xref: /netbsd-src/sys/dev/pci/if_pcn.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: if_pcn.c,v 1.31 2006/06/17 23:34:27 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the AMD PCnet-PCI series of Ethernet
40  * chips:
41  *
42  *	* Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43  *	  Local Bus
44  *
45  *	* Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46  *	  for PCI Local Bus
47  *
48  *	* Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49  *	  Ethernet Controller for PCI Local Bus
50  *
51  *	* Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52  *	  with OnNow Support
53  *
54  *	* Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55  *	  Ethernet Controller with Integrated PHY
56  *
57  * This also supports the virtual PCnet-PCI Ethernet interface found
58  * in VMware.
59  *
60  * TODO:
61  *
62  *	* Split this into bus-specific and bus-independent portions.
63  *	  The core could also be used for the ILACC (Am79900) 32-bit
64  *	  Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65  */
66 
67 #include "opt_pcn.h"
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.31 2006/06/17 23:34:27 christos Exp $");
71 
72 #include "bpfilter.h"
73 #include "rnd.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/callout.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/ioctl.h>
83 #include <sys/errno.h>
84 #include <sys/device.h>
85 #include <sys/queue.h>
86 
87 #if NRND > 0
88 #include <sys/rnd.h>
89 #endif
90 
91 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
92 
93 #include <net/if.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_ether.h>
97 
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101 
102 #include <machine/bus.h>
103 #include <machine/intr.h>
104 #include <machine/endian.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 
109 #include <dev/ic/am79900reg.h>
110 #include <dev/ic/lancereg.h>
111 
112 #include <dev/pci/pcireg.h>
113 #include <dev/pci/pcivar.h>
114 #include <dev/pci/pcidevs.h>
115 
116 #include <dev/pci/if_pcnreg.h>
117 
118 /*
119  * Transmit descriptor list size.  This is arbitrary, but allocate
120  * enough descriptors for 128 pending transmissions, and 4 segments
121  * per packet.  This MUST work out to a power of 2.
122  *
123  * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
124  *
125  * So we play a little trick here.  We give each packet up to 16
126  * DMA segments, but only allocate the max of 512 descriptors.  The
127  * transmit logic can deal with this, we just are hoping to sneak by.
128  */
129 #define	PCN_NTXSEGS		16
130 
131 #define	PCN_TXQUEUELEN		128
132 #define	PCN_TXQUEUELEN_MASK	(PCN_TXQUEUELEN - 1)
133 #define	PCN_NTXDESC		512
134 #define	PCN_NTXDESC_MASK	(PCN_NTXDESC - 1)
135 #define	PCN_NEXTTX(x)		(((x) + 1) & PCN_NTXDESC_MASK)
136 #define	PCN_NEXTTXS(x)		(((x) + 1) & PCN_TXQUEUELEN_MASK)
137 
138 /* Tx interrupt every N + 1 packets. */
139 #define	PCN_TXINTR_MASK		7
140 
141 /*
142  * Receive descriptor list size.  We have one Rx buffer per incoming
143  * packet, so this logic is a little simpler.
144  */
145 #define	PCN_NRXDESC		128
146 #define	PCN_NRXDESC_MASK	(PCN_NRXDESC - 1)
147 #define	PCN_NEXTRX(x)		(((x) + 1) & PCN_NRXDESC_MASK)
148 
149 /*
150  * Control structures are DMA'd to the PCnet chip.  We allocate them in
151  * a single clump that maps to a single DMA segment to make several things
152  * easier.
153  */
154 struct pcn_control_data {
155 	/* The transmit descriptors. */
156 	struct letmd pcd_txdescs[PCN_NTXDESC];
157 
158 	/* The receive descriptors. */
159 	struct lermd pcd_rxdescs[PCN_NRXDESC];
160 
161 	/* The init block. */
162 	struct leinit pcd_initblock;
163 };
164 
165 #define	PCN_CDOFF(x)	offsetof(struct pcn_control_data, x)
166 #define	PCN_CDTXOFF(x)	PCN_CDOFF(pcd_txdescs[(x)])
167 #define	PCN_CDRXOFF(x)	PCN_CDOFF(pcd_rxdescs[(x)])
168 #define	PCN_CDINITOFF	PCN_CDOFF(pcd_initblock)
169 
170 /*
171  * Software state for transmit jobs.
172  */
173 struct pcn_txsoft {
174 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
175 	bus_dmamap_t txs_dmamap;	/* our DMA map */
176 	int txs_firstdesc;		/* first descriptor in packet */
177 	int txs_lastdesc;		/* last descriptor in packet */
178 };
179 
180 /*
181  * Software state for receive jobs.
182  */
183 struct pcn_rxsoft {
184 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
185 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
186 };
187 
188 /*
189  * Description of Rx FIFO watermarks for various revisions.
190  */
191 static const char * const pcn_79c970_rcvfw[] = {
192 	"16 bytes",
193 	"64 bytes",
194 	"128 bytes",
195 	NULL,
196 };
197 
198 static const char * const pcn_79c971_rcvfw[] = {
199 	"16 bytes",
200 	"64 bytes",
201 	"112 bytes",
202 	NULL,
203 };
204 
205 /*
206  * Description of Tx start points for various revisions.
207  */
208 static const char * const pcn_79c970_xmtsp[] = {
209 	"8 bytes",
210 	"64 bytes",
211 	"128 bytes",
212 	"248 bytes",
213 };
214 
215 static const char * const pcn_79c971_xmtsp[] = {
216 	"20 bytes",
217 	"64 bytes",
218 	"128 bytes",
219 	"248 bytes",
220 };
221 
222 static const char * const pcn_79c971_xmtsp_sram[] = {
223 	"44 bytes",
224 	"64 bytes",
225 	"128 bytes",
226 	"store-and-forward",
227 };
228 
229 /*
230  * Description of Tx FIFO watermarks for various revisions.
231  */
232 static const char * const pcn_79c970_xmtfw[] = {
233 	"16 bytes",
234 	"64 bytes",
235 	"128 bytes",
236 	NULL,
237 };
238 
239 static const char * const pcn_79c971_xmtfw[] = {
240 	"16 bytes",
241 	"64 bytes",
242 	"108 bytes",
243 	NULL,
244 };
245 
246 /*
247  * Software state per device.
