xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 0dd5877adce57db949b16ae963e5a6831cccdfb6)
1 /*	$NetBSD: if_sip.c,v 1.45 2002/02/09 21:04:02 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Support the 10-bit interface on the DP83820 (for fiber).
80  *
81  *	- Reduce the interrupt load.
82  */
83 
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.45 2002/02/09 21:04:02 thorpej Exp $");
86 
87 #include "bpfilter.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100 
101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
102 
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107 
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111 
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125 
126 #include <dev/pci/if_sipreg.h>
127 
128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
130 #else			/* SiS900 and DP83815 */
131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
132 #endif
133 
134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
135 
136 /*
137  * Transmit descriptor list size.  This is arbitrary, but allocate
138  * enough descriptors for 128 pending transmissions, and 8 segments
139  * per packet.  This MUST work out to a power of 2.
140  */
141 #define	SIP_NTXSEGS		8
142 
143 #define	SIP_TXQUEUELEN		256
144 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
145 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
146 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
147 
148 /*
149  * Receive descriptor list size.  We have one Rx buffer per incoming
150  * packet, so this logic is a little simpler.
151  *
152  * Actually, on the DP83820, we allow the packet to consume more than
153  * one buffer, in order to support jumbo Ethernet frames.  In that
154  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
155  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
156  * so we'd better be quick about handling receive interrupts.
157  */
158 #if defined(DP83820)
159 #define	SIP_NRXDESC		256
160 #else
161 #define	SIP_NRXDESC		128
162 #endif /* DP83820 */
163 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
164 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
165 
166 /*
167  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
168  * a single clump that maps to a single DMA segment to make several things
169  * easier.
170  */
171 struct sip_control_data {
172 	/*
173 	 * The transmit descriptors.
174 	 */
175 	struct sip_desc scd_txdescs[SIP_NTXDESC];
176 
177 	/*
178 	 * The receive descriptors.
179 	 */
180 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
181 };
182 
183 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
184 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
185 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
186 
187 /*
188  * Software state for transmit jobs.
189  */
190 struct sip_txsoft {
191 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
192 	bus_dmamap_t txs_dmamap;	/* our DMA map */
193 	int txs_firstdesc;		/* first descriptor in packet */
194 	int txs_lastdesc;		/* last descriptor in packet */
195 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
196 };
197 
198 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
199 
200 /*
201  * Software state for receive jobs.
202  */
203 struct sip_rxsoft {
204 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
205 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
206 };
207 
208 /*
209  * Software state per device.
210  */
211 struct sip_softc {
212 	struct device sc_dev;		/* generic device information */
213 	bus_space_tag_t sc_st;		/* bus space tag */
214 	bus_space_handle_t sc_sh;	/* bus space handle */
215 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
216 	struct ethercom sc_ethercom;	/* ethernet common data */
217 	void *sc_sdhook;		/* shutdown hook */
218 
219 	const struct sip_product *sc_model; /* which model are we? */
220 	int sc_rev;			/* chip revision */
221 
222 	void *sc_ih;			/* interrupt cookie */
223 
224 	struct mii_data sc_mii;		/* MII/media information */
225 
226 	struct callout sc_tick_ch;	/* tick callout */
227 
228 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
229 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
230 
231 	/*
232 	 * Software state for transmit and receive descriptors.
233 	 */
234 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
235 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
236 
237 	/*
238 	 * Control data structures.
239 	 */
240 	struct sip_control_data *sc_control_data;
241 #define	sc_txdescs	sc_control_data->scd_txdescs
242 #define	sc_rxdescs	sc_control_data->scd_rxdescs
243 
244 #ifdef SIP_EVENT_COUNTERS
245 	/*
246 	 * Event counters.
247 	 */
248 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
249 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
250 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
251 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
252 #ifdef DP83820
253 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
254 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
255 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
256 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
257 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
258 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
259 #endif /* DP83820 */
260 #endif /* SIP_EVENT_COUNTERS */
261 
262 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
263 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
264 	u_int32_t sc_imr;		/* prototype IMR register */
265 	u_int32_t sc_rfcr;		/* prototype RFCR register */
266 
267 	u_int32_t sc_cfg;		/* prototype CFG register */
268 
269 #ifdef DP83820
270 	u_int32_t sc_gpior;		/* prototype GPIOR register */
271 #endif /* DP83820 */
272 
273 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
274 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
275 
276 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
277 
278 	int	sc_flags;		/* misc. flags; see below */
279 
280 	int	sc_txfree;		/* number of free Tx descriptors */
281 	int	sc_txnext;		/* next ready Tx descriptor */
282 
283 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
284 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
285 
286 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
287 #if defined(DP83820)
288 	int	sc_rxdiscard;
289 	int	sc_rxlen;
290 	struct mbuf *sc_rxhead;
291 	struct mbuf *sc_rxtail;
292 	struct mbuf **sc_rxtailp;
293 #endif /* DP83820 */
294 };
295 
296 /* sc_flags */
297 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
298 
299 #ifdef DP83820
300 #define	SIP_RXCHAIN_RESET(sc)						\
301 do {									\
302 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
303 	*(sc)->sc_rxtailp = NULL;					\
304 	(sc)->sc_rxlen = 0;						\
305 } while (/*CONSTCOND*/0)
306 
307 #define	SIP_RXCHAIN_LINK(sc, m)						\
308 do {									\
309 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
310 	(sc)->sc_rxtailp = &(m)->m_next;				\
311 } while (/*CONSTCOND*/0)
312 #endif /* DP83820 */
313 
314 #ifdef SIP_EVENT_COUNTERS
315 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
316 #else
317 #define	SIP_EVCNT_INCR(ev)	/* nothing */
318 #endif
319 
320 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
321 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
322 
323 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
324 do {									\
325 	int __x, __n;							\
326 									\
327 	__x = (x);							\
328 	__n = (n);							\
329 									\
330 	/* If it will wrap around, sync to the end of the ring. */	\
331 	if ((__x + __n) > SIP_NTXDESC) {				\
332 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
333 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
334 		    (SIP_NTXDESC - __x), (ops));			\
335 		__n -= (SIP_NTXDESC - __x);				\
336 		__x = 0;						\
337 	}								\
338 									\
339 	/* Now sync whatever is left. */				\
340 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
341 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
342 } while (0)
343 
344 #define	SIP_CDRXSYNC(sc, x, ops)					\
345 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
346 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
347 
348 #ifdef DP83820
349 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
350 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
351 #else
352 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
353 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
354 #endif
355 #define	SIP_INIT_RXDESC(sc, x)						\
356 do {									\
357 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
358 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
359 									\
360 	__sipd->sipd_link =						\
361 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
362 	__sipd->sipd_bufptr =						\
363 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
364 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
365 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
366 	SIP_INIT_RXDESC_EXTSTS						\
367 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
368 } while (0)
369 
370 #define	SIP_CHIP_VERS(sc, v, p, r)					\
371 	((sc)->sc_model->sip_vendor == (v) &&				\
372 	 (sc)->sc_model->sip_product == (p) &&				\
373 	 (sc)->sc_rev == (r))
374 
375 #define	SIP_CHIP_MODEL(sc, v, p)					\
376 	((sc)->sc_model->sip_vendor == (v) &&				\
377 	 (sc)->sc_model->sip_product == (p))
378 
379 #if !defined(DP83820)
380 #define	SIP_SIS900_REV(sc, rev)						\
381 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
382 #endif
383 
384 #define SIP_TIMEOUT 1000
385 
386 void	SIP_DECL(start)(struct ifnet *);
387 void	SIP_DECL(watchdog)(struct ifnet *);
388 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
389 int	SIP_DECL(init)(struct ifnet *);
390 void	SIP_DECL(stop)(struct ifnet *, int);
391 
392 void	SIP_DECL(shutdown)(void *);
393 
394 void	SIP_DECL(reset)(struct sip_softc *);
395 void	SIP_DECL(rxdrain)(struct sip_softc *);
396 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
397 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
398 void	SIP_DECL(tick)(void *);
399 
400 #if !defined(DP83820)
401 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
402 #endif /* ! DP83820 */
403 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
404 
405 #if defined(DP83820)
406 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
407 	    const struct pci_attach_args *, u_int8_t *);
408 #else
409 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
410 	    const struct pci_attach_args *, u_int8_t *);
411 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
412 	    const struct pci_attach_args *, u_int8_t *);
413 #endif /* DP83820 */
414 
415 int	SIP_DECL(intr)(void *);
416 void	SIP_DECL(txintr)(struct sip_softc *);
417 void	SIP_DECL(rxintr)(struct sip_softc *);
418 
419 #if defined(DP83820)
420 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
421 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
422 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
423 #else
424 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
425 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
426 void	SIP_DECL(sis900_mii_statchg)(struct device *);
427 
428 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
429 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
430 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
431 #endif /* DP83820 */
432 
433 int	SIP_DECL(mediachange)(struct ifnet *);
434 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
435 
436 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
437 void	SIP_DECL(attach)(struct device *, struct device *, void *);
438 
439 int	SIP_DECL(copy_small) = 0;
440 
441 struct cfattach SIP_DECL(ca) = {
442 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
443 };
444 
445 /*
446  * Descriptions of the variants of the SiS900.
447  */
448 struct sip_variant {
449 	int	(*sipv_mii_readreg)(struct device *, int, int);
450 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
451 	void	(*sipv_mii_statchg)(struct device *);
452 	void	(*sipv_set_filter)(struct sip_softc *);
453 	void	(*sipv_read_macaddr)(struct sip_softc *,
454 		    const struct pci_attach_args *, u_int8_t *);
455 };
456 
457 #if defined(DP83820)
458 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
459 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
460 
461 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
462 	SIP_DECL(dp83820_mii_bitbang_read),
463 	SIP_DECL(dp83820_mii_bitbang_write),
464 	{
465 		EROMAR_MDIO,		/* MII_BIT_MDO */
466 		EROMAR_MDIO,		/* MII_BIT_MDI */
467 		EROMAR_MDC,		/* MII_BIT_MDC */
468 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
469 		0,			/* MII_BIT_DIR_PHY_HOST */
470 	}
471 };
472 #endif /* DP83820 */
473 
474 #if defined(DP83820)
475 const struct sip_variant SIP_DECL(variant_dp83820) = {
476 	SIP_DECL(dp83820_mii_readreg),
477 	SIP_DECL(dp83820_mii_writereg),
478 	SIP_DECL(dp83820_mii_statchg),
479 	SIP_DECL(dp83815_set_filter),
480 	SIP_DECL(dp83820_read_macaddr),
481 };
482 #else
483 const struct sip_variant SIP_DECL(variant_sis900) = {
484 	SIP_DECL(sis900_mii_readreg),
485 	SIP_DECL(sis900_mii_writereg),
486 	SIP_DECL(sis900_mii_statchg),
487 	SIP_DECL(sis900_set_filter),
488 	SIP_DECL(sis900_read_macaddr),
489 };
490 
491 const struct sip_variant SIP_DECL(variant_dp83815) = {
492 	SIP_DECL(dp83815_mii_readreg),
493 	SIP_DECL(dp83815_mii_writereg),
494 	SIP_DECL(dp83815_mii_statchg),
495 	SIP_DECL(dp83815_set_filter),
496 	SIP_DECL(dp83815_read_macaddr),
497 };
498 #endif /* DP83820 */
499 
500 /*
501  * Devices supported by this driver.
