xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 08c81a9c2dc8c7300e893321eb65c0925d60871c)
1 /*	$NetBSD: if_sip.c,v 1.69 2002/08/26 22:52:02 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.69 2002/08/26 22:52:02 thorpej Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #ifdef DP83820
122 #include <dev/mii/mii_bitbang.h>
123 #endif /* DP83820 */
124 
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128 
129 #include <dev/pci/if_sipreg.h>
130 
131 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
132 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
133 #else			/* SiS900 and DP83815 */
134 #define	SIP_DECL(x)	__CONCAT(sip_,x)
135 #endif
136 
137 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
138 
139 /*
140  * Transmit descriptor list size.  This is arbitrary, but allocate
141  * enough descriptors for 128 pending transmissions, and 8 segments
142  * per packet.  This MUST work out to a power of 2.
143  */
144 #define	SIP_NTXSEGS		16
145 #define	SIP_NTXSEGS_ALLOC	8
146 
147 #define	SIP_TXQUEUELEN		256
148 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
149 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
150 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
151 
152 #if defined(DP83020)
153 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
154 #else
155 #define	TX_DMAMAP_SIZE		MCLBYTES
156 #endif
157 
158 /*
159  * Receive descriptor list size.  We have one Rx buffer per incoming
160  * packet, so this logic is a little simpler.
161  *
162  * Actually, on the DP83820, we allow the packet to consume more than
163  * one buffer, in order to support jumbo Ethernet frames.  In that
164  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
165  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
166  * so we'd better be quick about handling receive interrupts.
167  */
168 #if defined(DP83820)
169 #define	SIP_NRXDESC		256
170 #else
171 #define	SIP_NRXDESC		128
172 #endif /* DP83820 */
173 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
174 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
175 
176 /*
177  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
178  * a single clump that maps to a single DMA segment to make several things
179  * easier.
180  */
181 struct sip_control_data {
182 	/*
183 	 * The transmit descriptors.
184 	 */
185 	struct sip_desc scd_txdescs[SIP_NTXDESC];
186 
187 	/*
188 	 * The receive descriptors.
189 	 */
190 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
191 };
192 
193 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
194 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
195 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
196 
197 /*
198  * Software state for transmit jobs.
199  */
200 struct sip_txsoft {
201 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
202 	bus_dmamap_t txs_dmamap;	/* our DMA map */
203 	int txs_firstdesc;		/* first descriptor in packet */
204 	int txs_lastdesc;		/* last descriptor in packet */
205 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
206 };
207 
208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
209 
210 /*
211  * Software state for receive jobs.
212  */
213 struct sip_rxsoft {
214 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
215 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
216 };
217 
218 /*
219  * Software state per device.
220  */
221 struct sip_softc {
222 	struct device sc_dev;		/* generic device information */
223 	bus_space_tag_t sc_st;		/* bus space tag */
224 	bus_space_handle_t sc_sh;	/* bus space handle */
225 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
226 	struct ethercom sc_ethercom;	/* ethernet common data */
227 	void *sc_sdhook;		/* shutdown hook */
228 
229 	const struct sip_product *sc_model; /* which model are we? */
230 	int sc_rev;			/* chip revision */
231 
232 	void *sc_ih;			/* interrupt cookie */
233 
234 	struct mii_data sc_mii;		/* MII/media information */
235 
236 	struct callout sc_tick_ch;	/* tick callout */
237 
238 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
239 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
240 
241 	/*
242 	 * Software state for transmit and receive descriptors.
243 	 */
244 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
245 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
246 
247 	/*
248 	 * Control data structures.
249 	 */
250 	struct sip_control_data *sc_control_data;
251 #define	sc_txdescs	sc_control_data->scd_txdescs
252 #define	sc_rxdescs	sc_control_data->scd_rxdescs
253 
254 #ifdef SIP_EVENT_COUNTERS
255 	/*
256 	 * Event counters.
257 	 */
258 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
259 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
260 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
261 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
262 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
263 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
264 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
265 #ifdef DP83820
266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
272 #endif /* DP83820 */
273 #endif /* SIP_EVENT_COUNTERS */
274 
275 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
276 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
277 	u_int32_t sc_imr;		/* prototype IMR register */
278 	u_int32_t sc_rfcr;		/* prototype RFCR register */
279 
280 	u_int32_t sc_cfg;		/* prototype CFG register */
281 
282 #ifdef DP83820
283 	u_int32_t sc_gpior;		/* prototype GPIOR register */
284 #endif /* DP83820 */
285 
286 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
287 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
288 
289 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
290 
291 	int	sc_flags;		/* misc. flags; see below */
292 
293 	int	sc_txfree;		/* number of free Tx descriptors */
294 	int	sc_txnext;		/* next ready Tx descriptor */
295 	int	sc_txwin;		/* Tx descriptors since last intr */
296 
297 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
298 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
299 
300 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
301 #if defined(DP83820)
302 	int	sc_rxdiscard;
303 	int	sc_rxlen;
304 	struct mbuf *sc_rxhead;
305 	struct mbuf *sc_rxtail;
306 	struct mbuf **sc_rxtailp;
307 #endif /* DP83820 */
308 
309 #if NRND > 0
310 	rndsource_element_t rnd_source;	/* random source */
311 #endif
312 };
313 
314 /* sc_flags */
315 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
316 
317 #ifdef DP83820
318 #define	SIP_RXCHAIN_RESET(sc)						\
319 do {									\
320 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
321 	*(sc)->sc_rxtailp = NULL;					\
322 	(sc)->sc_rxlen = 0;						\
323 } while (/*CONSTCOND*/0)
324 
325 #define	SIP_RXCHAIN_LINK(sc, m)						\
326 do {									\
327 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
328 	(sc)->sc_rxtailp = &(m)->m_next;				\
329 } while (/*CONSTCOND*/0)
330 #endif /* DP83820 */
331 
332 #ifdef SIP_EVENT_COUNTERS
333 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
334 #else
335 #define	SIP_EVCNT_INCR(ev)	/* nothing */
336 #endif
337 
338 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
339 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
340 
341 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
342 do {									\
343 	int __x, __n;							\
344 									\
345 	__x = (x);							\
346 	__n = (n);							\
347 									\
348 	/* If it will wrap around, sync to the end of the ring. */	\
349 	if ((__x + __n) > SIP_NTXDESC) {				\
350 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
351 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
352 		    (SIP_NTXDESC - __x), (ops));			\
353 		__n -= (SIP_NTXDESC - __x);				\
354 		__x = 0;						\
355 	}								\
356 									\
357 	/* Now sync whatever is left. */				\
358 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
359 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
360 } while (0)
361 
362 #define	SIP_CDRXSYNC(sc, x, ops)					\
363 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
364 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
365 
366 #ifdef DP83820
367 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
368 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
369 #else
370 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
371 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
372 #endif
373 #define	SIP_INIT_RXDESC(sc, x)						\
374 do {									\
375 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
376 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
377 									\
378 	__sipd->sipd_link =						\
379 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
380 	__sipd->sipd_bufptr =						\
381 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
382 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
383 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
384 	SIP_INIT_RXDESC_EXTSTS						\
385 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
386 } while (0)
387 
388 #define	SIP_CHIP_VERS(sc, v, p, r)					\
389 	((sc)->sc_model->sip_vendor == (v) &&				\
390 	 (sc)->sc_model->sip_product == (p) &&				\
391 	 (sc)->sc_rev == (r))
392 
393 #define	SIP_CHIP_MODEL(sc, v, p)					\
394 	((sc)->sc_model->sip_vendor == (v) &&				\
395 	 (sc)->sc_model->sip_product == (p))
396 
397 #if !defined(DP83820)
398 #define	SIP_SIS900_REV(sc, rev)						\
399 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
400 #endif
401 
402 #define SIP_TIMEOUT 1000
403 
404 void	SIP_DECL(start)(struct ifnet *);
405 void	SIP_DECL(watchdog)(struct ifnet *);
406 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
407 int	SIP_DECL(init)(struct ifnet *);
408 void	SIP_DECL(stop)(struct ifnet *, int);
409 
410 void	SIP_DECL(shutdown)(void *);
411 
412 void	SIP_DECL(reset)(struct sip_softc *);
413 void	SIP_DECL(rxdrain)(struct sip_softc *);
414 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
415 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
416 void	SIP_DECL(tick)(void *);
417 
418 #if !defined(DP83820)
419 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
420 #endif /* ! DP83820 */
421 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
422 
423 #if defined(DP83820)
424 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
425 	    const struct pci_attach_args *, u_int8_t *);
426 #else
427 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
428 	    const struct pci_attach_args *, u_int8_t *);
429 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
430 	    const struct pci_attach_args *, u_int8_t *);
431 #endif /* DP83820 */
432 
433 int	SIP_DECL(intr)(void *);
434 void	SIP_DECL(txintr)(struct sip_softc *);
435 void	SIP_DECL(rxintr)(struct sip_softc *);
436 
437 #if defined(DP83820)
438 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
439 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
440 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
441 #else
442 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
443 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
444 void	SIP_DECL(sis900_mii_statchg)(struct device *);
445 
446 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
447 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
448 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
449 #endif /* DP83820 */
450 
451 int	SIP_DECL(mediachange)(struct ifnet *);
452 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
453 
454 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
455 void	SIP_DECL(attach)(struct device *, struct device *, void *);
456 
457 int	SIP_DECL(copy_small) = 0;
458 
459 struct cfattach SIP_DECL(ca) = {
460 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
461 };
462 
463 /*
464  * Descriptions of the variants of the SiS900.
465  */
466 struct sip_variant {
467 	int	(*sipv_mii_readreg)(struct device *, int, int);
468 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
469 	void	(*sipv_mii_statchg)(struct device *);
470 	void	(*sipv_set_filter)(struct sip_softc *);
471 	void	(*sipv_read_macaddr)(struct sip_softc *,
472 		    const struct pci_attach_args *, u_int8_t *);
473 };
474 
475 #if defined(DP83820)
476 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
477 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
478 
479 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
480 	SIP_DECL(dp83820_mii_bitbang_read),
481 	SIP_DECL(dp83820_mii_bitbang_write),
482 	{
483 		EROMAR_MDIO,		/* MII_BIT_MDO */
484 		EROMAR_MDIO,		/* MII_BIT_MDI */
485 		EROMAR_MDC,		/* MII_BIT_MDC */
486 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
487 		0,			/* MII_BIT_DIR_PHY_HOST */
488 	}
489 };
490 #endif /* DP83820 */
491 
492 #if defined(DP83820)
493 const struct sip_variant SIP_DECL(variant_dp83820) = {
494 	SIP_DECL(dp83820_mii_readreg),
495 	SIP_DECL(dp83820_mii_writereg),
496 	SIP_DECL(dp83820_mii_statchg),
497 	SIP_DECL(dp83815_set_filter),
498 	SIP_DECL(dp83820_read_macaddr),
499 };
500 #else
501 const struct sip_variant SIP_DECL(variant_sis900) = {
502 	SIP_DECL(sis900_mii_readreg),
503 	SIP_DECL(sis900_mii_writereg),
504 	SIP_DECL(sis900_mii_statchg),
505 	SIP_DECL(sis900_set_filter),
506 	SIP_DECL(sis900_read_macaddr),
507 };
508 
509 const struct sip_variant SIP_DECL(variant_dp83815) = {
510 	SIP_DECL(dp83815_mii_readreg),
511 	SIP_DECL(dp83815_mii_writereg),
512 	SIP_DECL(dp83815_mii_statchg),
513 	SIP_DECL(dp83815_set_filter),
514 	SIP_DECL(dp83815_read_macaddr),
515 };
516 #endif /* DP83820 */
517 
518 /*
519  * Devices supported by this driver.
