xref: /netbsd-src/sys/dev/pci/if_pcn.c (revision e5548b402ae4c44fb816de42c7bba9581ce23ef5)
1 /*	$NetBSD: if_pcn.c,v 1.27 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the AMD PCnet-PCI series of Ethernet
40  * chips:
41  *
42  *	* Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43  *	  Local Bus
44  *
45  *	* Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46  *	  for PCI Local Bus
47  *
48  *	* Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49  *	  Ethernet Controller for PCI Local Bus
50  *
51  *	* Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52  *	  with OnNow Support
53  *
54  *	* Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55  *	  Ethernet Controller with Integrated PHY
56  *
57  * This also supports the virtual PCnet-PCI Ethernet interface found
58  * in VMware.
59  *
60  * TODO:
61  *
62  *	* Split this into bus-specific and bus-independent portions.
63  *	  The core could also be used for the ILACC (Am79900) 32-bit
64  *	  Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65  */
66 
67 #include "opt_pcn.h"
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.27 2005/12/11 12:22:49 christos Exp $");
71 
72 #include "bpfilter.h"
73 #include "rnd.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/callout.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/ioctl.h>
83 #include <sys/errno.h>
84 #include <sys/device.h>
85 #include <sys/queue.h>
86 
87 #if NRND > 0
88 #include <sys/rnd.h>
89 #endif
90 
91 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
92 
93 #include <net/if.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_ether.h>
97 
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101 
102 #include <machine/bus.h>
103 #include <machine/intr.h>
104 #include <machine/endian.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 
109 #include <dev/ic/am79900reg.h>
110 #include <dev/ic/lancereg.h>
111 
112 #include <dev/pci/pcireg.h>
113 #include <dev/pci/pcivar.h>
114 #include <dev/pci/pcidevs.h>
115 
116 #include <dev/pci/if_pcnreg.h>
117 
118 /*
119  * Transmit descriptor list size.  This is arbitrary, but allocate
120  * enough descriptors for 128 pending transmissions, and 4 segments
121  * per packet.  This MUST work out to a power of 2.
122  *
123  * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
124  *
125  * So we play a little trick here.  We give each packet up to 16
126  * DMA segments, but only allocate the max of 512 descriptors.  The
127  * transmit logic can deal with this, we just are hoping to sneak by.
128  */
129 #define	PCN_NTXSEGS		16
130 
131 #define	PCN_TXQUEUELEN		128
132 #define	PCN_TXQUEUELEN_MASK	(PCN_TXQUEUELEN - 1)
133 #define	PCN_NTXDESC		512
134 #define	PCN_NTXDESC_MASK	(PCN_NTXDESC - 1)
135 #define	PCN_NEXTTX(x)		(((x) + 1) & PCN_NTXDESC_MASK)
136 #define	PCN_NEXTTXS(x)		(((x) + 1) & PCN_TXQUEUELEN_MASK)
137 
138 /* Tx interrupt every N + 1 packets. */
139 #define	PCN_TXINTR_MASK		7
140 
141 /*
142  * Receive descriptor list size.  We have one Rx buffer per incoming
143  * packet, so this logic is a little simpler.
144  */
145 #define	PCN_NRXDESC		128
146 #define	PCN_NRXDESC_MASK	(PCN_NRXDESC - 1)
147 #define	PCN_NEXTRX(x)		(((x) + 1) & PCN_NRXDESC_MASK)
148 
149 /*
150  * Control structures are DMA'd to the PCnet chip.  We allocate them in
151  * a single clump that maps to a single DMA segment to make several things
152  * easier.
153  */
154 struct pcn_control_data {
155 	/* The transmit descriptors. */
156 	struct letmd pcd_txdescs[PCN_NTXDESC];
157 
158 	/* The receive descriptors. */
159 	struct lermd pcd_rxdescs[PCN_NRXDESC];
160 
161 	/* The init block. */
162 	struct leinit pcd_initblock;
163 };
164 
165 #define	PCN_CDOFF(x)	offsetof(struct pcn_control_data, x)
166 #define	PCN_CDTXOFF(x)	PCN_CDOFF(pcd_txdescs[(x)])
167 #define	PCN_CDRXOFF(x)	PCN_CDOFF(pcd_rxdescs[(x)])
168 #define	PCN_CDINITOFF	PCN_CDOFF(pcd_initblock)
169 
170 /*
171  * Software state for transmit jobs.
172  */
173 struct pcn_txsoft {
174 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
175 	bus_dmamap_t txs_dmamap;	/* our DMA map */
176 	int txs_firstdesc;		/* first descriptor in packet */
177 	int txs_lastdesc;		/* last descriptor in packet */
178 };
179 
180 /*
181  * Software state for receive jobs.
182  */
183 struct pcn_rxsoft {
184 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
185 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
186 };
187 
188 /*
189  * Description of Rx FIFO watermarks for various revisions.
190  */
191 static const char * const pcn_79c970_rcvfw[] = {
192 	"16 bytes",
193 	"64 bytes",
194 	"128 bytes",
195 	NULL,
196 };
197 
198 static const char * const pcn_79c971_rcvfw[] = {
199 	"16 bytes",
200 	"64 bytes",
201 	"112 bytes",
202 	NULL,
203 };
204 
205 /*
206  * Description of Tx start points for various revisions.
207  */
208 static const char * const pcn_79c970_xmtsp[] = {
209 	"8 bytes",
210 	"64 bytes",
211 	"128 bytes",
212 	"248 bytes",
213 };
214 
215 static const char * const pcn_79c971_xmtsp[] = {
216 	"20 bytes",
217 	"64 bytes",
218 	"128 bytes",
219 	"248 bytes",
220 };
221 
222 static const char * const pcn_79c971_xmtsp_sram[] = {
223 	"44 bytes",
224 	"64 bytes",
225 	"128 bytes",
226 	"store-and-forward",
227 };
228 
229 /*
230  * Description of Tx FIFO watermarks for various revisions.
231  */
232 static const char * const pcn_79c970_xmtfw[] = {
233 	"16 bytes",
234 	"64 bytes",
235 	"128 bytes",
236 	NULL,
237 };
238 
239 static const char * const pcn_79c971_xmtfw[] = {
240 	"16 bytes",
241 	"64 bytes",
242 	"108 bytes",
243 	NULL,
244 };
245 
246 /*
247  * Software state per device.
