1 /* $NetBSD: if_pcn.c,v 1.58 2014/08/10 16:44:36 tls Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Device driver for the AMD PCnet-PCI series of Ethernet 40 * chips: 41 * 42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI 43 * Local Bus 44 * 45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller 46 * for PCI Local Bus 47 * 48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps 49 * Ethernet Controller for PCI Local Bus 50 * 51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller 52 * with OnNow Support 53 * 54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI 55 * Ethernet Controller with Integrated PHY 56 * 57 * This also supports the virtual PCnet-PCI Ethernet interface found 58 * in VMware. 59 * 60 * TODO: 61 * 62 * * Split this into bus-specific and bus-independent portions. 63 * The core could also be used for the ILACC (Am79900) 32-bit 64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE). 65 */ 66 67 #include <sys/cdefs.h> 68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.58 2014/08/10 16:44:36 tls Exp $"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/callout.h> 73 #include <sys/mbuf.h> 74 #include <sys/malloc.h> 75 #include <sys/kernel.h> 76 #include <sys/socket.h> 77 #include <sys/ioctl.h> 78 #include <sys/errno.h> 79 #include <sys/device.h> 80 #include <sys/queue.h> 81 82 #include <sys/rnd.h> 83 84 #include <net/if.h> 85 #include <net/if_dl.h> 86 #include <net/if_media.h> 87 #include <net/if_ether.h> 88 89 #include <net/bpf.h> 90 91 #include <sys/bus.h> 92 #include <sys/intr.h> 93 #include <machine/endian.h> 94 95 #include <dev/mii/mii.h> 96 #include <dev/mii/miivar.h> 97 98 #include <dev/ic/am79900reg.h> 99 #include <dev/ic/lancereg.h> 100 101 #include <dev/pci/pcireg.h> 102 #include <dev/pci/pcivar.h> 103 #include <dev/pci/pcidevs.h> 104 105 #include <dev/pci/if_pcnreg.h> 106 107 /* 108 * Transmit descriptor list size. This is arbitrary, but allocate 109 * enough descriptors for 128 pending transmissions, and 4 segments 110 * per packet. This MUST work out to a power of 2. 111 * 112 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL! 113 * 114 * So we play a little trick here. We give each packet up to 16 115 * DMA segments, but only allocate the max of 512 descriptors. The 116 * transmit logic can deal with this, we just are hoping to sneak by. 117 */ 118 #define PCN_NTXSEGS 16 119 #define PCN_NTXSEGS_VMWARE 8 /* bug in VMware's emulation */ 120 121 #define PCN_TXQUEUELEN 128 122 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1) 123 #define PCN_NTXDESC 512 124 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1) 125 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK) 126 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK) 127 128 /* Tx interrupt every N + 1 packets. */ 129 #define PCN_TXINTR_MASK 7 130 131 /* 132 * Receive descriptor list size. We have one Rx buffer per incoming 133 * packet, so this logic is a little simpler. 134 */ 135 #define PCN_NRXDESC 128 136 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1) 137 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK) 138 139 /* 140 * Control structures are DMA'd to the PCnet chip. We allocate them in 141 * a single clump that maps to a single DMA segment to make several things 142 * easier. 143 */ 144 struct pcn_control_data { 145 /* The transmit descriptors. */ 146 struct letmd pcd_txdescs[PCN_NTXDESC]; 147 148 /* The receive descriptors. */ 149 struct lermd pcd_rxdescs[PCN_NRXDESC]; 150 151 /* The init block. */ 152 struct leinit pcd_initblock; 153 }; 154 155 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x) 156 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)]) 157 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)]) 158 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock) 159 160 /* 161 * Software state for transmit jobs. 162 */ 163 struct pcn_txsoft { 164 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 165 bus_dmamap_t txs_dmamap; /* our DMA map */ 166 int txs_firstdesc; /* first descriptor in packet */ 167 int txs_lastdesc; /* last descriptor in packet */ 168 }; 169 170 /* 171 * Software state for receive jobs. 172 */ 173 struct pcn_rxsoft { 174 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 175 bus_dmamap_t rxs_dmamap; /* our DMA map */ 176 }; 177 178 /* 179 * Description of Rx FIFO watermarks for various revisions. 