520  */
521 const struct sip_product {
522 	pci_vendor_id_t		sip_vendor;
523 	pci_product_id_t	sip_product;
524 	const char		*sip_name;
525 	const struct sip_variant *sip_variant;
526 } SIP_DECL(products)[] = {
527 #if defined(DP83820)
528 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
529 	  "NatSemi DP83820 Gigabit Ethernet",
530 	  &SIP_DECL(variant_dp83820) },
531 #else
532 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
533 	  "SiS 900 10/100 Ethernet",
534 	  &SIP_DECL(variant_sis900) },
535 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
536 	  "SiS 7016 10/100 Ethernet",
537 	  &SIP_DECL(variant_sis900) },
538 
539 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
540 	  "NatSemi DP83815 10/100 Ethernet",
541 	  &SIP_DECL(variant_dp83815) },
542 #endif /* DP83820 */
543 
544 	{ 0,			0,
545 	  NULL,
546 	  NULL },
547 };
548 
549 static const struct sip_product *
550 SIP_DECL(lookup)(const struct pci_attach_args *pa)
551 {
552 	const struct sip_product *sip;
553 
554 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
555 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
556 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
557 			return (sip);
558 	}
559 	return (NULL);
560 }
561 
562 #ifdef DP83820
563 /*
564  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
565  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
566  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
567  * which means we try to use 64-bit data transfers on those cards if we
568  * happen to be plugged into a 32-bit slot.
569  *
570  * What we do is use this table of cards known to be 64-bit cards.  If
571  * you have a 64-bit card who's subsystem ID is not listed in this table,
572  * send the output of "pcictl dump ..." of the device to me so that your
573  * card will use the 64-bit data path when plugged into a 64-bit slot.
574  *
575  *	-- Jason R. Thorpe <thorpej@netbsd.org>
576  *	   June 30, 2002
577  */
578 static int
579 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
580 {
581 	static const struct {
582 		pci_vendor_id_t c64_vendor;
583 		pci_product_id_t c64_product;
584 	} card64[] = {
585 		/* Asante GigaNIX */
586 		{ 0x128a,	0x0002 },
587 
588 		/* Accton EN1407-T, Planex GN-1000TE */
589 		{ 0x1113,	0x1407 },
590 
591 		/* Netgear GA-621 */
592 		{ 0x1385,	0x621a },
593 
594 		{ 0, 0}
595 	};
596 	pcireg_t subsys;
597 	int i;
598 
599 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
600 
601 	for (i = 0; card64[i].c64_vendor != 0; i++) {
602 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
603 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
604 			return (1);
605 	}
606 
607 	return (0);
608 }
609 #endif /* DP83820 */
610 
611 int
612 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
613 {
614 	struct pci_attach_args *pa = aux;
615 
616 	if (SIP_DECL(lookup)(pa) != NULL)
617 		return (1);
618 
619 	return (0);
620 }
621 
622 void
623 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
624 {
625 	struct sip_softc *sc = (struct sip_softc *) self;
626 	struct pci_attach_args *pa = aux;
627 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
628 	pci_chipset_tag_t pc = pa->pa_pc;
629 	pci_intr_handle_t ih;
630 	const char *intrstr = NULL;
631 	bus_space_tag_t iot, memt;
632 	bus_space_handle_t ioh, memh;
633 	bus_dma_segment_t seg;
634 	int ioh_valid, memh_valid;
635 	int i, rseg, error;
636 	const struct sip_product *sip;
637 	pcireg_t pmode;
638 	u_int8_t enaddr[ETHER_ADDR_LEN];
639 	int pmreg;
640 #ifdef DP83820
641 	pcireg_t memtype;
642 	u_int32_t reg;
643 #endif /* DP83820 */
644 
645 	callout_init(&sc->sc_tick_ch);
646 
647 	sip = SIP_DECL(lookup)(pa);
648 	if (sip == NULL) {
649 		printf("\n");
650 		panic(SIP_STR(attach) ": impossible");
651 	}
652 	sc->sc_rev = PCI_REVISION(pa->pa_class);
653 
654 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
655 
656 	sc->sc_model = sip;
657 
658 	/*
659 	 * XXX Work-around broken PXE firmware on some boards.
660 	 *
661 	 * The DP83815 shares an address decoder with the MEM BAR
662 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
663 	 * so that memory mapped access works.
664 	 */
665 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
666 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
667 	    ~PCI_MAPREG_ROM_ENABLE);
668 
669 	/*
670 	 * Map the device.
671 	 */
672 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
673 	    PCI_MAPREG_TYPE_IO, 0,
674 	    &iot, &ioh, NULL, NULL) == 0);
675 #ifdef DP83820
676 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
677 	switch (memtype) {
678 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
679 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
680 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
681 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
682 		break;
683 	default:
684 		memh_valid = 0;
685 	}
686 #else
687 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
688 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
689 	    &memt, &memh, NULL, NULL) == 0);
690 #endif /* DP83820 */
691 
692 	if (memh_valid) {
693 		sc->sc_st = memt;
694 		sc->sc_sh = memh;
695 	} else if (ioh_valid) {
696 		sc->sc_st = iot;
697 		sc->sc_sh = ioh;
698 	} else {
699 		printf("%s: unable to map device registers\n",
700 		    sc->sc_dev.dv_xname);
701 		return;
702 	}
703 
704 	sc->sc_dmat = pa->pa_dmat;
705 
706 	/*
707 	 * Make sure bus mastering is enabled.  Also make sure
708 	 * Write/Invalidate is enabled if we're allowed to use it.
709 	 */
710 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
711 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
712 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
713 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
714 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
715 
716 	/* Get it out of power save mode if needed. */
717 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
718 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
719 		if (pmode == 3) {
720 			/*
721 			 * The card has lost all configuration data in
722 			 * this state, so punt.
723 			 */
724 			printf("%s: unable to wake up from power state D3\n",
725 			    sc->sc_dev.dv_xname);
726 			return;
727 		}
728 		if (pmode != 0) {
729 			printf("%s: waking up from power state D%d\n",
730 			    sc->sc_dev.dv_xname, pmode);
731 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
732 		}
733 	}
734 
735 	/*
736 	 * Map and establish our interrupt.
737 	 */
738 	if (pci_intr_map(pa, &ih)) {
739 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
740 		return;
741 	}
742 	intrstr = pci_intr_string(pc, ih);
743 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
744 	if (sc->sc_ih == NULL) {
745 		printf("%s: unable to establish interrupt",
746 		    sc->sc_dev.dv_xname);
747 		if (intrstr != NULL)
748 			printf(" at %s", intrstr);
749 		printf("\n");
750 		return;
751 	}
752 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
753 
754 	SIMPLEQ_INIT(&sc->sc_txfreeq);
755 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
756 
757 	/*
758 	 * Allocate the control data structures, and create and load the
759 	 * DMA map for it.
760 	 */
761 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
762 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
763 	    0)) != 0) {
764 		printf("%s: unable to allocate control data, error = %d\n",
765 		    sc->sc_dev.dv_xname, error);
766 		goto fail_0;
767 	}
768 
769 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
770 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
771 	    BUS_DMA_COHERENT)) != 0) {
772 		printf("%s: unable to map control data, error = %d\n",
773 		    sc->sc_dev.dv_xname, error);
774 		goto fail_1;
775 	}
776 
777 	if ((error = bus_dmamap_create(sc->sc_dmat,
778 	    sizeof(struct sip_control_data), 1,
779 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
780 		printf("%s: unable to create control data DMA map, "
781 		    "error = %d\n", sc->sc_dev.dv_xname, error);
782 		goto fail_2;
783 	}
784 
785 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
786 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
787 	    0)) != 0) {
788 		printf("%s: unable to load control data DMA map, error = %d\n",
789 		    sc->sc_dev.dv_xname, error);
790 		goto fail_3;
791 	}
792 
793 	/*
794 	 * Create the transmit buffer DMA maps.
795 	 */
796 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
797 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
798 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
799 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
800 			printf("%s: unable to create tx DMA map %d, "
801 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
802 			goto fail_4;
803 		}
804 	}
805 
806 	/*
807 	 * Create the receive buffer DMA maps.
808 	 */
809 	for (i = 0; i < SIP_NRXDESC; i++) {
810 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
811 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
812 			printf("%s: unable to create rx DMA map %d, "
813 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
814 			goto fail_5;
815 		}
816 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
817 	}
818 
819 	/*
820 	 * Reset the chip to a known state.
821 	 */
822 	SIP_DECL(reset)(sc);
823 
824 	/*
825 	 * Read the Ethernet address from the EEPROM.  This might
826 	 * also fetch other stuff from the EEPROM and stash it
827 	 * in the softc.
828 	 */
829 	sc->sc_cfg = 0;
830 #if !defined(DP83820)
831 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
832 	    SIP_SIS900_REV(sc,SIS_REV_900B))
833 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
834 #endif
835 
836 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
837 
838 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
839 	    ether_sprintf(enaddr));
840 
841 	/*
842 	 * Initialize the configuration register: aggressive PCI
843 	 * bus request algorithm, default backoff, default OW timer,
844 	 * default parity error detection.
845 	 *
846 	 * NOTE: "Big endian mode" is useless on the SiS900 and
847 	 * friends -- it affects packet data, not descriptors.
848 	 */
849 #ifdef DP83820
850 	/*
851 	 * Cause the chip to load configuration data from the EEPROM.
852 	 */
853 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
854 	for (i = 0; i < 10000; i++) {
855 		delay(10);
856 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
857 		    PTSCR_EELOAD_EN) == 0)
858 			break;
859 	}
860 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
861 	    PTSCR_EELOAD_EN) {
862 		printf("%s: timeout loading configuration from EEPROM\n",
863 		    sc->sc_dev.dv_xname);
864 		return;
865 	}
866 
867 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
868 
869 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
870 	if (reg & CFG_PCI64_DET) {
871 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
872 		/*
873 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
874 		 * data transfers.
875 		 *
876 		 * We can't use the DATA64_EN bit in the EEPROM, because
877 		 * vendors of 32-bit cards fail to clear that bit in many
878 		 * cases (yet the card still detects that it's in a 64-bit
879 		 * slot; go figure).
880 		 */
881 		if (SIP_DECL(check_64bit)(pa)) {
882 			sc->sc_cfg |= CFG_DATA64_EN;
883 			printf(", using 64-bit data transfers");
884 		}
885 		printf("\n");
886 	}
887 
888 	/*
889 	 * XXX Need some PCI flags indicating support for
890 	 * XXX 64-bit addressing.
891 	 */
892 #if 0
893 	if (reg & CFG_M64ADDR)
894 		sc->sc_cfg |= CFG_M64ADDR;
895 	if (reg & CFG_T64ADDR)
896 		sc->sc_cfg |= CFG_T64ADDR;
897 #endif
898 
899 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
900 		const char *sep = "";
901 		printf("%s: using ", sc->sc_dev.dv_xname);
902 		if (reg & CFG_EXT_125) {
903 			sc->sc_cfg |= CFG_EXT_125;
904 			printf("%s125MHz clock", sep);
905 			sep = ", ";
906 		}
907 		if (reg & CFG_TBI_EN) {
908 			sc->sc_cfg |= CFG_TBI_EN;
909 			printf("%sten-bit interface", sep);
910 			sep = ", ";
911 		}
912 		printf("\n");
913 	}
914 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
915 	    (reg & CFG_MRM_DIS) != 0)
916 		sc->sc_cfg |= CFG_MRM_DIS;
917 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
918 	    (reg & CFG_MWI_DIS) != 0)
919 		sc->sc_cfg |= CFG_MWI_DIS;
920 
921 	/*
922 	 * Use the extended descriptor format on the DP83820.  This
923 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
924 	 * checksumming.
925 	 */
926 	sc->sc_cfg |= CFG_EXTSTS_EN;
927 #endif /* DP83820 */
928 
929 	/*
930 	 * Initialize our media structures and probe the MII.
931 	 */
932 	sc->sc_mii.mii_ifp = ifp;
933 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
934 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
935 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
936 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
937 	    SIP_DECL(mediastatus));
938 
939 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
940 	    MII_OFFSET_ANY, 0);
941 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
942 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
943 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
944 	} else
945 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
946 
947 	ifp = &sc->sc_ethercom.ec_if;
948 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
949 	ifp->if_softc = sc;
950 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
951 	ifp->if_ioctl = SIP_DECL(ioctl);
952 	ifp->if_start = SIP_DECL(start);
953 	ifp->if_watchdog = SIP_DECL(watchdog);
954 	ifp->if_init = SIP_DECL(init);
955 	ifp->if_stop = SIP_DECL(stop);
956 	IFQ_SET_READY(&ifp->if_snd);
957 
958 	/*
959 	 * We can support 802.1Q VLAN-sized frames.