502  */
503 const struct sip_product {
504 	pci_vendor_id_t		sip_vendor;
505 	pci_product_id_t	sip_product;
506 	const char		*sip_name;
507 	const struct sip_variant *sip_variant;
508 } SIP_DECL(products)[] = {
509 #if defined(DP83820)
510 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
511 	  "NatSemi DP83820 Gigabit Ethernet",
512 	  &SIP_DECL(variant_dp83820) },
513 #else
514 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
515 	  "SiS 900 10/100 Ethernet",
516 	  &SIP_DECL(variant_sis900) },
517 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
518 	  "SiS 7016 10/100 Ethernet",
519 	  &SIP_DECL(variant_sis900) },
520 
521 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
522 	  "NatSemi DP83815 10/100 Ethernet",
523 	  &SIP_DECL(variant_dp83815) },
524 #endif /* DP83820 */
525 
526 	{ 0,			0,
527 	  NULL,
528 	  NULL },
529 };
530 
531 static const struct sip_product *
532 SIP_DECL(lookup)(const struct pci_attach_args *pa)
533 {
534 	const struct sip_product *sip;
535 
536 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
537 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
538 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
539 			return (sip);
540 	}
541 	return (NULL);
542 }
543 
544 int
545 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
546 {
547 	struct pci_attach_args *pa = aux;
548 
549 	if (SIP_DECL(lookup)(pa) != NULL)
550 		return (1);
551 
552 	return (0);
553 }
554 
555 void
556 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
557 {
558 	struct sip_softc *sc = (struct sip_softc *) self;
559 	struct pci_attach_args *pa = aux;
560 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
561 	pci_chipset_tag_t pc = pa->pa_pc;
562 	pci_intr_handle_t ih;
563 	const char *intrstr = NULL;
564 	bus_space_tag_t iot, memt;
565 	bus_space_handle_t ioh, memh;
566 	bus_dma_segment_t seg;
567 	int ioh_valid, memh_valid;
568 	int i, rseg, error;
569 	const struct sip_product *sip;
570 	pcireg_t pmode;
571 	u_int8_t enaddr[ETHER_ADDR_LEN];
572 	int pmreg;
573 #ifdef DP83820
574 	pcireg_t memtype;
575 	u_int32_t reg;
576 #endif /* DP83820 */
577 
578 	callout_init(&sc->sc_tick_ch);
579 
580 	sip = SIP_DECL(lookup)(pa);
581 	if (sip == NULL) {
582 		printf("\n");
583 		panic(SIP_STR(attach) ": impossible");
584 	}
585 	sc->sc_rev = PCI_REVISION(pa->pa_class);
586 
587 	printf(": %s\n", sip->sip_name);
588 
589 	sc->sc_model = sip;
590 
591 	/*
592 	 * Map the device.
593 	 */
594 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
595 	    PCI_MAPREG_TYPE_IO, 0,
596 	    &iot, &ioh, NULL, NULL) == 0);
597 #ifdef DP83820
598 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
599 	switch (memtype) {
600 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
601 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
602 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
603 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
604 		break;
605 	default:
606 		memh_valid = 0;
607 	}
608 #else
609 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
610 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
611 	    &memt, &memh, NULL, NULL) == 0);
612 #endif /* DP83820 */
613 
614 	if (memh_valid) {
615 		sc->sc_st = memt;
616 		sc->sc_sh = memh;
617 	} else if (ioh_valid) {
618 		sc->sc_st = iot;
619 		sc->sc_sh = ioh;
620 	} else {
621 		printf("%s: unable to map device registers\n",
622 		    sc->sc_dev.dv_xname);
623 		return;
624 	}
625 
626 	sc->sc_dmat = pa->pa_dmat;
627 
628 	/* Enable bus mastering. */
629 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
630 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
631 	    PCI_COMMAND_MASTER_ENABLE);
632 
633 	/* Get it out of power save mode if needed. */
634 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
635 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
636 		if (pmode == 3) {
637 			/*
638 			 * The card has lost all configuration data in
639 			 * this state, so punt.
640 			 */
641 			printf("%s: unable to wake up from power state D3\n",
642 			    sc->sc_dev.dv_xname);
643 			return;
644 		}
645 		if (pmode != 0) {
646 			printf("%s: waking up from power state D%d\n",
647 			    sc->sc_dev.dv_xname, pmode);
648 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
649 		}
650 	}
651 
652 	/*
653 	 * Map and establish our interrupt.
654 	 */
655 	if (pci_intr_map(pa, &ih)) {
656 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
657 		return;
658 	}
659 	intrstr = pci_intr_string(pc, ih);
660 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
661 	if (sc->sc_ih == NULL) {
662 		printf("%s: unable to establish interrupt",
663 		    sc->sc_dev.dv_xname);
664 		if (intrstr != NULL)
665 			printf(" at %s", intrstr);
666 		printf("\n");
667 		return;
668 	}
669 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
670 
671 	SIMPLEQ_INIT(&sc->sc_txfreeq);
672 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
673 
674 	/*
675 	 * Allocate the control data structures, and create and load the
676 	 * DMA map for it.
677 	 */
678 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
679 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
680 	    0)) != 0) {
681 		printf("%s: unable to allocate control data, error = %d\n",
682 		    sc->sc_dev.dv_xname, error);
683 		goto fail_0;
684 	}
685 
686 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
687 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
688 	    BUS_DMA_COHERENT)) != 0) {
689 		printf("%s: unable to map control data, error = %d\n",
690 		    sc->sc_dev.dv_xname, error);
691 		goto fail_1;
692 	}
693 
694 	if ((error = bus_dmamap_create(sc->sc_dmat,
695 	    sizeof(struct sip_control_data), 1,
696 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
697 		printf("%s: unable to create control data DMA map, "
698 		    "error = %d\n", sc->sc_dev.dv_xname, error);
699 		goto fail_2;
700 	}
701 
702 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
703 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
704 	    0)) != 0) {
705 		printf("%s: unable to load control data DMA map, error = %d\n",
706 		    sc->sc_dev.dv_xname, error);
707 		goto fail_3;
708 	}
709 
710 	/*
711 	 * Create the transmit buffer DMA maps.
712 	 */
713 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
714 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
715 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
716 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
717 			printf("%s: unable to create tx DMA map %d, "
718 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
719 			goto fail_4;
720 		}
721 	}
722 
723 	/*
724 	 * Create the receive buffer DMA maps.
725 	 */
726 	for (i = 0; i < SIP_NRXDESC; i++) {
727 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
728 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
729 			printf("%s: unable to create rx DMA map %d, "
730 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
731 			goto fail_5;
732 		}
733 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
734 	}
735 
736 	/*
737 	 * Reset the chip to a known state.
738 	 */
739 	SIP_DECL(reset)(sc);
740 
741 	/*
742 	 * Read the Ethernet address from the EEPROM.  This might
743 	 * also fetch other stuff from the EEPROM and stash it
744 	 * in the softc.
745 	 */
746 	sc->sc_cfg = 0;
747 #if !defined(DP83820)
748 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
749 	    SIP_SIS900_REV(sc,SIS_REV_900B))
750 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
751 #endif
752 
753 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
754 
755 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
756 	    ether_sprintf(enaddr));
757 
758 	/*
759 	 * Initialize the configuration register: aggressive PCI
760 	 * bus request algorithm, default backoff, default OW timer,
761 	 * default parity error detection.
762 	 *
763 	 * NOTE: "Big endian mode" is useless on the SiS900 and
764 	 * friends -- it affects packet data, not descriptors.
765 	 */
766 #ifdef DP83820
767 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
768 	if (reg & CFG_PCI64_DET) {
769 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
770 		/*
771 		 * XXX Need some PCI flags indicating support for
772 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
773 		 * XXX data path.
774 		 */
775 	}
776 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
777 		const char *sep = "";
778 		printf("%s: using ", sc->sc_dev.dv_xname);
779 		if (sc->sc_cfg & CFG_EXT_125) {
780 			printf("%s125MHz clock", sep);
781 			sep = ", ";
782 		}
783 		if (sc->sc_cfg & CFG_TBI_EN) {
784 			printf("%sten-bit interface", sep);
785 			sep = ", ";
786 		}
787 		printf("\n");
788 	}
789 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
790 		sc->sc_cfg |= CFG_MRM_DIS;
791 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
792 		sc->sc_cfg |= CFG_MWI_DIS;
793 
794 	/*
795 	 * Use the extended descriptor format on the DP83820.  This
796 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
797 	 * checksumming.
798 	 */
799 	sc->sc_cfg |= CFG_EXTSTS_EN;
800 #endif /* DP83820 */
801 
802 	/*
803 	 * Initialize our media structures and probe the MII.
804 	 */
805 	sc->sc_mii.mii_ifp = ifp;
806 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
807 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
808 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
809 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
810 	    SIP_DECL(mediastatus));
811 #ifdef DP83820
812 	if (sc->sc_cfg & CFG_TBI_EN) {
813 		/* Using ten-bit interface. */
814 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
815 	} else {
816 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
817 		    MII_OFFSET_ANY, 0);
818 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
819 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
820 			    0, NULL);
821 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
822 		} else
823 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
824 	}
825 #else
826 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
827 	    MII_OFFSET_ANY, 0);
828 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
829 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
830 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
831 	} else
832 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
833 #endif /* DP83820 */
834 
835 	ifp = &sc->sc_ethercom.ec_if;
836 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
837 	ifp->if_softc = sc;
838 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
839 	ifp->if_ioctl = SIP_DECL(ioctl);
840 	ifp->if_start = SIP_DECL(start);
841 	ifp->if_watchdog = SIP_DECL(watchdog);
842 	ifp->if_init = SIP_DECL(init);
843 	ifp->if_stop = SIP_DECL(stop);
844 	IFQ_SET_READY(&ifp->if_snd);
845 
846 	/*
847 	 * We can support 802.1Q VLAN-sized frames.
848 	 */
849 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
850 
851 #ifdef DP83820
852 	/*
853 	 * And the DP83820 can do VLAN tagging in hardware, and
854 	 * support the jumbo Ethernet MTU.
855 	 */
856 	sc->sc_ethercom.ec_capabilities |=
857 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
858 
859 	/*
860 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
861 	 * in hardware.
862 	 */
863 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
864 	    IFCAP_CSUM_UDPv4;
865 #endif /* DP83820 */
866 
867 	/*
868 	 * Attach the interface.
869 	 */
870 	if_attach(ifp);
871 	ether_ifattach(ifp, enaddr);
872 
873 #ifdef SIP_EVENT_COUNTERS
874 	/*
875 	 * Attach event counters.
876 	 */
877 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
878 	    NULL, sc->sc_dev.dv_xname, "txsstall");
879 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
880 	    NULL, sc->sc_dev.dv_xname, "txdstall");
881 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
882 	    NULL, sc->sc_dev.dv_xname, "txintr");
883 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
884 	    NULL, sc->sc_dev.dv_xname, "rxintr");
885 #ifdef DP83820
886 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
887 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
888 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
889 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
890 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
891 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
892 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
893 	    NULL, sc->sc_dev.dv_xname, "txipsum");
894 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
895 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
896 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
897 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
898 #endif /* DP83820 */
899 #endif /* SIP_EVENT_COUNTERS */
900 
901 	/*
902 	 * Make sure the interface is shutdown during reboot.