248  */
249 struct pcn_softc {
250 	struct device sc_dev;		/* generic device information */
251 	bus_space_tag_t sc_st;		/* bus space tag */
252 	bus_space_handle_t sc_sh;	/* bus space handle */
253 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
254 	struct ethercom sc_ethercom;	/* Ethernet common data */
255 	void *sc_sdhook;		/* shutdown hook */
256 
257 	/* Points to our media routines, etc. */
258 	const struct pcn_variant *sc_variant;
259 
260 	void *sc_ih;			/* interrupt cookie */
261 
262 	struct mii_data sc_mii;		/* MII/media information */
263 
264 	struct callout sc_tick_ch;	/* tick callout */
265 
266 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
267 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
268 
269 	/* Software state for transmit and receive descriptors. */
270 	struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
271 	struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
272 
273 	/* Control data structures */
274 	struct pcn_control_data *sc_control_data;
275 #define	sc_txdescs	sc_control_data->pcd_txdescs
276 #define	sc_rxdescs	sc_control_data->pcd_rxdescs
277 #define	sc_initblock	sc_control_data->pcd_initblock
278 
279 #ifdef PCN_EVENT_COUNTERS
280 	/* Event counters. */
281 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
282 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
283 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
284 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
285 	struct evcnt sc_ev_babl;	/* BABL in pcn_intr() */
286 	struct evcnt sc_ev_miss;	/* MISS in pcn_intr() */
287 	struct evcnt sc_ev_merr;	/* MERR in pcn_intr() */
288 
289 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
290 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
291 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
292 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
293 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
294 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
295 	struct evcnt sc_ev_txcopy;	/* Tx copies required */
296 #endif /* PCN_EVENT_COUNTERS */
297 
298 	const char * const *sc_rcvfw_desc;	/* Rx FIFO watermark info */
299 	int sc_rcvfw;
300 
301 	const char * const *sc_xmtsp_desc;	/* Tx start point info */
302 	int sc_xmtsp;
303 
304 	const char * const *sc_xmtfw_desc;	/* Tx FIFO watermark info */
305 	int sc_xmtfw;
306 
307 	int sc_flags;			/* misc. flags; see below */
308 	int sc_swstyle;			/* the software style in use */
309 
310 	int sc_txfree;			/* number of free Tx descriptors */
311 	int sc_txnext;			/* next ready Tx descriptor */
312 
313 	int sc_txsfree;			/* number of free Tx jobs */
314 	int sc_txsnext;			/* next free Tx job */
315 	int sc_txsdirty;		/* dirty Tx jobs */
316 
317 	int sc_rxptr;			/* next ready Rx descriptor/job */
318 
319 	uint32_t sc_csr5;		/* prototype CSR5 register */
320 	uint32_t sc_mode;		/* prototype MODE register */
321 
322 #if NRND > 0
323 	rndsource_element_t rnd_source;	/* random source */
324 #endif
325 };
326 
327 /* sc_flags */
328 #define	PCN_F_HAS_MII		0x0001	/* has MII */
329 
330 #ifdef PCN_EVENT_COUNTERS
331 #define	PCN_EVCNT_INCR(ev)	(ev)->ev_count++
332 #else
333 #define	PCN_EVCNT_INCR(ev)	/* nothing */
334 #endif
335 
336 #define	PCN_CDTXADDR(sc, x)	((sc)->sc_cddma + PCN_CDTXOFF((x)))
337 #define	PCN_CDRXADDR(sc, x)	((sc)->sc_cddma + PCN_CDRXOFF((x)))
338 #define	PCN_CDINITADDR(sc)	((sc)->sc_cddma + PCN_CDINITOFF)
339 
340 #define	PCN_CDTXSYNC(sc, x, n, ops)					\
341 do {									\
342 	int __x, __n;							\
343 									\
344 	__x = (x);							\
345 	__n = (n);							\
346 									\
347 	/* If it will wrap around, sync to the end of the ring. */	\
348 	if ((__x + __n) > PCN_NTXDESC) {				\
349 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
350 		    PCN_CDTXOFF(__x), sizeof(struct letmd) *		\
351 		    (PCN_NTXDESC - __x), (ops));			\
352 		__n -= (PCN_NTXDESC - __x);				\
353 		__x = 0;						\
354 	}								\
355 									\
356 	/* Now sync whatever is left. */				\
357 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
358 	    PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops));	\
359 } while (/*CONSTCOND*/0)
360 
361 #define	PCN_CDRXSYNC(sc, x, ops)					\
362 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
363 	    PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
364 
365 #define	PCN_CDINITSYNC(sc, ops)						\
366 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
367 	    PCN_CDINITOFF, sizeof(struct leinit), (ops))
368 
369 #define	PCN_INIT_RXDESC(sc, x)						\
370 do {									\
371 	struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
372 	struct lermd *__rmd = &(sc)->sc_rxdescs[(x)];			\
373 	struct mbuf *__m = __rxs->rxs_mbuf;				\
374 									\
375 	/*								\
376 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
377 	 * so that the payload after the Ethernet header is aligned	\
378 	 * to a 4-byte boundary.					\
379 	 */								\
380 	__m->m_data = __m->m_ext.ext_buf + 2;				\
381 									\
382 	if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {		\
383 		__rmd->rmd2 =						\
384 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
385 		__rmd->rmd0 = 0;					\
386 	} else {							\
387 		__rmd->rmd2 = 0;					\
388 		__rmd->rmd0 =						\
389 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
390 	}								\
391 	__rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| 			\
392 	    (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK));			\
393 	PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
394 } while(/*CONSTCOND*/0)
395 
396 static void	pcn_start(struct ifnet *);
397 static void	pcn_watchdog(struct ifnet *);
398 static int	pcn_ioctl(struct ifnet *, u_long, caddr_t);
399 static int	pcn_init(struct ifnet *);
400 static void	pcn_stop(struct ifnet *, int);
401 
402 static void	pcn_shutdown(void *);
403 
404 static void	pcn_reset(struct pcn_softc *);
405 static void	pcn_rxdrain(struct pcn_softc *);
406 static int	pcn_add_rxbuf(struct pcn_softc *, int);
407 static void	pcn_tick(void *);
408 
409 static void	pcn_spnd(struct pcn_softc *);
410 
411 static void	pcn_set_filter(struct pcn_softc *);
412 
413 static int	pcn_intr(void *);
414 static void	pcn_txintr(struct pcn_softc *);
415 static int	pcn_rxintr(struct pcn_softc *);
416 
417 static int	pcn_mii_readreg(struct device *, int, int);
418 static void	pcn_mii_writereg(struct device *, int, int, int);
419 static void	pcn_mii_statchg(struct device *);
420 
421 static void	pcn_79c970_mediainit(struct pcn_softc *);
422 static int	pcn_79c970_mediachange(struct ifnet *);
423 static void	pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
424 
425 static void	pcn_79c971_mediainit(struct pcn_softc *);
426 static int	pcn_79c971_mediachange(struct ifnet *);
427 static void	pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
428 
429 /*
430  * Description of a PCnet-PCI variant.  Used to select media access
431  * method, mostly, and to print a nice description of the chip.
432  */
433 static const struct pcn_variant {
434 	const char *pcv_desc;
435 	void (*pcv_mediainit)(struct pcn_softc *);
436 	uint16_t pcv_chipid;
437 } pcn_variants[] = {
438 	{ "Am79c970 PCnet-PCI",
439 	  pcn_79c970_mediainit,
440 	  PARTID_Am79c970 },
441 
442 	{ "Am79c970A PCnet-PCI II",
443 	  pcn_79c970_mediainit,
444 	  PARTID_Am79c970A },
445 
446 	{ "Am79c971 PCnet-FAST",
447 	  pcn_79c971_mediainit,
448 	  PARTID_Am79c971 },
449 
450 	{ "Am79c972 PCnet-FAST+",
451 	  pcn_79c971_mediainit,
452 	  PARTID_Am79c972 },
453 
454 	{ "Am79c973 PCnet-FAST III",
455 	  pcn_79c971_mediainit,
456 	  PARTID_Am79c973 },
457 
458 	{ "Am79c975 PCnet-FAST III",
459 	  pcn_79c971_mediainit,
460 	  PARTID_Am79c975 },
461 
462 	{ "Unknown PCnet-PCI variant",
463 	  pcn_79c971_mediainit,
464 	  0 },
465 };
466 
467 int	pcn_copy_small = 0;
468 
469 static int	pcn_match(struct device *, struct cfdata *, void *);
470 static void	pcn_attach(struct device *, struct device *, void *);
471 
472 CFATTACH_DECL(pcn, sizeof(struct pcn_softc),
473     pcn_match, pcn_attach, NULL, NULL);
474 
475 /*
476  * Routines to read and write the PCnet-PCI CSR/BCR space.
477  */
478 
479 static __inline uint32_t
480 pcn_csr_read(struct pcn_softc *sc, int reg)
481 {
482 
483 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
484 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
485 }
486 
487 static __inline void
488 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
489 {
490 
491 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
492 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
493 }
494 
495 static __inline uint32_t
496 pcn_bcr_read(struct pcn_softc *sc, int reg)
497 {
498 
499 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
500 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
501 }
502 
503 static __inline void
504 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
505 {
506 
507 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
508 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
509 }
510 
511 static const struct pcn_variant *
512 pcn_lookup_variant(uint16_t chipid)
513 {
514 	const struct pcn_variant *pcv;
515 
516 	for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
517 		if (chipid == pcv->pcv_chipid)
518 			return (pcv);
519 	}
520 
521 	/*
522 	 * This covers unknown chips, which we simply treat like
523 	 * a generic PCnet-FAST.
524 	 */
525 	return (pcv);
526 }
527 
528 static int
529 pcn_match(struct device *parent, struct cfdata *cf, void *aux)
530 {
531 	struct pci_attach_args *pa = aux;
532 
533 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
534 		return (0);
535 
536 	switch (PCI_PRODUCT(pa->pa_id)) {
537 	case PCI_PRODUCT_AMD_PCNET_PCI:
538 		/* Beat if_le_pci.c */
539 		return (10);
540 	}
541 
542 	return (0);
543 }
544 
545 static void
546 pcn_attach(struct device *parent, struct device *self, void *aux)
547 {
548 	struct pcn_softc *sc = (struct pcn_softc *) self;
549 	struct pci_attach_args *pa = aux;
550 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
551 	pci_chipset_tag_t pc = pa->pa_pc;
552 	pci_intr_handle_t ih;
553 	const char *intrstr = NULL;
554 	bus_space_tag_t iot, memt;
555 	bus_space_handle_t ioh, memh;
556 	bus_dma_segment_t seg;
557 	int ioh_valid, memh_valid;
558 	int i, rseg, error;
559 	pcireg_t pmode;
560 	uint32_t chipid, reg;
561 	uint8_t enaddr[ETHER_ADDR_LEN];
562 	int pmreg;
563 
564 	callout_init(&sc->sc_tick_ch);
565 
566 	printf(": AMD PCnet-PCI Ethernet\n");
567 
568 	/*
569 	 * Map the device.