960 	 */
961 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
962 
963 #ifdef DP83820
964 	/*
965 	 * And the DP83820 can do VLAN tagging in hardware, and
966 	 * support the jumbo Ethernet MTU.
967 	 */
968 	sc->sc_ethercom.ec_capabilities |=
969 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
970 
971 	/*
972 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
973 	 * in hardware.
974 	 */
975 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
976 	    IFCAP_CSUM_UDPv4;
977 #endif /* DP83820 */
978 
979 	/*
980 	 * Attach the interface.
981 	 */
982 	if_attach(ifp);
983 	ether_ifattach(ifp, enaddr);
984 #if NRND > 0
985 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
986 	    RND_TYPE_NET, 0);
987 #endif
988 
989 	/*
990 	 * The number of bytes that must be available in
991 	 * the Tx FIFO before the bus master can DMA more
992 	 * data into the FIFO.
993 	 */
994 	sc->sc_tx_fill_thresh = 64 / 32;
995 
996 	/*
997 	 * Start at a drain threshold of 512 bytes.  We will
998 	 * increase it if a DMA underrun occurs.
999 	 *
1000 	 * XXX The minimum value of this variable should be
1001 	 * tuned.  We may be able to improve performance
1002 	 * by starting with a lower value.  That, however,
1003 	 * may trash the first few outgoing packets if the
1004 	 * PCI bus is saturated.
1005 	 */
1006 	sc->sc_tx_drain_thresh = 1504 / 32;
1007 
1008 	/*
1009 	 * Initialize the Rx FIFO drain threshold.
1010 	 *
1011 	 * This is in units of 8 bytes.
1012 	 *
1013 	 * We should never set this value lower than 2; 14 bytes are
1014 	 * required to filter the packet.
1015 	 */
1016 	sc->sc_rx_drain_thresh = 128 / 8;
1017 
1018 #ifdef SIP_EVENT_COUNTERS
1019 	/*
1020 	 * Attach event counters.
1021 	 */
1022 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1023 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1024 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1025 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1026 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1027 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1028 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1029 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1030 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1031 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1032 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1033 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1034 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1035 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1036 #ifdef DP83820
1037 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1038 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1039 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1040 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1041 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1042 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1043 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1044 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1045 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1046 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1047 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1048 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
1049 #endif /* DP83820 */
1050 #endif /* SIP_EVENT_COUNTERS */
1051 
1052 	/*
1053 	 * Make sure the interface is shutdown during reboot.
1054 	 */
1055 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1056 	if (sc->sc_sdhook == NULL)
1057 		printf("%s: WARNING: unable to establish shutdown hook\n",
1058 		    sc->sc_dev.dv_xname);
1059 	return;
1060 
1061 	/*
1062 	 * Free any resources we've allocated during the failed attach
1063 	 * attempt.  Do this in reverse order and fall through.
1064 	 */
1065  fail_5:
1066 	for (i = 0; i < SIP_NRXDESC; i++) {
1067 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1068 			bus_dmamap_destroy(sc->sc_dmat,
1069 			    sc->sc_rxsoft[i].rxs_dmamap);
1070 	}
1071  fail_4:
1072 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1073 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1074 			bus_dmamap_destroy(sc->sc_dmat,
1075 			    sc->sc_txsoft[i].txs_dmamap);
1076 	}
1077 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1078  fail_3:
1079 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1080  fail_2:
1081 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1082 	    sizeof(struct sip_control_data));
1083  fail_1:
1084 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1085  fail_0:
1086 	return;
1087 }
1088 
1089 /*
1090  * sip_shutdown:
1091  *
1092  *	Make sure the interface is stopped at reboot time.
1093  */
1094 void
1095 SIP_DECL(shutdown)(void *arg)
1096 {
1097 	struct sip_softc *sc = arg;
1098 
1099 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1100 }
1101 
1102 /*
1103  * sip_start:		[ifnet interface function]
1104  *
1105  *	Start packet transmission on the interface.
1106  */
1107 void
1108 SIP_DECL(start)(struct ifnet *ifp)
1109 {
1110 	struct sip_softc *sc = ifp->if_softc;
1111 	struct mbuf *m0, *m;
1112 	struct sip_txsoft *txs;
1113 	bus_dmamap_t dmamap;
1114 	int error, nexttx, lasttx, seg;
1115 	int ofree = sc->sc_txfree;
1116 #if 0
1117 	int firsttx = sc->sc_txnext;
1118 #endif
1119 #ifdef DP83820
1120 	u_int32_t extsts;
1121 #endif
1122 
1123 	/*
1124 	 * If we've been told to pause, don't transmit any more packets.
1125 	 */
1126 	if (sc->sc_flags & SIPF_PAUSED)
1127 		ifp->if_flags |= IFF_OACTIVE;
1128 
1129 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1130 		return;
1131 
1132 	/*
1133 	 * Loop through the send queue, setting up transmit descriptors
1134 	 * until we drain the queue, or use up all available transmit
1135 	 * descriptors.
1136 	 */
1137 	for (;;) {
1138 		/* Get a work queue entry. */
1139 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1140 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1141 			break;
1142 		}
1143 
1144 		/*
1145 		 * Grab a packet off the queue.
1146 		 */
1147 		IFQ_POLL(&ifp->if_snd, m0);
1148 		if (m0 == NULL)
1149 			break;
1150 #ifndef DP83820
1151 		m = NULL;
1152 #endif
1153 
1154 		dmamap = txs->txs_dmamap;
1155 
1156 #ifdef DP83820
1157 		/*
1158 		 * Load the DMA map.  If this fails, the packet either
1159 		 * didn't fit in the allotted number of segments, or we
1160 		 * were short on resources.  For the too-many-segments
1161 		 * case, we simply report an error and drop the packet,
1162 		 * since we can't sanely copy a jumbo packet to a single
1163 		 * buffer.
1164 		 */
1165 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1166 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1167 		if (error) {
1168 			if (error == EFBIG) {
1169 				printf("%s: Tx packet consumes too many "
1170 				    "DMA segments, dropping...\n",
1171 				    sc->sc_dev.dv_xname);
1172 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1173 				m_freem(m0);
1174 				continue;
1175 			}
1176 			/*
1177 			 * Short on resources, just stop for now.
1178 			 */
1179 			break;
1180 		}
1181 #else /* DP83820 */
1182 		/*
1183 		 * Load the DMA map.  If this fails, the packet either
1184 		 * didn't fit in the alloted number of segments, or we
1185 		 * were short on resources.  In this case, we'll copy
1186 		 * and try again.
1187 		 */
1188 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1189 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1190 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1191 			if (m == NULL) {
1192 				printf("%s: unable to allocate Tx mbuf\n",
1193 				    sc->sc_dev.dv_xname);
1194 				break;
1195 			}
1196 			if (m0->m_pkthdr.len > MHLEN) {
1197 				MCLGET(m, M_DONTWAIT);
1198 				if ((m->m_flags & M_EXT) == 0) {
1199 					printf("%s: unable to allocate Tx "
1200 					    "cluster\n", sc->sc_dev.dv_xname);
1201 					m_freem(m);
1202 					break;
1203 				}
1204 			}
1205 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1206 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1207 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1208 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1209 			if (error) {
1210 				printf("%s: unable to load Tx buffer, "
1211 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1212 				break;
1213 			}
1214 		}
1215 #endif /* DP83820 */
1216 
1217 		/*
1218 		 * Ensure we have enough descriptors free to describe
1219 		 * the packet.  Note, we always reserve one descriptor
1220 		 * at the end of the ring as a termination point, to
1221 		 * prevent wrap-around.
1222 		 */
1223 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1224 			/*
1225 			 * Not enough free descriptors to transmit this
1226 			 * packet.  We haven't committed anything yet,
1227 			 * so just unload the DMA map, put the packet
1228 			 * back on the queue, and punt.  Notify the upper
1229 			 * layer that there are not more slots left.
1230 			 *
1231 			 * XXX We could allocate an mbuf and copy, but
1232 			 * XXX is it worth it?
1233 			 */
1234 			ifp->if_flags |= IFF_OACTIVE;
1235 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1236 #ifndef DP83820
1237 			if (m != NULL)
1238 				m_freem(m);
1239 #endif
1240 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1241 			break;
1242 		}
1243 
1244 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1245 #ifndef DP83820
1246 		if (m != NULL) {
1247 			m_freem(m0);
1248 			m0 = m;
1249 		}
1250 #endif
1251 
1252 		/*
1253 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1254 		 */
1255 
1256 		/* Sync the DMA map. */
1257 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1258 		    BUS_DMASYNC_PREWRITE);
1259 
1260 		/*
1261 		 * Initialize the transmit descriptors.
1262 		 */
1263 		for (nexttx = sc->sc_txnext, seg = 0;
1264 		     seg < dmamap->dm_nsegs;
1265 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1266 			/*
1267 			 * If this is the first descriptor we're
1268 			 * enqueueing, don't set the OWN bit just
1269 			 * yet.  That could cause a race condition.
1270 			 * We'll do it below.
1271 			 */
1272 			sc->sc_txdescs[nexttx].sipd_bufptr =
1273 			    htole32(dmamap->dm_segs[seg].ds_addr);
1274 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1275 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1276 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1277 #ifdef DP83820
1278 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1279 #endif /* DP83820 */
1280 			lasttx = nexttx;
1281 		}
1282 
1283 		/* Clear the MORE bit on the last segment. */
1284 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1285 
1286 		/*
1287 		 * If we're in the interrupt delay window, delay the
1288 		 * interrupt.
1289 		 */
1290 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1291 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1292 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
1293 			    htole32(CMDSTS_INTR);
1294 			sc->sc_txwin = 0;
1295 		}
1296 
1297 #ifdef DP83820
1298 		/*
1299 		 * If VLANs are enabled and the packet has a VLAN tag, set
1300 		 * up the descriptor to encapsulate the packet for us.
1301 		 *
1302 		 * This apparently has to be on the last descriptor of
1303 		 * the packet.
1304 		 */
1305 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1306 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1307 			sc->sc_txdescs[lasttx].sipd_extsts |=
1308 			    htole32(EXTSTS_VPKT |
1309 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
1310 		}
1311 
1312 		/*
1313 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1314 		 * checksumming, set up the descriptor to do this work
1315 		 * for us.
1316 		 *
1317 		 * This apparently has to be on the first descriptor of
1318 		 * the packet.
1319 		 *
1320 		 * Byte-swap constants so the compiler can optimize.
1321 		 */
1322 		extsts = 0;
1323 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1324 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1325 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1326 			extsts |= htole32(EXTSTS_IPPKT);
1327 		}
1328 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1329 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1330 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1331 			extsts |= htole32(EXTSTS_TCPPKT);
1332 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1333 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1334 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1335 			extsts |= htole32(EXTSTS_UDPPKT);
1336 		}
1337 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1338 #endif /* DP83820 */
1339 
1340 		/* Sync the descriptors we're using. */
1341 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1342 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1343 
1344 		/*
1345 		 * The entire packet is set up.  Give the first descrptor
1346 		 * to the chip now.
1347 		 */
1348 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1349 		    htole32(CMDSTS_OWN);
1350 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1351 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1352 
1353 		/*
1354 		 * Store a pointer to the packet so we can free it later,
1355 		 * and remember what txdirty will be once the packet is
1356 		 * done.
1357 		 */
1358 		txs->txs_mbuf = m0;
1359 		txs->txs_firstdesc = sc->sc_txnext;
1360 		txs->txs_lastdesc = lasttx;
1361 
1362 		/* Advance the tx pointer. */
1363 		sc->sc_txfree -= dmamap->dm_nsegs;
1364 		sc->sc_txnext = nexttx;
1365 
1366 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1367 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1368 
1369 #if NBPFILTER > 0
1370 		/*
1371 		 * Pass the packet to any BPF listeners.
