip_rxsoft *rxs;
2308 	struct sip_desc *sipd;
2309 #if defined(DP83820)
2310 	u_int32_t reg;
2311 #endif
2312 	int i, error = 0;
2313 
2314 	/*
2315 	 * Cancel any pending I/O.
2316 	 */
2317 	SIP_DECL(stop)(ifp, 0);
2318 
2319 	/*
2320 	 * Reset the chip to a known state.
2321 	 */
2322 	SIP_DECL(reset)(sc);
2323 
2324 #if !defined(DP83820)
2325 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2326 		/*
2327 		 * DP83815 manual, page 78:
2328 		 *    4.4 Recommended Registers Configuration
2329 		 *    For optimum performance of the DP83815, version noted
2330 		 *    as DP83815CVNG (SRR = 203h), the listed register
2331 		 *    modifications must be followed in sequence...
2332 		 *
2333 		 * It's not clear if this should be 302h or 203h because that
2334 		 * chip name is listed as SRR 302h in the description of the
2335 		 * SRR register.  However, my revision 302h DP83815 on the
2336 		 * Netgear FA311 purchased in 02/2001 needs these settings
2337 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2338 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2339 		 * this set or not.  [briggs -- 09 March 2001]
2340 		 *
2341 		 * Note that only the low-order 12 bits of 0xe4 are documented
2342 		 * and that this sets reserved bits in that register.
2343 		 */
2344 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2345 
2346 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2347 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2348 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2349 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2350 
2351 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2352 	}
2353 #endif /* ! DP83820 */
2354 
2355 	/*
2356 	 * Initialize the transmit descriptor ring.
2357 	 */
2358 	for (i = 0; i < SIP_NTXDESC; i++) {
2359 		sipd = &sc->sc_txdescs[i];
2360 		memset(sipd, 0, sizeof(struct sip_desc));
2361 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2362 	}
2363 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2364 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2365 	sc->sc_txfree = SIP_NTXDESC;
2366 	sc->sc_txnext = 0;
2367 	sc->sc_txwin = 0;
2368 
2369 	/*
2370 	 * Initialize the transmit job descriptors.
2371 	 */
2372 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2373 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2374 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2375 		txs = &sc->sc_txsoft[i];
2376 		txs->txs_mbuf = NULL;
2377 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2378 	}
2379 
2380 	/*
2381 	 * Initialize the receive descriptor and receive job
2382 	 * descriptor rings.
2383 	 */
2384 	for (i = 0; i < SIP_NRXDESC; i++) {
2385 		rxs = &sc->sc_rxsoft[i];
2386 		if (rxs->rxs_mbuf == NULL) {
2387 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2388 				printf("%s: unable to allocate or map rx "
2389 				    "buffer %d, error = %d\n",
2390 				    sc->sc_dev.dv_xname, i, error);
2391 				/*
2392 				 * XXX Should attempt to run with fewer receive
2393 				 * XXX buffers instead of just failing.
2394 				 */
2395 				SIP_DECL(rxdrain)(sc);
2396 				goto out;
2397 			}
2398 		} else
2399 			SIP_INIT_RXDESC(sc, i);
2400 	}
2401 	sc->sc_rxptr = 0;
2402 #ifdef DP83820
2403 	sc->sc_rxdiscard = 0;
2404 	SIP_RXCHAIN_RESET(sc);
2405 #endif /* DP83820 */
2406 
2407 	/*
2408 	 * Set the configuration register; it's already initialized
2409 	 * in sip_attach().
2410 	 */
2411 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2412 
2413 	/*
2414 	 * Initialize the prototype TXCFG register.
2415 	 */
2416 #if defined(DP83820)
2417 	sc->sc_txcfg = TXCFG_MXDMA_512;
2418 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2419 #else
2420 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2421 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2422 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2423 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2424 		sc->sc_txcfg = TXCFG_MXDMA_64;
2425 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2426 	} else {
2427 		sc->sc_txcfg = TXCFG_MXDMA_512;
2428 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2429 	}
2430 #endif /* DP83820 */
2431 
2432 	sc->sc_txcfg |= TXCFG_ATP |
2433 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2434 	    sc->sc_tx_drain_thresh;
2435 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2436 
2437 	/*
2438 	 * Initialize the receive drain threshold if we have never
2439 	 * done so.
2440 	 */
2441 	if (sc->sc_rx_drain_thresh == 0) {
2442 		/*
2443 		 * XXX This value should be tuned.  This is set to the
2444 		 * maximum of 248 bytes, and we may be able to improve
2445 		 * performance by decreasing it (although we should never
2446 		 * set this value lower than 2; 14 bytes are required to
2447 		 * filter the packet).
2448 		 */
2449 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2450 	}
2451 
2452 	/*
2453 	 * Initialize the prototype RXCFG register.
2454 	 */
2455 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2456 #ifdef DP83820
2457 	/*
2458 	 * Accept long packets (including FCS) so we can handle
2459 	 * 802.1q-tagged frames and jumbo frames properly.
2460 	 */
2461 	if (ifp->if_mtu > ETHERMTU ||
2462 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2463 		sc->sc_rxcfg |= RXCFG_ALP;
2464 
2465 	/*
2466 	 * Checksum offloading is disabled if the user selects an MTU
2467 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2468 	 * evidence that >8109 does not work on some boards, such as the
2469 	 * Planex GN-1000TE).