248  */
249 struct pcn_softc {
250 	struct device sc_dev;		/* generic device information */
251 	bus_space_tag_t sc_st;		/* bus space tag */
252 	bus_space_handle_t sc_sh;	/* bus space handle */
253 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
254 	struct ethercom sc_ethercom;	/* Ethernet common data */
255 	void *sc_sdhook;		/* shutdown hook */
256 
257 	/* Points to our media routines, etc. */
258 	const struct pcn_variant *sc_variant;
259 
260 	void *sc_ih;			/* interrupt cookie */
261 
262 	struct mii_data sc_mii;		/* MII/media information */
263 
264 	struct callout sc_tick_ch;	/* tick callout */
265 
266 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
267 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
268 
269 	/* Software state for transmit and receive descriptors. */
270 	struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
271 	struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
272 
273 	/* Control data structures */
274 	struct pcn_control_data *sc_control_data;
275 #define	sc_txdescs	sc_control_data->pcd_txdescs
276 #define	sc_rxdescs	sc_control_data->pcd_rxdescs
277 #define	sc_initblock	sc_control_data->pcd_initblock
278 
279 #ifdef PCN_EVENT_COUNTERS
280 	/* Event counters. */
281 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
282 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
283 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
284 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
285 	struct evcnt sc_ev_babl;	/* BABL in pcn_intr() */
286 	struct evcnt sc_ev_miss;	/* MISS in pcn_intr() */
287 	struct evcnt sc_ev_merr;	/* MERR in pcn_intr() */
288 
289 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
290 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
291 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
292 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
293 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
294 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
295 	struct evcnt sc_ev_txcopy;	/* Tx copies required */
296 #endif /* PCN_EVENT_COUNTERS */
297 
298 	const char * const *sc_rcvfw_desc;	/* Rx FIFO watermark info */
299 	int sc_rcvfw;
300 
301 	const char * const *sc_xmtsp_desc;	/* Tx start point info */
302 	int sc_xmtsp;
303 
304 	const char * const *sc_xmtfw_desc;	/* Tx FIFO watermark info */
305 	int sc_xmtfw;
306 
307 	int sc_flags;			/* misc. flags; see below */
308 	int sc_swstyle;			/* the software style in use */
309 
310 	int sc_txfree;			/* number of free Tx descriptors */
311 	int sc_txnext;			/* next ready Tx descriptor */
312 
313 	int sc_txsfree;			/* number of free Tx jobs */
314 	int sc_txsnext;			/* next free Tx job */
315 	int sc_txsdirty;		/* dirty Tx jobs */
316 
317 	int sc_rxptr;			/* next ready Rx descriptor/job */
318 
319 	uint32_t sc_csr5;		/* prototype CSR5 register */
320 	uint32_t sc_mode;		/* prototype MODE register */
321 
322 #if NRND > 0
323 	rndsource_element_t rnd_source;	/* random source */
324 #endif
325 };
326 
327 /* sc_flags */
328 #define	PCN_F_HAS_MII		0x0001	/* has MII */
329 
330 #ifdef PCN_EVENT_COUNTERS
331 #define	PCN_EVCNT_INCR(ev)	(ev)->ev_count++
332 #else
333 #define	PCN_EVCNT_INCR(ev)	/* nothing */
334 #endif
335 
336 #define	PCN_CDTXADDR(sc, x)	((sc)->sc_cddma + PCN_CDTXOFF((x)))
337 #define	PCN_CDRXADDR(sc, x)	((sc)->sc_cddma + PCN_CDRXOFF((x)))
338 #define	PCN_CDINITADDR(sc)	((sc)->sc_cddma + PCN_CDINITOFF)
339 
340 #define	PCN_CDTXSYNC(sc, x, n, ops)					\
341 do {									\
342 	int __x, __n;							\
343 									\
344 	__x = (x);							\
345 	__n = (n);							\
346 									\
347 	/* If it will wrap around, sync to the end of the ring. */	\
348 	if ((__x + __n) > PCN_NTXDESC) {				\
349 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
350 		    PCN_CDTXOFF(__x), sizeof(struct letmd) *		\
351 		    (PCN_NTXDESC - __x), (ops));			\
352 		__n -= (PCN_NTXDESC - __x);				\
353 		__x = 0;						\
354 	}								\
355 									\
356 	/* Now sync whatever is left. */				\
357 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
358 	    PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops));	\
359 } while (/*CONSTCOND*/0)
360 
361 #define	PCN_CDRXSYNC(sc, x, ops)					\
362 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
363 	    PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
364 
365 #define	PCN_CDINITSYNC(sc, ops)						\
366 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
367 	    PCN_CDINITOFF, sizeof(struct leinit), (ops))
368 
369 #define	PCN_INIT_RXDESC(sc, x)						\
370 do {									\
371 	struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
372 	struct lermd *__rmd = &(sc)->sc_rxdescs[(x)];			\
373 	struct mbuf *__m = __rxs->rxs_mbuf;				\
374 									\
375 	/*								\
376 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
377 	 * so that the payload after the Ethernet header is aligned	\
378 	 * to a 4-byte boundary.					\
379 	 */								\
380 	__m->m_data = __m->m_ext.ext_buf + 2;				\
381 									\
382 	if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {		\
383 		__rmd->rmd2 =						\
384 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
385 		__rmd->rmd0 = 0;					\
386 	} else {							\
387 		__rmd->rmd2 = 0;					\
388 		__rmd->rmd0 =						\
389 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
390 	}								\
391 	__rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| 			\
392 	    (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK));			\
393 	PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
394 } while(/*CONSTCOND*/0)
395 
396 static void	pcn_start(struct ifnet *);
397 static void	pcn_watchdog(struct ifnet *);
398 static int	pcn_ioctl(struct ifnet *, u_long, caddr_t);
399 static int	pcn_init(struct ifnet *);
400 static void	pcn_stop(struct ifnet *, int);
401 
402 static void	pcn_shutdown(void *);
403 
404 static void	pcn_reset(struct pcn_softc *);
405 static void	pcn_rxdrain(struct pcn_softc *);
406 static int	pcn_add_rxbuf(struct pcn_softc *, int);
407 static void	pcn_tick(void *);
408 
409 static void	pcn_spnd(struct pcn_softc *);
410 
411 static void	pcn_set_filter(struct pcn_softc *);
412 
413 static int	pcn_intr(void *);
414 static void	pcn_txintr(struct pcn_softc *);
415 static int	pcn_rxintr(struct pcn_softc *);
416 
417 static int	pcn_mii_readreg(struct device *, int, int);
418 static void	pcn_mii_writereg(struct device *, int, int, int);
419 static void	pcn_mii_statchg(struct device *);
420 
421 static void	pcn_79c970_mediainit(struct pcn_softc *);
422 static int	pcn_79c970_mediachange(struct ifnet *);
423 static void	pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
424 
425 static void	pcn_79c971_mediainit(struct pcn_softc *);
426 static int	pcn_79c971_mediachange(struct ifnet *);
427 static void	pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
428 
429 /*
430  * Description of a PCnet-PCI variant.  Used to select media access
431  * method, mostly, and to print a nice description of the chip.
432  */
433 static const struct pcn_variant {
434 	const char *pcv_desc;
435 	void (*pcv_mediainit)(struct pcn_softc *);
436 	uint16_t pcv_chipid;
437 } pcn_variants[] = {
438 	{ "Am79c970 PCnet-PCI",
439 	  pcn_79c970_mediainit,
440 	  PARTID_Am79c970 },
441 
442 	{ "Am79c970A PCnet-PCI II",
443 	  pcn_79c970_mediainit,
444 	  PARTID_Am79c970A },
445 
446 	{ "Am79c971 PCnet-FAST",
447 	  pcn_79c971_mediainit,
448 	  PARTID_Am79c971 },
449 
450 	{ "Am79c972 PCnet-FAST+",
451 	  pcn_79c971_mediainit,
452 	  PARTID_Am79c972 },
453 
454 	{ "Am79c973 PCnet-FAST III",
455 	  pcn_79c971_mediainit,
456 	  PARTID_Am79c973 },
457 
458 	{ "Am79c975 PCnet-FAST III",
459 	  pcn_79c971_mediainit,
460 	  PARTID_Am79c975 },
461 
462 	{ "Unknown PCnet-PCI variant",
463 	  pcn_79c971_mediainit,
464 	  0 },
465 };
466 
467 int	pcn_copy_small = 0;
468 
469 static int	pcn_match(struct device *, struct cfdata *, void *);
470 static void	pcn_attach(struct device *, struct device *, void *);
471 
472 CFATTACH_DECL(pcn, sizeof(struct pcn_softc),
473     pcn_match, pcn_attach, NULL, NULL);
474 
475 /*
476  * Routines to read and write the PCnet-PCI CSR/BCR space.
477  */
478 
479 static inline uint32_t
480 pcn_csr_read(struct pcn_softc *sc, int reg)
481 {
482 
483 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
484 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
485 }
486 
487 static inline void
488 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
489 {
490 
491 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
492 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
493 }
494 
495 static inline uint32_t
496 pcn_bcr_read(struct pcn_softc *sc, int reg)
497 {
498 
499 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
500 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
501 }
502 
503 static inline void
504 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
505 {
506 
507 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
508 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
509 }
510 
511 static const struct pcn_variant *
512 pcn_lookup_variant(uint16_t chipid)
513 {
514 	const struct pcn_variant *pcv;
515 
516 	for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
517 		if (chipid == pcv->pcv_chipid)
518 			return (pcv);
519 	}
520 
521 	/*
522 	 * This covers unknown chips, which we simply treat like
523 	 * a generic PCnet-FAST.
524 	 */
525 	return (pcv);
526 }
527 
528 static int
529 pcn_match(struct device *parent, struct cfdata *cf, void *aux)
530 {
531 	struct pci_attach_args *pa = aux;
532 
533 	/*
534 	 * IBM Makes a PCI variant of this card which shows up as a
535 	 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
536 	 * this card is truly a pcn card, so we have a special case match for
537 	 * it
538 	 */
539 
540 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
541 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
542 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
543 		return(1);
544 
545 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
546 		return (0);
547 
548 	switch (PCI_PRODUCT(pa->pa_id)) {
549 	case PCI_PRODUCT_AMD_PCNET_PCI:
550 		/* Beat if_le_pci.c */
551 		return (10);
552 	}
553 
554 	return (0);
555 }
556 
557 static void
558 pcn_attach(struct device *parent, struct device *self, void *aux)
559 {
560 	struct pcn_softc *sc = (struct pcn_softc *) self;
561 	struct pci_attach_args *pa = aux;
562 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
563 	pci_chipset_tag_t pc = pa->pa_pc;
564 	pci_intr_handle_t ih;
565 	const char *intrstr = NULL;
566 	bus_space_tag_t iot, memt;
567 	bus_space_handle_t ioh, memh;
568 	bus_dma_segment_t seg;
569 	int ioh_valid, memh_valid;
570 	int i, rseg, error;
571 	uint32_t chipid, reg;
572 	uint8_t enaddr[ETHER_ADDR_LEN];
573 
574 	callout_init(&sc->sc_tick_ch);
575 
576 	printf(": AMD PCnet-PCI Ethernet\n");
577 
578 	/*
579 	 * Map the device.