1372 		 */
1373 		if (ifp->if_bpf)
1374 			bpf_mtap(ifp->if_bpf, m0);
1375 #endif /* NBPFILTER > 0 */
1376 	}
1377 
1378 	if (txs == NULL || sc->sc_txfree == 0) {
1379 		/* No more slots left; notify upper layer. */
1380 		ifp->if_flags |= IFF_OACTIVE;
1381 	}
1382 
1383 	if (sc->sc_txfree != ofree) {
1384 		/*
1385 		 * Start the transmit process.  Note, the manual says
1386 		 * that if there are no pending transmissions in the
1387 		 * chip's internal queue (indicated by TXE being clear),
1388 		 * then the driver software must set the TXDP to the
1389 		 * first descriptor to be transmitted.  However, if we
1390 		 * do this, it causes serious performance degredation on
1391 		 * the DP83820 under load, not setting TXDP doesn't seem
1392 		 * to adversely affect the SiS 900 or DP83815.
1393 		 *
1394 		 * Well, I guess it wouldn't be the first time a manual
1395 		 * has lied -- and they could be speaking of the NULL-
1396 		 * terminated descriptor list case, rather than OWN-
1397 		 * terminated rings.
1398 		 */
1399 #if 0
1400 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1401 		     CR_TXE) == 0) {
1402 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1403 			    SIP_CDTXADDR(sc, firsttx));
1404 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1405 		}
1406 #else
1407 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1408 #endif
1409 
1410 		/* Set a watchdog timer in case the chip flakes out. */
1411 		ifp->if_timer = 5;
1412 	}
1413 }
1414 
1415 /*
1416  * sip_watchdog:	[ifnet interface function]
1417  *
1418  *	Watchdog timer handler.
1419  */
1420 void
1421 SIP_DECL(watchdog)(struct ifnet *ifp)
1422 {
1423 	struct sip_softc *sc = ifp->if_softc;
1424 
1425 	/*
1426 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1427 	 * If we get a timeout, try and sweep up transmit descriptors.
1428 	 * If we manage to sweep them all up, ignore the lack of
1429 	 * interrupt.
1430 	 */
1431 	SIP_DECL(txintr)(sc);
1432 
1433 	if (sc->sc_txfree != SIP_NTXDESC) {
1434 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1435 		ifp->if_oerrors++;
1436 
1437 		/* Reset the interface. */
1438 		(void) SIP_DECL(init)(ifp);
1439 	} else if (ifp->if_flags & IFF_DEBUG)
1440 		printf("%s: recovered from device timeout\n",
1441 		    sc->sc_dev.dv_xname);
1442 
1443 	/* Try to get more packets going. */
1444 	SIP_DECL(start)(ifp);
1445 }
1446 
1447 /*
1448  * sip_ioctl:		[ifnet interface function]
1449  *
1450  *	Handle control requests from the operator.
1451  */
1452 int
1453 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1454 {
1455 	struct sip_softc *sc = ifp->if_softc;
1456 	struct ifreq *ifr = (struct ifreq *)data;
1457 	int s, error;
1458 
1459 	s = splnet();
1460 
1461 	switch (cmd) {
1462 	case SIOCSIFMEDIA:
1463 	case SIOCGIFMEDIA:
1464 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1465 		break;
1466 
1467 	default:
1468 		error = ether_ioctl(ifp, cmd, data);
1469 		if (error == ENETRESET) {
1470 			/*
1471 			 * Multicast list has changed; set the hardware filter
1472 			 * accordingly.
1473 			 */
1474 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1475 			error = 0;
1476 		}
1477 		break;
1478 	}
1479 
1480 	/* Try to get more packets going. */
1481 	SIP_DECL(start)(ifp);
1482 
1483 	splx(s);
1484 	return (error);
1485 }
1486 
1487 /*
1488  * sip_intr:
1489  *
1490  *	Interrupt service routine.
1491  */
1492 int
1493 SIP_DECL(intr)(void *arg)
1494 {
1495 	struct sip_softc *sc = arg;
1496 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1497 	u_int32_t isr;
1498 	int handled = 0;
1499 
1500 	for (;;) {
1501 		/* Reading clears interrupt. */
1502 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1503 		if ((isr & sc->sc_imr) == 0)
1504 			break;
1505 
1506 #if NRND > 0
1507 		if (RND_ENABLED(&sc->rnd_source))
1508 			rnd_add_uint32(&sc->rnd_source, isr);
1509 #endif
1510 
1511 		handled = 1;
1512 
1513 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1514 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1515 
1516 			/* Grab any new packets. */
1517 			SIP_DECL(rxintr)(sc);
1518 
1519 			if (isr & ISR_RXORN) {
1520 				printf("%s: receive FIFO overrun\n",
1521 				    sc->sc_dev.dv_xname);
1522 
1523 				/* XXX adjust rx_drain_thresh? */
1524 			}
1525 
1526 			if (isr & ISR_RXIDLE) {
1527 				printf("%s: receive ring overrun\n",
1528 				    sc->sc_dev.dv_xname);
1529 
1530 				/* Get the receive process going again. */
1531 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1532 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1533 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1534 				    SIP_CR, CR_RXE);
1535 			}
1536 		}
1537 
1538 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1539 #ifdef SIP_EVENT_COUNTERS
1540 			if (isr & ISR_TXDESC)
1541 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1542 			else if (isr & ISR_TXIDLE)
1543 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1544 #endif
1545 
1546 			/* Sweep up transmit descriptors. */
1547 			SIP_DECL(txintr)(sc);
1548 
1549 			if (isr & ISR_TXURN) {
1550 				u_int32_t thresh;
1551 
1552 				printf("%s: transmit FIFO underrun",
1553 				    sc->sc_dev.dv_xname);
1554 
1555 				thresh = sc->sc_tx_drain_thresh + 1;
1556 				if (thresh <= TXCFG_DRTH &&
1557 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1558 				     (sc->sc_tx_fill_thresh * 32))) {
1559 					printf("; increasing Tx drain "
1560 					    "threshold to %u bytes\n",
1561 					    thresh * 32);
1562 					sc->sc_tx_drain_thresh = thresh;
1563 					(void) SIP_DECL(init)(ifp);
1564 				} else {
1565 					(void) SIP_DECL(init)(ifp);
1566 					printf("\n");
1567 				}
1568 			}
1569 		}
1570 
1571 #if !defined(DP83820)
1572 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1573 			if (isr & ISR_PAUSE_ST) {
1574 				sc->sc_flags |= SIPF_PAUSED;
1575 				ifp->if_flags |= IFF_OACTIVE;
1576 			}
1577 			if (isr & ISR_PAUSE_END) {
1578 				sc->sc_flags &= ~SIPF_PAUSED;
1579 				ifp->if_flags &= ~IFF_OACTIVE;
1580 			}
1581 		}
1582 #endif /* ! DP83820 */
1583 
1584 		if (isr & ISR_HIBERR) {
1585 			int want_init = 0;
1586 
1587 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1588 
1589 #define	PRINTERR(bit, str)						\
1590 			do {						\
1591 				if ((isr & (bit)) != 0) {		\
1592 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1593 						printf("%s: %s\n",	\
1594 						    sc->sc_dev.dv_xname, str); \
1595 					want_init = 1;			\
1596 				}					\
1597 			} while (/*CONSTCOND*/0)
1598 
1599 			PRINTERR(ISR_DPERR, "parity error");
1600 			PRINTERR(ISR_SSERR, "system error");
1601 			PRINTERR(ISR_RMABT, "master abort");
1602 			PRINTERR(ISR_RTABT, "target abort");
1603 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1604 			/*
1605 			 * Ignore:
1606 			 *	Tx reset complete
1607 			 *	Rx reset complete
1608 			 */
1609 			if (want_init)
1610 				(void) SIP_DECL(init)(ifp);
1611 #undef PRINTERR
1612 		}
1613 	}
1614 
1615 	/* Try to get more packets going. */
1616 	SIP_DECL(start)(ifp);
1617 
1618 	return (handled);
1619 }
1620 
1621 /*
1622  * sip_txintr:
1623  *
1624  *	Helper; handle transmit interrupts.
1625  */
1626 void
1627 SIP_DECL(txintr)(struct sip_softc *sc)
1628 {
1629 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1630 	struct sip_txsoft *txs;
1631 	u_int32_t cmdsts;
1632 
1633 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1634 		ifp->if_flags &= ~IFF_OACTIVE;
1635 
1636 	/*
1637 	 * Go through our Tx list and free mbufs for those
1638 	 * frames which have been transmitted.
1639 	 */
1640 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1641 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1642 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1643 
1644 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1645 		if (cmdsts & CMDSTS_OWN)
1646 			break;
1647 
1648 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1649 
1650 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1651 
1652 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1653 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1654 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1655 		m_freem(txs->txs_mbuf);
1656 		txs->txs_mbuf = NULL;
1657 
1658 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1659 
1660 		/*
1661 		 * Check for errors and collisions.
1662 		 */
1663 		if (cmdsts &
1664 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1665 			ifp->if_oerrors++;
1666 			if (cmdsts & CMDSTS_Tx_EC)
1667 				ifp->if_collisions += 16;
1668 			if (ifp->if_flags & IFF_DEBUG) {
1669 				if (cmdsts & CMDSTS_Tx_ED)
1670 					printf("%s: excessive deferral\n",
1671 					    sc->sc_dev.dv_xname);
1672 				if (cmdsts & CMDSTS_Tx_EC)
1673 					printf("%s: excessive collisions\n",
1674 					    sc->sc_dev.dv_xname);
1675 			}
1676 		} else {
1677 			/* Packet was transmitted successfully. */
1678 			ifp->if_opackets++;
1679 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1680 		}
1681 	}
1682 
1683 	/*
1684 	 * If there are no more pending transmissions, cancel the watchdog
1685 	 * timer.
1686 	 */
1687 	if (txs == NULL) {
1688 		ifp->if_timer = 0;
1689 		sc->sc_txwin = 0;
1690 	}
1691 }
1692 
1693 #if defined(DP83820)
1694 /*
1695  * sip_rxintr:
1696  *
1697  *	Helper; handle receive interrupts.
1698  */
1699 void
1700 SIP_DECL(rxintr)(struct sip_softc *sc)
1701 {
1702 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1703 	struct sip_rxsoft *rxs;
1704 	struct mbuf *m, *tailm;
1705 	u_int32_t cmdsts, extsts;
1706 	int i, len;
1707 
1708 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1709 		rxs = &sc->sc_rxsoft[i];
1710 
1711 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1712 
1713 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1714 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1715 
1716 		/*
1717 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1718 		 * consumer of the receive ring, so if the bit is clear,
1719 		 * we have processed all of the packets.
1720 		 */
1721 		if ((cmdsts & CMDSTS_OWN) == 0) {
1722 			/*
1723 			 * We have processed all of the receive buffers.
1724 			 */
1725 			break;
1726 		}
1727 
1728 		if (__predict_false(sc->sc_rxdiscard)) {
1729 			SIP_INIT_RXDESC(sc, i);
1730 			if ((cmdsts & CMDSTS_MORE) == 0) {
1731 				/* Reset our state. */
1732 				sc->sc_rxdiscard = 0;
1733 			}
1734 			continue;
1735 		}
1736 
1737 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1738 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1739 
1740 		m = rxs->rxs_mbuf;
1741 
1742 		/*
1743 		 * Add a new receive buffer to the ring.
1744 		 */
1745 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1746 			/*
1747 			 * Failed, throw away what we've done so
1748 			 * far, and discard the rest of the packet.
1749 			 */
1750 			ifp->if_ierrors++;
1751 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1752 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1753 			SIP_INIT_RXDESC(sc, i);
1754 			if (cmdsts & CMDSTS_MORE)
1755 				sc->sc_rxdiscard = 1;
1756 			if (sc->sc_rxhead != NULL)
1757 				m_freem(sc->sc_rxhead);
1758 			SIP_RXCHAIN_RESET(sc);
1759 			continue;
1760 		}
1761 
1762 		SIP_RXCHAIN_LINK(sc, m);
1763 
1764 		/*
1765 		 * If this is not the end of the packet, keep
1766 		 * looking.