180 */ 181 static const char * const pcn_79c970_rcvfw[] = { 182 "16 bytes", 183 "64 bytes", 184 "128 bytes", 185 NULL, 186 }; 187 188 static const char * const pcn_79c971_rcvfw[] = { 189 "16 bytes", 190 "64 bytes", 191 "112 bytes", 192 NULL, 193 }; 194 195 /* 196 * Description of Tx start points for various revisions. 197 */ 198 static const char * const pcn_79c970_xmtsp[] = { 199 "8 bytes", 200 "64 bytes", 201 "128 bytes", 202 "248 bytes", 203 }; 204 205 static const char * const pcn_79c971_xmtsp[] = { 206 "20 bytes", 207 "64 bytes", 208 "128 bytes", 209 "248 bytes", 210 }; 211 212 static const char * const pcn_79c971_xmtsp_sram[] = { 213 "44 bytes", 214 "64 bytes", 215 "128 bytes", 216 "store-and-forward", 217 }; 218 219 /* 220 * Description of Tx FIFO watermarks for various revisions. 221 */ 222 static const char * const pcn_79c970_xmtfw[] = { 223 "16 bytes", 224 "64 bytes", 225 "128 bytes", 226 NULL, 227 }; 228 229 static const char * const pcn_79c971_xmtfw[] = { 230 "16 bytes", 231 "64 bytes", 232 "108 bytes", 233 NULL, 234 }; 235 236 /* 237 * Software state per device. 238 */ 239 struct pcn_softc { 240 device_t sc_dev; /* generic device information */ 241 bus_space_tag_t sc_st; /* bus space tag */ 242 bus_space_handle_t sc_sh; /* bus space handle */ 243 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 244 struct ethercom sc_ethercom; /* Ethernet common data */ 245 246 /* Points to our media routines, etc. */ 247 const struct pcn_variant *sc_variant; 248 249 void *sc_ih; /* interrupt cookie */ 250 251 struct mii_data sc_mii; /* MII/media information */ 252 253 callout_t sc_tick_ch; /* tick callout */ 254 255 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 256 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 257 258 /* Software state for transmit and receive descriptors. */ 259 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN]; 260 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC]; 261 262 /* Control data structures */ 263 struct pcn_control_data *sc_control_data; 264 #define sc_txdescs sc_control_data->pcd_txdescs 265 #define sc_rxdescs sc_control_data->pcd_rxdescs 266 #define sc_initblock sc_control_data->pcd_initblock 267 268 #ifdef PCN_EVENT_COUNTERS 269 /* Event counters. */ 270 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 271 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 272 struct evcnt sc_ev_txintr; /* Tx interrupts */ 273 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 274 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */ 275 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */ 276 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */ 277 278 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */ 279 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */ 280 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */ 281 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */ 282 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */ 283 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */ 284 struct evcnt sc_ev_txcopy; /* Tx copies required */ 285 #endif /* PCN_EVENT_COUNTERS */ 286 287 const char * const *sc_rcvfw_desc; /* Rx FIFO watermark info */ 288 int sc_rcvfw; 289 290 const char * const *sc_xmtsp_desc; /* Tx start point info */ 291 int sc_xmtsp; 292 293 const char * const *sc_xmtfw_desc; /* Tx FIFO watermark info */ 294 int sc_xmtfw; 295 296 int sc_flags; /* misc. flags; see below */ 297 int sc_swstyle; /* the software style in use */ 298 299 int sc_txfree; /* number of free Tx descriptors */ 300 int sc_txnext; /* next ready Tx descriptor */ 301 302 int sc_txsfree; /* number of free Tx jobs */ 303 int sc_txsnext; /* next free Tx job */ 304 int sc_txsdirty; /* dirty Tx jobs */ 305 306 int sc_rxptr; /* next ready Rx descriptor/job */ 307 308 uint32_t sc_csr5; /* prototype CSR5 register */ 309 uint32_t sc_mode; /* prototype MODE register */ 310 311 krndsource_t rnd_source; /* random source */ 312 }; 313 314 /* sc_flags */ 315 #define PCN_F_HAS_MII 0x0001 /* has MII */ 316 317 #ifdef PCN_EVENT_COUNTERS 318 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++ 319 #else 320 #define PCN_EVCNT_INCR(ev) /* nothing */ 321 #endif 322 323 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x))) 324 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x))) 325 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF) 326 327 #define PCN_CDTXSYNC(sc, x, n, ops) \ 328 do { \ 329 int __x, __n; \ 330 \ 331 __x = (x); \ 332 __n = (n); \ 333 \ 334 /* If it will wrap around, sync to the end of the ring. */ \ 335 if ((__x + __n) > PCN_NTXDESC) { \ 336 