2470 	 */
2471 	if (ifp->if_mtu > 8109 &&
2472 	    (ifp->if_capenable &
2473 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2474 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2475 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2476 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2477 		       "disabled.\n", sc->sc_dev.dv_xname);
2478 		ifp->if_capenable &=
2479 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2480 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2481 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2482 		ifp->if_csum_flags_tx = 0;
2483 		ifp->if_csum_flags_rx = 0;
2484 	}
2485 #else
2486 	/*
2487 	 * Accept packets >1518 bytes (including FCS) so we can handle
2488 	 * 802.1q-tagged frames properly.
2489 	 */
2490 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2491 		sc->sc_rxcfg |= RXCFG_ALP;
2492 #endif
2493 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2494 
2495 #ifdef DP83820
2496 	/*
2497 	 * Initialize the VLAN/IP receive control register.
2498 	 * We enable checksum computation on all incoming
2499 	 * packets, and do not reject packets w/ bad checksums.
2500 	 */
2501 	reg = 0;
2502 	if (ifp->if_capenable &
2503 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2504 		reg |= VRCR_IPEN;
2505 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2506 		reg |= VRCR_VTDEN|VRCR_VTREN;
2507 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2508 
2509 	/*
2510 	 * Initialize the VLAN/IP transmit control register.
2511 	 * We enable outgoing checksum computation on a
2512 	 * per-packet basis.
2513 	 */
2514 	reg = 0;
2515 	if (ifp->if_capenable &
2516 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2517 		reg |= VTCR_PPCHK;
2518 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2519 		reg |= VTCR_VPPTI;
2520 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2521 
2522 	/*
2523 	 * If we're using VLANs, initialize the VLAN data register.
2524 	 * To understand why we bswap the VLAN Ethertype, see section
2525 	 * 4.2.36 of the DP83820 manual.
2526 	 */
2527 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2528 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2529 #endif /* DP83820 */
2530 
2531 	/*
2532 	 * Give the transmit and receive rings to the chip.
2533 	 */
2534 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2535 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2536 
2537 	/*
2538 	 * Initialize the interrupt mask.
2539 	 */
2540 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2541 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2542 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2543 
2544 	/* Set up the receive filter. */
2545 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2546 
2547 #ifdef DP83820
2548 	/*
2549 	 * Tune sc_rx_flow_thresh.
2550 	 * XXX "More than 8KB" is too short for jumbo frames.
2551 	 * XXX TODO: Threshold value should be user-settable.
2552 	 */
2553 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2554 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2555 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2556 #endif
2557 
2558 	/*
2559 	 * Set the current media.  Do this after initializing the prototype
2560 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2561 	 * control.
2562 	 */
2563 	mii_mediachg(&sc->sc_mii);
2564 
2565 #ifdef DP83820
2566 	/*
2567 	 * Set the interrupt hold-off timer to 100us.
2568 	 */
2569 	bus_space_write_4(st, sh, SIP_IHR, 0x01);
2570 #endif
2571 
2572 	/*
2573 	 * Enable interrupts.
2574 	 */
2575 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2576 
2577 	/*
2578 	 * Start the transmit and receive processes.
2579 	 */
2580 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2581 
2582 	/*
2583 	 * Start the one second MII clock.
2584 	 */
2585 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2586 
2587 	/*
2588 	 * ...all done!
2589 	 */
2590 	ifp->if_flags |= IFF_RUNNING;
2591 	ifp->if_flags &= ~IFF_OACTIVE;
2592 	sc->sc_if_flags = ifp->if_flags;
2593 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2594 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2595 	sc->sc_prev.if_capenable = ifp->if_capenable;
2596 
2597  out:
2598 	if (error)
2599 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2600 	return (error);
2601 }
2602 
2603 /*
2604  * sip_drain:
2605  *
2606  *	Drain the receive queue.
2607  */
2608 static void
2609 SIP_DECL(rxdrain)(struct sip_softc *sc)
2610 {
2611 	struct sip_rxsoft *rxs;
2612 	int i;
2613 
2614 	for (i = 0; i < SIP_NRXDESC; i++) {
2615 		rxs = &sc->sc_rxsoft[i];
2616 		if (rxs->rxs_mbuf != NULL) {
2617 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2618 			m_freem(rxs->rxs_mbuf);
2619 			rxs->rxs_mbuf = NULL;
2620 		}
2621 	}
2622 }
2623 
2624 /*
2625  * sip_stop:		[ ifnet interface function ]
2626  *
2627  *	Stop transmission on the interface.
2628  */
2629 static void
2630 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2631 {
2632 	struct sip_softc *sc = ifp->if_softc;
2633 	bus_space_tag_t st = sc->sc_st;
2634 	bus_space_handle_t sh = sc->sc_sh;
2635 	struct sip_txsoft *txs;
2636 	u_int32_t cmdsts = 0;		/* DEBUG */
2637 
2638 	/*
2639 	 * Stop the one second clock.
2640 	 */
2641 	callout_stop(&sc->sc_tick_ch);
2642 
2643 	/* Down the MII. */
2644 	mii_down(&sc->sc_mii);
2645 
2646 	/*
2647 	 * Disable interrupts.