570 	 */
571 	ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
572 	    &iot, &ioh, NULL, NULL) == 0);
573 	memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
574 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
575 	    &memt, &memh, NULL, NULL) == 0);
576 
577 	if (memh_valid) {
578 		sc->sc_st = memt;
579 		sc->sc_sh = memh;
580 	} else if (ioh_valid) {
581 		sc->sc_st = iot;
582 		sc->sc_sh = ioh;
583 	} else {
584 		printf("%s: unable to map device registers\n",
585 		    sc->sc_dev.dv_xname);
586 		return;
587 	}
588 
589 	sc->sc_dmat = pa->pa_dmat;
590 
591 	/* Make sure bus mastering is enabled. */
592 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
593 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
594 	    PCI_COMMAND_MASTER_ENABLE);
595 
596 	/* Get it out of power save mode, if needed. */
597 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
598 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
599 		    PCI_PMCSR_STATE_MASK;
600 		if (pmode == PCI_PMCSR_STATE_D3) {
601 			/*
602 			 * The card has lost all configuration data in
603 			 * this state, so punt.
604 			 */
605 			printf("%s: unable to wake from power state D3\n",
606 			    sc->sc_dev.dv_xname);
607 			return;
608 		}
609 		if (pmode != PCI_PMCSR_STATE_D0) {
610 			printf("%s: waking up from power date D%d\n",
611 			    sc->sc_dev.dv_xname, pmode);
612 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
613 			    PCI_PMCSR_STATE_D0);
614 		}
615 	}
616 
617 	/*
618 	 * Reset the chip to a known state.  This also puts the
619 	 * chip into 32-bit mode.
620 	 */
621 	pcn_reset(sc);
622 
623 #if !defined(PCN_NO_PROM)
624 
625 	/*
626 	 * Read the Ethernet address from the EEPROM.
627 	 */
628 	for (i = 0; i < ETHER_ADDR_LEN; i++)
629 		enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
630 		    PCN32_APROM + i);
631 #else
632 	/*
633 	 * The PROM is not used; instead we assume that the MAC address
634 	 * has been programmed into the device's physical address
635 	 * registers by the boot firmware
636 	 */
637 
638         for (i=0; i < 3; i++) {
639 		uint32_t val;
640 		val = pcn_csr_read(sc, LE_CSR12 + i);
641 		enaddr[2*i] = val & 0x0ff;
642 		enaddr[2*i+1] = (val >> 8) & 0x0ff;
643 	}
644 #endif
645 
646 	/*
647 	 * Now that the device is mapped, attempt to figure out what
648 	 * kind of chip we have.  Note that IDL has all 32 bits of
649 	 * the chip ID when we're in 32-bit mode.
650 	 */
651 	chipid = pcn_csr_read(sc, LE_CSR88);
652 	sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
653 
654 	printf("%s: %s rev %d, Ethernet address %s\n",
655 	    sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
656 	    ether_sprintf(enaddr));
657 
658 	/*
659 	 * Map and establish our interrupt.
660 	 */
661 	if (pci_intr_map(pa, &ih)) {
662 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
663 		return;
664 	}
665 	intrstr = pci_intr_string(pc, ih);
666 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
667 	if (sc->sc_ih == NULL) {
668 		printf("%s: unable to establish interrupt",
669 		    sc->sc_dev.dv_xname);
670 		if (intrstr != NULL)
671 			printf(" at %s", intrstr);
672 		printf("\n");
673 		return;
674 	}
675 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
676 
677 	/*
678 	 * Allocate the control data structures, and create and load the
679 	 * DMA map for it.
680 	 */
681 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
682 	     sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
683 	     0)) != 0) {
684 		printf("%s: unable to allocate control data, error = %d\n",
685 		    sc->sc_dev.dv_xname, error);
686 		goto fail_0;
687 	}
688 
689 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
690 	     sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
691 	     BUS_DMA_COHERENT)) != 0) {
692 		printf("%s: unable to map control data, error = %d\n",
693 		    sc->sc_dev.dv_xname, error);
694 		goto fail_1;
695 	}
696 
697 	if ((error = bus_dmamap_create(sc->sc_dmat,
698 	     sizeof(struct pcn_control_data), 1,
699 	     sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
700 		printf("%s: unable to create control data DMA map, "
701 		    "error = %d\n", sc->sc_dev.dv_xname, error);
702 		goto fail_2;
703 	}
704 
705 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
706 	     sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
707 	     0)) != 0) {
708 		printf("%s: unable to load control data DMA map, error = %d\n",
709 		    sc->sc_dev.dv_xname, error);
710 		goto fail_3;
711 	}
712 
713 	/* Create the transmit buffer DMA maps. */
714 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
715 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
716 		     PCN_NTXSEGS, MCLBYTES, 0, 0,
717 		     &sc->sc_txsoft[i].txs_dmamap)) != 0) {
718 			printf("%s: unable to create tx DMA map %d, "
719 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
720 			goto fail_4;
721 		}
722 	}
723 
724 	/* Create the receive buffer DMA maps. */
725 	for (i = 0; i < PCN_NRXDESC; i++) {
726 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
727 		     MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
728 			printf("%s: unable to create rx DMA map %d, "
729 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
730 			goto fail_5;
731 		}
732 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
733 	}
734 
735 	/* Initialize our media structures. */
736 	(*sc->sc_variant->pcv_mediainit)(sc);
737 
738 	/*
739 	 * Initialize FIFO watermark info.
740 	 */
741 	switch (sc->sc_variant->pcv_chipid) {
742 	case PARTID_Am79c970:
743 	case PARTID_Am79c970A:
744 		sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
745 		sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
746 		sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
747 		break;
748 
749 	default:
750 		sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
751 		/*
752 		 * Read BCR25 to determine how much SRAM is
753 		 * on the board.  If > 0, then we the chip
754 		 * uses different Start Point thresholds.
755 		 *
756 		 * Note BCR25 and BCR26 are loaded from the
757 		 * EEPROM on RST, and unaffected by S_RESET,
758 		 * so we don't really have to worry about
759 		 * them except for this.
760 		 */
761 		reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
762 		if (reg != 0)
763 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
764 		else
765 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
766 		sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
767 		break;
768 	}
769 
770 	/*
771 	 * Set up defaults -- see the tables above for what these
772 	 * values mean.
773 	 *
774 	 * XXX How should we tune RCVFW and XMTFW?
775 	 */
776 	sc->sc_rcvfw = 1;	/* minimum for full-duplex */
777 	sc->sc_xmtsp = 1;
778 	sc->sc_xmtfw = 0;
779 
780 	ifp = &sc->sc_ethercom.ec_if;
781 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
782 	ifp->if_softc = sc;
783 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
784 	ifp->if_ioctl = pcn_ioctl;
785 	ifp->if_start = pcn_start;
786 	ifp->if_watchdog = pcn_watchdog;
787 	ifp->if_init = pcn_init;
788 	ifp->if_stop = pcn_stop;
789 	IFQ_SET_READY(&ifp->if_snd);
790 
791 	/* Attach the interface. */
792 	if_attach(ifp);
793 	ether_ifattach(ifp, enaddr);
794 #if NRND > 0
795 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
796 	    RND_TYPE_NET, 0);
797 #endif
798 
799 #ifdef PCN_EVENT_COUNTERS
800 	/* Attach event counters. */
801 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
802 	    NULL, sc->sc_dev.dv_xname, "txsstall");
803 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
804 	    NULL, sc->sc_dev.dv_xname, "txdstall");
805 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
806 	    NULL, sc->sc_dev.dv_xname, "txintr");
807 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
808 	    NULL, sc->sc_dev.dv_xname, "rxintr");
809 	evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
810 	    NULL, sc->sc_dev.dv_xname, "babl");
811 	evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
812 	    NULL, sc->sc_dev.dv_xname, "miss");
813 	evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
814 	    NULL, sc->sc_dev.dv_xname, "merr");
815 
816 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
817 	    NULL, sc->sc_dev.dv_xname, "txseg1");
818 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
819 	    NULL, sc->sc_dev.dv_xname, "txseg2");
820 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
821 	    NULL, sc->sc_dev.dv_xname, "txseg3");
822 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
823 	    NULL, sc->sc_dev.dv_xname, "txseg4");
824 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
825 	    NULL, sc->sc_dev.dv_xname, "txseg5");
826 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
827 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
828 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
829 	    NULL, sc->sc_dev.dv_xname, "txcopy");
830 #endif /* PCN_EVENT_COUNTERS */
831 
832 	/* Make sure the interface is shutdown during reboot. */
833 	sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
834 	if (sc->sc_sdhook == NULL)
835 		printf("%s: WARNING: unable to establish shutdown hook\n",
836 		    sc->sc_dev.dv_xname);
837 	return;
838 
839 	/*
840 	 * Free any resources we've allocated during the failed attach
841 	 * attempt.  Do this in reverse order and fall through.