580 	 */
581 	ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
582 	    &iot, &ioh, NULL, NULL) == 0);
583 	memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
584 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
585 	    &memt, &memh, NULL, NULL) == 0);
586 
587 	if (memh_valid) {
588 		sc->sc_st = memt;
589 		sc->sc_sh = memh;
590 	} else if (ioh_valid) {
591 		sc->sc_st = iot;
592 		sc->sc_sh = ioh;
593 	} else {
594 		printf("%s: unable to map device registers\n",
595 		    sc->sc_dev.dv_xname);
596 		return;
597 	}
598 
599 	sc->sc_dmat = pa->pa_dmat;
600 
601 	/* Make sure bus mastering is enabled. */
602 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
603 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
604 	    PCI_COMMAND_MASTER_ENABLE);
605 
606 	/* power up chip */
607 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
608 	    NULL)) && error != EOPNOTSUPP) {
609 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
610 		    error);
611 		return;
612 	}
613 
614 	/*
615 	 * Reset the chip to a known state.  This also puts the
616 	 * chip into 32-bit mode.
617 	 */
618 	pcn_reset(sc);
619 
620 #if !defined(PCN_NO_PROM)
621 
622 	/*
623 	 * Read the Ethernet address from the EEPROM.
624 	 */
625 	for (i = 0; i < ETHER_ADDR_LEN; i++)
626 		enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
627 		    PCN32_APROM + i);
628 #else
629 	/*
630 	 * The PROM is not used; instead we assume that the MAC address
631 	 * has been programmed into the device's physical address
632 	 * registers by the boot firmware
633 	 */
634 
635         for (i=0; i < 3; i++) {
636 		uint32_t val;
637 		val = pcn_csr_read(sc, LE_CSR12 + i);
638 		enaddr[2*i] = val & 0x0ff;
639 		enaddr[2*i+1] = (val >> 8) & 0x0ff;
640 	}
641 #endif
642 
643 	/*
644 	 * Now that the device is mapped, attempt to figure out what
645 	 * kind of chip we have.  Note that IDL has all 32 bits of
646 	 * the chip ID when we're in 32-bit mode.
647 	 */
648 	chipid = pcn_csr_read(sc, LE_CSR88);
649 	sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
650 
651 	printf("%s: %s rev %d, Ethernet address %s\n",
652 	    sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
653 	    ether_sprintf(enaddr));
654 
655 	/*
656 	 * Map and establish our interrupt.
657 	 */
658 	if (pci_intr_map(pa, &ih)) {
659 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
660 		return;
661 	}
662 	intrstr = pci_intr_string(pc, ih);
663 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
664 	if (sc->sc_ih == NULL) {
665 		printf("%s: unable to establish interrupt",
666 		    sc->sc_dev.dv_xname);
667 		if (intrstr != NULL)
668 			printf(" at %s", intrstr);
669 		printf("\n");
670 		return;
671 	}
672 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
673 
674 	/*
675 	 * Allocate the control data structures, and create and load the
676 	 * DMA map for it.
677 	 */
678 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
679 	     sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
680 	     0)) != 0) {
681 		printf("%s: unable to allocate control data, error = %d\n",
682 		    sc->sc_dev.dv_xname, error);
683 		goto fail_0;
684 	}
685 
686 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
687 	     sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
688 	     BUS_DMA_COHERENT)) != 0) {
689 		printf("%s: unable to map control data, error = %d\n",
690 		    sc->sc_dev.dv_xname, error);
691 		goto fail_1;
692 	}
693 
694 	if ((error = bus_dmamap_create(sc->sc_dmat,
695 	     sizeof(struct pcn_control_data), 1,
696 	     sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
697 		printf("%s: unable to create control data DMA map, "
698 		    "error = %d\n", sc->sc_dev.dv_xname, error);
699 		goto fail_2;
700 	}
701 
702 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
703 	     sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
704 	     0)) != 0) {
705 		printf("%s: unable to load control data DMA map, error = %d\n",
706 		    sc->sc_dev.dv_xname, error);
707 		goto fail_3;
708 	}
709 
710 	/* Create the transmit buffer DMA maps. */
711 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
712 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
713 		     PCN_NTXSEGS, MCLBYTES, 0, 0,
714 		     &sc->sc_txsoft[i].txs_dmamap)) != 0) {
715 			printf("%s: unable to create tx DMA map %d, "
716 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
717 			goto fail_4;
718 		}
719 	}
720 
721 	/* Create the receive buffer DMA maps. */
722 	for (i = 0; i < PCN_NRXDESC; i++) {
723 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
724 		     MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
725 			printf("%s: unable to create rx DMA map %d, "
726 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
727 			goto fail_5;
728 		}
729 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
730 	}
731 
732 	/* Initialize our media structures. */
733 	(*sc->sc_variant->pcv_mediainit)(sc);
734 
735 	/*
736 	 * Initialize FIFO watermark info.
737 	 */
738 	switch (sc->sc_variant->pcv_chipid) {
739 	case PARTID_Am79c970:
740 	case PARTID_Am79c970A:
741 		sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
742 		sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
743 		sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
744 		break;
745 
746 	default:
747 		sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
748 		/*
749 		 * Read BCR25 to determine how much SRAM is
750 		 * on the board.  If > 0, then we the chip
751 		 * uses different Start Point thresholds.
752 		 *
753 		 * Note BCR25 and BCR26 are loaded from the
754 		 * EEPROM on RST, and unaffected by S_RESET,
755 		 * so we don't really have to worry about
756 		 * them except for this.
757 		 */
758 		reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
759 		if (reg != 0)
760 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
761 		else
762 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
763 		sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
764 		break;
765 	}
766 
767 	/*
768 	 * Set up defaults -- see the tables above for what these
769 	 * values mean.
770 	 *
771 	 * XXX How should we tune RCVFW and XMTFW?
772 	 */
773 	sc->sc_rcvfw = 1;	/* minimum for full-duplex */
774 	sc->sc_xmtsp = 1;
775 	sc->sc_xmtfw = 0;
776 
777 	ifp = &sc->sc_ethercom.ec_if;
778 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
779 	ifp->if_softc = sc;
780 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
781 	ifp->if_ioctl = pcn_ioctl;
782 	ifp->if_start = pcn_start;
783 	ifp->if_watchdog = pcn_watchdog;
784 	ifp->if_init = pcn_init;
785 	ifp->if_stop = pcn_stop;
786 	IFQ_SET_READY(&ifp->if_snd);
787 
788 	/* Attach the interface. */
789 	if_attach(ifp);
790 	ether_ifattach(ifp, enaddr);
791 #if NRND > 0
792 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
793 	    RND_TYPE_NET, 0);
794 #endif
795 
796 #ifdef PCN_EVENT_COUNTERS
797 	/* Attach event counters. */
798 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
799 	    NULL, sc->sc_dev.dv_xname, "txsstall");
800 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
801 	    NULL, sc->sc_dev.dv_xname, "txdstall");
802 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
803 	    NULL, sc->sc_dev.dv_xname, "txintr");
804 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
805 	    NULL, sc->sc_dev.dv_xname, "rxintr");
806 	evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
807 	    NULL, sc->sc_dev.dv_xname, "babl");
808 	evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
809 	    NULL, sc->sc_dev.dv_xname, "miss");
810 	evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
811 	    NULL, sc->sc_dev.dv_xname, "merr");
812 
813 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
814 	    NULL, sc->sc_dev.dv_xname, "txseg1");
815 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
816 	    NULL, sc->sc_dev.dv_xname, "txseg2");
817 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
818 	    NULL, sc->sc_dev.dv_xname, "txseg3");
819 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
820 	    NULL, sc->sc_dev.dv_xname, "txseg4");
821 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
822 	    NULL, sc->sc_dev.dv_xname, "txseg5");
823 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
824 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
825 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
826 	    NULL, sc->sc_dev.dv_xname, "txcopy");
827 #endif /* PCN_EVENT_COUNTERS */
828 
829 	/* Make sure the interface is shutdown during reboot. */
830 	sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
831 	if (sc->sc_sdhook == NULL)
832 		printf("%s: WARNING: unable to establish shutdown hook\n",
833 		    sc->sc_dev.dv_xname);
834 	return;
835 
836 	/*
837 	 * Free any resources we've allocated during the failed attach
838 	 * attempt.  Do this in reverse order and fall through.