2648 	 */
2649 	bus_space_write_4(st, sh, SIP_IER, 0);
2650 
2651 	/*
2652 	 * Stop receiver and transmitter.
2653 	 */
2654 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2655 
2656 	/*
2657 	 * Release any queued transmit buffers.
2658 	 */
2659 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2660 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2661 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2662 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2663 		     CMDSTS_INTR) == 0)
2664 			printf("%s: sip_stop: last descriptor does not "
2665 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2666 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2667 #ifdef DIAGNOSTIC
2668 		if (txs->txs_mbuf == NULL) {
2669 			printf("%s: dirty txsoft with no mbuf chain\n",
2670 			    sc->sc_dev.dv_xname);
2671 			panic("sip_stop");
2672 		}
2673 #endif
2674 		cmdsts |=		/* DEBUG */
2675 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2676 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2677 		m_freem(txs->txs_mbuf);
2678 		txs->txs_mbuf = NULL;
2679 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2680 	}
2681 
2682 	if (disable)
2683 		SIP_DECL(rxdrain)(sc);
2684 
2685 	/*
2686 	 * Mark the interface down and cancel the watchdog timer.
2687 	 */
2688 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2689 	ifp->if_timer = 0;
2690 
2691 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2692 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2693 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2694 		    "descriptors\n", sc->sc_dev.dv_xname);
2695 }
2696 
2697 /*
2698  * sip_read_eeprom:
2699  *
2700  *	Read data from the serial EEPROM.
2701  */
2702 static void
2703 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2704     u_int16_t *data)
2705 {
2706 	bus_space_tag_t st = sc->sc_st;
2707 	bus_space_handle_t sh = sc->sc_sh;
2708 	u_int16_t reg;
2709 	int i, x;
2710 
2711 	for (i = 0; i < wordcnt; i++) {
2712 		/* Send CHIP SELECT. */
2713 		reg = EROMAR_EECS;
2714 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2715 
2716 		/* Shift in the READ opcode. */
2717 		for (x = 3; x > 0; x--) {
2718 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2719 				reg |= EROMAR_EEDI;
2720 			else
2721 				reg &= ~EROMAR_EEDI;
2722 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2723 			bus_space_write_4(st, sh, SIP_EROMAR,
2724 			    reg | EROMAR_EESK);
2725 			delay(4);
2726 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2727 			delay(4);
2728 		}
2729 
2730 		/* Shift in address. */
2731 		for (x = 6; x > 0; x--) {
2732 			if ((word + i) & (1 << (x - 1)))
2733 				reg |= EROMAR_EEDI;
2734 			else
2735 				reg &= ~EROMAR_EEDI;
2736 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2737 			bus_space_write_4(st, sh, SIP_EROMAR,
2738 			    reg | EROMAR_EESK);
2739 			delay(4);
2740 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2741 			delay(4);
2742 		}
2743 
2744 		/* Shift out data. */
2745 		reg = EROMAR_EECS;
2746 		data[i] = 0;
2747 		for (x = 16; x > 0; x--) {
2748 			bus_space_write_4(st, sh, SIP_EROMAR,
2749 			    reg | EROMAR_EESK);
2750 			delay(4);
2751 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2752 				data[i] |= (1 << (x - 1));
2753 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2754 			delay(4);
2755 		}
2756 
2757 		/* Clear CHIP SELECT. */
2758 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2759 		delay(4);
2760 	}
2761 }
2762 
2763 /*
2764  * sip_add_rxbuf:
2765  *
2766  *	Add a receive buffer to the indicated descriptor.
2767  */
2768 static int
2769 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2770 {
2771 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2772 	struct mbuf *m;
2773 	int error;
2774 
2775 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2776 	if (m == NULL)
2777 		return (ENOBUFS);
2778 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2779 
2780 	MCLGET(m, M_DONTWAIT);
2781 	if ((m->m_flags & M_EXT) == 0) {
2782 		m_freem(m);
2783 		return (ENOBUFS);
2784 	}
2785 
2786 #if defined(DP83820)
2787 	m->m_len = SIP_RXBUF_LEN;
2788 #endif /* DP83820 */
2789 
2790 	if (rxs->rxs_mbuf != NULL)
2791 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2792 
2793 	rxs->rxs_mbuf = m;
2794 
2795 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2796 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2797 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2798 	if (error) {
2799 		printf("%s: can't load rx DMA map %d, error = %d\n",
2800 		    sc->sc_dev.dv_xname, idx, error);
2801 		panic("sip_add_rxbuf");		/* XXX */
2802 	}
2803 
2804 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2805 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2806 
2807 	SIP_INIT_RXDESC(sc, idx);
2808 
2809 	return (0);
2810 }
2811 
2812 #if !defined(DP83820)
2813 /*
2814  * sip_sis900_set_filter:
2815  *
2816  *	Set up the receive filter.
2817  */
2818 static void
2819 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2820 {
2821 	bus_space_tag_t st = sc->sc_st;
2822 	bus_space_handle_t sh = sc->sc_sh;
2823 	struct ethercom *ec = &sc->sc_ethercom;
2824 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2825 	struct ether_multi *enm;
2826 	const u_int8_t *cp;
2827 	struct ether_multistep step;
2828 	u_int32_t crc, mchash[16];
2829 
2830 	/*
2831 	 * Initialize the prototype RFCR.