842 	 */
843  fail_5:
844 	for (i = 0; i < PCN_NRXDESC; i++) {
845 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
846 			bus_dmamap_destroy(sc->sc_dmat,
847 			    sc->sc_rxsoft[i].rxs_dmamap);
848 	}
849  fail_4:
850 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
851 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
852 			bus_dmamap_destroy(sc->sc_dmat,
853 			    sc->sc_txsoft[i].txs_dmamap);
854 	}
855 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
856  fail_3:
857 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
858  fail_2:
859 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
860 	    sizeof(struct pcn_control_data));
861  fail_1:
862 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
863  fail_0:
864 	return;
865 }
866 
867 /*
868  * pcn_shutdown:
869  *
870  *	Make sure the interface is stopped at reboot time.
871  */
872 static void
873 pcn_shutdown(void *arg)
874 {
875 	struct pcn_softc *sc = arg;
876 
877 	pcn_stop(&sc->sc_ethercom.ec_if, 1);
878 }
879 
880 /*
881  * pcn_start:		[ifnet interface function]
882  *
883  *	Start packet transmission on the interface.
884  */
885 static void
886 pcn_start(struct ifnet *ifp)
887 {
888 	struct pcn_softc *sc = ifp->if_softc;
889 	struct mbuf *m0, *m;
890 	struct pcn_txsoft *txs;
891 	bus_dmamap_t dmamap;
892 	int error, nexttx, lasttx = -1, ofree, seg;
893 
894 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
895 		return;
896 
897 	/*
898 	 * Remember the previous number of free descriptors and
899 	 * the first descriptor we'll use.
900 	 */
901 	ofree = sc->sc_txfree;
902 
903 	/*
904 	 * Loop through the send queue, setting up transmit descriptors
905 	 * until we drain the queue, or use up all available transmit
906 	 * descriptors.
907 	 */
908 	for (;;) {
909 		/* Grab a packet off the queue. */
910 		IFQ_POLL(&ifp->if_snd, m0);
911 		if (m0 == NULL)
912 			break;
913 		m = NULL;
914 
915 		/* Get a work queue entry. */
916 		if (sc->sc_txsfree == 0) {
917 			PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
918 			break;
919 		}
920 
921 		txs = &sc->sc_txsoft[sc->sc_txsnext];
922 		dmamap = txs->txs_dmamap;
923 
924 		/*
925 		 * Load the DMA map.  If this fails, the packet either
926 		 * didn't fit in the alloted number of segments, or we
927 		 * were short on resources.  In this case, we'll copy
928 		 * and try again.
929 		 */
930 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
931 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
932 			PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
933 			MGETHDR(m, M_DONTWAIT, MT_DATA);
934 			if (m == NULL) {
935 				printf("%s: unable to allocate Tx mbuf\n",
936 				    sc->sc_dev.dv_xname);
937 				break;
938 			}
939 			if (m0->m_pkthdr.len > MHLEN) {
940 				MCLGET(m, M_DONTWAIT);
941 				if ((m->m_flags & M_EXT) == 0) {
942 					printf("%s: unable to allocate Tx "
943 					    "cluster\n", sc->sc_dev.dv_xname);
944 					m_freem(m);
945 					break;
946 				}
947 			}
948 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
949 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
950 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
951 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
952 			if (error) {
953 				printf("%s: unable to load Tx buffer, "
954 				    "error = %d\n", sc->sc_dev.dv_xname, error);
955 				break;
956 			}
957 		}
958 
959 		/*
960 		 * Ensure we have enough descriptors free to describe
961 		 * the packet.  Note, we always reserve one descriptor
962 		 * at the end of the ring as a termination point, to
963 		 * prevent wrap-around.
964 		 */
965 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
966 			/*
967 			 * Not enough free descriptors to transmit this
968 			 * packet.  We haven't committed anything yet,
969 			 * so just unload the DMA map, put the packet
970 			 * back on the queue, and punt.  Notify the upper
971 			 * layer that there are not more slots left.
972 			 *
973 			 * XXX We could allocate an mbuf and copy, but
974 			 * XXX is it worth it?
975 			 */
976 			ifp->if_flags |= IFF_OACTIVE;
977 			bus_dmamap_unload(sc->sc_dmat, dmamap);
978 			if (m != NULL)
979 				m_freem(m);
980 			PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
981 			break;
982 		}
983 
984 		IFQ_DEQUEUE(&ifp->if_snd, m0);
985 		if (m != NULL) {
986 			m_freem(m0);
987 			m0 = m;
988 		}
989 
990 		/*
991 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
992 		 */
993 
994 		/* Sync the DMA map. */
995 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
996 		    BUS_DMASYNC_PREWRITE);
997 
998 #ifdef PCN_EVENT_COUNTERS
999 		switch (dmamap->dm_nsegs) {
1000 		case 1:
1001 			PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
1002 			break;
1003 		case 2:
1004 			PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
1005 			break;
1006 		case 3:
1007 			PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
1008 			break;
1009 		case 4:
1010 			PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
1011 			break;
1012 		case 5:
1013 			PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
1014 			break;
1015 		default:
1016 			PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
1017 			break;
1018 		}
1019 #endif /* PCN_EVENT_COUNTERS */
1020 
1021 		/*
1022 		 * Initialize the transmit descriptors.
1023 		 */
1024 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
1025 			for (nexttx = sc->sc_txnext, seg = 0;
1026 			     seg < dmamap->dm_nsegs;
1027 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
1028 				/*
1029 				 * If this is the first descriptor we're
1030 				 * enqueueing, don't set the OWN bit just
1031 				 * yet.  That could cause a race condition.
1032 				 * We'll do it below.
1033 				 */
1034 				sc->sc_txdescs[nexttx].tmd0 = 0;
1035 				sc->sc_txdescs[nexttx].tmd2 =
1036 				    htole32(dmamap->dm_segs[seg].ds_addr);
1037 				sc->sc_txdescs[nexttx].tmd1 =
1038 				    htole32(LE_T1_ONES |
1039 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1040 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1041 				     LE_T1_BCNT_MASK));
1042 				lasttx = nexttx;
1043 			}
1044 		} else {
1045 			for (nexttx = sc->sc_txnext, seg = 0;
1046 			     seg < dmamap->dm_nsegs;
1047 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
1048 				/*
1049 				 * If this is the first descriptor we're
1050 				 * enqueueing, don't set the OWN bit just
1051 				 * yet.  That could cause a race condition.
1052 				 * We'll do it below.
1053 				 */
1054 				sc->sc_txdescs[nexttx].tmd0 =
1055 				    htole32(dmamap->dm_segs[seg].ds_addr);
1056 				sc->sc_txdescs[nexttx].tmd2 = 0;
1057 				sc->sc_txdescs[nexttx].tmd1 =
1058 				    htole32(LE_T1_ONES |
1059 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1060 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1061 				     LE_T1_BCNT_MASK));
1062 				lasttx = nexttx;
1063 			}
1064 		}
1065 
1066 		KASSERT(lasttx != -1);
1067 		/* Interrupt on the packet, if appropriate. */
1068 		if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1069 			sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1070 
1071 		/* Set `start of packet' and `end of packet' appropriately. */
1072 		sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1073 		sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1074 		    htole32(LE_T1_OWN|LE_T1_STP);
1075 
1076 		/* Sync the descriptors we're using. */
1077 		PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1078 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1079 
1080 		/* Kick the transmitter. */
1081 		pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1082 
1083 		/*
1084 		 * Store a pointer to the packet so we can free it later,
1085 		 * and remember what txdirty will be once the packet is
1086 		 * done.
1087 		 */
1088 		txs->txs_mbuf = m0;
1089 		txs->txs_firstdesc = sc->sc_txnext;
1090 		txs->txs_lastdesc = lasttx;
1091 
1092 		/* Advance the tx pointer. */
1093 		sc->sc_txfree -= dmamap->dm_nsegs;
1094 		sc->sc_txnext = nexttx;
1095 
1096 		sc->sc_txsfree--;
1097 		sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1098 
1099 #if NBPFILTER > 0
1100 		/* Pass the packet to any BPF listeners. */
1101 		if (ifp->if_bpf)
1102 			bpf_mtap(ifp->if_bpf, m0);
1103 #endif /* NBPFILTER > 0 */
1104 	}
1105 
1106 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1107 		/* No more slots left; notify upper layer. */
1108 		ifp->if_flags |= IFF_OACTIVE;
1109 	}
1110 
1111 	if (sc->sc_txfree != ofree) {
1112 		/* Set a watchdog timer in case the chip flakes out. */
1113 		ifp->if_timer = 5;
1114 	}
1115 }
1116 
1117 /*
1118  * pcn_watchdog:	[ifnet interface function]
1119  *
1120  *	Watchdog timer handler.