903 	 */
904 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
905 	if (sc->sc_sdhook == NULL)
906 		printf("%s: WARNING: unable to establish shutdown hook\n",
907 		    sc->sc_dev.dv_xname);
908 	return;
909 
910 	/*
911 	 * Free any resources we've allocated during the failed attach
912 	 * attempt.  Do this in reverse order and fall through.
913 	 */
914  fail_5:
915 	for (i = 0; i < SIP_NRXDESC; i++) {
916 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
917 			bus_dmamap_destroy(sc->sc_dmat,
918 			    sc->sc_rxsoft[i].rxs_dmamap);
919 	}
920  fail_4:
921 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
922 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
923 			bus_dmamap_destroy(sc->sc_dmat,
924 			    sc->sc_txsoft[i].txs_dmamap);
925 	}
926 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
927  fail_3:
928 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
929  fail_2:
930 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
931 	    sizeof(struct sip_control_data));
932  fail_1:
933 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
934  fail_0:
935 	return;
936 }
937 
938 /*
939  * sip_shutdown:
940  *
941  *	Make sure the interface is stopped at reboot time.
942  */
943 void
944 SIP_DECL(shutdown)(void *arg)
945 {
946 	struct sip_softc *sc = arg;
947 
948 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
949 }
950 
951 /*
952  * sip_start:		[ifnet interface function]
953  *
954  *	Start packet transmission on the interface.
955  */
956 void
957 SIP_DECL(start)(struct ifnet *ifp)
958 {
959 	struct sip_softc *sc = ifp->if_softc;
960 	struct mbuf *m0, *m;
961 	struct sip_txsoft *txs;
962 	bus_dmamap_t dmamap;
963 	int error, firsttx, nexttx, lasttx, ofree, seg;
964 #ifdef DP83820
965 	u_int32_t extsts;
966 #endif
967 
968 	/*
969 	 * If we've been told to pause, don't transmit any more packets.
970 	 */
971 	if (sc->sc_flags & SIPF_PAUSED)
972 		ifp->if_flags |= IFF_OACTIVE;
973 
974 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
975 		return;
976 
977 	/*
978 	 * Remember the previous number of free descriptors and
979 	 * the first descriptor we'll use.
980 	 */
981 	ofree = sc->sc_txfree;
982 	firsttx = sc->sc_txnext;
983 
984 	/*
985 	 * Loop through the send queue, setting up transmit descriptors
986 	 * until we drain the queue, or use up all available transmit
987 	 * descriptors.
988 	 */
989 	for (;;) {
990 		/* Get a work queue entry. */
991 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
992 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
993 			break;
994 		}
995 
996 		/*
997 		 * Grab a packet off the queue.
998 		 */
999 		IFQ_POLL(&ifp->if_snd, m0);
1000 		if (m0 == NULL)
1001 			break;
1002 #ifndef DP83820
1003 		m = NULL;
1004 #endif
1005 
1006 		dmamap = txs->txs_dmamap;
1007 
1008 #ifdef DP83820
1009 		/*
1010 		 * Load the DMA map.  If this fails, the packet either
1011 		 * didn't fit in the allotted number of segments, or we
1012 		 * were short on resources.  For the too-many-segments
1013 		 * case, we simply report an error and drop the packet,
1014 		 * since we can't sanely copy a jumbo packet to a single
1015 		 * buffer.
1016 		 */
1017 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1018 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1019 		if (error) {
1020 			if (error == EFBIG) {
1021 				printf("%s: Tx packet consumes too many "
1022 				    "DMA segments, dropping...\n",
1023 				    sc->sc_dev.dv_xname);
1024 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1025 				m_freem(m0);
1026 				continue;
1027 			}
1028 			/*
1029 			 * Short on resources, just stop for now.
1030 			 */
1031 			break;
1032 		}
1033 #else /* DP83820 */
1034 		/*
1035 		 * Load the DMA map.  If this fails, the packet either
1036 		 * didn't fit in the alloted number of segments, or we
1037 		 * were short on resources.  In this case, we'll copy
1038 		 * and try again.
1039 		 */
1040 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1041 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1042 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1043 			if (m == NULL) {
1044 				printf("%s: unable to allocate Tx mbuf\n",
1045 				    sc->sc_dev.dv_xname);
1046 				break;
1047 			}
1048 			if (m0->m_pkthdr.len > MHLEN) {
1049 				MCLGET(m, M_DONTWAIT);
1050 				if ((m->m_flags & M_EXT) == 0) {
1051 					printf("%s: unable to allocate Tx "
1052 					    "cluster\n", sc->sc_dev.dv_xname);
1053 					m_freem(m);
1054 					break;
1055 				}
1056 			}
1057 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1058 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1059 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1060 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1061 			if (error) {
1062 				printf("%s: unable to load Tx buffer, "
1063 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1064 				break;
1065 			}
1066 		}
1067 #endif /* DP83820 */
1068 
1069 		/*
1070 		 * Ensure we have enough descriptors free to describe
1071 		 * the packet.  Note, we always reserve one descriptor
1072 		 * at the end of the ring as a termination point, to
1073 		 * prevent wrap-around.
1074 		 */
1075 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1076 			/*
1077 			 * Not enough free descriptors to transmit this
1078 			 * packet.  We haven't committed anything yet,
1079 			 * so just unload the DMA map, put the packet
1080 			 * back on the queue, and punt.  Notify the upper
1081 			 * layer that there are not more slots left.
1082 			 *
1083 			 * XXX We could allocate an mbuf and copy, but
1084 			 * XXX is it worth it?
1085 			 */
1086 			ifp->if_flags |= IFF_OACTIVE;
1087 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1088 #ifndef DP83820
1089 			if (m != NULL)
1090 				m_freem(m);
1091 #endif
1092 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1093 			break;
1094 		}
1095 
1096 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1097 #ifndef DP83820
1098 		if (m != NULL) {
1099 			m_freem(m0);
1100 			m0 = m;
1101 		}
1102 #endif
1103 
1104 		/*
1105 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1106 		 */
1107 
1108 		/* Sync the DMA map. */
1109 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1110 		    BUS_DMASYNC_PREWRITE);
1111 
1112 		/*
1113 		 * Initialize the transmit descriptors.
1114 		 */
1115 		for (nexttx = sc->sc_txnext, seg = 0;
1116 		     seg < dmamap->dm_nsegs;
1117 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1118 			/*
1119 			 * If this is the first descriptor we're
1120 			 * enqueueing, don't set the OWN bit just
1121 			 * yet.  That could cause a race condition.
1122 			 * We'll do it below.
1123 			 */
1124 			sc->sc_txdescs[nexttx].sipd_bufptr =
1125 			    htole32(dmamap->dm_segs[seg].ds_addr);
1126 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1127 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1128 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1129 #ifdef DP83820
1130 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1131 #endif /* DP83820 */
1132 			lasttx = nexttx;
1133 		}
1134 
1135 		/* Clear the MORE bit on the last segment. */
1136 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1137 
1138 #ifdef DP83820
1139 		/*
1140 		 * If VLANs are enabled and the packet has a VLAN tag, set
1141 		 * up the descriptor to encapsulate the packet for us.
1142 		 *
1143 		 * This apparently has to be on the last descriptor of
1144 		 * the packet.
1145 		 */
1146 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1147 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1148 			sc->sc_txdescs[lasttx].sipd_extsts |=
1149 			    htole32(EXTSTS_VPKT |
1150 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
1151 		}
1152 
1153 		/*
1154 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1155 		 * checksumming, set up the descriptor to do this work
1156 		 * for us.
1157 		 *
1158 		 * This apparently has to be on the first descriptor of
1159 		 * the packet.
1160 		 *
1161 		 * Byte-swap constants so the compiler can optimize.
1162 		 */
1163 		extsts = 0;
1164 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1165 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1166 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1167 			extsts |= htole32(EXTSTS_IPPKT);
1168 		}
1169 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1170 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1171 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1172 			extsts |= htole32(EXTSTS_TCPPKT);
1173 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1174 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1175 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1176 			extsts |= htole32(EXTSTS_UDPPKT);
1177 		}
1178 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1179 #endif /* DP83820 */
1180 
1181 		/* Sync the descriptors we're using. */
1182 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1183 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1184 
1185 		/*
1186 		 * Store a pointer to the packet so we can free it later,
1187 		 * and remember what txdirty will be once the packet is
1188 		 * done.
1189 		 */
1190 		txs->txs_mbuf = m0;
1191 		txs->txs_firstdesc = sc->sc_txnext;
1192 		txs->txs_lastdesc = lasttx;
1193 
1194 		/* Advance the tx pointer. */
1195 		sc->sc_txfree -= dmamap->dm_nsegs;
1196 		sc->sc_txnext = nexttx;
1197 
1198 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1199 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1200 
1201 #if NBPFILTER > 0
1202 		/*
1203 		 * Pass the packet to any BPF listeners.
1204 		 */
1205 		if (ifp->if_bpf)
1206 			bpf_mtap(ifp->if_bpf, m0);
1207 #endif /* NBPFILTER > 0 */
1208 	}
1209 
1210 	if (txs == NULL || sc->sc_txfree == 0) {
1211 		/* No more slots left; notify upper layer. */
1212 		ifp->if_flags |= IFF_OACTIVE;
1213 	}
1214 
1215 	if (sc->sc_txfree != ofree) {
1216 		/*
1217 		 * Cause a descriptor interrupt to happen on the
1218 		 * last packet we enqueued.
1219 		 */
1220 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1221 		SIP_CDTXSYNC(sc, lasttx, 1,
1222 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1223 
1224 		/*
1225 		 * The entire packet chain is set up.  Give the
1226 		 * first descrptor to the chip now.
1227 		 */
1228 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1229 		SIP_CDTXSYNC(sc, firsttx, 1,
1230 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1231 
1232 		/*
1233 		 * Start the transmit process.  Note, the manual says
1234 		 * that if there are no pending transmissions in the
1235 		 * chip's internal queue (indicated by TXE being clear),
1236 		 * then the driver software must set the TXDP to the
1237 		 * first descriptor to be transmitted.  However, if we
1238 		 * do this, it causes serious performance degredation on
1239 		 * the DP83820 under load, not setting TXDP doesn't seem
1240 		 * to adversely affect the SiS 900 or DP83815.
1241 		 *
1242 		 * Well, I guess it wouldn't be the first time a manual
1243 		 * has lied -- and they could be speaking of the NULL-
1244 		 * terminated descriptor list case, rather than OWN-
1245 		 * terminated rings.
1246 		 */
1247 #if 0
1248 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1249 		     CR_TXE) == 0) {
1250 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1251 			    SIP_CDTXADDR(sc, firsttx));
1252 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1253 		}
1254 #else
1255 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1256 #endif
1257 
1258 		/* Set a watchdog timer in case the chip flakes out. */
1259 		ifp->if_timer = 5;
1260 	}
1261 }
1262 
1263 /*
1264  * sip_watchdog:	[ifnet interface function]
1265  *
1266  *	Watchdog timer handler.
1267  */
1268 void
1269 SIP_DECL(watchdog)(struct ifnet *ifp)
1270 {
1271 	struct sip_softc *sc = ifp->if_softc;
1272 
1273 	/*
1274 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1275 	 * If we get a timeout, try and sweep up transmit descriptors.