2832 	 */
2833 	sc->sc_rfcr = RFCR_RFEN;
2834 	if (ifp->if_flags & IFF_BROADCAST)
2835 		sc->sc_rfcr |= RFCR_AAB;
2836 	if (ifp->if_flags & IFF_PROMISC) {
2837 		sc->sc_rfcr |= RFCR_AAP;
2838 		goto allmulti;
2839 	}
2840 
2841 	/*
2842 	 * Set up the multicast address filter by passing all multicast
2843 	 * addresses through a CRC generator, and then using the high-order
2844 	 * 6 bits as an index into the 128 bit multicast hash table (only
2845 	 * the lower 16 bits of each 32 bit multicast hash register are
2846 	 * valid).  The high order bits select the register, while the
2847 	 * rest of the bits select the bit within the register.
2848 	 */
2849 
2850 	memset(mchash, 0, sizeof(mchash));
2851 
2852 	/*
2853 	 * SiS900 (at least SiS963) requires us to register the address of
2854 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2855 	 */
2856 	crc = 0x0ed423f9;
2857 
2858 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2859 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
2860 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2861 		/* Just want the 8 most significant bits. */
2862 		crc >>= 24;
2863 	} else {
2864 		/* Just want the 7 most significant bits. */
2865 		crc >>= 25;
2866 	}
2867 
2868 	/* Set the corresponding bit in the hash table. */
2869 	mchash[crc >> 4] |= 1 << (crc & 0xf);
2870 
2871 	ETHER_FIRST_MULTI(step, ec, enm);
2872 	while (enm != NULL) {
2873 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2874 			/*
2875 			 * We must listen to a range of multicast addresses.
2876 			 * For now, just accept all multicasts, rather than
2877 			 * trying to set only those filter bits needed to match
2878 			 * the range.  (At this time, the only use of address
2879 			 * ranges is for IP multicast routing, for which the
2880 			 * range is big enough to require all bits set.)
2881 			 */
2882 			goto allmulti;
2883 		}
2884 
2885 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2886 
2887 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2888 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2889 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2890 			/* Just want the 8 most significant bits. */
2891 			crc >>= 24;
2892 		} else {
2893 			/* Just want the 7 most significant bits. */
2894 			crc >>= 25;
2895 		}
2896 
2897 		/* Set the corresponding bit in the hash table. */
2898 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2899 
2900 		ETHER_NEXT_MULTI(step, enm);
2901 	}
2902 
2903 	ifp->if_flags &= ~IFF_ALLMULTI;
2904 	goto setit;
2905 
2906  allmulti:
2907 	ifp->if_flags |= IFF_ALLMULTI;
2908 	sc->sc_rfcr |= RFCR_AAM;
2909 
2910  setit:
2911 #define	FILTER_EMIT(addr, data)						\
2912 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2913 	delay(1);							\
2914 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2915 	delay(1)
2916 
2917 	/*
2918 	 * Disable receive filter, and program the node address.
2919 	 */
2920 	cp = CLLADDR(ifp->if_sadl);
2921 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2922 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2923 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2924 
2925 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2926 		/*
2927 		 * Program the multicast hash table.
2928 		 */
2929 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2930 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2931 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2932 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2933 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2934 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2935 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2936 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2937 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2938 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2939 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2940 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2941 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2942 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2943 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2944 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2945 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2946 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2947 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2948 		}
2949 	}
2950 #undef FILTER_EMIT
2951 
2952 	/*
2953 	 * Re-enable the receiver filter.
2954 	 */
2955 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2956 }
2957 #endif /* ! DP83820 */
2958 
2959 /*
2960  * sip_dp83815_set_filter:
2961  *
2962  *	Set up the receive filter.
2963  */
2964 static void
2965 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2966 {
2967 	bus_space_tag_t st = sc->sc_st;
2968 	bus_space_handle_t sh = sc->sc_sh;
2969 	struct ethercom *ec = &sc->sc_ethercom;
2970 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2971 	struct ether_multi *enm;
2972 	const u_int8_t *cp;
2973 	struct ether_multistep step;
2974 	u_int32_t crc, hash, slot, bit;
2975 #ifdef DP83820
2976 #define	MCHASH_NWORDS	128
2977 #else
2978 #define	MCHASH_NWORDS	32
2979 #endif /* DP83820 */
2980 	u_int16_t mchash[MCHASH_NWORDS];
2981 	int i;
2982 
2983 	/*
2984 	 * Initialize the prototype RFCR.
2985 	 * Enable the receive filter, and accept on
2986 	 *    Perfect (destination address) Match
2987 	 * If IFF_BROADCAST, also accept all broadcast packets.
2988 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2989 	 *    IFF_ALLMULTI and accept all multicast, too).
2990 	 */
2991 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2992 	if (ifp->if_flags & IFF_BROADCAST)
2993 		sc->sc_rfcr |= RFCR_AAB;
2994 	if (ifp->if_flags & IFF_PROMISC) {
2995 		sc->sc_rfcr |= RFCR_AAP;
2996 		goto allmulti;
2997 	}
2998 
2999 #ifdef DP83820
3000 	/*
3001 	 * Set up the DP83820 multicast address filter by passing all multicast
3002 	 * addresses through a CRC generator, and then using the high-order
3003 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
3004 	 * high-order 7 bits select the slot, while the low-order 4 bits
3005 	 * select the bit within the slot.  Note that only the low 16-bits
3006 	 * of each filter word are used, and there are 128 filter words.