1121  */
1122 static void
1123 pcn_watchdog(struct ifnet *ifp)
1124 {
1125 	struct pcn_softc *sc = ifp->if_softc;
1126 
1127 	/*
1128 	 * Since we're not interrupting every packet, sweep
1129 	 * up before we report an error.
1130 	 */
1131 	pcn_txintr(sc);
1132 
1133 	if (sc->sc_txfree != PCN_NTXDESC) {
1134 		printf("%s: device timeout (txfree %d txsfree %d)\n",
1135 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1136 		ifp->if_oerrors++;
1137 
1138 		/* Reset the interface. */
1139 		(void) pcn_init(ifp);
1140 	}
1141 
1142 	/* Try to get more packets going. */
1143 	pcn_start(ifp);
1144 }
1145 
1146 /*
1147  * pcn_ioctl:		[ifnet interface function]
1148  *
1149  *	Handle control requests from the operator.
1150  */
1151 static int
1152 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1153 {
1154 	struct pcn_softc *sc = ifp->if_softc;
1155 	struct ifreq *ifr = (struct ifreq *) data;
1156 	int s, error;
1157 
1158 	s = splnet();
1159 
1160 	switch (cmd) {
1161 	case SIOCSIFMEDIA:
1162 	case SIOCGIFMEDIA:
1163 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1164 		break;
1165 
1166 	default:
1167 		error = ether_ioctl(ifp, cmd, data);
1168 		if (error == ENETRESET) {
1169 			/*
1170 			 * Multicast list has changed; set the hardware filter
1171 			 * accordingly.
1172 			 */
1173 			if (ifp->if_flags & IFF_RUNNING)
1174 				error = pcn_init(ifp);
1175 			else
1176 				error = 0;
1177 		}
1178 		break;
1179 	}
1180 
1181 	/* Try to get more packets going. */
1182 	pcn_start(ifp);
1183 
1184 	splx(s);
1185 	return (error);
1186 }
1187 
1188 /*
1189  * pcn_intr:
1190  *
1191  *	Interrupt service routine.
1192  */
1193 static int
1194 pcn_intr(void *arg)
1195 {
1196 	struct pcn_softc *sc = arg;
1197 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1198 	uint32_t csr0;
1199 	int wantinit, handled = 0;
1200 
1201 	for (wantinit = 0; wantinit == 0;) {
1202 		csr0 = pcn_csr_read(sc, LE_CSR0);
1203 		if ((csr0 & LE_C0_INTR) == 0)
1204 			break;
1205 
1206 #if NRND > 0
1207 		if (RND_ENABLED(&sc->rnd_source))
1208 			rnd_add_uint32(&sc->rnd_source, csr0);
1209 #endif
1210 
1211 		/* ACK the bits and re-enable interrupts. */
1212 		pcn_csr_write(sc, LE_CSR0, csr0 &
1213 		    (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1214 		     LE_C0_TINT|LE_C0_IDON));
1215 
1216 		handled = 1;
1217 
1218 		if (csr0 & LE_C0_RINT) {
1219 			PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1220 			wantinit = pcn_rxintr(sc);
1221 		}
1222 
1223 		if (csr0 & LE_C0_TINT) {
1224 			PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1225 			pcn_txintr(sc);
1226 		}
1227 
1228 		if (csr0 & LE_C0_ERR) {
1229 			if (csr0 & LE_C0_BABL) {
1230 				PCN_EVCNT_INCR(&sc->sc_ev_babl);
1231 				ifp->if_oerrors++;
1232 			}
1233 			if (csr0 & LE_C0_MISS) {
1234 				PCN_EVCNT_INCR(&sc->sc_ev_miss);
1235 				ifp->if_ierrors++;
1236 			}
1237 			if (csr0 & LE_C0_MERR) {
1238 				PCN_EVCNT_INCR(&sc->sc_ev_merr);
1239 				printf("%s: memory error\n",
1240 				    sc->sc_dev.dv_xname);
1241 				wantinit = 1;
1242 				break;
1243 			}
1244 		}
1245 
1246 		if ((csr0 & LE_C0_RXON) == 0) {
1247 			printf("%s: receiver disabled\n",
1248 			    sc->sc_dev.dv_xname);
1249 			ifp->if_ierrors++;
1250 			wantinit = 1;
1251 		}
1252 
1253 		if ((csr0 & LE_C0_TXON) == 0) {
1254 			printf("%s: transmitter disabled\n",
1255 			    sc->sc_dev.dv_xname);
1256 			ifp->if_oerrors++;
1257 			wantinit = 1;
1258 		}
1259 	}
1260 
1261 	if (handled) {
1262 		if (wantinit)
1263 			pcn_init(ifp);
1264 
1265 		/* Try to get more packets going. */
1266 		pcn_start(ifp);
1267 	}
1268 
1269 	return (handled);
1270 }
1271 
1272 /*
1273  * pcn_spnd:
1274  *
1275  *	Suspend the chip.
1276  */
1277 static void
1278 pcn_spnd(struct pcn_softc *sc)
1279 {
1280 	int i;
1281 
1282 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1283 
1284 	for (i = 0; i < 10000; i++) {
1285 		if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1286 			return;
1287 		delay(5);
1288 	}
1289 
1290 	printf("%s: WARNING: chip failed to enter suspended state\n",
1291 	    sc->sc_dev.dv_xname);
1292 }
1293 
1294 /*
1295  * pcn_txintr:
1296  *
1297  *	Helper; handle transmit interrupts.
1298  */
1299 static void
1300 pcn_txintr(struct pcn_softc *sc)
1301 {
1302 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1303 	struct pcn_txsoft *txs;
1304 	uint32_t tmd1, tmd2, tmd;
1305 	int i, j;
1306 
1307 	ifp->if_flags &= ~IFF_OACTIVE;
1308 
1309 	/*
1310 	 * Go through our Tx list and free mbufs for those
1311 	 * frames which have been transmitted.
1312 	 */
1313 	for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1314 	     i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1315 		txs = &sc->sc_txsoft[i];
1316 
1317 		PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1318 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1319 
1320 		tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1321 		if (tmd1 & LE_T1_OWN)
1322 			break;
1323 
1324 		/*
1325 		 * Slightly annoying -- we have to loop through the
1326 		 * descriptors we've used looking for ERR, since it
1327 		 * can appear on any descriptor in the chain.
1328 		 */
1329 		for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1330 			tmd = le32toh(sc->sc_txdescs[j].tmd1);
1331 			if (tmd & LE_T1_ERR) {
1332 				ifp->if_oerrors++;
1333 				if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1334 					tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1335 				else
1336 					tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1337 				if (tmd2 & LE_T2_UFLO) {
1338 					if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1339 						sc->sc_xmtsp++;
1340 						printf("%s: transmit "
1341 						    "underrun; new threshold: "
1342 						    "%s\n",
1343 						    sc->sc_dev.dv_xname,
1344 						    sc->sc_xmtsp_desc[
1345 						    sc->sc_xmtsp]);
1346 						pcn_spnd(sc);
1347 						pcn_csr_write(sc, LE_CSR80,
1348 						    LE_C80_RCVFW(sc->sc_rcvfw) |
1349 						    LE_C80_XMTSP(sc->sc_xmtsp) |
1350 						    LE_C80_XMTFW(sc->sc_xmtfw));
1351 						pcn_csr_write(sc, LE_CSR5,
1352 						    sc->sc_csr5);
1353 					} else {
1354 						printf("%s: transmit "
1355 						    "underrun\n",
1356 						    sc->sc_dev.dv_xname);
1357 					}
1358 				} else if (tmd2 & LE_T2_BUFF) {
1359 					printf("%s: transmit buffer error\n",
1360 					    sc->sc_dev.dv_xname);
1361 				}
1362 				if (tmd2 & LE_T2_LCOL)
1363 					ifp->if_collisions++;
1364 				if (tmd2 & LE_T2_RTRY)
1365 					ifp->if_collisions += 16;
1366 				goto next_packet;
1367 			}
1368 			if (j == txs->txs_lastdesc)
1369 				break;
1370 		}
1371 		if (tmd1 & LE_T1_ONE)
1372 			ifp->if_collisions++;
1373 		else if (tmd & LE_T1_MORE) {
1374 			/* Real number is unknown. */
1375 			ifp->if_collisions += 2;
1376 		}
1377 		ifp->if_opackets++;
1378  next_packet:
1379 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1380 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1381 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1382 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1383 		m_freem(txs->txs_mbuf);
1384 		txs->txs_mbuf = NULL;
1385 	}
1386 
1387 	/* Update the dirty transmit buffer pointer. */
1388 	sc->sc_txsdirty = i;
1389 
1390 	/*
1391 	 * If there are no more pending transmissions, cancel the watchdog
1392 	 * timer.