1276 	 * If we manage to sweep them all up, ignore the lack of
1277 	 * interrupt.
1278 	 */
1279 	SIP_DECL(txintr)(sc);
1280 
1281 	if (sc->sc_txfree != SIP_NTXDESC) {
1282 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1283 		ifp->if_oerrors++;
1284 
1285 		/* Reset the interface. */
1286 		(void) SIP_DECL(init)(ifp);
1287 	} else if (ifp->if_flags & IFF_DEBUG)
1288 		printf("%s: recovered from device timeout\n",
1289 		    sc->sc_dev.dv_xname);
1290 
1291 	/* Try to get more packets going. */
1292 	SIP_DECL(start)(ifp);
1293 }
1294 
1295 /*
1296  * sip_ioctl:		[ifnet interface function]
1297  *
1298  *	Handle control requests from the operator.
1299  */
1300 int
1301 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1302 {
1303 	struct sip_softc *sc = ifp->if_softc;
1304 	struct ifreq *ifr = (struct ifreq *)data;
1305 	int s, error;
1306 
1307 	s = splnet();
1308 
1309 	switch (cmd) {
1310 	case SIOCSIFMEDIA:
1311 	case SIOCGIFMEDIA:
1312 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1313 		break;
1314 
1315 	default:
1316 		error = ether_ioctl(ifp, cmd, data);
1317 		if (error == ENETRESET) {
1318 			/*
1319 			 * Multicast list has changed; set the hardware filter
1320 			 * accordingly.
1321 			 */
1322 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1323 			error = 0;
1324 		}
1325 		break;
1326 	}
1327 
1328 	/* Try to get more packets going. */
1329 	SIP_DECL(start)(ifp);
1330 
1331 	splx(s);
1332 	return (error);
1333 }
1334 
1335 /*
1336  * sip_intr:
1337  *
1338  *	Interrupt service routine.
1339  */
1340 int
1341 SIP_DECL(intr)(void *arg)
1342 {
1343 	struct sip_softc *sc = arg;
1344 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1345 	u_int32_t isr;
1346 	int handled = 0;
1347 
1348 	for (;;) {
1349 		/* Reading clears interrupt. */
1350 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1351 		if ((isr & sc->sc_imr) == 0)
1352 			break;
1353 
1354 		handled = 1;
1355 
1356 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1357 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1358 
1359 			/* Grab any new packets. */
1360 			SIP_DECL(rxintr)(sc);
1361 
1362 			if (isr & ISR_RXORN) {
1363 				printf("%s: receive FIFO overrun\n",
1364 				    sc->sc_dev.dv_xname);
1365 
1366 				/* XXX adjust rx_drain_thresh? */
1367 			}
1368 
1369 			if (isr & ISR_RXIDLE) {
1370 				printf("%s: receive ring overrun\n",
1371 				    sc->sc_dev.dv_xname);
1372 
1373 				/* Get the receive process going again. */
1374 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1375 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1376 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1377 				    SIP_CR, CR_RXE);
1378 			}
1379 		}
1380 
1381 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
1382 			SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1383 
1384 			/* Sweep up transmit descriptors. */
1385 			SIP_DECL(txintr)(sc);
1386 
1387 			if (isr & ISR_TXURN) {
1388 				u_int32_t thresh;
1389 
1390 				printf("%s: transmit FIFO underrun",
1391 				    sc->sc_dev.dv_xname);
1392 
1393 				thresh = sc->sc_tx_drain_thresh + 1;
1394 				if (thresh <= TXCFG_DRTH &&
1395 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1396 				     (sc->sc_tx_fill_thresh * 32))) {
1397 					printf("; increasing Tx drain "
1398 					    "threshold to %u bytes\n",
1399 					    thresh * 32);
1400 					sc->sc_tx_drain_thresh = thresh;
1401 					(void) SIP_DECL(init)(ifp);
1402 				} else {
1403 					(void) SIP_DECL(init)(ifp);
1404 					printf("\n");
1405 				}
1406 			}
1407 		}
1408 
1409 #if !defined(DP83820)
1410 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1411 			if (isr & ISR_PAUSE_ST) {
1412 				sc->sc_flags |= SIPF_PAUSED;
1413 				ifp->if_flags |= IFF_OACTIVE;
1414 			}
1415 			if (isr & ISR_PAUSE_END) {
1416 				sc->sc_flags &= ~SIPF_PAUSED;
1417 				ifp->if_flags &= ~IFF_OACTIVE;
1418 			}
1419 		}
1420 #endif /* ! DP83820 */
1421 
1422 		if (isr & ISR_HIBERR) {
1423 #define	PRINTERR(bit, str)						\
1424 			if (isr & (bit))				\
1425 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1426 			PRINTERR(ISR_DPERR, "parity error");
1427 			PRINTERR(ISR_SSERR, "system error");
1428 			PRINTERR(ISR_RMABT, "master abort");
1429 			PRINTERR(ISR_RTABT, "target abort");
1430 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1431 			(void) SIP_DECL(init)(ifp);
1432 #undef PRINTERR
1433 		}
1434 	}
1435 
1436 	/* Try to get more packets going. */
1437 	SIP_DECL(start)(ifp);
1438 
1439 	return (handled);
1440 }
1441 
1442 /*
1443  * sip_txintr:
1444  *
1445  *	Helper; handle transmit interrupts.
1446  */
1447 void
1448 SIP_DECL(txintr)(struct sip_softc *sc)
1449 {
1450 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1451 	struct sip_txsoft *txs;
1452 	u_int32_t cmdsts;
1453 
1454 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1455 		ifp->if_flags &= ~IFF_OACTIVE;
1456 
1457 	/*
1458 	 * Go through our Tx list and free mbufs for those
1459 	 * frames which have been transmitted.
1460 	 */
1461 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1462 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1463 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1464 
1465 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1466 		if (cmdsts & CMDSTS_OWN)
1467 			break;
1468 
1469 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1470 
1471 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1472 
1473 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1474 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1475 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1476 		m_freem(txs->txs_mbuf);
1477 		txs->txs_mbuf = NULL;
1478 
1479 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1480 
1481 		/*
1482 		 * Check for errors and collisions.
1483 		 */
1484 		if (cmdsts &
1485 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1486 			ifp->if_oerrors++;
1487 			if (cmdsts & CMDSTS_Tx_EC)
1488 				ifp->if_collisions += 16;
1489 			if (ifp->if_flags & IFF_DEBUG) {
1490 				if (cmdsts & CMDSTS_Tx_ED)
1491 					printf("%s: excessive deferral\n",
1492 					    sc->sc_dev.dv_xname);
1493 				if (cmdsts & CMDSTS_Tx_EC)
1494 					printf("%s: excessive collisions\n",
1495 					    sc->sc_dev.dv_xname);
1496 			}
1497 		} else {
1498 			/* Packet was transmitted successfully. */
1499 			ifp->if_opackets++;
1500 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1501 		}
1502 	}
1503 
1504 	/*
1505 	 * If there are no more pending transmissions, cancel the watchdog
1506 	 * timer.
1507 	 */
1508 	if (txs == NULL)
1509 		ifp->if_timer = 0;
1510 }
1511 
1512 #if defined(DP83820)
1513 /*
1514  * sip_rxintr:
1515  *
1516  *	Helper; handle receive interrupts.
1517  */
1518 void
1519 SIP_DECL(rxintr)(struct sip_softc *sc)
1520 {
1521 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1522 	struct sip_rxsoft *rxs;
1523 	struct mbuf *m, *tailm;
1524 	u_int32_t cmdsts, extsts;
1525 	int i, len;
1526 
1527 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1528 		rxs = &sc->sc_rxsoft[i];
1529 
1530 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1531 
1532 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1533 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1534 
1535 		/*
1536 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1537 		 * consumer of the receive ring, so if the bit is clear,
1538 		 * we have processed all of the packets.
1539 		 */
1540 		if ((cmdsts & CMDSTS_OWN) == 0) {
1541 			/*
1542 			 * We have processed all of the receive buffers.
1543 			 */
1544 			break;
1545 		}
1546 
1547 		if (__predict_false(sc->sc_rxdiscard)) {
1548 			SIP_INIT_RXDESC(sc, i);
1549 			if ((cmdsts & CMDSTS_MORE) == 0) {
1550 				/* Reset our state. */
1551 				sc->sc_rxdiscard = 0;
1552 			}
1553 			continue;
1554 		}
1555 
1556 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1557 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1558 
1559 		m = rxs->rxs_mbuf;
1560 
1561 		/*
1562 		 * Add a new receive buffer to the ring.
1563 		 */
1564 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1565 			/*
1566 			 * Failed, throw away what we've done so
1567 			 * far, and discard the rest of the packet.
1568 			 */
1569 			ifp->if_ierrors++;
1570 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1571 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1572 			SIP_INIT_RXDESC(sc, i);
1573 			if (cmdsts & CMDSTS_MORE)
1574 				sc->sc_rxdiscard = 1;
1575 			if (sc->sc_rxhead != NULL)
1576 				m_freem(sc->sc_rxhead);
1577 			SIP_RXCHAIN_RESET(sc);
1578 			continue;
1579 		}
1580 
1581 		SIP_RXCHAIN_LINK(sc, m);
1582 
1583 		/*
1584 		 * If this is not the end of the packet, keep
1585 		 * looking.
1586 		 */
1587 		if (cmdsts & CMDSTS_MORE) {
1588 			sc->sc_rxlen += m->m_len;
1589 			continue;
1590 		}
1591 
1592 		/*
1593 		 * Okay, we have the entire packet now...
1594 		 */
1595 		*sc->sc_rxtailp = NULL;
1596 		m = sc->sc_rxhead;
1597 		tailm = sc->sc_rxtail;
1598 
1599 		SIP_RXCHAIN_RESET(sc);
1600 
1601 		/*
1602 		 * If an error occurred, update stats and drop the packet.
1603 		 */
1604 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1605 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1606 			ifp->if_ierrors++;
1607 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1608 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1609 				/* Receive overrun handled elsewhere. */
1610 				printf("%s: receive descriptor error\n",
1611 				    sc->sc_dev.dv_xname);
1612 			}
1613 #define	PRINTERR(bit, str)						\
1614 			if (cmdsts & (bit))				\
1615 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1616 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1617 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1618 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1619 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1620 #undef PRINTERR
1621 			m_freem(m);
1622 			continue;
1623 		}
1624 
1625 		/*
1626 		 * No errors.
1627 		 *
1628 		 * Note, the DP83820 includes the CRC with
1629 		 * every packet.
1630 		 */
1631 		len = CMDSTS_SIZE(cmdsts);
1632 		tailm->m_len = len - sc->sc_rxlen;
1633 
1634 		/*
1635 		 * If the packet is small enough to fit in a
1636 		 * single header mbuf, allocate one and copy
1637 		 * the data into it.  This greatly reduces
1638 		 * memory consumption when we receive lots
1639 		 * of small packets.
1640 		 */
1641 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1642 			struct mbuf *nm;
1643 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1644 			if (nm == NULL) {
1645 				ifp->if_ierrors++;
1646 				m_freem(m);
1647 				continue;
1648 			}
1649 			nm->m_data += 2;
1650 			nm->m_pkthdr.len = nm->m_len = len;
1651 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1652 			m_freem(m);
1653 			m = nm;
1654 		}
1655 #ifndef __NO_STRICT_ALIGNMENT
1656 		else {
1657 			/*
1658 			 * The DP83820's receive buffers must be 4-byte
1659 			 * aligned.  But this means that the data after
1660 			 * the Ethernet header is misaligned.  To compensate,
1661 			 * we have artificially shortened the buffer size
1662 			 * in the descriptor, and we do an overlapping copy
1663 			 * of the data two bytes further in (in the first
1664 			 * buffer of the chain only).