3007 	 */
3008 #else
3009 	/*
3010 	 * Set up the DP83815 multicast address filter by passing all multicast
3011 	 * addresses through a CRC generator, and then using the high-order
3012 	 * 9 bits as an index into the 512 bit multicast hash table.  The
3013 	 * high-order 5 bits select the slot, while the low-order 4 bits
3014 	 * select the bit within the slot.  Note that only the low 16-bits
3015 	 * of each filter word are used, and there are 32 filter words.
3016 	 */
3017 #endif /* DP83820 */
3018 
3019 	memset(mchash, 0, sizeof(mchash));
3020 
3021 	ifp->if_flags &= ~IFF_ALLMULTI;
3022 	ETHER_FIRST_MULTI(step, ec, enm);
3023 	if (enm == NULL)
3024 		goto setit;
3025 	while (enm != NULL) {
3026 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3027 			/*
3028 			 * We must listen to a range of multicast addresses.
3029 			 * For now, just accept all multicasts, rather than
3030 			 * trying to set only those filter bits needed to match
3031 			 * the range.  (At this time, the only use of address
3032 			 * ranges is for IP multicast routing, for which the
3033 			 * range is big enough to require all bits set.)
3034 			 */
3035 			goto allmulti;
3036 		}
3037 
3038 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3039 
3040 #ifdef DP83820
3041 		/* Just want the 11 most significant bits. */
3042 		hash = crc >> 21;
3043 #else
3044 		/* Just want the 9 most significant bits. */
3045 		hash = crc >> 23;
3046 #endif /* DP83820 */
3047 
3048 		slot = hash >> 4;
3049 		bit = hash & 0xf;
3050 
3051 		/* Set the corresponding bit in the hash table. */
3052 		mchash[slot] |= 1 << bit;
3053 
3054 		ETHER_NEXT_MULTI(step, enm);
3055 	}
3056 	sc->sc_rfcr |= RFCR_MHEN;
3057 	goto setit;
3058 
3059  allmulti:
3060 	ifp->if_flags |= IFF_ALLMULTI;
3061 	sc->sc_rfcr |= RFCR_AAM;
3062 
3063  setit:
3064 #define	FILTER_EMIT(addr, data)						\
3065 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3066 	delay(1);							\
3067 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3068 	delay(1)
3069 
3070 	/*
3071 	 * Disable receive filter, and program the node address.
3072 	 */
3073 	cp = CLLADDR(ifp->if_sadl);
3074 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3075 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3076 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3077 
3078 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3079 		/*
3080 		 * Program the multicast hash table.
3081 		 */
3082 		for (i = 0; i < MCHASH_NWORDS; i++) {
3083 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3084 			    mchash[i]);
3085 		}
3086 	}
3087 #undef FILTER_EMIT
3088 #undef MCHASH_NWORDS
3089 
3090 	/*
3091 	 * Re-enable the receiver filter.
3092 	 */
3093 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3094 }
3095 
3096 #if defined(DP83820)
3097 /*
3098  * sip_dp83820_mii_readreg:	[mii interface function]
3099  *
3100  *	Read a PHY register on the MII of the DP83820.
3101  */
3102 static int
3103 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3104 {
3105 	struct sip_softc *sc = (void *) self;
3106 
3107 	if (sc->sc_cfg & CFG_TBI_EN) {
3108 		bus_addr_t tbireg;
3109 		int rv;
3110 
3111 		if (phy != 0)
3112 			return (0);
3113 
3114 		switch (reg) {
3115 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3116 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3117 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3118 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3119 		case MII_ANER:		tbireg = SIP_TANER; break;
3120 		case MII_EXTSR:
3121 			/*
3122 			 * Don't even bother reading the TESR register.
3123 			 * The manual documents that the device has
3124 			 * 1000baseX full/half capability, but the
3125 			 * register itself seems read back 0 on some
3126 			 * boards.  Just hard-code the result.
3127 			 */
3128 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3129 
3130 		default:
3131 			return (0);
3132 		}
3133 
3134 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3135 		if (tbireg == SIP_TBISR) {
3136 			/* LINK and ACOMP are switched! */
3137 			int val = rv;
3138 
3139 			rv = 0;
3140 			if (val & TBISR_MR_LINK_STATUS)
3141 				rv |= BMSR_LINK;
3142 			if (val & TBISR_MR_AN_COMPLETE)
3143 				rv |= BMSR_ACOMP;
3144 
3145 			/*
3146 			 * The manual claims this register reads back 0
3147 			 * on hard and soft reset.  But we want to let
3148 			 * the gentbi driver know that we support auto-
3149 			 * negotiation, so hard-code this bit in the
3150 			 * result.
3151 			 */
3152 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3153 		}
3154 
3155 		return (rv);
3156 	}
3157 
3158 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3159 	    phy, reg));
3160 }
3161 
3162 /*
3163  * sip_dp83820_mii_writereg:	[mii interface function]
3164  *
3165  *	Write a PHY register on the MII of the DP83820.