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 337 PCN_CDTXOFF(__x), sizeof(struct letmd) * \ 338 (PCN_NTXDESC - __x), (ops)); \ 339 __n -= (PCN_NTXDESC - __x); \ 340 __x = 0; \ 341 } \ 342 \ 343 /* Now sync whatever is left. */ \ 344 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 345 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \ 346 } while (/*CONSTCOND*/0) 347 348 #define PCN_CDRXSYNC(sc, x, ops) \ 349 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 350 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops)) 351 352 #define PCN_CDINITSYNC(sc, ops) \ 353 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 354 PCN_CDINITOFF, sizeof(struct leinit), (ops)) 355 356 #define PCN_INIT_RXDESC(sc, x) \ 357 do { \ 358 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 359 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \ 360 struct mbuf *__m = __rxs->rxs_mbuf; \ 361 \ 362 /* \ 363 * Note: We scoot the packet forward 2 bytes in the buffer \ 364 * so that the payload after the Ethernet header is aligned \ 365 * to a 4-byte boundary. \ 366 */ \ 367 __m->m_data = __m->m_ext.ext_buf + 2; \ 368 \ 369 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \ 370 __rmd->rmd2 = \ 371 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \ 372 __rmd->rmd0 = 0; \ 373 } else { \ 374 __rmd->rmd2 = 0; \ 375 __rmd->rmd0 = \ 376 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \ 377 } \ 378 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \ 379 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \ 380 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\ 381 } while(/*CONSTCOND*/0) 382 383 static void pcn_start(struct ifnet *); 384 static void pcn_watchdog(struct ifnet *); 385 static int pcn_ioctl(struct ifnet *, u_long, void *); 386 static int pcn_init(struct ifnet *); 387 static void pcn_stop(struct ifnet *, int); 388 389 static bool pcn_shutdown(device_t, int); 390 391 static void pcn_reset(struct pcn_softc *); 392 static void pcn_rxdrain(struct pcn_softc *); 393 static int pcn_add_rxbuf(struct pcn_softc *, int); 394 static void pcn_tick(void *); 395 396 static void pcn_spnd(struct pcn_softc *); 397 398 static void pcn_set_filter(struct pcn_softc *); 399 400 static int pcn_intr(void *); 401 static void pcn_txintr(struct pcn_softc *); 402 static int pcn_rxintr(struct pcn_softc *); 403 404 static int pcn_mii_readreg(device_t, int, int); 405 static void pcn_mii_writereg(device_t, int, int, int); 406 static void pcn_mii_statchg(struct ifnet *); 407 408 static void pcn_79c970_mediainit(struct pcn_softc *); 409 static int pcn_79c970_mediachange(struct ifnet *); 410 static void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *); 411 412 static void pcn_79c971_mediainit(struct pcn_softc *); 413 414 /* 415 * Description of a PCnet-PCI variant. Used to select media access 416 * method, mostly, and to print a nice description of the chip. 417 */ 418 static const struct pcn_variant { 419 const char *pcv_desc; 420 void (*pcv_mediainit)(struct pcn_softc *); 421 uint16_t pcv_chipid; 422 } pcn_variants[] = { 423 { "Am79c970 PCnet-PCI", 424 pcn_79c970_mediainit, 425 PARTID_Am79c970 }, 426 427 { "Am79c970A PCnet-PCI II", 428 pcn_79c970_mediainit, 429 PARTID_Am79c970A }, 430 431 { "Am79c971 PCnet-FAST", 432 pcn_79c971_mediainit, 433 PARTID_Am79c971 }, 434 435 { "Am79c972 PCnet-FAST+", 436 pcn_79c971_mediainit, 437 PARTID_Am79c972 }, 438 439 { "Am79c973 PCnet-FAST III", 440 pcn_79c971_mediainit, 441 PARTID_Am79c973 }, 442 443 { "Am79c975 PCnet-FAST III", 444 pcn_79c971_mediainit, 445 PARTID_Am79c975 }, 446 447 { "Unknown PCnet-PCI variant", 448 pcn_79c971_mediainit, 449 0 }, 450 }; 451 452 int pcn_copy_small = 0; 453 454 static int pcn_match(device_t, cfdata_t, void *); 455 static void pcn_attach(device_t, device_t, void *); 456 457 CFATTACH_DECL_NEW(pcn, sizeof(struct pcn_softc), 458 pcn_match, pcn_attach, NULL, NULL); 459 460 /* 461 * Routines to read and write the PCnet-PCI CSR/BCR space. 462 */ 463 464 static inline uint32_t 465 pcn_csr_read(struct pcn_softc *sc, int reg) 466 { 467 468 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 469 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP)); 470 } 471 472 static inline void 473 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val) 474 { 475 476 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 477 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val); 478 } 479 480 static inline uint32_t 481 pcn_bcr_read(struct pcn_softc *sc, int reg) 482 { 483 484 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 485 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP)); 486 } 487 488 static inline void 489 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val) 490 { 491 492 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 493 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val); 494 } 495 496 static bool 497 pcn_is_vmware(const char *enaddr) 498 { 499 500 /* 501 * VMware uses the OUI 00:0c:29 for auto-generated MAC 502 * addresses. 