1767 		 */
1768 		if (cmdsts & CMDSTS_MORE) {
1769 			sc->sc_rxlen += m->m_len;
1770 			continue;
1771 		}
1772 
1773 		/*
1774 		 * Okay, we have the entire packet now...
1775 		 */
1776 		*sc->sc_rxtailp = NULL;
1777 		m = sc->sc_rxhead;
1778 		tailm = sc->sc_rxtail;
1779 
1780 		SIP_RXCHAIN_RESET(sc);
1781 
1782 		/*
1783 		 * If an error occurred, update stats and drop the packet.
1784 		 */
1785 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1786 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1787 			ifp->if_ierrors++;
1788 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1789 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1790 				/* Receive overrun handled elsewhere. */
1791 				printf("%s: receive descriptor error\n",
1792 				    sc->sc_dev.dv_xname);
1793 			}
1794 #define	PRINTERR(bit, str)						\
1795 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1796 			    (cmdsts & (bit)) != 0)			\
1797 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1798 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1799 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1800 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1801 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1802 #undef PRINTERR
1803 			m_freem(m);
1804 			continue;
1805 		}
1806 
1807 		/*
1808 		 * No errors.
1809 		 *
1810 		 * Note, the DP83820 includes the CRC with
1811 		 * every packet.
1812 		 */
1813 		len = CMDSTS_SIZE(cmdsts);
1814 		tailm->m_len = len - sc->sc_rxlen;
1815 
1816 		/*
1817 		 * If the packet is small enough to fit in a
1818 		 * single header mbuf, allocate one and copy
1819 		 * the data into it.  This greatly reduces
1820 		 * memory consumption when we receive lots
1821 		 * of small packets.
1822 		 */
1823 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1824 			struct mbuf *nm;
1825 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1826 			if (nm == NULL) {
1827 				ifp->if_ierrors++;
1828 				m_freem(m);
1829 				continue;
1830 			}
1831 			nm->m_data += 2;
1832 			nm->m_pkthdr.len = nm->m_len = len;
1833 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1834 			m_freem(m);
1835 			m = nm;
1836 		}
1837 #ifndef __NO_STRICT_ALIGNMENT
1838 		else {
1839 			/*
1840 			 * The DP83820's receive buffers must be 4-byte
1841 			 * aligned.  But this means that the data after
1842 			 * the Ethernet header is misaligned.  To compensate,
1843 			 * we have artificially shortened the buffer size
1844 			 * in the descriptor, and we do an overlapping copy
1845 			 * of the data two bytes further in (in the first
1846 			 * buffer of the chain only).
1847 			 */
1848 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1849 			    m->m_len);
1850 			m->m_data += 2;
1851 		}
1852 #endif /* ! __NO_STRICT_ALIGNMENT */
1853 
1854 		/*
1855 		 * If VLANs are enabled, VLAN packets have been unwrapped
1856 		 * for us.  Associate the tag with the packet.
1857 		 */
1858 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1859 		    (extsts & EXTSTS_VPKT) != 0) {
1860 			struct mbuf *vtag;
1861 
1862 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1863 			if (vtag == NULL) {
1864 				ifp->if_ierrors++;
1865 				printf("%s: unable to allocate VLAN tag\n",
1866 				    sc->sc_dev.dv_xname);
1867 				m_freem(m);
1868 				continue;
1869 			}
1870 
1871 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1872 			vtag->m_len = sizeof(int);
1873 		}
1874 
1875 		/*
1876 		 * Set the incoming checksum information for the
1877 		 * packet.
1878 		 */
1879 		if ((extsts & EXTSTS_IPPKT) != 0) {
1880 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1881 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1882 			if (extsts & EXTSTS_Rx_IPERR)
1883 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1884 			if (extsts & EXTSTS_TCPPKT) {
1885 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1886 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1887 				if (extsts & EXTSTS_Rx_TCPERR)
1888 					m->m_pkthdr.csum_flags |=
1889 					    M_CSUM_TCP_UDP_BAD;
1890 			} else if (extsts & EXTSTS_UDPPKT) {
1891 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1892 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1893 				if (extsts & EXTSTS_Rx_UDPERR)
1894 					m->m_pkthdr.csum_flags |=
1895 					    M_CSUM_TCP_UDP_BAD;
1896 			}
1897 		}
1898 
1899 		ifp->if_ipackets++;
1900 		m->m_flags |= M_HASFCS;
1901 		m->m_pkthdr.rcvif = ifp;
1902 		m->m_pkthdr.len = len;
1903 
1904 #if NBPFILTER > 0
1905 		/*
1906 		 * Pass this up to any BPF listeners, but only
1907 		 * pass if up the stack if it's for us.
1908 		 */
1909 		if (ifp->if_bpf)
1910 			bpf_mtap(ifp->if_bpf, m);
1911 #endif /* NBPFILTER > 0 */
1912 
1913 		/* Pass it on. */
1914 		(*ifp->if_input)(ifp, m);
1915 	}
1916 
1917 	/* Update the receive pointer. */
1918 	sc->sc_rxptr = i;
1919 }
1920 #else /* ! DP83820 */
1921 /*
1922  * sip_rxintr:
1923  *
1924  *	Helper; handle receive interrupts.
1925  */
1926 void
1927 SIP_DECL(rxintr)(struct sip_softc *sc)
1928 {
1929 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1930 	struct sip_rxsoft *rxs;
1931 	struct mbuf *m;
1932 	u_int32_t cmdsts;
1933 	int i, len;
1934 
1935 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1936 		rxs = &sc->sc_rxsoft[i];
1937 
1938 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1939 
1940 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1941 
1942 		/*
1943 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1944 		 * consumer of the receive ring, so if the bit is clear,
1945 		 * we have processed all of the packets.
1946 		 */
1947 		if ((cmdsts & CMDSTS_OWN) == 0) {
1948 			/*
1949 			 * We have processed all of the receive buffers.
1950 			 */
1951 			break;
1952 		}
1953 
1954 		/*
1955 		 * If any collisions were seen on the wire, count one.
1956 		 */
1957 		if (cmdsts & CMDSTS_Rx_COL)
1958 			ifp->if_collisions++;
1959 
1960 		/*
1961 		 * If an error occurred, update stats, clear the status
1962 		 * word, and leave the packet buffer in place.  It will
1963 		 * simply be reused the next time the ring comes around.
1964 		 */
1965 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1966 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1967 			ifp->if_ierrors++;
1968 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1969 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1970 				/* Receive overrun handled elsewhere. */
1971 				printf("%s: receive descriptor error\n",
1972 				    sc->sc_dev.dv_xname);
1973 			}
1974 #define	PRINTERR(bit, str)						\
1975 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1976 			    (cmdsts & (bit)) != 0)			\
1977 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1978 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1979 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1980 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1981 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1982 #undef PRINTERR
1983 			SIP_INIT_RXDESC(sc, i);
1984 			continue;
1985 		}
1986 
1987 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1988 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1989 
1990 		/*
1991 		 * No errors; receive the packet.  Note, the SiS 900
1992 		 * includes the CRC with every packet.
1993 		 */
1994 		len = CMDSTS_SIZE(cmdsts);
1995 
1996 #ifdef __NO_STRICT_ALIGNMENT
1997 		/*
1998 		 * If the packet is small enough to fit in a
1999 		 * single header mbuf, allocate one and copy
2000 		 * the data into it.  This greatly reduces
2001 		 * memory consumption when we receive lots
2002 		 * of small packets.
2003 		 *
2004 		 * Otherwise, we add a new buffer to the receive
2005 		 * chain.  If this fails, we drop the packet and
2006 		 * recycle the old buffer.
2007 		 */
2008 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2009 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2010 			if (m == NULL)
2011 				goto dropit;
2012 			memcpy(mtod(m, caddr_t),
2013 			    mtod(rxs->rxs_mbuf, caddr_t), len);
2014 			SIP_INIT_RXDESC(sc, i);
2015 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2016 			    rxs->rxs_dmamap->dm_mapsize,
2017 			    BUS_DMASYNC_PREREAD);
2018 		} else {
2019 			m = rxs->rxs_mbuf;
2020 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2021  dropit:
2022 				ifp->if_ierrors++;
2023 				SIP_INIT_RXDESC(sc, i);
2024 				bus_dmamap_sync(sc->sc_dmat,
2025 				    rxs->rxs_dmamap, 0,
2026 				    rxs->rxs_dmamap->dm_mapsize,
2027 				    BUS_DMASYNC_PREREAD);
2028 				continue;
2029 			}
2030 		}
2031 #else
2032 		/*
2033 		 * The SiS 900's receive buffers must be 4-byte aligned.
2034 		 * But this means that the data after the Ethernet header
2035 		 * is misaligned.  We must allocate a new buffer and
2036 		 * copy the data, shifted forward 2 bytes.
2037 		 */
2038 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2039 		if (m == NULL) {
2040  dropit:
2041 			ifp->if_ierrors++;
2042 			SIP_INIT_RXDESC(sc, i);
2043 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2044 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2045 			continue;
2046 		}
2047 		if (len > (MHLEN - 2)) {
2048 			MCLGET(m, M_DONTWAIT);
2049 			if ((m->m_flags & M_EXT) == 0) {
2050 				m_freem(m);
2051 				goto dropit;
2052 			}
2053 		}
2054 		m->m_data += 2;
2055 
2056 		/*
2057 		 * Note that we use clusters for incoming frames, so the
2058 		 * buffer is virtually contiguous.
2059 		 */
2060 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2061 
2062 		/* Allow the receive descriptor to continue using its mbuf. */
2063 		SIP_INIT_RXDESC(sc, i);
2064 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2065 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2066 #endif /* __NO_STRICT_ALIGNMENT */
2067 
2068 		ifp->if_ipackets++;
2069 		m->m_flags |= M_HASFCS;
2070 		m->m_pkthdr.rcvif = ifp;
2071 		m->m_pkthdr.len = m->m_len = len;
2072 
2073 #if NBPFILTER > 0
2074 		/*
2075 		 * Pass this up to any BPF listeners, but only
2076 		 * pass if up the stack if it's for us.
2077 		 */
2078 		if (ifp->if_bpf)
2079 			bpf_mtap(ifp->if_bpf, m);
2080 #endif /* NBPFILTER > 0 */
2081 
2082 		/* Pass it on. */
2083 		(*ifp->if_input)(ifp, m);
2084 	}
2085 
2086 	/* Update the receive pointer. */
2087 	sc->sc_rxptr = i;
2088 }
2089 #endif /* DP83820 */
2090 
2091 /*
2092  * sip_tick:
2093  *
2094  *	One second timer, used to tick the MII.
2095  */
2096 void
2097 SIP_DECL(tick)(void *arg)
2098 {
2099 	struct sip_softc *sc = arg;
2100 	int s;
2101 
2102 	s = splnet();
2103 	mii_tick(&sc->sc_mii);
2104 	splx(s);
2105 
2106 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2107 }
2108 
2109 /*
2110  * sip_reset:
2111  *
2112  *	Perform a soft reset on the SiS 900.
2113  */
2114 void
2115 SIP_DECL(reset)(struct sip_softc *sc)
2116 {
2117 	bus_space_tag_t st = sc->sc_st;
2118 	bus_space_handle_t sh = sc->sc_sh;
2119 	int i;
2120 
2121 	bus_space_write_4(st, sh, SIP_IER, 0);
2122 	bus_space_write_4(st, sh, SIP_IMR, 0);
2123 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2124 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2125 
2126 	for (i = 0; i < SIP_TIMEOUT; i++) {
2127 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2128 			break;
2129 		delay(2);
2130 	}
2131 
2132 	if (i == SIP_TIMEOUT)
2133 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2134 
2135 	delay(1000);
2136 
2137 #ifdef DP83820
2138 	/*
2139 	 * Set the general purpose I/O bits.  Do it here in case we
2140 	 * need to have GPIO set up to talk to the media interface.
2141 	 */
2142 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2143 	delay(1000);
2144 #endif /* DP83820 */
2145 }
2146 
2147 /*
2148  * sip_init:		[ ifnet interface function ]
2149  *
2150  *	Initialize the interface.  Must be called at splnet().