3166  */
3167 static void
3168 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3169 {
3170 	struct sip_softc *sc = (void *) self;
3171 
3172 	if (sc->sc_cfg & CFG_TBI_EN) {
3173 		bus_addr_t tbireg;
3174 
3175 		if (phy != 0)
3176 			return;
3177 
3178 		switch (reg) {
3179 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3180 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3181 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3182 		default:
3183 			return;
3184 		}
3185 
3186 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3187 		return;
3188 	}
3189 
3190 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3191 	    phy, reg, val);
3192 }
3193 
3194 /*
3195  * sip_dp83820_mii_statchg:	[mii interface function]
3196  *
3197  *	Callback from MII layer when media changes.
3198  */
3199 static void
3200 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3201 {
3202 	struct sip_softc *sc = (struct sip_softc *) self;
3203 	struct mii_data *mii = &sc->sc_mii;
3204 	u_int32_t cfg, pcr;
3205 
3206 	/*
3207 	 * Get flow control negotiation result.
3208 	 */
3209 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3210 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3211 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3212 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3213 	}
3214 
3215 	/*
3216 	 * Update TXCFG for full-duplex operation.
3217 	 */
3218 	if ((mii->mii_media_active & IFM_FDX) != 0)
3219 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3220 	else
3221 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3222 
3223 	/*
3224 	 * Update RXCFG for full-duplex or loopback.
3225 	 */
3226 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3227 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3228 		sc->sc_rxcfg |= RXCFG_ATX;
3229 	else
3230 		sc->sc_rxcfg &= ~RXCFG_ATX;
3231 
3232 	/*
3233 	 * Update CFG for MII/GMII.
3234 	 */
3235 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3236 		cfg = sc->sc_cfg | CFG_MODE_1000;
3237 	else
3238 		cfg = sc->sc_cfg;
3239 
3240 	/*
3241 	 * 802.3x flow control.
3242 	 */
3243 	pcr = 0;
3244 	if (sc->sc_flowflags & IFM_FLOW) {
3245 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3246 			pcr |= sc->sc_rx_flow_thresh;
3247 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3248 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3249 	}
3250 
3251 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3252 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3253 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3254 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3255 }
3256 #endif /* ! DP83820 */
3257 
3258 /*
3259  * sip_mii_bitbang_read: [mii bit-bang interface function]
3260  *
3261  *	Read the MII serial port for the MII bit-bang module.
3262  */
3263 static u_int32_t
3264 SIP_DECL(mii_bitbang_read)(struct device *self)
3265 {
3266 	struct sip_softc *sc = (void *) self;
3267 
3268 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3269 }
3270 
3271 /*
3272  * sip_mii_bitbang_write: [mii big-bang interface function]
3273  *
3274  *	Write the MII serial port for the MII bit-bang module.
3275  */
3276 static void
3277 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3278 {
3279 	struct sip_softc *sc = (void *) self;
3280 
3281 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3282 }
3283 
3284 #ifndef DP83820
3285 /*
3286  * sip_sis900_mii_readreg:	[mii interface function]
3287  *
3288  *	Read a PHY register on the MII.
3289  */
3290 static int
3291 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3292 {
3293 	struct sip_softc *sc = (struct sip_softc *) self;
3294 	u_int32_t enphy;
3295 
3296 	/*
3297 	 * The PHY of recent SiS chipsets is accessed through bitbang
3298 	 * operations.
3299 	 */
3300 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3301 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3302 		    phy, reg));
3303 
3304 #ifndef SIS900_MII_RESTRICT
3305 	/*
3306 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3307 	 * MII address 0.
3308 	 */
3309 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3310 		return (0);
3311 #endif
3312 
3313 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3314 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3315 	    ENPHY_RWCMD | ENPHY_ACCESS);
3316 	do {
3317 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3318 	} while (enphy & ENPHY_ACCESS);
3319 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3320 }
3321 
3322 /*
3323  * sip_sis900_mii_writereg:	[mii interface function]
3324  *
3325  *	Write a PHY register on the MII.
3326  */
3327 static void
3328 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3329 {
3330 	struct sip_softc *sc = (struct sip_softc *) self;
3331 	u_int32_t enphy;
3332 
3333 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3334 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3335 		    phy, reg, val);
3336 		return;
3337 	}
3338 
3339 #ifndef SIS900_MII_RESTRICT
3340 	/*
3341 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3342 	 * MII address 0.
3343 	 */
3344 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3345 		return;
3346 #endif
3347 
3348 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3349 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3350 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3351 	do {
3352 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3353 	} while (enphy & ENPHY_ACCESS);
3354 }
3355 
3356 /*
3357  * sip_sis900_mii_statchg:	[mii interface function]
3358  *
3359  *	Callback from MII layer when media changes.
3360  */
3361 static void
3362 SIP_DECL(sis900_mii_statchg)(struct device *self)
3363 {
3364 	struct sip_softc *sc = (struct sip_softc *) self;
3365 	struct mii_data *mii = &sc->sc_mii;
3366 	u_int32_t flowctl;
3367 
3368 	/*
3369 	 * Get flow control negotiation result.
3370 	 */
3371 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3372 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3373 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3374 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3375 	}
3376 
3377 	/*
3378 	 * Update TXCFG for full-duplex operation.
3379 	 */
3380 	if ((mii->mii_media_active & IFM_FDX) != 0)
3381 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3382 	else
3383 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3384 
3385 	/*
3386 	 * Update RXCFG for full-duplex or loopback.