503 */ 504 if (enaddr[0] == 0x00 && enaddr[1] == 0x0c && enaddr[2] == 0x29) 505 return (TRUE); 506 507 /* 508 * VMware uses the OUI 00:50:56 for manually-set MAC 509 * addresses (and some auto-generated ones). 510 */ 511 if (enaddr[0] == 0x00 && enaddr[1] == 0x50 && enaddr[2] == 0x56) 512 return (TRUE); 513 514 return (FALSE); 515 } 516 517 static const struct pcn_variant * 518 pcn_lookup_variant(uint16_t chipid) 519 { 520 const struct pcn_variant *pcv; 521 522 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) { 523 if (chipid == pcv->pcv_chipid) 524 return (pcv); 525 } 526 527 /* 528 * This covers unknown chips, which we simply treat like 529 * a generic PCnet-FAST. 530 */ 531 return (pcv); 532 } 533 534 static int 535 pcn_match(device_t parent, cfdata_t cf, void *aux) 536 { 537 struct pci_attach_args *pa = aux; 538 539 /* 540 * IBM Makes a PCI variant of this card which shows up as a 541 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25) 542 * this card is truly a pcn card, so we have a special case match for 543 * it 544 */ 545 546 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT && 547 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX && 548 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK) 549 return(1); 550 551 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD) 552 return (0); 553 554 switch (PCI_PRODUCT(pa->pa_id)) { 555 case PCI_PRODUCT_AMD_PCNET_PCI: 556 /* Beat if_le_pci.c */ 557 return (10); 558 } 559 560 return (0); 561 } 562 563 static void 564 pcn_attach(device_t parent, device_t self, void *aux) 565 { 566 struct pcn_softc *sc = device_private(self); 567 struct pci_attach_args *pa = aux; 568 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 569 pci_chipset_tag_t pc = pa->pa_pc; 570 pci_intr_handle_t ih; 571 const char *intrstr = NULL; 572 bus_space_tag_t iot, memt; 573 bus_space_handle_t ioh, memh; 574 bus_dma_segment_t seg; 575 int ioh_valid, memh_valid; 576 int ntxsegs, i, rseg, error; 577 uint32_t chipid, reg; 578 uint8_t enaddr[ETHER_ADDR_LEN]; 579 prop_object_t obj; 580 bool is_vmware; 581 char intrbuf[PCI_INTRSTR_LEN]; 582 583 sc->sc_dev = self; 584 callout_init(&sc->sc_tick_ch, 0); 585 586 aprint_normal(": AMD PCnet-PCI Ethernet\n"); 587 588 /* 589 * Map the device. 590 */ 591 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, 592 &iot, &ioh, NULL, NULL) == 0); 593 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM, 594 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, 595 &memt, &memh, NULL, NULL) == 0); 596 597 if (memh_valid) { 598 sc->sc_st = memt; 599 sc->sc_sh = memh; 600 } else if (ioh_valid) { 601 sc->sc_st = iot; 602 sc->sc_sh = ioh; 603 } else { 604 aprint_error_dev(self, "unable to map device registers\n"); 605 return; 606 } 607 608 sc->sc_dmat = pa->pa_dmat; 609 610 /* Make sure bus mastering is enabled. */ 611 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 612 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 613 PCI_COMMAND_MASTER_ENABLE); 614 615 /* power up chip */ 616 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, 617 NULL)) && error != EOPNOTSUPP) { 618 aprint_error_dev(self, "cannot activate %d\n", error); 619 return; 620 } 621 622 /* 623 * Reset the chip to a known state. This also puts the 624 * chip into 32-bit mode. 625 */ 626 pcn_reset(sc); 627 628 /* 629 * On some systems with the chip is an on-board device, the 630 * EEPROM is not used. Handle this by reading the MAC address 631 * from the CSRs (assuming that boot firmware has written 632 * it there). 