2151  */
2152 int
2153 SIP_DECL(init)(struct ifnet *ifp)
2154 {
2155 	struct sip_softc *sc = ifp->if_softc;
2156 	bus_space_tag_t st = sc->sc_st;
2157 	bus_space_handle_t sh = sc->sc_sh;
2158 	struct sip_txsoft *txs;
2159 	struct sip_rxsoft *rxs;
2160 	struct sip_desc *sipd;
2161 	u_int32_t reg;
2162 	int i, error = 0;
2163 
2164 	/*
2165 	 * Cancel any pending I/O.
2166 	 */
2167 	SIP_DECL(stop)(ifp, 0);
2168 
2169 	/*
2170 	 * Reset the chip to a known state.
2171 	 */
2172 	SIP_DECL(reset)(sc);
2173 
2174 #if !defined(DP83820)
2175 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2176 		/*
2177 		 * DP83815 manual, page 78:
2178 		 *    4.4 Recommended Registers Configuration
2179 		 *    For optimum performance of the DP83815, version noted
2180 		 *    as DP83815CVNG (SRR = 203h), the listed register
2181 		 *    modifications must be followed in sequence...
2182 		 *
2183 		 * It's not clear if this should be 302h or 203h because that
2184 		 * chip name is listed as SRR 302h in the description of the
2185 		 * SRR register.  However, my revision 302h DP83815 on the
2186 		 * Netgear FA311 purchased in 02/2001 needs these settings
2187 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2188 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2189 		 * this set or not.  [briggs -- 09 March 2001]
2190 		 *
2191 		 * Note that only the low-order 12 bits of 0xe4 are documented
2192 		 * and that this sets reserved bits in that register.
2193 		 */
2194 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2195 		if (reg == 0x302) {
2196 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
2197 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
2198 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
2199 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
2200 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
2201 		}
2202 	}
2203 #endif /* ! DP83820 */
2204 
2205 	/*
2206 	 * Initialize the transmit descriptor ring.
2207 	 */
2208 	for (i = 0; i < SIP_NTXDESC; i++) {
2209 		sipd = &sc->sc_txdescs[i];
2210 		memset(sipd, 0, sizeof(struct sip_desc));
2211 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2212 	}
2213 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2214 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2215 	sc->sc_txfree = SIP_NTXDESC;
2216 	sc->sc_txnext = 0;
2217 	sc->sc_txwin = 0;
2218 
2219 	/*
2220 	 * Initialize the transmit job descriptors.
2221 	 */
2222 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2223 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2224 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2225 		txs = &sc->sc_txsoft[i];
2226 		txs->txs_mbuf = NULL;
2227 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2228 	}
2229 
2230 	/*
2231 	 * Initialize the receive descriptor and receive job
2232 	 * descriptor rings.
2233 	 */
2234 	for (i = 0; i < SIP_NRXDESC; i++) {
2235 		rxs = &sc->sc_rxsoft[i];
2236 		if (rxs->rxs_mbuf == NULL) {
2237 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2238 				printf("%s: unable to allocate or map rx "
2239 				    "buffer %d, error = %d\n",
2240 				    sc->sc_dev.dv_xname, i, error);
2241 				/*
2242 				 * XXX Should attempt to run with fewer receive
2243 				 * XXX buffers instead of just failing.
2244 				 */
2245 				SIP_DECL(rxdrain)(sc);
2246 				goto out;
2247 			}
2248 		} else
2249 			SIP_INIT_RXDESC(sc, i);
2250 	}
2251 	sc->sc_rxptr = 0;
2252 #ifdef DP83820
2253 	sc->sc_rxdiscard = 0;
2254 	SIP_RXCHAIN_RESET(sc);
2255 #endif /* DP83820 */
2256 
2257 	/*
2258 	 * Set the configuration register; it's already initialized
2259 	 * in sip_attach().
2260 	 */
2261 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2262 
2263 	/*
2264 	 * Initialize the prototype TXCFG register.
2265 	 */
2266 #if defined(DP83820)
2267 	sc->sc_txcfg = TXCFG_MXDMA_512;
2268 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2269 #else
2270 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2271 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2272 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2273 		sc->sc_txcfg = TXCFG_MXDMA_64;
2274 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2275 	} else {
2276 		sc->sc_txcfg = TXCFG_MXDMA_512;
2277 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2278 	}
2279 #endif /* DP83820 */
2280 
2281 	sc->sc_txcfg |= TXCFG_ATP |
2282 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2283 	    sc->sc_tx_drain_thresh;
2284 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2285 
2286 	/*
2287 	 * Initialize the receive drain threshold if we have never
2288 	 * done so.
2289 	 */
2290 	if (sc->sc_rx_drain_thresh == 0) {
2291 		/*
2292 		 * XXX This value should be tuned.  This is set to the
2293 		 * maximum of 248 bytes, and we may be able to improve
2294 		 * performance by decreasing it (although we should never
2295 		 * set this value lower than 2; 14 bytes are required to
2296 		 * filter the packet).
2297 		 */
2298 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2299 	}
2300 
2301 	/*
2302 	 * Initialize the prototype RXCFG register.
2303 	 */
2304 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2305 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2306 
2307 #ifdef DP83820
2308 	/*
2309 	 * Initialize the VLAN/IP receive control register.
2310 	 * We enable checksum computation on all incoming
2311 	 * packets, and do not reject packets w/ bad checksums.
2312 	 */
2313 	reg = 0;
2314 	if (ifp->if_capenable &
2315 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2316 		reg |= VRCR_IPEN;
2317 	if (sc->sc_ethercom.ec_nvlans != 0)
2318 		reg |= VRCR_VTDEN|VRCR_VTREN;
2319 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2320 
2321 	/*
2322 	 * Initialize the VLAN/IP transmit control register.
2323 	 * We enable outgoing checksum computation on a
2324 	 * per-packet basis.
2325 	 */
2326 	reg = 0;
2327 	if (ifp->if_capenable &
2328 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2329 		reg |= VTCR_PPCHK;
2330 	if (sc->sc_ethercom.ec_nvlans != 0)
2331 		reg |= VTCR_VPPTI;
2332 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2333 
2334 	/*
2335 	 * If we're using VLANs, initialize the VLAN data register.
2336 	 * To understand why we bswap the VLAN Ethertype, see section
2337 	 * 4.2.36 of the DP83820 manual.
2338 	 */
2339 	if (sc->sc_ethercom.ec_nvlans != 0)
2340 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2341 #endif /* DP83820 */
2342 
2343 	/*
2344 	 * Give the transmit and receive rings to the chip.
2345 	 */
2346 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2347 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2348 
2349 	/*
2350 	 * Initialize the interrupt mask.
2351 	 */
2352 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2353 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2354 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2355 
2356 	/* Set up the receive filter. */
2357 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2358 
2359 	/*
2360 	 * Set the current media.  Do this after initializing the prototype
2361 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2362 	 * control.
2363 	 */
2364 	mii_mediachg(&sc->sc_mii);
2365 
2366 	/*
2367 	 * Enable interrupts.
2368 	 */
2369 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2370 
2371 	/*
2372 	 * Start the transmit and receive processes.
2373 	 */
2374 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2375 
2376 	/*
2377 	 * Start the one second MII clock.
2378 	 */
2379 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2380 
2381 	/*
2382 	 * ...all done!
2383 	 */
2384 	ifp->if_flags |= IFF_RUNNING;
2385 	ifp->if_flags &= ~IFF_OACTIVE;
2386 
2387  out:
2388 	if (error)
2389 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2390 	return (error);
2391 }
2392 
2393 /*
2394  * sip_drain:
2395  *
2396  *	Drain the receive queue.
2397  */
2398 void
2399 SIP_DECL(rxdrain)(struct sip_softc *sc)
2400 {
2401 	struct sip_rxsoft *rxs;
2402 	int i;
2403 
2404 	for (i = 0; i < SIP_NRXDESC; i++) {
2405 		rxs = &sc->sc_rxsoft[i];
2406 		if (rxs->rxs_mbuf != NULL) {
2407 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2408 			m_freem(rxs->rxs_mbuf);
2409 			rxs->rxs_mbuf = NULL;
2410 		}
2411 	}
2412 }
2413 
2414 /*
2415  * sip_stop:		[ ifnet interface function ]
2416  *
2417  *	Stop transmission on the interface.
2418  */
2419 void
2420 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2421 {
2422 	struct sip_softc *sc = ifp->if_softc;
2423 	bus_space_tag_t st = sc->sc_st;
2424 	bus_space_handle_t sh = sc->sc_sh;
2425 	struct sip_txsoft *txs;
2426 	u_int32_t cmdsts = 0;		/* DEBUG */
2427 
2428 	/*
2429 	 * Stop the one second clock.
2430 	 */
2431 	callout_stop(&sc->sc_tick_ch);
2432 
2433 	/* Down the MII. */
2434 	mii_down(&sc->sc_mii);
2435 
2436 	/*
2437 	 * Disable interrupts.
2438 	 */
2439 	bus_space_write_4(st, sh, SIP_IER, 0);
2440 
2441 	/*
2442 	 * Stop receiver and transmitter.
2443 	 */
2444 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2445 
2446 	/*
2447 	 * Release any queued transmit buffers.
2448 	 */
2449 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2450 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2451 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2452 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2453 		     CMDSTS_INTR) == 0)
2454 			printf("%s: sip_stop: last descriptor does not "
2455 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2456 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2457 #ifdef DIAGNOSTIC
2458 		if (txs->txs_mbuf == NULL) {
2459 			printf("%s: dirty txsoft with no mbuf chain\n",
2460 			    sc->sc_dev.dv_xname);
2461 			panic("sip_stop");
2462 		}
2463 #endif
2464 		cmdsts |=		/* DEBUG */
2465 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2466 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2467 		m_freem(txs->txs_mbuf);
2468 		txs->txs_mbuf = NULL;
2469 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2470 	}
2471 
2472 	if (disable)
2473 		SIP_DECL(rxdrain)(sc);
2474 
2475 	/*
2476 	 * Mark the interface down and cancel the watchdog timer.
2477 	 */
2478 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2479 	ifp->if_timer = 0;
2480 
2481 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2482 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2483 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2484 		    "descriptors\n", sc->sc_dev.dv_xname);
2485 }
2486 
2487 /*
2488  * sip_read_eeprom:
2489  *
2490  *	Read data from the serial EEPROM.
2491  */
2492 void
2493 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2494     u_int16_t *data)
2495 {
2496 	bus_space_tag_t st = sc->sc_st;
2497 	bus_space_handle_t sh = sc->sc_sh;
2498 	u_int16_t reg;
2499 	int i, x;
2500 
2501 	for (i = 0; i < wordcnt; i++) {
2502 		/* Send CHIP SELECT. */
2503 		reg = EROMAR_EECS;
2504 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2505 
2506 		/* Shift in the READ opcode. */
2507 		for (x = 3; x > 0; x--) {
2508 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2509 				reg |= EROMAR_EEDI;
2510 			else
2511 				reg &= ~EROMAR_EEDI;
2512 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2513 			bus_space_write_4(st, sh, SIP_EROMAR,
2514 			    reg | EROMAR_EESK);
2515 			delay(4);
2516 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2517 			delay(4);
2518 		}
2519 
2520 		/* Shift in address. */
2521 		for (x = 6; x > 0; x--) {
2522 			if ((word + i) & (1 << (x - 1)))
2523 				reg |= EROMAR_EEDI;
2524 			else
2525 				reg &= ~EROMAR_EEDI;
2526 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2527 			bus_space_write_4(st, sh, SIP_EROMAR,
2528 			    reg | EROMAR_EESK);
2529 			delay(4);
2530 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2531 			delay(4);
2532 		}
2533 
2534 		/* Shift out data. */
2535 		reg = EROMAR_EECS;
2536 		data[i] = 0;
2537 		for (x = 16; x > 0; x--) {
2538 			bus_space_write_4(st, sh, SIP_EROMAR,
2539 			    reg | EROMAR_EESK);
2540 			delay(4);
2541 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2542 				data[i] |= (1 << (x - 1));
2543 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2544 			delay(4);
2545 		}
2546 
2547 		/* Clear CHIP SELECT. */
2548 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2549 		delay(4);
2550 	}
2551 }
2552 
2553 /*
2554  * sip_add_rxbuf:
2555  *
2556  *	Add a receive buffer to the indicated descriptor.