1665 			 */
1666 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1667 			    m->m_len);
1668 			m->m_data += 2;
1669 		}
1670 #endif /* ! __NO_STRICT_ALIGNMENT */
1671 
1672 		/*
1673 		 * If VLANs are enabled, VLAN packets have been unwrapped
1674 		 * for us.  Associate the tag with the packet.
1675 		 */
1676 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1677 		    (extsts & EXTSTS_VPKT) != 0) {
1678 			struct mbuf *vtag;
1679 
1680 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1681 			if (vtag == NULL) {
1682 				ifp->if_ierrors++;
1683 				printf("%s: unable to allocate VLAN tag\n",
1684 				    sc->sc_dev.dv_xname);
1685 				m_freem(m);
1686 				continue;
1687 			}
1688 
1689 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1690 			vtag->m_len = sizeof(int);
1691 		}
1692 
1693 		/*
1694 		 * Set the incoming checksum information for the
1695 		 * packet.
1696 		 */
1697 		if ((extsts & EXTSTS_IPPKT) != 0) {
1698 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1699 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1700 			if (extsts & EXTSTS_Rx_IPERR)
1701 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1702 			if (extsts & EXTSTS_TCPPKT) {
1703 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1704 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1705 				if (extsts & EXTSTS_Rx_TCPERR)
1706 					m->m_pkthdr.csum_flags |=
1707 					    M_CSUM_TCP_UDP_BAD;
1708 			} else if (extsts & EXTSTS_UDPPKT) {
1709 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1710 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1711 				if (extsts & EXTSTS_Rx_UDPERR)
1712 					m->m_pkthdr.csum_flags |=
1713 					    M_CSUM_TCP_UDP_BAD;
1714 			}
1715 		}
1716 
1717 		ifp->if_ipackets++;
1718 		m->m_flags |= M_HASFCS;
1719 		m->m_pkthdr.rcvif = ifp;
1720 		m->m_pkthdr.len = len;
1721 
1722 #if NBPFILTER > 0
1723 		/*
1724 		 * Pass this up to any BPF listeners, but only
1725 		 * pass if up the stack if it's for us.
1726 		 */
1727 		if (ifp->if_bpf)
1728 			bpf_mtap(ifp->if_bpf, m);
1729 #endif /* NBPFILTER > 0 */
1730 
1731 		/* Pass it on. */
1732 		(*ifp->if_input)(ifp, m);
1733 	}
1734 
1735 	/* Update the receive pointer. */
1736 	sc->sc_rxptr = i;
1737 }
1738 #else /* ! DP83820 */
1739 /*
1740  * sip_rxintr:
1741  *
1742  *	Helper; handle receive interrupts.
1743  */
1744 void
1745 SIP_DECL(rxintr)(struct sip_softc *sc)
1746 {
1747 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1748 	struct sip_rxsoft *rxs;
1749 	struct mbuf *m;
1750 	u_int32_t cmdsts;
1751 	int i, len;
1752 
1753 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1754 		rxs = &sc->sc_rxsoft[i];
1755 
1756 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1757 
1758 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1759 
1760 		/*
1761 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1762 		 * consumer of the receive ring, so if the bit is clear,
1763 		 * we have processed all of the packets.
1764 		 */
1765 		if ((cmdsts & CMDSTS_OWN) == 0) {
1766 			/*
1767 			 * We have processed all of the receive buffers.
1768 			 */
1769 			break;
1770 		}
1771 
1772 		/*
1773 		 * If any collisions were seen on the wire, count one.
1774 		 */
1775 		if (cmdsts & CMDSTS_Rx_COL)
1776 			ifp->if_collisions++;
1777 
1778 		/*
1779 		 * If an error occurred, update stats, clear the status
1780 		 * word, and leave the packet buffer in place.  It will
1781 		 * simply be reused the next time the ring comes around.
1782 		 */
1783 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1784 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1785 			ifp->if_ierrors++;
1786 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1787 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1788 				/* Receive overrun handled elsewhere. */
1789 				printf("%s: receive descriptor error\n",
1790 				    sc->sc_dev.dv_xname);
1791 			}
1792 #define	PRINTERR(bit, str)						\
1793 			if (cmdsts & (bit))				\
1794 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1795 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1796 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1797 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1798 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1799 #undef PRINTERR
1800 			SIP_INIT_RXDESC(sc, i);
1801 			continue;
1802 		}
1803 
1804 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1805 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1806 
1807 		/*
1808 		 * No errors; receive the packet.  Note, the SiS 900
1809 		 * includes the CRC with every packet.
1810 		 */
1811 		len = CMDSTS_SIZE(cmdsts);
1812 
1813 #ifdef __NO_STRICT_ALIGNMENT
1814 		/*
1815 		 * If the packet is small enough to fit in a
1816 		 * single header mbuf, allocate one and copy
1817 		 * the data into it.  This greatly reduces
1818 		 * memory consumption when we receive lots
1819 		 * of small packets.
1820 		 *
1821 		 * Otherwise, we add a new buffer to the receive
1822 		 * chain.  If this fails, we drop the packet and
1823 		 * recycle the old buffer.
1824 		 */
1825 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1826 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1827 			if (m == NULL)
1828 				goto dropit;
1829 			memcpy(mtod(m, caddr_t),
1830 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1831 			SIP_INIT_RXDESC(sc, i);
1832 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1833 			    rxs->rxs_dmamap->dm_mapsize,
1834 			    BUS_DMASYNC_PREREAD);
1835 		} else {
1836 			m = rxs->rxs_mbuf;
1837 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1838  dropit:
1839 				ifp->if_ierrors++;
1840 				SIP_INIT_RXDESC(sc, i);
1841 				bus_dmamap_sync(sc->sc_dmat,
1842 				    rxs->rxs_dmamap, 0,
1843 				    rxs->rxs_dmamap->dm_mapsize,
1844 				    BUS_DMASYNC_PREREAD);
1845 				continue;
1846 			}
1847 		}
1848 #else
1849 		/*
1850 		 * The SiS 900's receive buffers must be 4-byte aligned.
1851 		 * But this means that the data after the Ethernet header
1852 		 * is misaligned.  We must allocate a new buffer and
1853 		 * copy the data, shifted forward 2 bytes.
1854 		 */
1855 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1856 		if (m == NULL) {
1857  dropit:
1858 			ifp->if_ierrors++;
1859 			SIP_INIT_RXDESC(sc, i);
1860 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1861 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1862 			continue;
1863 		}
1864 		if (len > (MHLEN - 2)) {
1865 			MCLGET(m, M_DONTWAIT);
1866 			if ((m->m_flags & M_EXT) == 0) {
1867 				m_freem(m);
1868 				goto dropit;
1869 			}
1870 		}
1871 		m->m_data += 2;
1872 
1873 		/*
1874 		 * Note that we use clusters for incoming frames, so the
1875 		 * buffer is virtually contiguous.
1876 		 */
1877 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1878 
1879 		/* Allow the receive descriptor to continue using its mbuf. */
1880 		SIP_INIT_RXDESC(sc, i);
1881 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1882 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1883 #endif /* __NO_STRICT_ALIGNMENT */
1884 
1885 		ifp->if_ipackets++;
1886 		m->m_flags |= M_HASFCS;
1887 		m->m_pkthdr.rcvif = ifp;
1888 		m->m_pkthdr.len = m->m_len = len;
1889 
1890 #if NBPFILTER > 0
1891 		/*
1892 		 * Pass this up to any BPF listeners, but only
1893 		 * pass if up the stack if it's for us.
1894 		 */
1895 		if (ifp->if_bpf)
1896 			bpf_mtap(ifp->if_bpf, m);
1897 #endif /* NBPFILTER > 0 */
1898 
1899 		/* Pass it on. */
1900 		(*ifp->if_input)(ifp, m);
1901 	}
1902 
1903 	/* Update the receive pointer. */
1904 	sc->sc_rxptr = i;
1905 }
1906 #endif /* DP83820 */
1907 
1908 /*
1909  * sip_tick:
1910  *
1911  *	One second timer, used to tick the MII.
1912  */
1913 void
1914 SIP_DECL(tick)(void *arg)
1915 {
1916 	struct sip_softc *sc = arg;
1917 	int s;
1918 
1919 	s = splnet();
1920 	mii_tick(&sc->sc_mii);
1921 	splx(s);
1922 
1923 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1924 }
1925 
1926 /*
1927  * sip_reset:
1928  *
1929  *	Perform a soft reset on the SiS 900.
1930  */
1931 void
1932 SIP_DECL(reset)(struct sip_softc *sc)
1933 {
1934 	bus_space_tag_t st = sc->sc_st;
1935 	bus_space_handle_t sh = sc->sc_sh;
1936 	int i;
1937 
1938 	bus_space_write_4(st, sh, SIP_IER, 0);
1939 	bus_space_write_4(st, sh, SIP_IMR, 0);
1940 	bus_space_write_4(st, sh, SIP_RFCR, 0);
1941 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1942 
1943 	for (i = 0; i < SIP_TIMEOUT; i++) {
1944 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1945 			break;
1946 		delay(2);
1947 	}
1948 
1949 	if (i == SIP_TIMEOUT)
1950 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1951 
1952 	delay(1000);
1953 
1954 #ifdef DP83820
1955 	/*
1956 	 * Set the general purpose I/O bits.  Do it here in case we
1957 	 * need to have GPIO set up to talk to the media interface.
1958 	 */
1959 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
1960 	delay(1000);
1961 #endif /* DP83820 */
1962 }
1963 
1964 /*
1965  * sip_init:		[ ifnet interface function ]
1966  *
1967  *	Initialize the interface.  Must be called at splnet().
1968  */
1969 int
1970 SIP_DECL(init)(struct ifnet *ifp)
1971 {
1972 	struct sip_softc *sc = ifp->if_softc;
1973 	bus_space_tag_t st = sc->sc_st;
1974 	bus_space_handle_t sh = sc->sc_sh;
1975 	struct sip_txsoft *txs;
1976 	struct sip_rxsoft *rxs;
1977 	struct sip_desc *sipd;
1978 	u_int32_t reg;
1979 	int i, error = 0;
1980 
1981 	/*
1982 	 * Cancel any pending I/O.
1983 	 */
1984 	SIP_DECL(stop)(ifp, 0);
1985 
1986 	/*
1987 	 * Reset the chip to a known state.
1988 	 */
1989 	SIP_DECL(reset)(sc);
1990 
1991 #if !defined(DP83820)
1992 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
1993 		/*
1994 		 * DP83815 manual, page 78:
1995 		 *    4.4 Recommended Registers Configuration
1996 		 *    For optimum performance of the DP83815, version noted
1997 		 *    as DP83815CVNG (SRR = 203h), the listed register
1998 		 *    modifications must be followed in sequence...