633 */ 634 obj = prop_dictionary_get(device_properties(sc->sc_dev), 635 "am79c970-no-eeprom"); 636 if (prop_bool_true(obj)) { 637 for (i = 0; i < 3; i++) { 638 uint32_t val; 639 val = pcn_csr_read(sc, LE_CSR12 + i); 640 enaddr[2 * i] = val & 0xff; 641 enaddr[2 * i + 1] = (val >> 8) & 0xff; 642 } 643 } else { 644 for (i = 0; i < ETHER_ADDR_LEN; i++) { 645 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh, 646 PCN32_APROM + i); 647 } 648 } 649 650 /* Check to see if this is a VMware emulated network interface. */ 651 is_vmware = pcn_is_vmware(enaddr); 652 653 /* 654 * Now that the device is mapped, attempt to figure out what 655 * kind of chip we have. Note that IDL has all 32 bits of 656 * the chip ID when we're in 32-bit mode. 657 */ 658 chipid = pcn_csr_read(sc, LE_CSR88); 659 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid)); 660 661 aprint_normal_dev(self, "%s rev %d, Ethernet address %s\n", 662 sc->sc_variant->pcv_desc, CHIPID_VER(chipid), 663 ether_sprintf(enaddr)); 664 665 /* 666 * VMware has a bug in its network interface emulation; we must 667 * limit the number of Tx segments. 668 */ 669 if (is_vmware) { 670 ntxsegs = PCN_NTXSEGS_VMWARE; 671 prop_dictionary_set_bool(device_properties(sc->sc_dev), 672 "am79c970-vmware-tx-bug", TRUE); 673 aprint_verbose_dev(self, 674 "VMware Tx segment count bug detected\n"); 675 } else { 676 ntxsegs = PCN_NTXSEGS; 677 } 678 679 /* 680 * Map and establish our interrupt. 681 */ 682 if (pci_intr_map(pa, &ih)) { 683 aprint_error_dev(self, "unable to map interrupt\n"); 684 return; 685 } 686 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 687 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc); 688 if (sc->sc_ih == NULL) { 689 aprint_error_dev(self, "unable to establish interrupt"); 690 if (intrstr != NULL) 691 aprint_error(" at %s", intrstr); 692 aprint_error("\n"); 693 return; 694 } 695 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 696 697 /* 698 * Allocate the control data structures, and create and load the 699 * DMA map for it. 700 */ 701 if ((error = bus_dmamem_alloc(sc->sc_dmat, 702 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 703 0)) != 0) { 704 aprint_error_dev(self, "unable to allocate control data, " 705 "error = %d\n", error); 706 goto fail_0; 707 } 708 709 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 710 sizeof(struct pcn_control_data), (void **)&sc->sc_control_data, 711 BUS_DMA_COHERENT)) != 0) { 712 aprint_error_dev(self, "unable to map control data, " 713 "error = %d\n", error); 714 goto fail_1; 715 } 716 717 if ((error = bus_dmamap_create(sc->sc_dmat, 718 sizeof(struct pcn_control_data), 1, 719 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 720 aprint_error_dev(self, "unable to create control data DMA map, " 721 "error = %d\n", error); 722 goto fail_2; 723 } 724 725 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 726 sc->sc_control_data, sizeof(struct pcn_control_data), NULL, 727 0)) != 0) { 728 aprint_error_dev(self, 729 "unable to load control data DMA map, error = %d\n", error); 730 goto fail_3; 731 } 732 733 /* Create the transmit buffer DMA maps. */ 734 for (i = 0; i < PCN_TXQUEUELEN; i++) { 735 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 736 ntxsegs, MCLBYTES, 0, 0, 737 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 738 aprint_error_dev(self, 739 "unable to create tx DMA map %d, error = %d\n", 740 i, error); 741 goto fail_4; 742 } 743 } 744 745 /* Create the receive buffer DMA maps. */ 746 for (i = 0; i < PCN_NRXDESC; i++) { 747 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 748 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 749 aprint_error_dev(self, 750 "unable to create rx DMA map %d, error = %d\n", 751 i, error); 752 goto fail_5; 753 } 754 sc->sc_rxsoft[i].rxs_mbuf = NULL; 755 } 756 757 /* Initialize our media structures. */ 758 (*sc->sc_variant->pcv_mediainit)(sc); 759 760 /* 761 * Initialize FIFO watermark info. 762 */ 763 switch (sc->sc_variant->pcv_chipid) { 764 case PARTID_Am79c970: 765 case PARTID_Am79c970A: 766 sc->sc_rcvfw_desc = pcn_79c970_rcvfw; 767 sc->sc_xmtsp_desc = pcn_79c970_xmtsp; 768 sc->sc_xmtfw_desc = pcn_79c970_xmtfw; 769 break; 770 771 default: 772 sc->sc_rcvfw_desc = pcn_79c971_rcvfw; 773 /* 774 * Read BCR25 to determine how much SRAM is 775 * on the board. If > 0, then we the chip 776 * uses different Start Point thresholds. 777 * 778 * Note BCR25 and BCR26 are loaded from the 779 * EEPROM on RST, and unaffected by S_RESET, 780 * so we don't really have to worry about 781 * them except for this. 782 */ 783 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff; 784 if (reg != 0) 785 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram; 786 else 787 sc->sc_xmtsp_desc = pcn_79c971_xmtsp; 788 sc->sc_xmtfw_desc = pcn_79c971_xmtfw; 789 break; 790 } 791 792 /* 793 * Set up defaults -- see the tables above for what these 794 * values mean. 795 * 796 * XXX How should we tune RCVFW and XMTFW? 