2557  */
2558 int
2559 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2560 {
2561 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2562 	struct mbuf *m;
2563 	int error;
2564 
2565 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2566 	if (m == NULL)
2567 		return (ENOBUFS);
2568 
2569 	MCLGET(m, M_DONTWAIT);
2570 	if ((m->m_flags & M_EXT) == 0) {
2571 		m_freem(m);
2572 		return (ENOBUFS);
2573 	}
2574 
2575 #if defined(DP83820)
2576 	m->m_len = SIP_RXBUF_LEN;
2577 #endif /* DP83820 */
2578 
2579 	if (rxs->rxs_mbuf != NULL)
2580 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2581 
2582 	rxs->rxs_mbuf = m;
2583 
2584 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2585 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2586 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2587 	if (error) {
2588 		printf("%s: can't load rx DMA map %d, error = %d\n",
2589 		    sc->sc_dev.dv_xname, idx, error);
2590 		panic("sip_add_rxbuf");		/* XXX */
2591 	}
2592 
2593 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2594 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2595 
2596 	SIP_INIT_RXDESC(sc, idx);
2597 
2598 	return (0);
2599 }
2600 
2601 #if !defined(DP83820)
2602 /*
2603  * sip_sis900_set_filter:
2604  *
2605  *	Set up the receive filter.
2606  */
2607 void
2608 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2609 {
2610 	bus_space_tag_t st = sc->sc_st;
2611 	bus_space_handle_t sh = sc->sc_sh;
2612 	struct ethercom *ec = &sc->sc_ethercom;
2613 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2614 	struct ether_multi *enm;
2615 	u_int8_t *cp;
2616 	struct ether_multistep step;
2617 	u_int32_t crc, mchash[16];
2618 
2619 	/*
2620 	 * Initialize the prototype RFCR.
2621 	 */
2622 	sc->sc_rfcr = RFCR_RFEN;
2623 	if (ifp->if_flags & IFF_BROADCAST)
2624 		sc->sc_rfcr |= RFCR_AAB;
2625 	if (ifp->if_flags & IFF_PROMISC) {
2626 		sc->sc_rfcr |= RFCR_AAP;
2627 		goto allmulti;
2628 	}
2629 
2630 	/*
2631 	 * Set up the multicast address filter by passing all multicast
2632 	 * addresses through a CRC generator, and then using the high-order
2633 	 * 6 bits as an index into the 128 bit multicast hash table (only
2634 	 * the lower 16 bits of each 32 bit multicast hash register are
2635 	 * valid).  The high order bits select the register, while the
2636 	 * rest of the bits select the bit within the register.
2637 	 */
2638 
2639 	memset(mchash, 0, sizeof(mchash));
2640 
2641 	ETHER_FIRST_MULTI(step, ec, enm);
2642 	while (enm != NULL) {
2643 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2644 			/*
2645 			 * We must listen to a range of multicast addresses.
2646 			 * For now, just accept all multicasts, rather than
2647 			 * trying to set only those filter bits needed to match
2648 			 * the range.  (At this time, the only use of address
2649 			 * ranges is for IP multicast routing, for which the
2650 			 * range is big enough to require all bits set.)
2651 			 */
2652 			goto allmulti;
2653 		}
2654 
2655 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2656 
2657 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2658 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2659 			/* Just want the 8 most significant bits. */
2660 			crc >>= 24;
2661 		} else {
2662 			/* Just want the 7 most significant bits. */
2663 			crc >>= 25;
2664 		}
2665 
2666 		/* Set the corresponding bit in the hash table. */
2667 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2668 
2669 		ETHER_NEXT_MULTI(step, enm);
2670 	}
2671 
2672 	ifp->if_flags &= ~IFF_ALLMULTI;
2673 	goto setit;
2674 
2675  allmulti:
2676 	ifp->if_flags |= IFF_ALLMULTI;
2677 	sc->sc_rfcr |= RFCR_AAM;
2678 
2679  setit:
2680 #define	FILTER_EMIT(addr, data)						\
2681 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2682 	delay(1);							\
2683 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2684 	delay(1)
2685 
2686 	/*
2687 	 * Disable receive filter, and program the node address.
2688 	 */
2689 	cp = LLADDR(ifp->if_sadl);
2690 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2691 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2692 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2693 
2694 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2695 		/*
2696 		 * Program the multicast hash table.
2697 		 */
2698 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2699 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2700 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2701 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2702 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2703 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2704 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2705 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2706 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2707 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2708 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2709 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2710 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2711 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2712 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2713 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2714 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2715 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2716 		}
2717 	}
2718 #undef FILTER_EMIT
2719 
2720 	/*
2721 	 * Re-enable the receiver filter.
2722 	 */
2723 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2724 }
2725 #endif /* ! DP83820 */
2726 
2727 /*
2728  * sip_dp83815_set_filter:
2729  *
2730  *	Set up the receive filter.
2731  */
2732 void
2733 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2734 {
2735 	bus_space_tag_t st = sc->sc_st;
2736 	bus_space_handle_t sh = sc->sc_sh;
2737 	struct ethercom *ec = &sc->sc_ethercom;
2738 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2739 	struct ether_multi *enm;
2740 	u_int8_t *cp;
2741 	struct ether_multistep step;
2742 	u_int32_t crc, hash, slot, bit;
2743 #ifdef DP83820
2744 #define	MCHASH_NWORDS	128
2745 #else
2746 #define	MCHASH_NWORDS	32
2747 #endif /* DP83820 */
2748 	u_int16_t mchash[MCHASH_NWORDS];
2749 	int i;
2750 
2751 	/*
2752 	 * Initialize the prototype RFCR.
2753 	 * Enable the receive filter, and accept on
2754 	 *    Perfect (destination address) Match
2755 	 * If IFF_BROADCAST, also accept all broadcast packets.
2756 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2757 	 *    IFF_ALLMULTI and accept all multicast, too).
2758 	 */
2759 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2760 	if (ifp->if_flags & IFF_BROADCAST)
2761 		sc->sc_rfcr |= RFCR_AAB;
2762 	if (ifp->if_flags & IFF_PROMISC) {
2763 		sc->sc_rfcr |= RFCR_AAP;
2764 		goto allmulti;
2765 	}
2766 
2767 #ifdef DP83820
2768 	/*
2769 	 * Set up the DP83820 multicast address filter by passing all multicast
2770 	 * addresses through a CRC generator, and then using the high-order
2771 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2772 	 * high-order 7 bits select the slot, while the low-order 4 bits
2773 	 * select the bit within the slot.  Note that only the low 16-bits
2774 	 * of each filter word are used, and there are 128 filter words.
2775 	 */
2776 #else
2777 	/*
2778 	 * Set up the DP83815 multicast address filter by passing all multicast
2779 	 * addresses through a CRC generator, and then using the high-order
2780 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2781 	 * high-order 5 bits select the slot, while the low-order 4 bits
2782 	 * select the bit within the slot.  Note that only the low 16-bits
2783 	 * of each filter word are used, and there are 32 filter words.
2784 	 */
2785 #endif /* DP83820 */
2786 
2787 	memset(mchash, 0, sizeof(mchash));
2788 
2789 	ifp->if_flags &= ~IFF_ALLMULTI;
2790 	ETHER_FIRST_MULTI(step, ec, enm);
2791 	if (enm == NULL)
2792 		goto setit;
2793 	while (enm != NULL) {
2794 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2795 			/*
2796 			 * We must listen to a range of multicast addresses.
2797 			 * For now, just accept all multicasts, rather than
2798 			 * trying to set only those filter bits needed to match
2799 			 * the range.  (At this time, the only use of address
2800 			 * ranges is for IP multicast routing, for which the
2801 			 * range is big enough to require all bits set.)
2802 			 */
2803 			goto allmulti;
2804 		}
2805 
2806 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2807 
2808 #ifdef DP83820
2809 		/* Just want the 11 most significant bits. */
2810 		hash = crc >> 21;
2811 #else
2812 		/* Just want the 9 most significant bits. */
2813 		hash = crc >> 23;
2814 #endif /* DP83820 */
2815 
2816 		slot = hash >> 4;
2817 		bit = hash & 0xf;
2818 
2819 		/* Set the corresponding bit in the hash table. */
2820 		mchash[slot] |= 1 << bit;
2821 
2822 		ETHER_NEXT_MULTI(step, enm);
2823 	}
2824 	sc->sc_rfcr |= RFCR_MHEN;
2825 	goto setit;
2826 
2827  allmulti:
2828 	ifp->if_flags |= IFF_ALLMULTI;
2829 	sc->sc_rfcr |= RFCR_AAM;
2830 
2831  setit:
2832 #define	FILTER_EMIT(addr, data)						\
2833 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2834 	delay(1);							\
2835 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2836 	delay(1)
2837 
2838 	/*
2839 	 * Disable receive filter, and program the node address.
2840 	 */
2841 	cp = LLADDR(ifp->if_sadl);
2842 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2843 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2844 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2845 
2846 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2847 		/*
2848 		 * Program the multicast hash table.
2849 		 */
2850 		for (i = 0; i < MCHASH_NWORDS; i++) {
2851 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2852 			    mchash[i]);
2853 		}
2854 	}
2855 #undef FILTER_EMIT
2856 #undef MCHASH_NWORDS
2857 
2858 	/*
2859 	 * Re-enable the receiver filter.
2860 	 */
2861 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2862 }
2863 
2864 #if defined(DP83820)
2865 /*
2866  * sip_dp83820_mii_readreg:	[mii interface function]
2867  *
2868  *	Read a PHY register on the MII of the DP83820.
2869  */
2870 int
2871 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2872 {
2873 	struct sip_softc *sc = (void *) self;
2874 
2875 	if (sc->sc_cfg & CFG_TBI_EN) {
2876 		bus_addr_t tbireg;
2877 		int rv;
2878 
2879 		if (phy != 0)
2880 			return (0);
2881 
2882 		switch (reg) {
2883 		case MII_BMCR:		tbireg = SIP_TBICR; break;
2884 		case MII_BMSR:		tbireg = SIP_TBISR; break;
2885 		case MII_ANAR:		tbireg = SIP_TANAR; break;
2886 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
2887 		case MII_ANER:		tbireg = SIP_TANER; break;
2888 		case MII_EXTSR:
2889 			/*
2890 			 * Don't even bother reading the TESR register.
2891 			 * The manual documents that the device has
2892 			 * 1000baseX full/half capability, but the
2893 			 * register itself seems read back 0 on some
2894 			 * boards.  Just hard-code the result.
2895 			 */
2896 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2897 
2898 		default:
2899 			return (0);
2900 		}
2901 
2902 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2903 		if (tbireg == SIP_TBISR) {
2904 			/* LINK and ACOMP are switched! */
2905 			int val = rv;
2906 
2907 			rv = 0;
2908 			if (val & TBISR_MR_LINK_STATUS)
2909 				rv |= BMSR_LINK;
2910 			if (val & TBISR_MR_AN_COMPLETE)
2911 				rv |= BMSR_ACOMP;
2912 
2913 			/*
2914 			 * The manual claims this register reads back 0
2915 			 * on hard and soft reset.  But we want to let
2916 			 * the gentbi driver know that we support auto-
2917 			 * negotiation, so hard-code this bit in the
2918 			 * result.
2919 			 */
2920 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
2921 		}
2922 
2923 		return (rv);
2924 	}
2925 
2926 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2927 	    phy, reg));
2928 }
2929 
2930 /*
2931  * sip_dp83820_mii_writereg:	[mii interface function]
2932  *
2933  *	Write a PHY register on the MII of the DP83820.