839 	 */
840  fail_5:
841 	for (i = 0; i < PCN_NRXDESC; i++) {
842 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
843 			bus_dmamap_destroy(sc->sc_dmat,
844 			    sc->sc_rxsoft[i].rxs_dmamap);
845 	}
846  fail_4:
847 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
848 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
849 			bus_dmamap_destroy(sc->sc_dmat,
850 			    sc->sc_txsoft[i].txs_dmamap);
851 	}
852 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
853  fail_3:
854 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
855  fail_2:
856 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
857 	    sizeof(struct pcn_control_data));
858  fail_1:
859 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
860  fail_0:
861 	return;
862 }
863 
864 /*
865  * pcn_shutdown:
866  *
867  *	Make sure the interface is stopped at reboot time.
868  */
869 static void
870 pcn_shutdown(void *arg)
871 {
872 	struct pcn_softc *sc = arg;
873 
874 	pcn_stop(&sc->sc_ethercom.ec_if, 1);
875 	/* explicitly reset the chip for some onboard one with lazy firmware */
876 	pcn_reset(sc);
877 }
878 
879 /*
880  * pcn_start:		[ifnet interface function]
881  *
882  *	Start packet transmission on the interface.
883  */
884 static void
885 pcn_start(struct ifnet *ifp)
886 {
887 	struct pcn_softc *sc = ifp->if_softc;
888 	struct mbuf *m0, *m;
889 	struct pcn_txsoft *txs;
890 	bus_dmamap_t dmamap;
891 	int error, nexttx, lasttx = -1, ofree, seg;
892 
893 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
894 		return;
895 
896 	/*
897 	 * Remember the previous number of free descriptors and
898 	 * the first descriptor we'll use.
899 	 */
900 	ofree = sc->sc_txfree;
901 
902 	/*
903 	 * Loop through the send queue, setting up transmit descriptors
904 	 * until we drain the queue, or use up all available transmit
905 	 * descriptors.
906 	 */
907 	for (;;) {
908 		/* Grab a packet off the queue. */
909 		IFQ_POLL(&ifp->if_snd, m0);
910 		if (m0 == NULL)
911 			break;
912 		m = NULL;
913 
914 		/* Get a work queue entry. */
915 		if (sc->sc_txsfree == 0) {
916 			PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
917 			break;
918 		}
919 
920 		txs = &sc->sc_txsoft[sc->sc_txsnext];
921 		dmamap = txs->txs_dmamap;
922 
923 		/*
924 		 * Load the DMA map.  If this fails, the packet either
925 		 * didn't fit in the alloted number of segments, or we
926 		 * were short on resources.  In this case, we'll copy
927 		 * and try again.
928 		 */
929 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
930 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
931 			PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
932 			MGETHDR(m, M_DONTWAIT, MT_DATA);
933 			if (m == NULL) {
934 				printf("%s: unable to allocate Tx mbuf\n",
935 				    sc->sc_dev.dv_xname);
936 				break;
937 			}
938 			if (m0->m_pkthdr.len > MHLEN) {
939 				MCLGET(m, M_DONTWAIT);
940 				if ((m->m_flags & M_EXT) == 0) {
941 					printf("%s: unable to allocate Tx "
942 					    "cluster\n", sc->sc_dev.dv_xname);
943 					m_freem(m);
944 					break;
945 				}
946 			}
947 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
948 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
949 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
950 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
951 			if (error) {
952 				printf("%s: unable to load Tx buffer, "
953 				    "error = %d\n", sc->sc_dev.dv_xname, error);
954 				break;
955 			}
956 		}
957 
958 		/*
959 		 * Ensure we have enough descriptors free to describe
960 		 * the packet.  Note, we always reserve one descriptor
961 		 * at the end of the ring as a termination point, to
962 		 * prevent wrap-around.
963 		 */
964 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
965 			/*
966 			 * Not enough free descriptors to transmit this
967 			 * packet.  We haven't committed anything yet,
968 			 * so just unload the DMA map, put the packet
969 			 * back on the queue, and punt.  Notify the upper
970 			 * layer that there are not more slots left.
971 			 *
972 			 * XXX We could allocate an mbuf and copy, but
973 			 * XXX is it worth it?
974 			 */
975 			ifp->if_flags |= IFF_OACTIVE;
976 			bus_dmamap_unload(sc->sc_dmat, dmamap);
977 			if (m != NULL)
978 				m_freem(m);
979 			PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
980 			break;
981 		}
982 
983 		IFQ_DEQUEUE(&ifp->if_snd, m0);
984 		if (m != NULL) {
985 			m_freem(m0);
986 			m0 = m;
987 		}
988 
989 		/*
990 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
991 		 */
992 
993 		/* Sync the DMA map. */
994 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
995 		    BUS_DMASYNC_PREWRITE);
996 
997 #ifdef PCN_EVENT_COUNTERS
998 		switch (dmamap->dm_nsegs) {
999 		case 1:
1000 			PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
1001 			break;
1002 		case 2:
1003 			PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
1004 			break;
1005 		case 3:
1006 			PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
1007 			break;
1008 		case 4:
1009 			PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
1010 			break;
1011 		case 5:
1012 			PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
1013 			break;
1014 		default:
1015 			PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
1016 			break;
1017 		}
1018 #endif /* PCN_EVENT_COUNTERS */
1019 
1020 		/*
1021 		 * Initialize the transmit descriptors.
1022 		 */
1023 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
1024 			for (nexttx = sc->sc_txnext, seg = 0;
1025 			     seg < dmamap->dm_nsegs;
1026 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
1027 				/*
1028 				 * If this is the first descriptor we're
1029 				 * enqueueing, don't set the OWN bit just
1030 				 * yet.  That could cause a race condition.
1031 				 * We'll do it below.
1032 				 */
1033 				sc->sc_txdescs[nexttx].tmd0 = 0;
1034 				sc->sc_txdescs[nexttx].tmd2 =
1035 				    htole32(dmamap->dm_segs[seg].ds_addr);
1036 				sc->sc_txdescs[nexttx].tmd1 =
1037 				    htole32(LE_T1_ONES |
1038 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1039 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1040 				     LE_T1_BCNT_MASK));
1041 				lasttx = nexttx;
1042 			}
1043 		} else {
1044 			for (nexttx = sc->sc_txnext, seg = 0;
1045 			     seg < dmamap->dm_nsegs;
1046 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
1047 				/*
1048 				 * If this is the first descriptor we're
1049 				 * enqueueing, don't set the OWN bit just
1050 				 * yet.  That could cause a race condition.
1051 				 * We'll do it below.
1052 				 */
1053 				sc->sc_txdescs[nexttx].tmd0 =
1054 				    htole32(dmamap->dm_segs[seg].ds_addr);
1055 				sc->sc_txdescs[nexttx].tmd2 = 0;
1056 				sc->sc_txdescs[nexttx].tmd1 =
1057 				    htole32(LE_T1_ONES |
1058 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1059 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1060 				     LE_T1_BCNT_MASK));
1061 				lasttx = nexttx;
1062 			}
1063 		}
1064 
1065 		KASSERT(lasttx != -1);
1066 		/* Interrupt on the packet, if appropriate. */
1067 		if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1068 			sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1069 
1070 		/* Set `start of packet' and `end of packet' appropriately. */
1071 		sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1072 		sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1073 		    htole32(LE_T1_OWN|LE_T1_STP);
1074 
1075 		/* Sync the descriptors we're using. */
1076 		PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1077 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1078 
1079 		/* Kick the transmitter. */
1080 		pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1081 
1082 		/*
1083 		 * Store a pointer to the packet so we can free it later,
1084 		 * and remember what txdirty will be once the packet is
1085 		 * done.
1086 		 */
1087 		txs->txs_mbuf = m0;
1088 		txs->txs_firstdesc = sc->sc_txnext;
1089 		txs->txs_lastdesc = lasttx;
1090 
1091 		/* Advance the tx pointer. */
1092 		sc->sc_txfree -= dmamap->dm_nsegs;
1093 		sc->sc_txnext = nexttx;
1094 
1095 		sc->sc_txsfree--;
1096 		sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1097 
1098 #if NBPFILTER > 0
1099 		/* Pass the packet to any BPF listeners. */
1100 		if (ifp->if_bpf)
1101 			bpf_mtap(ifp->if_bpf, m0);
1102 #endif /* NBPFILTER > 0 */
1103 	}
1104 
1105 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1106 		/* No more slots left; notify upper layer. */
1107 		ifp->if_flags |= IFF_OACTIVE;
1108 	}
1109 
1110 	if (sc->sc_txfree != ofree) {
1111 		/* Set a watchdog timer in case the chip flakes out. */
1112 		ifp->if_timer = 5;
1113 	}
1114 }
1115 
1116 /*
1117  * pcn_watchdog:	[ifnet interface function]
1118  *
1119  *	Watchdog timer handler.