1999 		 *
2000 		 * It's not clear if this should be 302h or 203h because that
2001 		 * chip name is listed as SRR 302h in the description of the
2002 		 * SRR register.  However, my revision 302h DP83815 on the
2003 		 * Netgear FA311 purchased in 02/2001 needs these settings
2004 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2005 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2006 		 * this set or not.  [briggs -- 09 March 2001]
2007 		 *
2008 		 * Note that only the low-order 12 bits of 0xe4 are documented
2009 		 * and that this sets reserved bits in that register.
2010 		 */
2011 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2012 		if (reg == 0x302) {
2013 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
2014 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
2015 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
2016 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
2017 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
2018 		}
2019 	}
2020 #endif /* ! DP83820 */
2021 
2022 	/*
2023 	 * Initialize the transmit descriptor ring.
2024 	 */
2025 	for (i = 0; i < SIP_NTXDESC; i++) {
2026 		sipd = &sc->sc_txdescs[i];
2027 		memset(sipd, 0, sizeof(struct sip_desc));
2028 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2029 	}
2030 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2031 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2032 	sc->sc_txfree = SIP_NTXDESC;
2033 	sc->sc_txnext = 0;
2034 
2035 	/*
2036 	 * Initialize the transmit job descriptors.
2037 	 */
2038 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2039 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2040 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2041 		txs = &sc->sc_txsoft[i];
2042 		txs->txs_mbuf = NULL;
2043 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2044 	}
2045 
2046 	/*
2047 	 * Initialize the receive descriptor and receive job
2048 	 * descriptor rings.
2049 	 */
2050 	for (i = 0; i < SIP_NRXDESC; i++) {
2051 		rxs = &sc->sc_rxsoft[i];
2052 		if (rxs->rxs_mbuf == NULL) {
2053 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2054 				printf("%s: unable to allocate or map rx "
2055 				    "buffer %d, error = %d\n",
2056 				    sc->sc_dev.dv_xname, i, error);
2057 				/*
2058 				 * XXX Should attempt to run with fewer receive
2059 				 * XXX buffers instead of just failing.
2060 				 */
2061 				SIP_DECL(rxdrain)(sc);
2062 				goto out;
2063 			}
2064 		} else
2065 			SIP_INIT_RXDESC(sc, i);
2066 	}
2067 	sc->sc_rxptr = 0;
2068 #ifdef DP83820
2069 	sc->sc_rxdiscard = 0;
2070 	SIP_RXCHAIN_RESET(sc);
2071 #endif /* DP83820 */
2072 
2073 	/*
2074 	 * Set the configuration register; it's already initialized
2075 	 * in sip_attach().
2076 	 */
2077 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2078 
2079 	/*
2080 	 * Initialize the transmit fill and drain thresholds if
2081 	 * we have never done so.
2082 	 */
2083 	if (sc->sc_tx_fill_thresh == 0) {
2084 		/*
2085 		 * XXX This value should be tuned.  We may be able to
2086 		 * improve performance by increasing it.
2087 		 */
2088 		sc->sc_tx_fill_thresh = 64/32;
2089 	}
2090 	if (sc->sc_tx_drain_thresh == 0) {
2091 		/*
2092 		 * Start at a drain threshold of 512 bytes.  We will
2093 		 * increase it if a DMA underrun occurs.
2094 		 *
2095 		 * XXX The minimum value of this variable should be
2096 		 * tuned.  We may be able to improve performance
2097 		 * by starting with a lower value.  That, however,
2098 		 * may trash the first few outgoing packets if the
2099 		 * PCI bus is saturated.
2100 		 */
2101 		sc->sc_tx_drain_thresh = 512 / 32;
2102 	}
2103 
2104 	/*
2105 	 * Initialize the prototype TXCFG register.
2106 	 */
2107 #if defined(DP83820)
2108 	sc->sc_txcfg = TXCFG_MXDMA_512;
2109 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2110 #else
2111 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2112 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2113 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2114 		sc->sc_txcfg = TXCFG_MXDMA_64;
2115 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2116 	} else {
2117 		sc->sc_txcfg = TXCFG_MXDMA_512;
2118 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2119 	}
2120 #endif /* DP83820 */
2121 
2122 	sc->sc_txcfg |= TXCFG_ATP |
2123 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2124 	    sc->sc_tx_drain_thresh;
2125 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2126 
2127 	/*
2128 	 * Initialize the receive drain threshold if we have never
2129 	 * done so.
2130 	 */
2131 	if (sc->sc_rx_drain_thresh == 0) {
2132 		/*
2133 		 * XXX This value should be tuned.  This is set to the
2134 		 * maximum of 248 bytes, and we may be able to improve
2135 		 * performance by decreasing it (although we should never
2136 		 * set this value lower than 2; 14 bytes are required to
2137 		 * filter the packet).
2138 		 */
2139 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2140 	}
2141 
2142 	/*
2143 	 * Initialize the prototype RXCFG register.
2144 	 */
2145 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2146 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2147 
2148 #ifdef DP83820
2149 	/*
2150 	 * Initialize the VLAN/IP receive control register.
2151 	 * We enable checksum computation on all incoming
2152 	 * packets, and do not reject packets w/ bad checksums.
2153 	 */
2154 	reg = 0;
2155 	if (ifp->if_capenable &
2156 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2157 		reg |= VRCR_IPEN;
2158 	if (sc->sc_ethercom.ec_nvlans != 0)
2159 		reg |= VRCR_VTDEN|VRCR_VTREN;
2160 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2161 
2162 	/*
2163 	 * Initialize the VLAN/IP transmit control register.
2164 	 * We enable outgoing checksum computation on a
2165 	 * per-packet basis.
2166 	 */
2167 	reg = 0;
2168 	if (ifp->if_capenable &
2169 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2170 		reg |= VTCR_PPCHK;
2171 	if (sc->sc_ethercom.ec_nvlans != 0)
2172 		reg |= VTCR_VPPTI;
2173 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2174 
2175 	/*
2176 	 * If we're using VLANs, initialize the VLAN data register.
2177 	 * To understand why we bswap the VLAN Ethertype, see section
2178 	 * 4.2.36 of the DP83820 manual.
2179 	 */
2180 	if (sc->sc_ethercom.ec_nvlans != 0)
2181 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2182 #endif /* DP83820 */
2183 
2184 	/*
2185 	 * Give the transmit and receive rings to the chip.
2186 	 */
2187 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2188 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2189 
2190 	/*
2191 	 * Initialize the interrupt mask.
2192 	 */
2193 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2194 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2195 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2196 
2197 	/* Set up the receive filter. */
2198 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2199 
2200 	/*
2201 	 * Set the current media.  Do this after initializing the prototype
2202 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2203 	 * control.
2204 	 */
2205 	mii_mediachg(&sc->sc_mii);
2206 
2207 	/*
2208 	 * Enable interrupts.
2209 	 */
2210 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2211 
2212 	/*
2213 	 * Start the transmit and receive processes.
2214 	 */
2215 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2216 
2217 	/*
2218 	 * Start the one second MII clock.
2219 	 */
2220 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2221 
2222 	/*
2223 	 * ...all done!
2224 	 */
2225 	ifp->if_flags |= IFF_RUNNING;
2226 	ifp->if_flags &= ~IFF_OACTIVE;
2227 
2228  out:
2229 	if (error)
2230 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2231 	return (error);
2232 }
2233 
2234 /*
2235  * sip_drain:
2236  *
2237  *	Drain the receive queue.
2238  */
2239 void
2240 SIP_DECL(rxdrain)(struct sip_softc *sc)
2241 {
2242 	struct sip_rxsoft *rxs;
2243 	int i;
2244 
2245 	for (i = 0; i < SIP_NRXDESC; i++) {
2246 		rxs = &sc->sc_rxsoft[i];
2247 		if (rxs->rxs_mbuf != NULL) {
2248 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2249 			m_freem(rxs->rxs_mbuf);
2250 			rxs->rxs_mbuf = NULL;
2251 		}
2252 	}
2253 }
2254 
2255 /*
2256  * sip_stop:		[ ifnet interface function ]
2257  *
2258  *	Stop transmission on the interface.
2259  */
2260 void
2261 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2262 {
2263 	struct sip_softc *sc = ifp->if_softc;
2264 	bus_space_tag_t st = sc->sc_st;
2265 	bus_space_handle_t sh = sc->sc_sh;
2266 	struct sip_txsoft *txs;
2267 	u_int32_t cmdsts = 0;		/* DEBUG */
2268 
2269 	/*
2270 	 * Stop the one second clock.
2271 	 */
2272 	callout_stop(&sc->sc_tick_ch);
2273 
2274 	/* Down the MII. */
2275 	mii_down(&sc->sc_mii);
2276 
2277 	/*
2278 	 * Disable interrupts.
2279 	 */
2280 	bus_space_write_4(st, sh, SIP_IER, 0);
2281 
2282 	/*
2283 	 * Stop receiver and transmitter.
2284 	 */
2285 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2286 
2287 	/*
2288 	 * Release any queued transmit buffers.
2289 	 */
2290 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2291 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2292 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2293 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2294 		     CMDSTS_INTR) == 0)
2295 			printf("%s: sip_stop: last descriptor does not "
2296 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2297 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2298 #ifdef DIAGNOSTIC
2299 		if (txs->txs_mbuf == NULL) {
2300 			printf("%s: dirty txsoft with no mbuf chain\n",
2301 			    sc->sc_dev.dv_xname);
2302 			panic("sip_stop");
2303 		}
2304 #endif
2305 		cmdsts |=		/* DEBUG */
2306 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2307 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2308 		m_freem(txs->txs_mbuf);
2309 		txs->txs_mbuf = NULL;
2310 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2311 	}
2312 
2313 	if (disable)
2314 		SIP_DECL(rxdrain)(sc);
2315 
2316 	/*
2317 	 * Mark the interface down and cancel the watchdog timer.
2318 	 */
2319 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2320 	ifp->if_timer = 0;
2321 
2322 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2323 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2324 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2325 		    "descriptors\n", sc->sc_dev.dv_xname);
2326 }
2327 
2328 /*
2329  * sip_read_eeprom:
2330  *
2331  *	Read data from the serial EEPROM.
2332  */
2333 void
2334 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2335     u_int16_t *data)
2336 {
2337 	bus_space_tag_t st = sc->sc_st;
2338 	bus_space_handle_t sh = sc->sc_sh;
2339 	u_int16_t reg;
2340 	int i, x;
2341 
2342 	for (i = 0; i < wordcnt; i++) {
2343 		/* Send CHIP SELECT. */
2344 		reg = EROMAR_EECS;
2345 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2346 
2347 		/* Shift in the READ opcode. */
2348 		for (x = 3; x > 0; x--) {
2349 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2350 				reg |= EROMAR_EEDI;
2351 			else
2352 				reg &= ~EROMAR_EEDI;
2353 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2354 			bus_space_write_4(st, sh, SIP_EROMAR,
2355 			    reg | EROMAR_EESK);
2356 			delay(4);
2357 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2358 			delay(4);
2359 		}
2360 
2361 		/* Shift in address. */
2362 		for (x = 6; x > 0; x--) {
2363 			if ((word + i) & (1 << (x - 1)))
2364 				reg |= EROMAR_EEDI;
2365 			else
2366 				reg &= ~EROMAR_EEDI;
2367 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2368 			bus_space_write_4(st, sh, SIP_EROMAR,
2369 			    reg | EROMAR_EESK);
2370 			delay(4);
2371 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2372 			delay(4);
2373 		}
2374 
2375 		/* Shift out data. */
2376 		reg = EROMAR_EECS;
2377 		data[i] = 0;
2378 		for (x = 16; x > 0; x--) {
2379 			bus_space_write_4(st, sh, SIP_EROMAR,
2380 			    reg | EROMAR_EESK);
2381 			delay(4);
2382 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2383 				data[i] |= (1 << (x - 1));
2384 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2385 			delay(4);
2386 		}
2387 
2388 		/* Clear CHIP SELECT. */
2389 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2390 		delay(4);
2391 	}
2392 }
2393 
2394 /*
2395  * sip_add_rxbuf:
2396  *
2397  *	Add a receive buffer to the indicated descriptor.