797 */ 798 sc->sc_rcvfw = 1; /* minimum for full-duplex */ 799 sc->sc_xmtsp = 1; 800 sc->sc_xmtfw = 0; 801 802 ifp = &sc->sc_ethercom.ec_if; 803 strcpy(ifp->if_xname, device_xname(self)); 804 ifp->if_softc = sc; 805 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 806 ifp->if_ioctl = pcn_ioctl; 807 ifp->if_start = pcn_start; 808 ifp->if_watchdog = pcn_watchdog; 809 ifp->if_init = pcn_init; 810 ifp->if_stop = pcn_stop; 811 IFQ_SET_READY(&ifp->if_snd); 812 813 /* Attach the interface. */ 814 if_attach(ifp); 815 ether_ifattach(ifp, enaddr); 816 rnd_attach_source(&sc->rnd_source, device_xname(self), 817 RND_TYPE_NET, RND_FLAG_DEFAULT); 818 819 #ifdef PCN_EVENT_COUNTERS 820 /* Attach event counters. */ 821 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 822 NULL, device_xname(self), "txsstall"); 823 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 824 NULL, device_xname(self), "txdstall"); 825 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR, 826 NULL, device_xname(self), "txintr"); 827 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 828 NULL, device_xname(self), "rxintr"); 829 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC, 830 NULL, device_xname(self), "babl"); 831 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC, 832 NULL, device_xname(self), "miss"); 833 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC, 834 NULL, device_xname(self), "merr"); 835 836 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC, 837 NULL, device_xname(self), "txseg1"); 838 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC, 839 NULL, device_xname(self), "txseg2"); 840 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC, 841 NULL, device_xname(self), "txseg3"); 842 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC, 843 NULL, device_xname(self), "txseg4"); 844 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC, 845 NULL, device_xname(self), "txseg5"); 846 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC, 847 NULL, device_xname(self), "txsegmore"); 848 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC, 849 NULL, device_xname(self), "txcopy"); 850 #endif /* PCN_EVENT_COUNTERS */ 851 852 /* 853 * Establish power handler with shutdown hook, to make sure 854 * the interface is shutdown during reboot. 855 */ 856 if (pmf_device_register1(self, NULL, NULL, pcn_shutdown)) 857 pmf_class_network_register(self, ifp); 858 else 859 aprint_error_dev(self, "couldn't establish power handler\n"); 860 861 return; 862 863 /* 864 * Free any resources we've allocated during the failed attach 865 * attempt. Do this in reverse order and fall through. 866 */ 867 fail_5: 868 for (i = 0; i < PCN_NRXDESC; i++) { 869 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 870 bus_dmamap_destroy(sc->sc_dmat, 871 sc->sc_rxsoft[i].rxs_dmamap); 872 } 873 fail_4: 874 for (i = 0; i < PCN_TXQUEUELEN; i++) { 875 if (sc->sc_txsoft[i].txs_dmamap != NULL) 876 bus_dmamap_destroy(sc->sc_dmat, 877 sc->sc_txsoft[i].txs_dmamap); 878 } 879 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 880 fail_3: 881 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 882 fail_2: 883 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 884 sizeof(struct pcn_control_data)); 885 fail_1: 886 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 887 fail_0: 888 return; 889 } 890 891 /* 892 * pcn_shutdown: 893 * 894 * Make sure the interface is stopped at reboot time. 895 */ 896 static bool 897 pcn_shutdown(device_t self, int howto) 898 { 899 struct pcn_softc *sc = device_private(self); 900 901 pcn_stop(&sc->sc_ethercom.ec_if, 1); 902 /* explicitly reset the chip for some onboard one with lazy firmware */ 903 pcn_reset(sc); 904 905 return true; 906 } 907 908 /* 909 * pcn_start: [ifnet interface function] 910 * 911 * Start packet transmission on the interface. 912 */ 913 static void 914 pcn_start(struct ifnet *ifp) 915 { 916 struct pcn_softc *sc = ifp->if_softc; 917 struct mbuf *m0, *m; 918 struct pcn_txsoft *txs; 919 bus_dmamap_t dmamap; 920 int error, nexttx, lasttx = -1, ofree, seg; 921 922 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 923 return; 924 925 /* 926 * Remember the previous number of free descriptors and 927 * the first descriptor we'll use. 928 */ 929 ofree = sc->sc_txfree; 930 931 /* 932 * Loop through the send queue, setting up transmit descriptors 933 * until we drain the queue, or use up all available transmit 934 * descriptors. 