1120  */
1121 static void
1122 pcn_watchdog(struct ifnet *ifp)
1123 {
1124 	struct pcn_softc *sc = ifp->if_softc;
1125 
1126 	/*
1127 	 * Since we're not interrupting every packet, sweep
1128 	 * up before we report an error.
1129 	 */
1130 	pcn_txintr(sc);
1131 
1132 	if (sc->sc_txfree != PCN_NTXDESC) {
1133 		printf("%s: device timeout (txfree %d txsfree %d)\n",
1134 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1135 		ifp->if_oerrors++;
1136 
1137 		/* Reset the interface. */
1138 		(void) pcn_init(ifp);
1139 	}
1140 
1141 	/* Try to get more packets going. */
1142 	pcn_start(ifp);
1143 }
1144 
1145 /*
1146  * pcn_ioctl:		[ifnet interface function]
1147  *
1148  *	Handle control requests from the operator.
1149  */
1150 static int
1151 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1152 {
1153 	struct pcn_softc *sc = ifp->if_softc;
1154 	struct ifreq *ifr = (struct ifreq *) data;
1155 	int s, error;
1156 
1157 	s = splnet();
1158 
1159 	switch (cmd) {
1160 	case SIOCSIFMEDIA:
1161 	case SIOCGIFMEDIA:
1162 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1163 		break;
1164 
1165 	default:
1166 		error = ether_ioctl(ifp, cmd, data);
1167 		if (error == ENETRESET) {
1168 			/*
1169 			 * Multicast list has changed; set the hardware filter
1170 			 * accordingly.
1171 			 */
1172 			if (ifp->if_flags & IFF_RUNNING)
1173 				error = pcn_init(ifp);
1174 			else
1175 				error = 0;
1176 		}
1177 		break;
1178 	}
1179 
1180 	/* Try to get more packets going. */
1181 	pcn_start(ifp);
1182 
1183 	splx(s);
1184 	return (error);
1185 }
1186 
1187 /*
1188  * pcn_intr:
1189  *
1190  *	Interrupt service routine.
1191  */
1192 static int
1193 pcn_intr(void *arg)
1194 {
1195 	struct pcn_softc *sc = arg;
1196 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1197 	uint32_t csr0;
1198 	int wantinit, handled = 0;
1199 
1200 	for (wantinit = 0; wantinit == 0;) {
1201 		csr0 = pcn_csr_read(sc, LE_CSR0);
1202 		if ((csr0 & LE_C0_INTR) == 0)
1203 			break;
1204 
1205 #if NRND > 0
1206 		if (RND_ENABLED(&sc->rnd_source))
1207 			rnd_add_uint32(&sc->rnd_source, csr0);
1208 #endif
1209 
1210 		/* ACK the bits and re-enable interrupts. */
1211 		pcn_csr_write(sc, LE_CSR0, csr0 &
1212 		    (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1213 		     LE_C0_TINT|LE_C0_IDON));
1214 
1215 		handled = 1;
1216 
1217 		if (csr0 & LE_C0_RINT) {
1218 			PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1219 			wantinit = pcn_rxintr(sc);
1220 		}
1221 
1222 		if (csr0 & LE_C0_TINT) {
1223 			PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1224 			pcn_txintr(sc);
1225 		}
1226 
1227 		if (csr0 & LE_C0_ERR) {
1228 			if (csr0 & LE_C0_BABL) {
1229 				PCN_EVCNT_INCR(&sc->sc_ev_babl);
1230 				ifp->if_oerrors++;
1231 			}
1232 			if (csr0 & LE_C0_MISS) {
1233 				PCN_EVCNT_INCR(&sc->sc_ev_miss);
1234 				ifp->if_ierrors++;
1235 			}
1236 			if (csr0 & LE_C0_MERR) {
1237 				PCN_EVCNT_INCR(&sc->sc_ev_merr);
1238 				printf("%s: memory error\n",
1239 				    sc->sc_dev.dv_xname);
1240 				wantinit = 1;
1241 				break;
1242 			}
1243 		}
1244 
1245 		if ((csr0 & LE_C0_RXON) == 0) {
1246 			printf("%s: receiver disabled\n",
1247 			    sc->sc_dev.dv_xname);
1248 			ifp->if_ierrors++;
1249 			wantinit = 1;
1250 		}
1251 
1252 		if ((csr0 & LE_C0_TXON) == 0) {
1253 			printf("%s: transmitter disabled\n",
1254 			    sc->sc_dev.dv_xname);
1255 			ifp->if_oerrors++;
1256 			wantinit = 1;
1257 		}
1258 	}
1259 
1260 	if (handled) {
1261 		if (wantinit)
1262 			pcn_init(ifp);
1263 
1264 		/* Try to get more packets going. */
1265 		pcn_start(ifp);
1266 	}
1267 
1268 	return (handled);
1269 }
1270 
1271 /*
1272  * pcn_spnd:
1273  *
1274  *	Suspend the chip.
1275  */
1276 static void
1277 pcn_spnd(struct pcn_softc *sc)
1278 {
1279 	int i;
1280 
1281 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1282 
1283 	for (i = 0; i < 10000; i++) {
1284 		if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1285 			return;
1286 		delay(5);
1287 	}
1288 
1289 	printf("%s: WARNING: chip failed to enter suspended state\n",
1290 	    sc->sc_dev.dv_xname);
1291 }
1292 
1293 /*
1294  * pcn_txintr:
1295  *
1296  *	Helper; handle transmit interrupts.
1297  */
1298 static void
1299 pcn_txintr(struct pcn_softc *sc)
1300 {
1301 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1302 	struct pcn_txsoft *txs;
1303 	uint32_t tmd1, tmd2, tmd;
1304 	int i, j;
1305 
1306 	ifp->if_flags &= ~IFF_OACTIVE;
1307 
1308 	/*
1309 	 * Go through our Tx list and free mbufs for those
1310 	 * frames which have been transmitted.
1311 	 */
1312 	for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1313 	     i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1314 		txs = &sc->sc_txsoft[i];
1315 
1316 		PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1317 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1318 
1319 		tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1320 		if (tmd1 & LE_T1_OWN)
1321 			break;
1322 
1323 		/*
1324 		 * Slightly annoying -- we have to loop through the
1325 		 * descriptors we've used looking for ERR, since it
1326 		 * can appear on any descriptor in the chain.
1327 		 */
1328 		for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1329 			tmd = le32toh(sc->sc_txdescs[j].tmd1);
1330 			if (tmd & LE_T1_ERR) {
1331 				ifp->if_oerrors++;
1332 				if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1333 					tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1334 				else
1335 					tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1336 				if (tmd2 & LE_T2_UFLO) {
1337 					if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1338 						sc->sc_xmtsp++;
1339 						printf("%s: transmit "
1340 						    "underrun; new threshold: "
1341 						    "%s\n",
1342 						    sc->sc_dev.dv_xname,
1343 						    sc->sc_xmtsp_desc[
1344 						    sc->sc_xmtsp]);
1345 						pcn_spnd(sc);
1346 						pcn_csr_write(sc, LE_CSR80,
1347 						    LE_C80_RCVFW(sc->sc_rcvfw) |
1348 						    LE_C80_XMTSP(sc->sc_xmtsp) |
1349 						    LE_C80_XMTFW(sc->sc_xmtfw));
1350 						pcn_csr_write(sc, LE_CSR5,
1351 						    sc->sc_csr5);
1352 					} else {
1353 						printf("%s: transmit "
1354 						    "underrun\n",
1355 						    sc->sc_dev.dv_xname);
1356 					}
1357 				} else if (tmd2 & LE_T2_BUFF) {
1358 					printf("%s: transmit buffer error\n",
1359 					    sc->sc_dev.dv_xname);
1360 				}
1361 				if (tmd2 & LE_T2_LCOL)
1362 					ifp->if_collisions++;
1363 				if (tmd2 & LE_T2_RTRY)
1364 					ifp->if_collisions += 16;
1365 				goto next_packet;
1366 			}
1367 			if (j == txs->txs_lastdesc)
1368 				break;
1369 		}
1370 		if (tmd1 & LE_T1_ONE)
1371 			ifp->if_collisions++;
1372 		else if (tmd & LE_T1_MORE) {
1373 			/* Real number is unknown. */
1374 			ifp->if_collisions += 2;
1375 		}
1376 		ifp->if_opackets++;
1377  next_packet:
1378 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1379 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1380 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1381 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1382 		m_freem(txs->txs_mbuf);
1383 		txs->txs_mbuf = NULL;
1384 	}
1385 
1386 	/* Update the dirty transmit buffer pointer. */
1387 	sc->sc_txsdirty = i;
1388 
1389 	/*
1390 	 * If there are no more pending transmissions, cancel the watchdog
1391 	 * timer.