3387 	 */
3388 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3389 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3390 		sc->sc_rxcfg |= RXCFG_ATX;
3391 	else
3392 		sc->sc_rxcfg &= ~RXCFG_ATX;
3393 
3394 	/*
3395 	 * Update IMR for use of 802.3x flow control.
3396 	 */
3397 	if (sc->sc_flowflags & IFM_FLOW) {
3398 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3399 		flowctl = FLOWCTL_FLOWEN;
3400 	} else {
3401 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3402 		flowctl = 0;
3403 	}
3404 
3405 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3406 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3407 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3408 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3409 }
3410 
3411 /*
3412  * sip_dp83815_mii_readreg:	[mii interface function]
3413  *
3414  *	Read a PHY register on the MII.
3415  */
3416 static int
3417 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3418 {
3419 	struct sip_softc *sc = (struct sip_softc *) self;
3420 	u_int32_t val;
3421 
3422 	/*
3423 	 * The DP83815 only has an internal PHY.  Only allow
3424 	 * MII address 0.
3425 	 */
3426 	if (phy != 0)
3427 		return (0);
3428 
3429 	/*
3430 	 * Apparently, after a reset, the DP83815 can take a while
3431 	 * to respond.  During this recovery period, the BMSR returns
3432 	 * a value of 0.  Catch this -- it's not supposed to happen
3433 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3434 	 * PHY to come back to life.
3435 	 *
3436 	 * This works out because the BMSR is the first register
3437 	 * read during the PHY probe process.
3438 	 */
3439 	do {
3440 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3441 	} while (reg == MII_BMSR && val == 0);
3442 
3443 	return (val & 0xffff);
3444 }
3445 
3446 /*
3447  * sip_dp83815_mii_writereg:	[mii interface function]
3448  *
3449  *	Write a PHY register to the MII.
3450  */
3451 static void
3452 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3453 {
3454 	struct sip_softc *sc = (struct sip_softc *) self;
3455 
3456 	/*
3457 	 * The DP83815 only has an internal PHY.  Only allow
3458 	 * MII address 0.
3459 	 */
3460 	if (phy != 0)
3461 		return;
3462 
3463 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3464 }
3465 
3466 /*
3467  * sip_dp83815_mii_statchg:	[mii interface function]
3468  *
3469  *	Callback from MII layer when media changes.
3470  */
3471 static void
3472 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3473 {
3474 	struct sip_softc *sc = (struct sip_softc *) self;
3475 
3476 	/*
3477 	 * Update TXCFG for full-duplex operation.
3478 	 */
3479 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3480 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3481 	else
3482 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3483 
3484 	/*
3485 	 * Update RXCFG for full-duplex or loopback.
3486 	 */
3487 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3488 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3489 		sc->sc_rxcfg |= RXCFG_ATX;
3490 	else
3491 		sc->sc_rxcfg &= ~RXCFG_ATX;
3492 
3493 	/*
3494 	 * XXX 802.3x flow control.
3495 	 */
3496 
3497 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3498 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3499 
3500 	/*
3501 	 * Some DP83815s experience problems when used with short
3502 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3503 	 * sequence adjusts the DSP's signal attenuation to fix the
3504 	 * problem.
3505 	 */
3506 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3507 		uint32_t reg;
3508 
3509 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3510 
3511 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3512 		reg &= 0x0fff;
3513 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3514 		delay(100);
3515 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3516 		reg &= 0x00ff;
3517 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3518 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3519 			    0x00e8);
3520 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3521 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3522 			    reg | 0x20);
3523 		}
3524 
3525 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3526 	}
3527 }
3528 #endif /* DP83820 */
3529 
3530 #if defined(DP83820)
3531 static void
3532 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3533     const struct pci_attach_args *pa, u_int8_t *enaddr)
3534 {
3535 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3536 	u_int8_t cksum, *e, match;
3537 	int i;
3538 
3539 	/*
3540 	 * EEPROM data format for the DP83820 can be found in
3541 	 * the DP83820 manual, section 4.2.4.
3542 	 */
3543 
3544 	SIP_DECL(read_eeprom)(sc, 0,
3545 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3546 
3547 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3548 	match = ~(match - 1);
3549 
3550 	cksum = 0x55;
3551 	e = (u_int8_t *) eeprom_data;
3552 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3553 		cksum += *e++;
3554 
3555 	if (cksum != match)
3556 		printf("%s: Checksum (%x) mismatch (%x)",
3557 		    sc->sc_dev.dv_xname, cksum, match);
3558 
3559 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3560 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3561 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3562 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3563 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3564 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3565 }
3566 #else /* ! DP83820 */
3567 static void
3568 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3569 {
3570 	int i;
3571 
3572 	/*
3573 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3574 	 * a reason, but I don't know it.
3575 	 */
3576 	for (i = 0; i < 10; i++)
3577 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3578 }
3579 
3580 static void
3581 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3582     const struct pci_attach_args *pa, u_int8_t *enaddr)
3583 {
3584 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3585 
3586 	switch (sc->sc_rev) {
3587 	case SIS_REV_630S:
3588 	case SIS_REV_630E:
3589 	case SIS_REV_630EA1:
3590 	case SIS_REV_630ET:
3591 	case SIS_REV_635:
3592 		/*
3593 		 * The MAC address for the on-board Ethernet of
3594 		 * the SiS 630 chipset is in the NVRAM.  Kick
3595 		 * the chip into re-loading it from NVRAM, and
3596 		 * read the MAC address out of the filter registers.