2398  */
2399 int
2400 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2401 {
2402 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2403 	struct mbuf *m;
2404 	int error;
2405 
2406 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2407 	if (m == NULL)
2408 		return (ENOBUFS);
2409 
2410 	MCLGET(m, M_DONTWAIT);
2411 	if ((m->m_flags & M_EXT) == 0) {
2412 		m_freem(m);
2413 		return (ENOBUFS);
2414 	}
2415 
2416 #if defined(DP83820)
2417 	m->m_len = SIP_RXBUF_LEN;
2418 #endif /* DP83820 */
2419 
2420 	if (rxs->rxs_mbuf != NULL)
2421 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2422 
2423 	rxs->rxs_mbuf = m;
2424 
2425 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2426 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2427 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2428 	if (error) {
2429 		printf("%s: can't load rx DMA map %d, error = %d\n",
2430 		    sc->sc_dev.dv_xname, idx, error);
2431 		panic("sip_add_rxbuf");		/* XXX */
2432 	}
2433 
2434 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2435 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2436 
2437 	SIP_INIT_RXDESC(sc, idx);
2438 
2439 	return (0);
2440 }
2441 
2442 #if !defined(DP83820)
2443 /*
2444  * sip_sis900_set_filter:
2445  *
2446  *	Set up the receive filter.
2447  */
2448 void
2449 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2450 {
2451 	bus_space_tag_t st = sc->sc_st;
2452 	bus_space_handle_t sh = sc->sc_sh;
2453 	struct ethercom *ec = &sc->sc_ethercom;
2454 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2455 	struct ether_multi *enm;
2456 	u_int8_t *cp;
2457 	struct ether_multistep step;
2458 	u_int32_t crc, mchash[16];
2459 
2460 	/*
2461 	 * Initialize the prototype RFCR.
2462 	 */
2463 	sc->sc_rfcr = RFCR_RFEN;
2464 	if (ifp->if_flags & IFF_BROADCAST)
2465 		sc->sc_rfcr |= RFCR_AAB;
2466 	if (ifp->if_flags & IFF_PROMISC) {
2467 		sc->sc_rfcr |= RFCR_AAP;
2468 		goto allmulti;
2469 	}
2470 
2471 	/*
2472 	 * Set up the multicast address filter by passing all multicast
2473 	 * addresses through a CRC generator, and then using the high-order
2474 	 * 6 bits as an index into the 128 bit multicast hash table (only
2475 	 * the lower 16 bits of each 32 bit multicast hash register are
2476 	 * valid).  The high order bits select the register, while the
2477 	 * rest of the bits select the bit within the register.
2478 	 */
2479 
2480 	memset(mchash, 0, sizeof(mchash));
2481 
2482 	ETHER_FIRST_MULTI(step, ec, enm);
2483 	while (enm != NULL) {
2484 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2485 			/*
2486 			 * We must listen to a range of multicast addresses.
2487 			 * For now, just accept all multicasts, rather than
2488 			 * trying to set only those filter bits needed to match
2489 			 * the range.  (At this time, the only use of address
2490 			 * ranges is for IP multicast routing, for which the
2491 			 * range is big enough to require all bits set.)
2492 			 */
2493 			goto allmulti;
2494 		}
2495 
2496 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2497 
2498 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2499 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2500 			/* Just want the 8 most significant bits. */
2501 			crc >>= 24;
2502 		} else {
2503 			/* Just want the 7 most significant bits. */
2504 			crc >>= 25;
2505 		}
2506 
2507 		/* Set the corresponding bit in the hash table. */
2508 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2509 
2510 		ETHER_NEXT_MULTI(step, enm);
2511 	}
2512 
2513 	ifp->if_flags &= ~IFF_ALLMULTI;
2514 	goto setit;
2515 
2516  allmulti:
2517 	ifp->if_flags |= IFF_ALLMULTI;
2518 	sc->sc_rfcr |= RFCR_AAM;
2519 
2520  setit:
2521 #define	FILTER_EMIT(addr, data)						\
2522 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2523 	delay(1);							\
2524 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2525 	delay(1)
2526 
2527 	/*
2528 	 * Disable receive filter, and program the node address.
2529 	 */
2530 	cp = LLADDR(ifp->if_sadl);
2531 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2532 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2533 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2534 
2535 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2536 		/*
2537 		 * Program the multicast hash table.
2538 		 */
2539 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2540 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2541 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2542 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2543 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2544 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2545 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2546 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2547 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2548 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2549 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2550 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2551 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2552 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2553 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2554 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2555 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2556 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2557 		}
2558 	}
2559 #undef FILTER_EMIT
2560 
2561 	/*
2562 	 * Re-enable the receiver filter.
2563 	 */
2564 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2565 }
2566 #endif /* ! DP83820 */
2567 
2568 /*
2569  * sip_dp83815_set_filter:
2570  *
2571  *	Set up the receive filter.
2572  */
2573 void
2574 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2575 {
2576 	bus_space_tag_t st = sc->sc_st;
2577 	bus_space_handle_t sh = sc->sc_sh;
2578 	struct ethercom *ec = &sc->sc_ethercom;
2579 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2580 	struct ether_multi *enm;
2581 	u_int8_t *cp;
2582 	struct ether_multistep step;
2583 	u_int32_t crc, hash, slot, bit;
2584 #ifdef DP83820
2585 #define	MCHASH_NWORDS	128
2586 #else
2587 #define	MCHASH_NWORDS	32
2588 #endif /* DP83820 */
2589 	u_int16_t mchash[MCHASH_NWORDS];
2590 	int i;
2591 
2592 	/*
2593 	 * Initialize the prototype RFCR.
2594 	 * Enable the receive filter, and accept on
2595 	 *    Perfect (destination address) Match
2596 	 * If IFF_BROADCAST, also accept all broadcast packets.
2597 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2598 	 *    IFF_ALLMULTI and accept all multicast, too).
2599 	 */
2600 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2601 	if (ifp->if_flags & IFF_BROADCAST)
2602 		sc->sc_rfcr |= RFCR_AAB;
2603 	if (ifp->if_flags & IFF_PROMISC) {
2604 		sc->sc_rfcr |= RFCR_AAP;
2605 		goto allmulti;
2606 	}
2607 
2608 #ifdef DP83820
2609 	/*
2610 	 * Set up the DP83820 multicast address filter by passing all multicast
2611 	 * addresses through a CRC generator, and then using the high-order
2612 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2613 	 * high-order 7 bits select the slot, while the low-order 4 bits
2614 	 * select the bit within the slot.  Note that only the low 16-bits
2615 	 * of each filter word are used, and there are 128 filter words.
2616 	 */
2617 #else
2618 	/*
2619 	 * Set up the DP83815 multicast address filter by passing all multicast
2620 	 * addresses through a CRC generator, and then using the high-order
2621 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2622 	 * high-order 5 bits select the slot, while the low-order 4 bits
2623 	 * select the bit within the slot.  Note that only the low 16-bits
2624 	 * of each filter word are used, and there are 32 filter words.
2625 	 */
2626 #endif /* DP83820 */
2627 
2628 	memset(mchash, 0, sizeof(mchash));
2629 
2630 	ifp->if_flags &= ~IFF_ALLMULTI;
2631 	ETHER_FIRST_MULTI(step, ec, enm);
2632 	if (enm == NULL)
2633 		goto setit;
2634 	while (enm != NULL) {
2635 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2636 			/*
2637 			 * We must listen to a range of multicast addresses.
2638 			 * For now, just accept all multicasts, rather than
2639 			 * trying to set only those filter bits needed to match
2640 			 * the range.  (At this time, the only use of address
2641 			 * ranges is for IP multicast routing, for which the
2642 			 * range is big enough to require all bits set.)
2643 			 */
2644 			goto allmulti;
2645 		}
2646 
2647 #ifdef DP83820
2648 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2649 
2650 		/* Just want the 11 most significant bits. */
2651 		hash = crc >> 21;
2652 #else
2653 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2654 
2655 		/* Just want the 9 most significant bits. */
2656 		hash = crc >> 23;
2657 #endif /* DP83820 */
2658 		slot = hash >> 4;
2659 		bit = hash & 0xf;
2660 
2661 		/* Set the corresponding bit in the hash table. */
2662 		mchash[slot] |= 1 << bit;
2663 
2664 		ETHER_NEXT_MULTI(step, enm);
2665 	}
2666 	sc->sc_rfcr |= RFCR_MHEN;
2667 	goto setit;
2668 
2669  allmulti:
2670 	ifp->if_flags |= IFF_ALLMULTI;
2671 	sc->sc_rfcr |= RFCR_AAM;
2672 
2673  setit:
2674 #define	FILTER_EMIT(addr, data)						\
2675 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2676 	delay(1);							\
2677 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2678 	delay(1)
2679 
2680 	/*
2681 	 * Disable receive filter, and program the node address.
2682 	 */
2683 	cp = LLADDR(ifp->if_sadl);
2684 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2685 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2686 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2687 
2688 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2689 		/*
2690 		 * Program the multicast hash table.
2691 		 */
2692 		for (i = 0; i < MCHASH_NWORDS; i++) {
2693 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2694 			    mchash[i]);
2695 		}
2696 	}
2697 #undef FILTER_EMIT
2698 #undef MCHASH_NWORDS
2699 
2700 	/*
2701 	 * Re-enable the receiver filter.
2702 	 */
2703 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2704 }
2705 
2706 #if defined(DP83820)
2707 /*
2708  * sip_dp83820_mii_readreg:	[mii interface function]
2709  *
2710  *	Read a PHY register on the MII of the DP83820.
2711  */
2712 int
2713 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2714 {
2715 
2716 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2717 	    phy, reg));
2718 }
2719 
2720 /*
2721  * sip_dp83820_mii_writereg:	[mii interface function]
2722  *
2723  *	Write a PHY register on the MII of the DP83820.
2724  */
2725 void
2726 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2727 {
2728 
2729 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2730 	    phy, reg, val);
2731 }
2732 
2733 /*
2734  * sip_dp83815_mii_statchg:	[mii interface function]
2735  *
2736  *	Callback from MII layer when media changes.
2737  */
2738 void
2739 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2740 {
2741 	struct sip_softc *sc = (struct sip_softc *) self;
2742 	u_int32_t cfg;
2743 
2744 	/*
2745 	 * Update TXCFG for full-duplex operation.
2746 	 */
2747 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2748 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2749 	else
2750 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2751 
2752 	/*
2753 	 * Update RXCFG for full-duplex or loopback.
2754 	 */
2755 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2756 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2757 		sc->sc_rxcfg |= RXCFG_ATX;
2758 	else
2759 		sc->sc_rxcfg &= ~RXCFG_ATX;
2760 
2761 	/*
2762 	 * Update CFG for MII/GMII.