1392 	 */
1393 	if (sc->sc_txsfree == PCN_TXQUEUELEN)
1394 		ifp->if_timer = 0;
1395 }
1396 
1397 /*
1398  * pcn_rxintr:
1399  *
1400  *	Helper; handle receive interrupts.
1401  */
1402 static int
1403 pcn_rxintr(struct pcn_softc *sc)
1404 {
1405 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1406 	struct pcn_rxsoft *rxs;
1407 	struct mbuf *m;
1408 	uint32_t rmd1;
1409 	int i, len;
1410 
1411 	for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1412 		rxs = &sc->sc_rxsoft[i];
1413 
1414 		PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1415 
1416 		rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1417 
1418 		if (rmd1 & LE_R1_OWN)
1419 			break;
1420 
1421 		/*
1422 		 * Check for errors and make sure the packet fit into
1423 		 * a single buffer.  We have structured this block of
1424 		 * code the way it is in order to compress it into
1425 		 * one test in the common case (no error).
1426 		 */
1427 		if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1428 		    (LE_R1_STP|LE_R1_ENP))) {
1429 			/* Make sure the packet is in a single buffer. */
1430 			if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1431 			    (LE_R1_STP|LE_R1_ENP)) {
1432 				printf("%s: packet spilled into next buffer\n",
1433 				    sc->sc_dev.dv_xname);
1434 				return (1);	/* pcn_intr() will re-init */
1435 			}
1436 
1437 			/*
1438 			 * If the packet had an error, simple recycle the
1439 			 * buffer.
1440 			 */
1441 			if (rmd1 & LE_R1_ERR) {
1442 				ifp->if_ierrors++;
1443 				/*
1444 				 * If we got an overflow error, chances
1445 				 * are there will be a CRC error.  In
1446 				 * this case, just print the overflow
1447 				 * error, and skip the others.
1448 				 */
1449 				if (rmd1 & LE_R1_OFLO)
1450 					printf("%s: overflow error\n",
1451 					    sc->sc_dev.dv_xname);
1452 				else {
1453 #define	PRINTIT(x, str)							\
1454 					if (rmd1 & (x))			\
1455 						printf("%s: %s\n",	\
1456 						    sc->sc_dev.dv_xname, str);
1457 					PRINTIT(LE_R1_FRAM, "framing error");
1458 					PRINTIT(LE_R1_CRC, "CRC error");
1459 					PRINTIT(LE_R1_BUFF, "buffer error");
1460 				}
1461 #undef PRINTIT
1462 				PCN_INIT_RXDESC(sc, i);
1463 				continue;
1464 			}
1465 		}
1466 
1467 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1468 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1469 
1470 		/*
1471 		 * No errors; receive the packet.
1472 		 */
1473 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1474 			len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1475 		else
1476 			len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1477 
1478 		/*
1479 		 * The LANCE family includes the CRC with every packet;
1480 		 * trim it off here.
1481 		 */
1482 		len -= ETHER_CRC_LEN;
1483 
1484 		/*
1485 		 * If the packet is small enough to fit in a
1486 		 * single header mbuf, allocate one and copy
1487 		 * the data into it.  This greatly reduces
1488 		 * memory consumption when we receive lots
1489 		 * of small packets.
1490 		 *
1491 		 * Otherwise, we add a new buffer to the receive
1492 		 * chain.  If this fails, we drop the packet and
1493 		 * recycle the old buffer.
1494 		 */
1495 		if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1496 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1497 			if (m == NULL)
1498 				goto dropit;
1499 			m->m_data += 2;
1500 			memcpy(mtod(m, caddr_t),
1501 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1502 			PCN_INIT_RXDESC(sc, i);
1503 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1504 			    rxs->rxs_dmamap->dm_mapsize,
1505 			    BUS_DMASYNC_PREREAD);
1506 		} else {
1507 			m = rxs->rxs_mbuf;
1508 			if (pcn_add_rxbuf(sc, i) != 0) {
1509  dropit:
1510 				ifp->if_ierrors++;
1511 				PCN_INIT_RXDESC(sc, i);
1512 				bus_dmamap_sync(sc->sc_dmat,
1513 				    rxs->rxs_dmamap, 0,
1514 				    rxs->rxs_dmamap->dm_mapsize,
1515 				    BUS_DMASYNC_PREREAD);
1516 				continue;
1517 			}
1518 		}
1519 
1520 		m->m_pkthdr.rcvif = ifp;
1521 		m->m_pkthdr.len = m->m_len = len;
1522 
1523 #if NBPFILTER > 0
1524 		/* Pass this up to any BPF listeners. */
1525 		if (ifp->if_bpf)
1526 			bpf_mtap(ifp->if_bpf, m);
1527 #endif /* NBPFILTER > 0 */
1528 
1529 		/* Pass it on. */
1530 		(*ifp->if_input)(ifp, m);
1531 		ifp->if_ipackets++;
1532 	}
1533 
1534 	/* Update the receive pointer. */
1535 	sc->sc_rxptr = i;
1536 	return (0);
1537 }
1538 
1539 /*
1540  * pcn_tick:
1541  *
1542  *	One second timer, used to tick the MII.
1543  */
1544 static void
1545 pcn_tick(void *arg)
1546 {
1547 	struct pcn_softc *sc = arg;
1548 	int s;
1549 
1550 	s = splnet();
1551 	mii_tick(&sc->sc_mii);
1552 	splx(s);
1553 
1554 	callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1555 }
1556 
1557 /*
1558  * pcn_reset:
1559  *
1560  *	Perform a soft reset on the PCnet-PCI.
1561  */
1562 static void
1563 pcn_reset(struct pcn_softc *sc)
1564 {
1565 
1566 	/*
1567 	 * The PCnet-PCI chip is reset by reading from the
1568 	 * RESET register.  Note that while the NE2100 LANCE
1569 	 * boards require a write after the read, the PCnet-PCI
1570 	 * chips do not require this.
1571 	 *
1572 	 * Since we don't know if we're in 16-bit or 32-bit
1573 	 * mode right now, issue both (it's safe) in the
1574 	 * hopes that one will succeed.
1575 	 */
1576 	(void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1577 	(void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1578 
1579 	/* Wait 1ms for it to finish. */
1580 	delay(1000);
1581 
1582 	/*
1583 	 * Select 32-bit I/O mode by issuing a 32-bit write to the
1584 	 * RDP.  Since the RAP is 0 after a reset, writing a 0
1585 	 * to RDP is safe (since it simply clears CSR0).
1586 	 */
1587 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1588 }
1589 
1590 /*
1591  * pcn_init:		[ifnet interface function]
1592  *
1593  *	Initialize the interface.  Must be called at splnet().
1594  */
1595 static int
1596 pcn_init(struct ifnet *ifp)
1597 {
1598 	struct pcn_softc *sc = ifp->if_softc;
1599 	struct pcn_rxsoft *rxs;
1600 	uint8_t *enaddr = LLADDR(ifp->if_sadl);
1601 	int i, error = 0;
1602 	uint32_t reg;
1603 
1604 	/* Cancel any pending I/O. */
1605 	pcn_stop(ifp, 0);
1606 
1607 	/* Reset the chip to a known state. */
1608 	pcn_reset(sc);
1609 
1610 	/*
1611 	 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1612 	 * else.
1613 	 *
1614 	 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1615 	 * because the structure layout is compatible with ILACC,
1616 	 * but the burst mode is only available in SSTYLE 3, and
1617 	 * burst mode should provide some performance enhancement.
1618 	 */
1619 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1620 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1621 	else
1622 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1623 	pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1624 
1625 	/* Initialize the transmit descriptor ring. */
1626 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1627 	PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1628 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1629 	sc->sc_txfree = PCN_NTXDESC;
1630 	sc->sc_txnext = 0;
1631 
1632 	/* Initialize the transmit job descriptors. */
1633 	for (i = 0; i < PCN_TXQUEUELEN; i++)
1634 		sc->sc_txsoft[i].txs_mbuf = NULL;
1635 	sc->sc_txsfree = PCN_TXQUEUELEN;
1636 	sc->sc_txsnext = 0;
1637 	sc->sc_txsdirty = 0;
1638 
1639 	/*
1640 	 * Initialize the receive descriptor and receive job
1641 	 * descriptor rings.