2934  */
2935 void
2936 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2937 {
2938 	struct sip_softc *sc = (void *) self;
2939 
2940 	if (sc->sc_cfg & CFG_TBI_EN) {
2941 		bus_addr_t tbireg;
2942 
2943 		if (phy != 0)
2944 			return;
2945 
2946 		switch (reg) {
2947 		case MII_BMCR:		tbireg = SIP_TBICR; break;
2948 		case MII_ANAR:		tbireg = SIP_TANAR; break;
2949 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
2950 		default:
2951 			return;
2952 		}
2953 
2954 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2955 		return;
2956 	}
2957 
2958 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2959 	    phy, reg, val);
2960 }
2961 
2962 /*
2963  * sip_dp83815_mii_statchg:	[mii interface function]
2964  *
2965  *	Callback from MII layer when media changes.
2966  */
2967 void
2968 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2969 {
2970 	struct sip_softc *sc = (struct sip_softc *) self;
2971 	u_int32_t cfg;
2972 
2973 	/*
2974 	 * Update TXCFG for full-duplex operation.
2975 	 */
2976 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2977 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2978 	else
2979 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2980 
2981 	/*
2982 	 * Update RXCFG for full-duplex or loopback.
2983 	 */
2984 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2985 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2986 		sc->sc_rxcfg |= RXCFG_ATX;
2987 	else
2988 		sc->sc_rxcfg &= ~RXCFG_ATX;
2989 
2990 	/*
2991 	 * Update CFG for MII/GMII.
2992 	 */
2993 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2994 		cfg = sc->sc_cfg | CFG_MODE_1000;
2995 	else
2996 		cfg = sc->sc_cfg;
2997 
2998 	/*
2999 	 * XXX 802.3x flow control.
3000 	 */
3001 
3002 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3003 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3004 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3005 }
3006 
3007 /*
3008  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
3009  *
3010  *	Read the MII serial port for the MII bit-bang module.
3011  */
3012 u_int32_t
3013 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
3014 {
3015 	struct sip_softc *sc = (void *) self;
3016 
3017 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3018 }
3019 
3020 /*
3021  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
3022  *
3023  *	Write the MII serial port for the MII bit-bang module.
3024  */
3025 void
3026 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3027 {
3028 	struct sip_softc *sc = (void *) self;
3029 
3030 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3031 }
3032 #else /* ! DP83820 */
3033 /*
3034  * sip_sis900_mii_readreg:	[mii interface function]
3035  *
3036  *	Read a PHY register on the MII.
3037  */
3038 int
3039 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3040 {
3041 	struct sip_softc *sc = (struct sip_softc *) self;
3042 	u_int32_t enphy;
3043 
3044 	/*
3045 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3046 	 * MII address 0.
3047 	 */
3048 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3049 	    sc->sc_rev < SIS_REV_635 && phy != 0)
3050 		return (0);
3051 
3052 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3053 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3054 	    ENPHY_RWCMD | ENPHY_ACCESS);
3055 	do {
3056 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3057 	} while (enphy & ENPHY_ACCESS);
3058 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3059 }
3060 
3061 /*
3062  * sip_sis900_mii_writereg:	[mii interface function]
3063  *
3064  *	Write a PHY register on the MII.
3065  */
3066 void
3067 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3068 {
3069 	struct sip_softc *sc = (struct sip_softc *) self;
3070 	u_int32_t enphy;
3071 
3072 	/*
3073 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3074 	 * MII address 0.
3075 	 */
3076 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3077 	    sc->sc_rev < SIS_REV_635 && phy != 0)
3078 		return;
3079 
3080 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3081 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3082 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3083 	do {
3084 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3085 	} while (enphy & ENPHY_ACCESS);
3086 }
3087 
3088 /*
3089  * sip_sis900_mii_statchg:	[mii interface function]
3090  *
3091  *	Callback from MII layer when media changes.
3092  */
3093 void
3094 SIP_DECL(sis900_mii_statchg)(struct device *self)
3095 {
3096 	struct sip_softc *sc = (struct sip_softc *) self;
3097 	u_int32_t flowctl;
3098 
3099 	/*
3100 	 * Update TXCFG for full-duplex operation.
3101 	 */
3102 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3103 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3104 	else
3105 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3106 
3107 	/*
3108 	 * Update RXCFG for full-duplex or loopback.
3109 	 */
3110 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3111 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3112 		sc->sc_rxcfg |= RXCFG_ATX;
3113 	else
3114 		sc->sc_rxcfg &= ~RXCFG_ATX;
3115 
3116 	/*
3117 	 * Update IMR for use of 802.3x flow control.
3118 	 */
3119 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3120 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3121 		flowctl = FLOWCTL_FLOWEN;
3122 	} else {
3123 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3124 		flowctl = 0;
3125 	}
3126 
3127 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3128 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3129 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3130 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3131 }
3132 
3133 /*
3134  * sip_dp83815_mii_readreg:	[mii interface function]
3135  *
3136  *	Read a PHY register on the MII.
3137  */
3138 int
3139 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3140 {
3141 	struct sip_softc *sc = (struct sip_softc *) self;
3142 	u_int32_t val;
3143 
3144 	/*
3145 	 * The DP83815 only has an internal PHY.  Only allow
3146 	 * MII address 0.
3147 	 */
3148 	if (phy != 0)
3149 		return (0);
3150 
3151 	/*
3152 	 * Apparently, after a reset, the DP83815 can take a while
3153 	 * to respond.  During this recovery period, the BMSR returns
3154 	 * a value of 0.  Catch this -- it's not supposed to happen
3155 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3156 	 * PHY to come back to life.
3157 	 *
3158 	 * This works out because the BMSR is the first register
3159 	 * read during the PHY probe process.
3160 	 */
3161 	do {
3162 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3163 	} while (reg == MII_BMSR && val == 0);
3164 
3165 	return (val & 0xffff);
3166 }
3167 
3168 /*
3169  * sip_dp83815_mii_writereg:	[mii interface function]
3170  *
3171  *	Write a PHY register to the MII.
3172  */
3173 void
3174 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3175 {
3176 	struct sip_softc *sc = (struct sip_softc *) self;
3177 
3178 	/*
3179 	 * The DP83815 only has an internal PHY.  Only allow
3180 	 * MII address 0.
3181 	 */
3182 	if (phy != 0)
3183 		return;
3184 
3185 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3186 }
3187 
3188 /*
3189  * sip_dp83815_mii_statchg:	[mii interface function]
3190  *
3191  *	Callback from MII layer when media changes.
3192  */
3193 void
3194 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3195 {
3196 	struct sip_softc *sc = (struct sip_softc *) self;
3197 
3198 	/*
3199 	 * Update TXCFG for full-duplex operation.
3200 	 */
3201 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3202 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3203 	else
3204 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3205 
3206 	/*
3207 	 * Update RXCFG for full-duplex or loopback.
3208 	 */
3209 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3210 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3211 		sc->sc_rxcfg |= RXCFG_ATX;
3212 	else
3213 		sc->sc_rxcfg &= ~RXCFG_ATX;
3214 
3215 	/*
3216 	 * XXX 802.3x flow control.
3217 	 */
3218 
3219 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3220 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3221 }
3222 #endif /* DP83820 */
3223 
3224 #if defined(DP83820)
3225 void
3226 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3227     const struct pci_attach_args *pa, u_int8_t *enaddr)
3228 {
3229 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3230 	u_int8_t cksum, *e, match;
3231 	int i;
3232 
3233 	/*
3234 	 * EEPROM data format for the DP83820 can be found in
3235 	 * the DP83820 manual, section 4.2.4.
3236 	 */
3237 
3238 	SIP_DECL(read_eeprom)(sc, 0,
3239 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3240 
3241 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3242 	match = ~(match - 1);
3243 
3244 	cksum = 0x55;
3245 	e = (u_int8_t *) eeprom_data;
3246 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3247 		cksum += *e++;
3248 
3249 	if (cksum != match)
3250 		printf("%s: Checksum (%x) mismatch (%x)",
3251 		    sc->sc_dev.dv_xname, cksum, match);
3252 
3253 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3254 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3255 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3256 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3257 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3258 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3259 }
3260 #else /* ! DP83820 */
3261 void
3262 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3263     const struct pci_attach_args *pa, u_int8_t *enaddr)
3264 {
3265 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3266 
3267 	switch (sc->sc_rev) {
3268 	case SIS_REV_630S:
3269 	case SIS_REV_630E:
3270 	case SIS_REV_630EA1:
3271 	case SIS_REV_630ET:
3272 	case SIS_REV_635:
3273 		/*
3274 		 * The MAC address for the on-board Ethernet of
3275 		 * the SiS 630 chipset is in the NVRAM.  Kick
3276 		 * the chip into re-loading it from NVRAM, and
3277 		 * read the MAC address out of the filter registers.
3278 		 */
3279 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3280 
3281 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3282 		    RFCR_RFADDR_NODE0);
3283 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3284 		    0xffff;
3285 
3286 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3287 		    RFCR_RFADDR_NODE2);
3288 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3289 		    0xffff;
3290 
3291 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3292 		    RFCR_RFADDR_NODE4);
3293 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3294 		    0xffff;
3295 		break;
3296 
3297 	default:
3298 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3299 		    sizeof(myea) / sizeof(myea[0]), myea);
3300 	}
3301 
3302 	enaddr[0] = myea[0] & 0xff;
3303 	enaddr[1] = myea[0] >> 8;
3304 	enaddr[2] = myea[1] & 0xff;
3305 	enaddr[3] = myea[1] >> 8;
3306 	enaddr[4] = myea[2] & 0xff;
3307 	enaddr[5] = myea[2] >> 8;
3308 }
3309 
3310 /* Table and macro to bit-reverse an octet. */
3311 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3312 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3313 
3314 void
3315 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3316     const struct pci_attach_args *pa, u_int8_t *enaddr)
3317 {
3318 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3319 	u_int8_t cksum, *e, match;
3320 	int i;
3321 
3322 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3323 	    sizeof(eeprom_data[0]), eeprom_data);
3324 
3325 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3326 	match = ~(match - 1);
3327 
3328 	cksum = 0x55;
3329 	e = (u_int8_t *) eeprom_data;
3330 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3331 		cksum += *e++;
3332 	}
3333 	if (cksum != match) {
3334 		printf("%s: Checksum (%x) mismatch (%x)",
3335 		    sc->sc_dev.dv_xname, cksum, match);
3336 	}
3337 
3338 	/*
3339 	 * Unrolled because it makes slightly more sense this way.
3340 	 * The DP83815 stores the MAC address in bit 0 of word 6
3341 	 * through bit 15 of word 8.
3342 	 */
3343 	ea = &eeprom_data[6];
3344 	enaddr[0] = ((*ea & 0x1) << 7);
3345 	ea++;
3346 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3347 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3348 	enaddr[2] = ((*ea & 0x1) << 7);
3349 	ea++;
3350 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3351 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3352 	enaddr[4] = ((*ea & 0x1) << 7);
3353 	ea++;
3354 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3355 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3356 
3357 	/*
3358 	 * In case that's not weird enough, we also need to reverse
3359 	 * the bits in each byte.  This all actually makes more sense
3360 	 * if you think about the EEPROM storage as an array of bits
3361 	 * being shifted into bytes, but that's not how we're looking
3362 	 * at it here...
3363 	 */
3364 	for (i = 0; i < 6 ;i++)
3365 		enaddr[i] = bbr(enaddr[i]);
3366 }
3367 #endif /* DP83820 */
3368 
3369 /*
3370  * sip_mediastatus:	[ifmedia interface function]
3371  *
3372  *	Get the current interface media status.
3373  */
3374 void
3375 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3376 {
3377 	struct sip_softc *sc = ifp->if_softc;
3378 
3379 	mii_pollstat(&sc->sc_mii);
3380 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3381 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
3382 }
3383 
3384 /*
3385  * sip_mediachange:	[ifmedia interface function]
3386  *
3387  *	Set hardware to newly-selected media.
3388  */
3389 int
3390 SIP_DECL(mediachange)(struct ifnet *ifp)
3391 {
3392 	struct sip_softc *sc = ifp->if_softc;
3393 
3394 	if (ifp->if_flags & IFF_UP)
3395 		mii_mediachg(&sc->sc_mii);
3396 	return (0);
3397 }
3398