935 */ 936 for (;;) { 937 /* Grab a packet off the queue. */ 938 IFQ_POLL(&ifp->if_snd, m0); 939 if (m0 == NULL) 940 break; 941 m = NULL; 942 943 /* Get a work queue entry. */ 944 if (sc->sc_txsfree == 0) { 945 PCN_EVCNT_INCR(&sc->sc_ev_txsstall); 946 break; 947 } 948 949 txs = &sc->sc_txsoft[sc->sc_txsnext]; 950 dmamap = txs->txs_dmamap; 951 952 /* 953 * Load the DMA map. If this fails, the packet either 954 * didn't fit in the alloted number of segments, or we 955 * were short on resources. In this case, we'll copy 956 * and try again. 957 */ 958 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 959 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) { 960 PCN_EVCNT_INCR(&sc->sc_ev_txcopy); 961 MGETHDR(m, M_DONTWAIT, MT_DATA); 962 if (m == NULL) { 963 printf("%s: unable to allocate Tx mbuf\n", 964 device_xname(sc->sc_dev)); 965 break; 966 } 967 if (m0->m_pkthdr.len > MHLEN) { 968 MCLGET(m, M_DONTWAIT); 969 if ((m->m_flags & M_EXT) == 0) { 970 printf("%s: unable to allocate Tx " 971 "cluster\n", 972 device_xname(sc->sc_dev)); 973 m_freem(m); 974 break; 975 } 976 } 977 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 978 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 979 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 980 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 981 if (error) { 982 printf("%s: unable to load Tx buffer, " 983 "error = %d\n", device_xname(sc->sc_dev), 984 error); 985 break; 986 } 987 } 988 989 /* 990 * Ensure we have enough descriptors free to describe 991 * the packet. Note, we always reserve one descriptor 992 * at the end of the ring as a termination point, to 993 * prevent wrap-around. 994 */ 995 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { 996 /* 997 * Not enough free descriptors to transmit this 998 * packet. We haven't committed anything yet, 999 * so just unload the DMA map, put the packet 1000 * back on the queue, and punt. Notify the upper 1001 * layer that there are not more slots left. 1002 * 1003 * XXX We could allocate an mbuf and copy, but 1004 * XXX is it worth it? 1005 */ 1006 ifp->if_flags |= IFF_OACTIVE; 1007 bus_dmamap_unload(sc->sc_dmat, dmamap); 1008 if (m != NULL) 1009 m_freem(m); 1010 PCN_EVCNT_INCR(&sc->sc_ev_txdstall); 1011 break; 1012 } 1013 1014 IFQ_DEQUEUE(&ifp->if_snd, m0); 1015 if (m != NULL) { 1016 m_freem(m0); 1017 m0 = m; 1018 } 1019 1020 /* 1021 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1022 */ 1023 1024 /* Sync the DMA map. */ 1025 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1026 BUS_DMASYNC_PREWRITE); 1027 1028 #ifdef PCN_EVENT_COUNTERS 1029 switch (dmamap->dm_nsegs) { 1030 case 1: 1031 PCN_EVCNT_INCR(&sc->sc_ev_txseg1); 1032 break; 1033 case 2: 1034 PCN_EVCNT_INCR(&sc->sc_ev_txseg2); 1035 break; 1036 case 3: 1037 PCN_EVCNT_INCR(&sc->sc_ev_txseg3); 1038 break; 1039 case 4: 1040 PCN_EVCNT_INCR(&sc->sc_ev_txseg4); 1041 break; 1042 case 5: 1043 PCN_EVCNT_INCR(&sc->sc_ev_txseg5); 1044 break; 1045 default: 1046 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore); 1047 break; 1048 } 1049 #endif /* PCN_EVENT_COUNTERS */ 1050 1051 /* 1052 * Initialize the transmit descriptors. 1053 */ 1054 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { 1055 for (nexttx = sc->sc_txnext, seg = 0; 1056 seg < dmamap->dm_nsegs; 1057 seg++, nexttx = PCN_NEXTTX(nexttx)) { 1058 /* 1059 * If this is the first descriptor we're 1060 * enqueueing, don't set the OWN bit just 1061 * yet. That could cause a race condition. 1062 * We'll do it below. 1063 */ 1064 sc->sc_txdescs[nexttx].tmd0 = 0; 1065 sc->sc_txdescs[nexttx].tmd2 = 1066 htole32(dmamap->dm_segs[seg].ds_addr); 1067 sc->sc_txdescs[nexttx].tmd1 = 1068 htole32(LE_T1_ONES | 1069 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) | 1070 (LE_BCNT(dmamap->dm_segs[seg].ds_len) & 1071 LE_T1_BCNT_MASK)); 1072 lasttx = nexttx; 1073 } 1074 } else { 1075 for (nexttx = sc->sc_txnext, seg = 0; 1076 seg < dmamap->dm_nsegs; 1077 seg++, nexttx = PCN_NEXTTX(nexttx)) { 1078 /* 1079 * If this is the first descriptor we're 1080 * enqueueing, don't set the OWN bit just 1081 * yet. That could cause a race condition. 1082 * We'll do it below. 