1393 	 */
1394 	if (sc->sc_txsfree == PCN_TXQUEUELEN)
1395 		ifp->if_timer = 0;
1396 }
1397 
1398 /*
1399  * pcn_rxintr:
1400  *
1401  *	Helper; handle receive interrupts.
1402  */
1403 static int
1404 pcn_rxintr(struct pcn_softc *sc)
1405 {
1406 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1407 	struct pcn_rxsoft *rxs;
1408 	struct mbuf *m;
1409 	uint32_t rmd1;
1410 	int i, len;
1411 
1412 	for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1413 		rxs = &sc->sc_rxsoft[i];
1414 
1415 		PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1416 
1417 		rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1418 
1419 		if (rmd1 & LE_R1_OWN)
1420 			break;
1421 
1422 		/*
1423 		 * Check for errors and make sure the packet fit into
1424 		 * a single buffer.  We have structured this block of
1425 		 * code the way it is in order to compress it into
1426 		 * one test in the common case (no error).
1427 		 */
1428 		if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1429 		    (LE_R1_STP|LE_R1_ENP))) {
1430 			/* Make sure the packet is in a single buffer. */
1431 			if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1432 			    (LE_R1_STP|LE_R1_ENP)) {
1433 				printf("%s: packet spilled into next buffer\n",
1434 				    sc->sc_dev.dv_xname);
1435 				return (1);	/* pcn_intr() will re-init */
1436 			}
1437 
1438 			/*
1439 			 * If the packet had an error, simple recycle the
1440 			 * buffer.
1441 			 */
1442 			if (rmd1 & LE_R1_ERR) {
1443 				ifp->if_ierrors++;
1444 				/*
1445 				 * If we got an overflow error, chances
1446 				 * are there will be a CRC error.  In
1447 				 * this case, just print the overflow
1448 				 * error, and skip the others.
1449 				 */
1450 				if (rmd1 & LE_R1_OFLO)
1451 					printf("%s: overflow error\n",
1452 					    sc->sc_dev.dv_xname);
1453 				else {
1454 #define	PRINTIT(x, str)							\
1455 					if (rmd1 & (x))			\
1456 						printf("%s: %s\n",	\
1457 						    sc->sc_dev.dv_xname, str);
1458 					PRINTIT(LE_R1_FRAM, "framing error");
1459 					PRINTIT(LE_R1_CRC, "CRC error");
1460 					PRINTIT(LE_R1_BUFF, "buffer error");
1461 				}
1462 #undef PRINTIT
1463 				PCN_INIT_RXDESC(sc, i);
1464 				continue;
1465 			}
1466 		}
1467 
1468 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1469 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1470 
1471 		/*
1472 		 * No errors; receive the packet.
1473 		 */
1474 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1475 			len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1476 		else
1477 			len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1478 
1479 		/*
1480 		 * The LANCE family includes the CRC with every packet;
1481 		 * trim it off here.
1482 		 */
1483 		len -= ETHER_CRC_LEN;
1484 
1485 		/*
1486 		 * If the packet is small enough to fit in a
1487 		 * single header mbuf, allocate one and copy
1488 		 * the data into it.  This greatly reduces
1489 		 * memory consumption when we receive lots
1490 		 * of small packets.
1491 		 *
1492 		 * Otherwise, we add a new buffer to the receive
1493 		 * chain.  If this fails, we drop the packet and
1494 		 * recycle the old buffer.
1495 		 */
1496 		if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1497 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1498 			if (m == NULL)
1499 				goto dropit;
1500 			m->m_data += 2;
1501 			memcpy(mtod(m, caddr_t),
1502 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1503 			PCN_INIT_RXDESC(sc, i);
1504 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1505 			    rxs->rxs_dmamap->dm_mapsize,
1506 			    BUS_DMASYNC_PREREAD);
1507 		} else {
1508 			m = rxs->rxs_mbuf;
1509 			if (pcn_add_rxbuf(sc, i) != 0) {
1510  dropit:
1511 				ifp->if_ierrors++;
1512 				PCN_INIT_RXDESC(sc, i);
1513 				bus_dmamap_sync(sc->sc_dmat,
1514 				    rxs->rxs_dmamap, 0,
1515 				    rxs->rxs_dmamap->dm_mapsize,
1516 				    BUS_DMASYNC_PREREAD);
1517 				continue;
1518 			}
1519 		}
1520 
1521 		m->m_pkthdr.rcvif = ifp;
1522 		m->m_pkthdr.len = m->m_len = len;
1523 
1524 #if NBPFILTER > 0
1525 		/* Pass this up to any BPF listeners. */
1526 		if (ifp->if_bpf)
1527 			bpf_mtap(ifp->if_bpf, m);
1528 #endif /* NBPFILTER > 0 */
1529 
1530 		/* Pass it on. */
1531 		(*ifp->if_input)(ifp, m);
1532 		ifp->if_ipackets++;
1533 	}
1534 
1535 	/* Update the receive pointer. */
1536 	sc->sc_rxptr = i;
1537 	return (0);
1538 }
1539 
1540 /*
1541  * pcn_tick:
1542  *
1543  *	One second timer, used to tick the MII.
1544  */
1545 static void
1546 pcn_tick(void *arg)
1547 {
1548 	struct pcn_softc *sc = arg;
1549 	int s;
1550 
1551 	s = splnet();
1552 	mii_tick(&sc->sc_mii);
1553 	splx(s);
1554 
1555 	callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1556 }
1557 
1558 /*
1559  * pcn_reset:
1560  *
1561  *	Perform a soft reset on the PCnet-PCI.
1562  */
1563 static void
1564 pcn_reset(struct pcn_softc *sc)
1565 {
1566 
1567 	/*
1568 	 * The PCnet-PCI chip is reset by reading from the
1569 	 * RESET register.  Note that while the NE2100 LANCE
1570 	 * boards require a write after the read, the PCnet-PCI
1571 	 * chips do not require this.
1572 	 *
1573 	 * Since we don't know if we're in 16-bit or 32-bit
1574 	 * mode right now, issue both (it's safe) in the
1575 	 * hopes that one will succeed.
1576 	 */
1577 	(void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1578 	(void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1579 
1580 	/* Wait 1ms for it to finish. */
1581 	delay(1000);
1582 
1583 	/*
1584 	 * Select 32-bit I/O mode by issuing a 32-bit write to the
1585 	 * RDP.  Since the RAP is 0 after a reset, writing a 0
1586 	 * to RDP is safe (since it simply clears CSR0).
1587 	 */
1588 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1589 }
1590 
1591 /*
1592  * pcn_init:		[ifnet interface function]
1593  *
1594  *	Initialize the interface.  Must be called at splnet().
1595  */
1596 static int
1597 pcn_init(struct ifnet *ifp)
1598 {
1599 	struct pcn_softc *sc = ifp->if_softc;
1600 	struct pcn_rxsoft *rxs;
1601 	uint8_t *enaddr = LLADDR(ifp->if_sadl);
1602 	int i, error = 0;
1603 	uint32_t reg;
1604 
1605 	/* Cancel any pending I/O. */
1606 	pcn_stop(ifp, 0);
1607 
1608 	/* Reset the chip to a known state. */
1609 	pcn_reset(sc);
1610 
1611 	/*
1612 	 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1613 	 * else.
1614 	 *
1615 	 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1616 	 * because the structure layout is compatible with ILACC,
1617 	 * but the burst mode is only available in SSTYLE 3, and
1618 	 * burst mode should provide some performance enhancement.
1619 	 */
1620 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1621 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1622 	else
1623 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1624 	pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1625 
1626 	/* Initialize the transmit descriptor ring. */
1627 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1628 	PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1629 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1630 	sc->sc_txfree = PCN_NTXDESC;
1631 	sc->sc_txnext = 0;
1632 
1633 	/* Initialize the transmit job descriptors. */
1634 	for (i = 0; i < PCN_TXQUEUELEN; i++)
1635 		sc->sc_txsoft[i].txs_mbuf = NULL;
1636 	sc->sc_txsfree = PCN_TXQUEUELEN;
1637 	sc->sc_txsnext = 0;
1638 	sc->sc_txsdirty = 0;
1639 
1640 	/*
1641 	 * Initialize the receive descriptor and receive job
1642 	 * descriptor rings.