1642 	 */
1643 	for (i = 0; i < PCN_NRXDESC; i++) {
1644 		rxs = &sc->sc_rxsoft[i];
1645 		if (rxs->rxs_mbuf == NULL) {
1646 			if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1647 				printf("%s: unable to allocate or map rx "
1648 				    "buffer %d, error = %d\n",
1649 				    sc->sc_dev.dv_xname, i, error);
1650 				/*
1651 				 * XXX Should attempt to run with fewer receive
1652 				 * XXX buffers instead of just failing.
1653 				 */
1654 				pcn_rxdrain(sc);
1655 				goto out;
1656 			}
1657 		} else
1658 			PCN_INIT_RXDESC(sc, i);
1659 	}
1660 	sc->sc_rxptr = 0;
1661 
1662 	/* Initialize MODE for the initialization block. */
1663 	sc->sc_mode = 0;
1664 	if (ifp->if_flags & IFF_PROMISC)
1665 		sc->sc_mode |= LE_C15_PROM;
1666 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
1667 		sc->sc_mode |= LE_C15_DRCVBC;
1668 
1669 	/*
1670 	 * If we have MII, simply select MII in the MODE register,
1671 	 * and clear ASEL.  Otherwise, let ASEL stand (for now),
1672 	 * and leave PORTSEL alone (it is ignored with ASEL is set).
1673 	 */
1674 	if (sc->sc_flags & PCN_F_HAS_MII) {
1675 		pcn_bcr_write(sc, LE_BCR2,
1676 		    pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1677 		sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1678 
1679 		/*
1680 		 * Disable MII auto-negotiation.  We handle that in
1681 		 * our own MII layer.
1682 		 */
1683 		pcn_bcr_write(sc, LE_BCR32,
1684 		    pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1685 	}
1686 
1687 	/*
1688 	 * Set the Tx and Rx descriptor ring addresses in the init
1689 	 * block, the TLEN and RLEN other fields of the init block
1690 	 * MODE register.
1691 	 */
1692 	sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1693 	sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1694 	sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1695 	    ((ffs(PCN_NTXDESC) - 1) << 28) |
1696 	    ((ffs(PCN_NRXDESC) - 1) << 20));
1697 
1698 	/* Set the station address in the init block. */
1699 	sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1700 	    (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1701 	sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1702 	    (enaddr[5] << 8));
1703 
1704 	/* Set the multicast filter in the init block. */
1705 	pcn_set_filter(sc);
1706 
1707 	/* Initialize CSR3. */
1708 	pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1709 
1710 	/* Initialize CSR4. */
1711 	pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1712 	    LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1713 
1714 	/* Initialize CSR5. */
1715 	sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1716 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1717 
1718 	/*
1719 	 * If we have an Am79c971 or greater, initialize CSR7.
1720 	 *
1721 	 * XXX Might be nice to use the MII auto-poll interrupt someday.
1722 	 */
1723 	switch (sc->sc_variant->pcv_chipid) {
1724 	case PARTID_Am79c970:
1725 	case PARTID_Am79c970A:
1726 		/* Not available on these chips. */
1727 		break;
1728 
1729 	default:
1730 		pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1731 		break;
1732 	}
1733 
1734 	/*
1735 	 * On the Am79c970A and greater, initialize BCR18 to
1736 	 * enable burst mode.
1737 	 *
1738 	 * Also enable the "no underflow" option on the Am79c971 and
1739 	 * higher, which prevents the chip from generating transmit
1740 	 * underflows, yet sill provides decent performance.  Note if
1741 	 * chip is not connected to external SRAM, then we still have
1742 	 * to handle underflow errors (the NOUFLO bit is ignored in
1743 	 * that case).
1744 	 */
1745 	reg = pcn_bcr_read(sc, LE_BCR18);
1746 	switch (sc->sc_variant->pcv_chipid) {
1747 	case PARTID_Am79c970:
1748 		break;
1749 
1750 	case PARTID_Am79c970A:
1751 		reg |= LE_B18_BREADE|LE_B18_BWRITE;
1752 		break;
1753 
1754 	default:
1755 		reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1756 		break;
1757 	}
1758 	pcn_bcr_write(sc, LE_BCR18, reg);
1759 
1760 	/*
1761 	 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1762 	 */
1763 	pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1764 	    LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1765 
1766 	/*
1767 	 * Send the init block to the chip, and wait for it
1768 	 * to be processed.
1769 	 */
1770 	PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1771 	pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1772 	pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1773 	pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1774 	delay(100);
1775 	for (i = 0; i < 10000; i++) {
1776 		if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1777 			break;
1778 		delay(10);
1779 	}
1780 	PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1781 	if (i == 10000) {
1782 		printf("%s: timeout processing init block\n",
1783 		    sc->sc_dev.dv_xname);
1784 		error = EIO;
1785 		goto out;
1786 	}
1787 
1788 	/* Set the media. */
1789 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1790 
1791 	/* Enable interrupts and external activity (and ACK IDON). */
1792 	pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1793 
1794 	if (sc->sc_flags & PCN_F_HAS_MII) {
1795 		/* Start the one second MII clock. */
1796 		callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1797 	}
1798 
1799 	/* ...all done! */
1800 	ifp->if_flags |= IFF_RUNNING;
1801 	ifp->if_flags &= ~IFF_OACTIVE;
1802 
1803  out:
1804 	if (error)
1805 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1806 	return (error);
1807 }
1808 
1809 /*
1810  * pcn_rxdrain:
1811  *
1812  *	Drain the receive queue.
1813  */
1814 static void
1815 pcn_rxdrain(struct pcn_softc *sc)
1816 {
1817 	struct pcn_rxsoft *rxs;
1818 	int i;
1819 
1820 	for (i = 0; i < PCN_NRXDESC; i++) {
1821 		rxs = &sc->sc_rxsoft[i];
1822 		if (rxs->rxs_mbuf != NULL) {
1823 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1824 			m_freem(rxs->rxs_mbuf);
1825 			rxs->rxs_mbuf = NULL;
1826 		}
1827 	}
1828 }
1829 
1830 /*
1831  * pcn_stop:		[ifnet interface function]
1832  *
1833  *	Stop transmission on the interface.
1834  */
1835 static void
1836 pcn_stop(struct ifnet *ifp, int disable)
1837 {
1838 	struct pcn_softc *sc = ifp->if_softc;
1839 	struct pcn_txsoft *txs;
1840 	int i;
1841 
1842 	if (sc->sc_flags & PCN_F_HAS_MII) {
1843 		/* Stop the one second clock. */
1844 		callout_stop(&sc->sc_tick_ch);
1845 
1846 		/* Down the MII. */
1847 		mii_down(&sc->sc_mii);
1848 	}
1849 
1850 	/* Stop the chip. */
1851 	pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1852 
1853 	/* Release any queued transmit buffers. */
1854 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
1855 		txs = &sc->sc_txsoft[i];
1856 		if (txs->txs_mbuf != NULL) {
1857 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1858 			m_freem(txs->txs_mbuf);
1859 			txs->txs_mbuf = NULL;
1860 		}
1861 	}
1862 
1863 	if (disable)
1864 		pcn_rxdrain(sc);
1865 
1866 	/* Mark the interface as down and cancel the watchdog timer. */
1867 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1868 	ifp->if_timer = 0;
1869 }
1870 
1871 /*
1872  * pcn_add_rxbuf:
1873  *
1874  *	Add a receive buffer to the indicated descriptor.
1875  */
1876 static int
1877 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1878 {
1879 	struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1880 	struct mbuf *m;
1881 	int error;
1882 
1883 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1884 	if (m == NULL)
1885 		return (ENOBUFS);
1886 
1887 	MCLGET(m, M_DONTWAIT);
1888 	if ((m->m_flags & M_EXT) == 0) {
1889 		m_freem(m);
1890 		return (ENOBUFS);
1891 	}
1892 
1893 	if (rxs->rxs_mbuf != NULL)
1894 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1895 
1896 	rxs->rxs_mbuf = m;
1897 
1898 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1899 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1900 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1901 	if (error) {
1902 		printf("%s: can't load rx DMA map %d, error = %d\n",
1903 		    sc->sc_dev.dv_xname, idx, error);
1904 		panic("pcn_add_rxbuf");
1905 	}
1906 
1907 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1908 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1909 
1910 	PCN_INIT_RXDESC(sc, idx);
1911 
1912 	return (0);
1913 }
1914 
1915 /*
1916  * pcn_set_filter:
1917  *
1918  *	Set up the receive filter.
1919  */
1920 static void
1921 pcn_set_filter(struct pcn_softc *sc)
1922 {
1923 	struct ethercom *ec = &sc->sc_ethercom;
1924 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1925 	struct ether_multi *enm;
1926 	struct ether_multistep step;
1927 	uint32_t crc;
1928 
1929 	/*
1930 	 * Set up the multicast address filter by passing all multicast
1931 	 * addresses through a CRC generator, and then using the high
1932 	 * order 6 bits as an index into the 64-bit logical address
1933 	 * filter.  The high order bits select the word, while the rest
1934 	 * of the bits select the bit within the word.