3597 		 */
3598 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3599 
3600 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3601 		    RFCR_RFADDR_NODE0);
3602 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3603 		    0xffff;
3604 
3605 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3606 		    RFCR_RFADDR_NODE2);
3607 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3608 		    0xffff;
3609 
3610 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3611 		    RFCR_RFADDR_NODE4);
3612 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3613 		    0xffff;
3614 		break;
3615 
3616 	case SIS_REV_960:
3617 		{
3618 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3619 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3620 
3621 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3622 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3623 
3624 			int waittime, i;
3625 
3626 			/* Allow to read EEPROM from LAN. It is shared
3627 			 * between a 1394 controller and the NIC and each
3628 			 * time we access it, we need to set SIS_EECMD_REQ.
3629 			 */
3630 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3631 
3632 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3633 				/* Force EEPROM to idle state. */
3634 
3635 				/*
3636 				 * XXX-cube This is ugly.  I'll look for docs about it.
3637 				 */
3638 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3639 				SIP_DECL(sis900_eeprom_delay)(sc);
3640 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3641 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3642 					SIP_DECL(sis900_eeprom_delay)(sc);
3643 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3644 					SIP_DECL(sis900_eeprom_delay)(sc);
3645 				}
3646 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3647 				SIP_DECL(sis900_eeprom_delay)(sc);
3648 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3649 
3650 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3651 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3652 					    sizeof(myea) / sizeof(myea[0]), myea);
3653 					break;
3654 				}
3655 				DELAY(1);
3656 			}
3657 
3658 			/*
3659 			 * Set SIS_EECTL_CLK to high, so a other master
3660 			 * can operate on the i2c bus.
3661 			 */
3662 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3663 
3664 			/* Refuse EEPROM access by LAN */
3665 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3666 		} break;
3667 
3668 	default:
3669 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3670 		    sizeof(myea) / sizeof(myea[0]), myea);
3671 	}
3672 
3673 	enaddr[0] = myea[0] & 0xff;
3674 	enaddr[1] = myea[0] >> 8;
3675 	enaddr[2] = myea[1] & 0xff;
3676 	enaddr[3] = myea[1] >> 8;
3677 	enaddr[4] = myea[2] & 0xff;
3678 	enaddr[5] = myea[2] >> 8;
3679 }
3680 
3681 /* Table and macro to bit-reverse an octet. */
3682 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3683 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3684 
3685 static void
3686 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3687     const struct pci_attach_args *pa, u_int8_t *enaddr)
3688 {
3689 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3690 	u_int8_t cksum, *e, match;
3691 	int i;
3692 
3693 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3694 	    sizeof(eeprom_data[0]), eeprom_data);
3695 
3696 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3697 	match = ~(match - 1);
3698 
3699 	cksum = 0x55;
3700 	e = (u_int8_t *) eeprom_data;
3701 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3702 		cksum += *e++;
3703 	}
3704 	if (cksum != match) {
3705 		printf("%s: Checksum (%x) mismatch (%x)",
3706 		    sc->sc_dev.dv_xname, cksum, match);
3707 	}
3708 
3709 	/*
3710 	 * Unrolled because it makes slightly more sense this way.
3711 	 * The DP83815 stores the MAC address in bit 0 of word 6
3712 	 * through bit 15 of word 8.
3713 	 */
3714 	ea = &eeprom_data[6];
3715 	enaddr[0] = ((*ea & 0x1) << 7);
3716 	ea++;
3717 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3718 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3719 	enaddr[2] = ((*ea & 0x1) << 7);
3720 	ea++;
3721 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3722 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3723 	enaddr[4] = ((*ea & 0x1) << 7);
3724 	ea++;
3725 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3726 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3727 
3728 	/*
3729 	 * In case that's not weird enough, we also need to reverse
3730 	 * the bits in each byte.  This all actually makes more sense
3731 	 * if you think about the EEPROM storage as an array of bits
3732 	 * being shifted into bytes, but that's not how we're looking
3733 	 * at it here...
3734 	 */
3735 	for (i = 0; i < 6 ;i++)
3736 		enaddr[i] = bbr(enaddr[i]);
3737 }
3738 #endif /* DP83820 */
3739 
3740 /*
3741  * sip_mediastatus:	[ifmedia interface function]
3742  *
3743  *	Get the current interface media status.
3744  */
3745 static void
3746 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3747 {
3748 	struct sip_softc *sc = ifp->if_softc;
3749 
3750 	mii_pollstat(&sc->sc_mii);
3751 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3752 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3753 			   sc->sc_flowflags;
3754 }
3755 
3756 /*
3757  * sip_mediachange:	[ifmedia interface function]
3758  *
3759  *	Set hardware to newly-selected media.
3760  */
3761 static int
3762 SIP_DECL(mediachange)(struct ifnet *ifp)
3763 {
3764 	struct sip_softc *sc = ifp->if_softc;
3765 
3766 	if (ifp->if_flags & IFF_UP)
3767 		mii_mediachg(&sc->sc_mii);
3768 	return (0);
3769 }
3770