2763 	 */
2764 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2765 		cfg = sc->sc_cfg | CFG_MODE_1000;
2766 	else
2767 		cfg = sc->sc_cfg;
2768 
2769 	/*
2770 	 * XXX 802.3x flow control.
2771 	 */
2772 
2773 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2774 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2775 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2776 }
2777 
2778 /*
2779  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2780  *
2781  *	Read the MII serial port for the MII bit-bang module.
2782  */
2783 u_int32_t
2784 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2785 {
2786 	struct sip_softc *sc = (void *) self;
2787 
2788 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2789 }
2790 
2791 /*
2792  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2793  *
2794  *	Write the MII serial port for the MII bit-bang module.
2795  */
2796 void
2797 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2798 {
2799 	struct sip_softc *sc = (void *) self;
2800 
2801 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2802 }
2803 #else /* ! DP83820 */
2804 /*
2805  * sip_sis900_mii_readreg:	[mii interface function]
2806  *
2807  *	Read a PHY register on the MII.
2808  */
2809 int
2810 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2811 {
2812 	struct sip_softc *sc = (struct sip_softc *) self;
2813 	u_int32_t enphy;
2814 
2815 	/*
2816 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2817 	 * MII address 0.
2818 	 */
2819 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2820 	    sc->sc_rev < SIS_REV_635 && phy != 0)
2821 		return (0);
2822 
2823 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2824 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2825 	    ENPHY_RWCMD | ENPHY_ACCESS);
2826 	do {
2827 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2828 	} while (enphy & ENPHY_ACCESS);
2829 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2830 }
2831 
2832 /*
2833  * sip_sis900_mii_writereg:	[mii interface function]
2834  *
2835  *	Write a PHY register on the MII.
2836  */
2837 void
2838 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2839 {
2840 	struct sip_softc *sc = (struct sip_softc *) self;
2841 	u_int32_t enphy;
2842 
2843 	/*
2844 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2845 	 * MII address 0.
2846 	 */
2847 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2848 	    sc->sc_rev < SIS_REV_635 && phy != 0)
2849 		return;
2850 
2851 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2852 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2853 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2854 	do {
2855 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2856 	} while (enphy & ENPHY_ACCESS);
2857 }
2858 
2859 /*
2860  * sip_sis900_mii_statchg:	[mii interface function]
2861  *
2862  *	Callback from MII layer when media changes.
2863  */
2864 void
2865 SIP_DECL(sis900_mii_statchg)(struct device *self)
2866 {
2867 	struct sip_softc *sc = (struct sip_softc *) self;
2868 	u_int32_t flowctl;
2869 
2870 	/*
2871 	 * Update TXCFG for full-duplex operation.
2872 	 */
2873 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2874 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2875 	else
2876 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2877 
2878 	/*
2879 	 * Update RXCFG for full-duplex or loopback.
2880 	 */
2881 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2882 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2883 		sc->sc_rxcfg |= RXCFG_ATX;
2884 	else
2885 		sc->sc_rxcfg &= ~RXCFG_ATX;
2886 
2887 	/*
2888 	 * Update IMR for use of 802.3x flow control.
2889 	 */
2890 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2891 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2892 		flowctl = FLOWCTL_FLOWEN;
2893 	} else {
2894 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2895 		flowctl = 0;
2896 	}
2897 
2898 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2899 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2900 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2901 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2902 }
2903 
2904 /*
2905  * sip_dp83815_mii_readreg:	[mii interface function]
2906  *
2907  *	Read a PHY register on the MII.
2908  */
2909 int
2910 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2911 {
2912 	struct sip_softc *sc = (struct sip_softc *) self;
2913 	u_int32_t val;
2914 
2915 	/*
2916 	 * The DP83815 only has an internal PHY.  Only allow
2917 	 * MII address 0.
2918 	 */
2919 	if (phy != 0)
2920 		return (0);
2921 
2922 	/*
2923 	 * Apparently, after a reset, the DP83815 can take a while
2924 	 * to respond.  During this recovery period, the BMSR returns
2925 	 * a value of 0.  Catch this -- it's not supposed to happen
2926 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2927 	 * PHY to come back to life.
2928 	 *
2929 	 * This works out because the BMSR is the first register
2930 	 * read during the PHY probe process.
2931 	 */
2932 	do {
2933 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2934 	} while (reg == MII_BMSR && val == 0);
2935 
2936 	return (val & 0xffff);
2937 }
2938 
2939 /*
2940  * sip_dp83815_mii_writereg:	[mii interface function]
2941  *
2942  *	Write a PHY register to the MII.
2943  */
2944 void
2945 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2946 {
2947 	struct sip_softc *sc = (struct sip_softc *) self;
2948 
2949 	/*
2950 	 * The DP83815 only has an internal PHY.  Only allow
2951 	 * MII address 0.
2952 	 */
2953 	if (phy != 0)
2954 		return;
2955 
2956 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2957 }
2958 
2959 /*
2960  * sip_dp83815_mii_statchg:	[mii interface function]
2961  *
2962  *	Callback from MII layer when media changes.
2963  */
2964 void
2965 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2966 {
2967 	struct sip_softc *sc = (struct sip_softc *) self;
2968 
2969 	/*
2970 	 * Update TXCFG for full-duplex operation.
2971 	 */
2972 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2973 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2974 	else
2975 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2976 
2977 	/*
2978 	 * Update RXCFG for full-duplex or loopback.
2979 	 */
2980 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2981 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2982 		sc->sc_rxcfg |= RXCFG_ATX;
2983 	else
2984 		sc->sc_rxcfg &= ~RXCFG_ATX;
2985 
2986 	/*
2987 	 * XXX 802.3x flow control.
2988 	 */
2989 
2990 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2991 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2992 }
2993 #endif /* DP83820 */
2994 
2995 #if defined(DP83820)
2996 void
2997 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
2998     const struct pci_attach_args *pa, u_int8_t *enaddr)
2999 {
3000 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3001 	u_int8_t cksum, *e, match;
3002 	int i;
3003 
3004 	/*
3005 	 * EEPROM data format for the DP83820 can be found in
3006 	 * the DP83820 manual, section 4.2.4.
3007 	 */
3008 
3009 	SIP_DECL(read_eeprom)(sc, 0,
3010 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3011 
3012 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3013 	match = ~(match - 1);
3014 
3015 	cksum = 0x55;
3016 	e = (u_int8_t *) eeprom_data;
3017 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3018 		cksum += *e++;
3019 
3020 	if (cksum != match)
3021 		printf("%s: Checksum (%x) mismatch (%x)",
3022 		    sc->sc_dev.dv_xname, cksum, match);
3023 
3024 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3025 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3026 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3027 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3028 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3029 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3030 
3031 	/* Get the GPIOR bits. */
3032 	sc->sc_gpior = eeprom_data[0x04];
3033 
3034 	/* Get various CFG related bits. */
3035 	if ((eeprom_data[0x05] >> 0) & 1)
3036 		sc->sc_cfg |= CFG_EXT_125;
3037 	if ((eeprom_data[0x05] >> 9) & 1)
3038 		sc->sc_cfg |= CFG_TBI_EN;
3039 }
3040 #else /* ! DP83820 */
3041 void
3042 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3043     const struct pci_attach_args *pa, u_int8_t *enaddr)
3044 {
3045 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3046 
3047 	switch (PCI_REVISION(pa->pa_class)) {
3048 	case SIS_REV_630S:
3049 	case SIS_REV_630E:
3050 	case SIS_REV_630EA1:
3051 	case SIS_REV_635:
3052 		/*
3053 		 * The MAC address for the on-board Ethernet of
3054 		 * the SiS 630 chipset is in the NVRAM.  Kick
3055 		 * the chip into re-loading it from NVRAM, and
3056 		 * read the MAC address out of the filter registers.
3057 		 */
3058 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3059 
3060 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3061 		    RFCR_RFADDR_NODE0);
3062 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3063 		    0xffff;
3064 
3065 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3066 		    RFCR_RFADDR_NODE2);
3067 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3068 		    0xffff;
3069 
3070 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3071 		    RFCR_RFADDR_NODE4);
3072 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3073 		    0xffff;
3074 		break;
3075 
3076 	default:
3077 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3078 		    sizeof(myea) / sizeof(myea[0]), myea);
3079 	}
3080 
3081 	enaddr[0] = myea[0] & 0xff;
3082 	enaddr[1] = myea[0] >> 8;
3083 	enaddr[2] = myea[1] & 0xff;
3084 	enaddr[3] = myea[1] >> 8;
3085 	enaddr[4] = myea[2] & 0xff;
3086 	enaddr[5] = myea[2] >> 8;
3087 }
3088 
3089 /* Table and macro to bit-reverse an octet. */
3090 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3091 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3092 
3093 void
3094 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3095     const struct pci_attach_args *pa, u_int8_t *enaddr)
3096 {
3097 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3098 	u_int8_t cksum, *e, match;
3099 	int i;
3100 
3101 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3102 	    sizeof(eeprom_data[0]), eeprom_data);
3103 
3104 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3105 	match = ~(match - 1);
3106 
3107 	cksum = 0x55;
3108 	e = (u_int8_t *) eeprom_data;
3109 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3110 		cksum += *e++;
3111 	}
3112 	if (cksum != match) {
3113 		printf("%s: Checksum (%x) mismatch (%x)",
3114 		    sc->sc_dev.dv_xname, cksum, match);
3115 	}
3116 
3117 	/*
3118 	 * Unrolled because it makes slightly more sense this way.
3119 	 * The DP83815 stores the MAC address in bit 0 of word 6
3120 	 * through bit 15 of word 8.
3121 	 */
3122 	ea = &eeprom_data[6];
3123 	enaddr[0] = ((*ea & 0x1) << 7);
3124 	ea++;
3125 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3126 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3127 	enaddr[2] = ((*ea & 0x1) << 7);
3128 	ea++;
3129 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3130 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3131 	enaddr[4] = ((*ea & 0x1) << 7);
3132 	ea++;
3133 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3134 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3135 
3136 	/*
3137 	 * In case that's not weird enough, we also need to reverse
3138 	 * the bits in each byte.  This all actually makes more sense
3139 	 * if you think about the EEPROM storage as an array of bits
3140 	 * being shifted into bytes, but that's not how we're looking
3141 	 * at it here...
3142 	 */
3143 	for (i = 0; i < 6 ;i++)
3144 		enaddr[i] = bbr(enaddr[i]);
3145 }
3146 #endif /* DP83820 */
3147 
3148 /*
3149  * sip_mediastatus:	[ifmedia interface function]
3150  *
3151  *	Get the current interface media status.
3152  */
3153 void
3154 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3155 {
3156 	struct sip_softc *sc = ifp->if_softc;
3157 
3158 	mii_pollstat(&sc->sc_mii);
3159 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3160 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
3161 }
3162 
3163 /*
3164  * sip_mediachange:	[ifmedia interface function]
3165  *
3166  *	Set hardware to newly-selected media.
3167  */
3168 int
3169 SIP_DECL(mediachange)(struct ifnet *ifp)
3170 {
3171 	struct sip_softc *sc = ifp->if_softc;
3172 
3173 	if (ifp->if_flags & IFF_UP)
3174 		mii_mediachg(&sc->sc_mii);
3175 	return (0);
3176 }
3177