1935 	 */
1936 
1937 	if (ifp->if_flags & IFF_PROMISC)
1938 		goto allmulti;
1939 
1940 	sc->sc_initblock.init_ladrf[0] =
1941 	    sc->sc_initblock.init_ladrf[1] =
1942 	    sc->sc_initblock.init_ladrf[2] =
1943 	    sc->sc_initblock.init_ladrf[3] = 0;
1944 
1945 	ETHER_FIRST_MULTI(step, ec, enm);
1946 	while (enm != NULL) {
1947 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1948 			/*
1949 			 * We must listen to a range of multicast addresses.
1950 			 * For now, just accept all multicasts, rather than
1951 			 * trying to set only those filter bits needed to match
1952 			 * the range.  (At this time, the only use of address
1953 			 * ranges is for IP multicast routing, for which the
1954 			 * range is big enough to require all bits set.)
1955 			 */
1956 			goto allmulti;
1957 		}
1958 
1959 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1960 
1961 		/* Just want the 6 most significant bits. */
1962 		crc >>= 26;
1963 
1964 		/* Set the corresponding bit in the filter. */
1965 		sc->sc_initblock.init_ladrf[crc >> 4] |=
1966 		    htole16(1 << (crc & 0xf));
1967 
1968 		ETHER_NEXT_MULTI(step, enm);
1969 	}
1970 
1971 	ifp->if_flags &= ~IFF_ALLMULTI;
1972 	return;
1973 
1974  allmulti:
1975 	ifp->if_flags |= IFF_ALLMULTI;
1976 	sc->sc_initblock.init_ladrf[0] =
1977 	    sc->sc_initblock.init_ladrf[1] =
1978 	    sc->sc_initblock.init_ladrf[2] =
1979 	    sc->sc_initblock.init_ladrf[3] = 0xffff;
1980 }
1981 
1982 /*
1983  * pcn_79c970_mediainit:
1984  *
1985  *	Initialize media for the Am79c970.
1986  */
1987 static void
1988 pcn_79c970_mediainit(struct pcn_softc *sc)
1989 {
1990 	const char *sep = "";
1991 
1992 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
1993 	    pcn_79c970_mediastatus);
1994 
1995 #define	ADD(str, m, d)							\
1996 do {									\
1997 	printf("%s%s", sep, str);					\
1998 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL);	\
1999 	sep = ", ";							\
2000 } while (/*CONSTCOND*/0)
2001 
2002 	printf("%s: ", sc->sc_dev.dv_xname);
2003 	ADD("10base5", IFM_10_5, PORTSEL_AUI);
2004 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2005 		ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
2006 	ADD("10baseT", IFM_10_T, PORTSEL_10T);
2007 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2008 		ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
2009 	ADD("auto", IFM_AUTO, 0);
2010 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2011 		ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
2012 	printf("\n");
2013 
2014 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2015 }
2016 
2017 /*
2018  * pcn_79c970_mediastatus:	[ifmedia interface function]
2019  *
2020  *	Get the current interface media status (Am79c970 version).
2021  */
2022 static void
2023 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2024 {
2025 	struct pcn_softc *sc = ifp->if_softc;
2026 
2027 	/*
2028 	 * The currently selected media is always the active media.
2029 	 * Note: We have no way to determine what media the AUTO
2030 	 * process picked.
2031 	 */
2032 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
2033 }
2034 
2035 /*
2036  * pcn_79c970_mediachange:	[ifmedia interface function]
2037  *
2038  *	Set hardware to newly-selected media (Am79c970 version).
2039  */
2040 static int
2041 pcn_79c970_mediachange(struct ifnet *ifp)
2042 {
2043 	struct pcn_softc *sc = ifp->if_softc;
2044 	uint32_t reg;
2045 
2046 	if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2047 		/*
2048 		 * CSR15:PORTSEL doesn't matter.  Just set BCR2:ASEL.
2049 		 */
2050 		reg = pcn_bcr_read(sc, LE_BCR2);
2051 		reg |= LE_B2_ASEL;
2052 		pcn_bcr_write(sc, LE_BCR2, reg);
2053 	} else {
2054 		/*
2055 		 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2056 		 */
2057 		reg = pcn_bcr_read(sc, LE_BCR2);
2058 		reg &= ~LE_B2_ASEL;
2059 		pcn_bcr_write(sc, LE_BCR2, reg);
2060 
2061 		reg = pcn_csr_read(sc, LE_CSR15);
2062 		reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2063 		    LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2064 		pcn_csr_write(sc, LE_CSR15, reg);
2065 	}
2066 
2067 	if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2068 		reg = LE_B9_FDEN;
2069 		if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2070 			reg |= LE_B9_AUIFD;
2071 		pcn_bcr_write(sc, LE_BCR9, reg);
2072 	} else
2073 		pcn_bcr_write(sc, LE_BCR9, 0);
2074 
2075 	return (0);
2076 }
2077 
2078 /*
2079  * pcn_79c971_mediainit:
2080  *
2081  *	Initialize media for the Am79c971.
2082  */
2083 static void
2084 pcn_79c971_mediainit(struct pcn_softc *sc)
2085 {
2086 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2087 
2088 	/* We have MII. */
2089 	sc->sc_flags |= PCN_F_HAS_MII;
2090 
2091 	/*
2092 	 * The built-in 10BASE-T interface is mapped to the MII
2093 	 * on the PCNet-FAST.  Unfortunately, there's no EEPROM
2094 	 * word that tells us which PHY to use.
2095 	 * This driver used to ignore all but the first PHY to
2096 	 * answer, but this code was removed to support multiple
2097 	 * external PHYs. As the default instance will be the first
2098 	 * one to answer, no harm is done by letting the possibly
2099 	 * non-connected internal PHY show up.
2100 	 */
2101 
2102 	/* Initialize our media structures and probe the MII. */
2103 	sc->sc_mii.mii_ifp = ifp;
2104 	sc->sc_mii.mii_readreg = pcn_mii_readreg;
2105 	sc->sc_mii.mii_writereg = pcn_mii_writereg;
2106 	sc->sc_mii.mii_statchg = pcn_mii_statchg;
2107 	ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2108 	    pcn_79c971_mediastatus);
2109 
2110 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2111 	    MII_OFFSET_ANY, 0);
2112 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2113 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2114 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2115 	} else
2116 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2117 }
2118 
2119 /*
2120  * pcn_79c971_mediastatus:	[ifmedia interface function]
2121  *
2122  *	Get the current interface media status (Am79c971 version).
2123  */
2124 static void
2125 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2126 {
2127 	struct pcn_softc *sc = ifp->if_softc;
2128 
2129 	mii_pollstat(&sc->sc_mii);
2130 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2131 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2132 }
2133 
2134 /*
2135  * pcn_79c971_mediachange:	[ifmedia interface function]
2136  *
2137  *	Set hardware to newly-selected media (Am79c971 version).
2138  */
2139 static int
2140 pcn_79c971_mediachange(struct ifnet *ifp)
2141 {
2142 	struct pcn_softc *sc = ifp->if_softc;
2143 
2144 	if (ifp->if_flags & IFF_UP)
2145 		mii_mediachg(&sc->sc_mii);
2146 	return (0);
2147 }
2148 
2149 /*
2150  * pcn_mii_readreg:	[mii interface function]
2151  *
2152  *	Read a PHY register on the MII.
2153  */
2154 static int
2155 pcn_mii_readreg(struct device *self, int phy, int reg)
2156 {
2157 	struct pcn_softc *sc = (void *) self;
2158 	uint32_t rv;
2159 
2160 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2161 	rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2162 	if (rv == 0xffff)
2163 		return (0);
2164 
2165 	return (rv);
2166 }
2167 
2168 /*
2169  * pcn_mii_writereg:	[mii interface function]
2170  *
2171  *	Write a PHY register on the MII.
2172  */
2173 static void
2174 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2175 {
2176 	struct pcn_softc *sc = (void *) self;
2177 
2178 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2179 	pcn_bcr_write(sc, LE_BCR34, val);
2180 }
2181 
2182 /*
2183  * pcn_mii_statchg:	[mii interface function]
2184  *
2185  *	Callback from MII layer when media changes.
2186  */
2187 static void
2188 pcn_mii_statchg(struct device *self)
2189 {
2190 	struct pcn_softc *sc = (void *) self;
2191 
2192 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2193 		pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2194 	else
2195 		pcn_bcr_write(sc, LE_BCR9, 0);
2196 }
2197