1643 	 */
1644 	for (i = 0; i < PCN_NRXDESC; i++) {
1645 		rxs = &sc->sc_rxsoft[i];
1646 		if (rxs->rxs_mbuf == NULL) {
1647 			if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1648 				printf("%s: unable to allocate or map rx "
1649 				    "buffer %d, error = %d\n",
1650 				    sc->sc_dev.dv_xname, i, error);
1651 				/*
1652 				 * XXX Should attempt to run with fewer receive
1653 				 * XXX buffers instead of just failing.
1654 				 */
1655 				pcn_rxdrain(sc);
1656 				goto out;
1657 			}
1658 		} else
1659 			PCN_INIT_RXDESC(sc, i);
1660 	}
1661 	sc->sc_rxptr = 0;
1662 
1663 	/* Initialize MODE for the initialization block. */
1664 	sc->sc_mode = 0;
1665 	if (ifp->if_flags & IFF_PROMISC)
1666 		sc->sc_mode |= LE_C15_PROM;
1667 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
1668 		sc->sc_mode |= LE_C15_DRCVBC;
1669 
1670 	/*
1671 	 * If we have MII, simply select MII in the MODE register,
1672 	 * and clear ASEL.  Otherwise, let ASEL stand (for now),
1673 	 * and leave PORTSEL alone (it is ignored with ASEL is set).
1674 	 */
1675 	if (sc->sc_flags & PCN_F_HAS_MII) {
1676 		pcn_bcr_write(sc, LE_BCR2,
1677 		    pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1678 		sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1679 
1680 		/*
1681 		 * Disable MII auto-negotiation.  We handle that in
1682 		 * our own MII layer.
1683 		 */
1684 		pcn_bcr_write(sc, LE_BCR32,
1685 		    pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1686 	}
1687 
1688 	/*
1689 	 * Set the Tx and Rx descriptor ring addresses in the init
1690 	 * block, the TLEN and RLEN other fields of the init block
1691 	 * MODE register.
1692 	 */
1693 	sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1694 	sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1695 	sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1696 	    ((ffs(PCN_NTXDESC) - 1) << 28) |
1697 	    ((ffs(PCN_NRXDESC) - 1) << 20));
1698 
1699 	/* Set the station address in the init block. */
1700 	sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1701 	    (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1702 	sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1703 	    (enaddr[5] << 8));
1704 
1705 	/* Set the multicast filter in the init block. */
1706 	pcn_set_filter(sc);
1707 
1708 	/* Initialize CSR3. */
1709 	pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1710 
1711 	/* Initialize CSR4. */
1712 	pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1713 	    LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1714 
1715 	/* Initialize CSR5. */
1716 	sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1717 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1718 
1719 	/*
1720 	 * If we have an Am79c971 or greater, initialize CSR7.
1721 	 *
1722 	 * XXX Might be nice to use the MII auto-poll interrupt someday.
1723 	 */
1724 	switch (sc->sc_variant->pcv_chipid) {
1725 	case PARTID_Am79c970:
1726 	case PARTID_Am79c970A:
1727 		/* Not available on these chips. */
1728 		break;
1729 
1730 	default:
1731 		pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1732 		break;
1733 	}
1734 
1735 	/*
1736 	 * On the Am79c970A and greater, initialize BCR18 to
1737 	 * enable burst mode.
1738 	 *
1739 	 * Also enable the "no underflow" option on the Am79c971 and
1740 	 * higher, which prevents the chip from generating transmit
1741 	 * underflows, yet sill provides decent performance.  Note if
1742 	 * chip is not connected to external SRAM, then we still have
1743 	 * to handle underflow errors (the NOUFLO bit is ignored in
1744 	 * that case).
1745 	 */
1746 	reg = pcn_bcr_read(sc, LE_BCR18);
1747 	switch (sc->sc_variant->pcv_chipid) {
1748 	case PARTID_Am79c970:
1749 		break;
1750 
1751 	case PARTID_Am79c970A:
1752 		reg |= LE_B18_BREADE|LE_B18_BWRITE;
1753 		break;
1754 
1755 	default:
1756 		reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1757 		break;
1758 	}
1759 	pcn_bcr_write(sc, LE_BCR18, reg);
1760 
1761 	/*
1762 	 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1763 	 */
1764 	pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1765 	    LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1766 
1767 	/*
1768 	 * Send the init block to the chip, and wait for it
1769 	 * to be processed.
1770 	 */
1771 	PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1772 	pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1773 	pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1774 	pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1775 	delay(100);
1776 	for (i = 0; i < 10000; i++) {
1777 		if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1778 			break;
1779 		delay(10);
1780 	}
1781 	PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1782 	if (i == 10000) {
1783 		printf("%s: timeout processing init block\n",
1784 		    sc->sc_dev.dv_xname);
1785 		error = EIO;
1786 		goto out;
1787 	}
1788 
1789 	/* Set the media. */
1790 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1791 
1792 	/* Enable interrupts and external activity (and ACK IDON). */
1793 	pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1794 
1795 	if (sc->sc_flags & PCN_F_HAS_MII) {
1796 		/* Start the one second MII clock. */
1797 		callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1798 	}
1799 
1800 	/* ...all done! */
1801 	ifp->if_flags |= IFF_RUNNING;
1802 	ifp->if_flags &= ~IFF_OACTIVE;
1803 
1804  out:
1805 	if (error)
1806 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1807 	return (error);
1808 }
1809 
1810 /*
1811  * pcn_rxdrain:
1812  *
1813  *	Drain the receive queue.
1814  */
1815 static void
1816 pcn_rxdrain(struct pcn_softc *sc)
1817 {
1818 	struct pcn_rxsoft *rxs;
1819 	int i;
1820 
1821 	for (i = 0; i < PCN_NRXDESC; i++) {
1822 		rxs = &sc->sc_rxsoft[i];
1823 		if (rxs->rxs_mbuf != NULL) {
1824 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1825 			m_freem(rxs->rxs_mbuf);
1826 			rxs->rxs_mbuf = NULL;
1827 		}
1828 	}
1829 }
1830 
1831 /*
1832  * pcn_stop:		[ifnet interface function]
1833  *
1834  *	Stop transmission on the interface.
1835  */
1836 static void
1837 pcn_stop(struct ifnet *ifp, int disable)
1838 {
1839 	struct pcn_softc *sc = ifp->if_softc;
1840 	struct pcn_txsoft *txs;
1841 	int i;
1842 
1843 	if (sc->sc_flags & PCN_F_HAS_MII) {
1844 		/* Stop the one second clock. */
1845 		callout_stop(&sc->sc_tick_ch);
1846 
1847 		/* Down the MII. */
1848 		mii_down(&sc->sc_mii);
1849 	}
1850 
1851 	/* Stop the chip. */
1852 	pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1853 
1854 	/* Release any queued transmit buffers. */
1855 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
1856 		txs = &sc->sc_txsoft[i];
1857 		if (txs->txs_mbuf != NULL) {
1858 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1859 			m_freem(txs->txs_mbuf);
1860 			txs->txs_mbuf = NULL;
1861 		}
1862 	}
1863 
1864 	if (disable)
1865 		pcn_rxdrain(sc);
1866 
1867 	/* Mark the interface as down and cancel the watchdog timer. */
1868 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1869 	ifp->if_timer = 0;
1870 }
1871 
1872 /*
1873  * pcn_add_rxbuf:
1874  *
1875  *	Add a receive buffer to the indicated descriptor.
1876  */
1877 static int
1878 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1879 {
1880 	struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1881 	struct mbuf *m;
1882 	int error;
1883 
1884 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1885 	if (m == NULL)
1886 		return (ENOBUFS);
1887 
1888 	MCLGET(m, M_DONTWAIT);
1889 	if ((m->m_flags & M_EXT) == 0) {
1890 		m_freem(m);
1891 		return (ENOBUFS);
1892 	}
1893 
1894 	if (rxs->rxs_mbuf != NULL)
1895 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1896 
1897 	rxs->rxs_mbuf = m;
1898 
1899 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1900 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1901 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1902 	if (error) {
1903 		printf("%s: can't load rx DMA map %d, error = %d\n",
1904 		    sc->sc_dev.dv_xname, idx, error);
1905 		panic("pcn_add_rxbuf");
1906 	}
1907 
1908 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1909 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1910 
1911 	PCN_INIT_RXDESC(sc, idx);
1912 
1913 	return (0);
1914 }
1915 
1916 /*
1917  * pcn_set_filter:
1918  *
1919  *	Set up the receive filter.
1920  */
1921 static void
1922 pcn_set_filter(struct pcn_softc *sc)
1923 {
1924 	struct ethercom *ec = &sc->sc_ethercom;
1925 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1926 	struct ether_multi *enm;
1927 	struct ether_multistep step;
1928 	uint32_t crc;
1929 
1930 	/*
1931 	 * Set up the multicast address filter by passing all multicast
1932 	 * addresses through a CRC generator, and then using the high
1933 	 * order 6 bits as an index into the 64-bit logical address
1934 	 * filter.  The high order bits select the word, while the rest
1935 	 * of the bits select the bit within the word.
1936 	 */
1937 
1938 	if (ifp->if_flags & IFF_PROMISC)
1939 		goto allmulti;
1940 
1941 	sc->sc_initblock.init_ladrf[0] =
1942 	    sc->sc_initblock.init_ladrf[1] =
1943 	    sc->sc_initblock.init_ladrf[2] =
1944 	    sc->sc_initblock.init_ladrf[3] = 0;
1945 
1946 	ETHER_FIRST_MULTI(step, ec, enm);
1947 	while (enm != NULL) {
1948 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1949 			/*
1950 			 * We must listen to a range of multicast addresses.
1951 			 * For now, just accept all multicasts, rather than
1952 			 * trying to set only those filter bits needed to match
1953 			 * the range.  (At this time, the only use of address
1954 			 * ranges is for IP multicast routing, for which the
1955 			 * range is big enough to require all bits set.)
1956 			 */
1957 			goto allmulti;
1958 		}
1959 
1960 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1961 
1962 		/* Just want the 6 most significant bits. */
1963 		crc >>= 26;
1964 
1965 		/* Set the corresponding bit in the filter. */
1966 		sc->sc_initblock.init_ladrf[crc >> 4] |=
1967 		    htole16(1 << (crc & 0xf));
1968 
1969 		ETHER_NEXT_MULTI(step, enm);
1970 	}
1971 
1972 	ifp->if_flags &= ~IFF_ALLMULTI;
1973 	return;
1974 
1975  allmulti:
1976 	ifp->if_flags |= IFF_ALLMULTI;
1977 	sc->sc_initblock.init_ladrf[0] =
1978 	    sc->sc_initblock.init_ladrf[1] =
1979 	    sc->sc_initblock.init_ladrf[2] =
1980 	    sc->sc_initblock.init_ladrf[3] = 0xffff;
1981 }
1982 
1983 /*
1984  * pcn_79c970_mediainit:
1985  *
1986  *	Initialize media for the Am79c970.
1987  */
1988 static void
1989 pcn_79c970_mediainit(struct pcn_softc *sc)
1990 {
1991 	const char *sep = "";
1992 
1993 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
1994 	    pcn_79c970_mediastatus);
1995 
1996 #define	ADD(str, m, d)							\
1997 do {									\
1998 	printf("%s%s", sep, str);					\
1999 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL);	\
2000 	sep = ", ";							\
2001 } while (/*CONSTCOND*/0)
2002 
2003 	printf("%s: ", sc->sc_dev.dv_xname);
2004 	ADD("10base5", IFM_10_5, PORTSEL_AUI);
2005 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2006 		ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
2007 	ADD("10baseT", IFM_10_T, PORTSEL_10T);
2008 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2009 		ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
2010 	ADD("auto", IFM_AUTO, 0);
2011 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2012 		ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
2013 	printf("\n");
2014 
2015 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2016 }
2017 
2018 /*
2019  * pcn_79c970_mediastatus:	[ifmedia interface function]
2020  *
2021  *	Get the current interface media status (Am79c970 version).
2022  */
2023 static void
2024 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2025 {
2026 	struct pcn_softc *sc = ifp->if_softc;
2027 
2028 	/*
2029 	 * The currently selected media is always the active media.
2030 	 * Note: We have no way to determine what media the AUTO
2031 	 * process picked.
2032 	 */
2033 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
2034 }
2035 
2036 /*
2037  * pcn_79c970_mediachange:	[ifmedia interface function]
2038  *
2039  *	Set hardware to newly-selected media (Am79c970 version).
2040  */
2041 static int
2042 pcn_79c970_mediachange(struct ifnet *ifp)
2043 {
2044 	struct pcn_softc *sc = ifp->if_softc;
2045 	uint32_t reg;
2046 
2047 	if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2048 		/*
2049 		 * CSR15:PORTSEL doesn't matter.  Just set BCR2:ASEL.
2050 		 */
2051 		reg = pcn_bcr_read(sc, LE_BCR2);
2052 		reg |= LE_B2_ASEL;
2053 		pcn_bcr_write(sc, LE_BCR2, reg);
2054 	} else {
2055 		/*
2056 		 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2057 		 */
2058 		reg = pcn_bcr_read(sc, LE_BCR2);
2059 		reg &= ~LE_B2_ASEL;
2060 		pcn_bcr_write(sc, LE_BCR2, reg);
2061 
2062 		reg = pcn_csr_read(sc, LE_CSR15);
2063 		reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2064 		    LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2065 		pcn_csr_write(sc, LE_CSR15, reg);
2066 	}
2067 
2068 	if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2069 		reg = LE_B9_FDEN;
2070 		if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2071 			reg |= LE_B9_AUIFD;
2072 		pcn_bcr_write(sc, LE_BCR9, reg);
2073 	} else
2074 		pcn_bcr_write(sc, LE_BCR9, 0);
2075 
2076 	return (0);
2077 }
2078 
2079 /*
2080  * pcn_79c971_mediainit:
2081  *
2082  *	Initialize media for the Am79c971.
2083  */
2084 static void
2085 pcn_79c971_mediainit(struct pcn_softc *sc)
2086 {
2087 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2088 
2089 	/* We have MII. */
2090 	sc->sc_flags |= PCN_F_HAS_MII;
2091 
2092 	/*
2093 	 * The built-in 10BASE-T interface is mapped to the MII
2094 	 * on the PCNet-FAST.  Unfortunately, there's no EEPROM
2095 	 * word that tells us which PHY to use.
2096 	 * This driver used to ignore all but the first PHY to
2097 	 * answer, but this code was removed to support multiple
2098 	 * external PHYs. As the default instance will be the first
2099 	 * one to answer, no harm is done by letting the possibly
2100 	 * non-connected internal PHY show up.
2101 	 */
2102 
2103 	/* Initialize our media structures and probe the MII. */
2104 	sc->sc_mii.mii_ifp = ifp;
2105 	sc->sc_mii.mii_readreg = pcn_mii_readreg;
2106 	sc->sc_mii.mii_writereg = pcn_mii_writereg;
2107 	sc->sc_mii.mii_statchg = pcn_mii_statchg;
2108 	ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2109 	    pcn_79c971_mediastatus);
2110 
2111 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2112 	    MII_OFFSET_ANY, 0);
2113 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2114 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2115 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2116 	} else
2117 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2118 }
2119 
2120 /*
2121  * pcn_79c971_mediastatus:	[ifmedia interface function]
2122  *
2123  *	Get the current interface media status (Am79c971 version).
2124  */
2125 static void
2126 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2127 {
2128 	struct pcn_softc *sc = ifp->if_softc;
2129 
2130 	mii_pollstat(&sc->sc_mii);
2131 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2132 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2133 }
2134 
2135 /*
2136  * pcn_79c971_mediachange:	[ifmedia interface function]
2137  *
2138  *	Set hardware to newly-selected media (Am79c971 version).
2139  */
2140 static int
2141 pcn_79c971_mediachange(struct ifnet *ifp)
2142 {
2143 	struct pcn_softc *sc = ifp->if_softc;
2144 
2145 	if (ifp->if_flags & IFF_UP)
2146 		mii_mediachg(&sc->sc_mii);
2147 	return (0);
2148 }
2149 
2150 /*
2151  * pcn_mii_readreg:	[mii interface function]
2152  *
2153  *	Read a PHY register on the MII.
2154  */
2155 static int
2156 pcn_mii_readreg(struct device *self, int phy, int reg)
2157 {
2158 	struct pcn_softc *sc = (void *) self;
2159 	uint32_t rv;
2160 
2161 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2162 	rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2163 	if (rv == 0xffff)
2164 		return (0);
2165 
2166 	return (rv);
2167 }
2168 
2169 /*
2170  * pcn_mii_writereg:	[mii interface function]
2171  *
2172  *	Write a PHY register on the MII.
2173  */
2174 static void
2175 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2176 {
2177 	struct pcn_softc *sc = (void *) self;
2178 
2179 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2180 	pcn_bcr_write(sc, LE_BCR34, val);
2181 }
2182 
2183 /*
2184  * pcn_mii_statchg:	[mii interface function]
2185  *
2186  *	Callback from MII layer when media changes.
2187  */
2188 static void
2189 pcn_mii_statchg(struct device *self)
2190 {
2191 	struct pcn_softc *sc = (void *) self;
2192 
2193 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2194 		pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2195 	else
2196 		pcn_bcr_write(sc, LE_BCR9, 0);
2197 }
2198