1083 */ 1084 sc->sc_txdescs[nexttx].tmd0 = 1085 htole32(dmamap->dm_segs[seg].ds_addr); 1086 sc->sc_txdescs[nexttx].tmd2 = 0; 1087 sc->sc_txdescs[nexttx].tmd1 = 1088 htole32(LE_T1_ONES | 1089 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) | 1090 (LE_BCNT(dmamap->dm_segs[seg].ds_len) & 1091 LE_T1_BCNT_MASK)); 1092 lasttx = nexttx; 1093 } 1094 } 1095 1096 KASSERT(lasttx != -1); 1097 /* Interrupt on the packet, if appropriate. */ 1098 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0) 1099 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT); 1100 1101 /* Set `start of packet' and `end of packet' appropriately. */ 1102 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP); 1103 sc->sc_txdescs[sc->sc_txnext].tmd1 |= 1104 htole32(LE_T1_OWN|LE_T1_STP); 1105 1106 /* Sync the descriptors we're using. */ 1107 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 1108 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1109 1110 /* Kick the transmitter. */ 1111 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD); 1112 1113 /* 1114 * Store a pointer to the packet so we can free it later, 1115 * and remember what txdirty will be once the packet is 1116 * done. 1117 */ 1118 txs->txs_mbuf = m0; 1119 txs->txs_firstdesc = sc->sc_txnext; 1120 txs->txs_lastdesc = lasttx; 1121 1122 /* Advance the tx pointer. */ 1123 sc->sc_txfree -= dmamap->dm_nsegs; 1124 sc->sc_txnext = nexttx; 1125 1126 sc->sc_txsfree--; 1127 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext); 1128 1129 /* Pass the packet to any BPF listeners. */ 1130 bpf_mtap(ifp, m0); 1131 } 1132 1133 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) { 1134 /* No more slots left; notify upper layer. */ 1135 ifp->if_flags |= IFF_OACTIVE; 1136 } 1137 1138 if (sc->sc_txfree != ofree) { 1139 /* Set a watchdog timer in case the chip flakes out. */ 1140 ifp->if_timer = 5; 1141 } 1142 } 1143 1144 /* 1145 * pcn_watchdog: [ifnet interface function] 1146 * 1147 * Watchdog timer handler. 1148 */ 1149 static void 1150 pcn_watchdog(struct ifnet *ifp) 1151 { 1152 struct pcn_softc *sc = ifp->if_softc; 1153 1154 /* 1155 * Since we're not interrupting every packet, sweep 1156 * up before we report an error. 1157 */ 1158 pcn_txintr(sc); 1159 1160 if (sc->sc_txfree != PCN_NTXDESC) { 1161 printf("%s: device timeout (txfree %d txsfree %d)\n", 1162 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree); 1163 ifp->if_oerrors++; 1164 1165 /* Reset the interface. */ 1166 (void) pcn_init(ifp); 1167 } 1168 1169 /* Try to get more packets going. */ 1170 pcn_start(ifp); 1171 } 1172 1173 /* 1174 * pcn_ioctl: [ifnet interface function] 1175 * 1176 * Handle control requests from the operator. 1177 */ 1178 static int 1179 pcn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1180 { 1181 struct pcn_softc *sc = ifp->if_softc; 1182 struct ifreq *ifr = (struct ifreq *) data; 1183 int s, error; 1184 1185 s = splnet(); 1186 1187 switch (cmd) { 1188 case SIOCSIFMEDIA: 1189 case SIOCGIFMEDIA: 1190 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 1191 break; 1192 1193 default: 1194 error = ether_ioctl(ifp, cmd, data); 1195 if (error == ENETRESET) { 1196 /* 1197 * Multicast list has changed; set the hardware filter 1198 * accordingly. 1199 */ 1200 if (ifp->if_flags & IFF_RUNNING) 1201 error = pcn_init(ifp); 1202 else 1203 error = 0; 1204 } 1205 break; 1206 } 1207 1208 /* Try to get more packets going. */ 1209 pcn_start(ifp); 1210 1211 splx(s); 1212 return (error); 1213 } 1214 1215 /* 1216 * pcn_intr: 1217 * 1218 * Interrupt service routine. 1219 */ 1220 static int 1221 pcn_intr(void *arg) 1222 { 1223 struct pcn_softc *sc = arg; 1224 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1225 uint32_t csr0; 1226 int wantinit, handled = 0; 1227 1228 for (wantinit = 0; wantinit == 0;) { 1229 csr0 = pcn_csr_read(sc, LE_CSR0); 1230 if ((csr0 & LE_C0_INTR) == 0) 1231 break; 1232 1233 rnd_add_uint32(&sc->rnd_source, csr0); 1234 1235 /* ACK the bits and re-enable interrupts. */ 1236 pcn_csr_write(sc, LE_CSR0, csr0 & 1237 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT| 1238 LE_C0_TINT|LE_C0_IDON)); 1239 1240 handled = 1; 1241 1242 if (csr0 & LE_C0_RINT) { 1243 PCN_EVCNT_INCR(&sc->sc_ev_rxintr); 1244 wantinit = pcn_rxintr(sc); 1245 } 1246 1247 if (csr0 & LE_C0_TINT) { 1248 PCN_EVCNT_INCR(&sc->sc_ev_txintr); 1249 pcn_txintr(sc); 1250 } 1251 1252 if (csr0 & LE_C0_ERR) { 1253 if (csr0 & LE_C0_BABL) { 1254 PCN_EVCNT_INCR(&sc->sc_ev_babl); 1255 ifp->if_oerrors++; 1256 } 1257 if (csr0 & LE_C0_MISS) { 1258 PCN_EVCNT_INCR(&sc->sc_ev_miss); 1259 ifp->if_ierrors++; 1260 } 1261 if (csr0 & LE_C0_MERR) { 1262 PCN_EVCNT_INCR(&sc->sc_ev_merr); 1263 printf("%s: memory error\n", 1264 device_xname(sc->sc_dev)); 1265 wantinit = 1; 1266 break; 1267 } 1268 } 1269 1270 if ((csr0 & LE_C0_RXON) == 0) { 1271 printf("%s: receiver disabled\n", 1272 device_xname(sc->sc_dev)); 1273 ifp->if_ierrors++; 1274 wantinit = 1; 1275 } 1276 1277 if ((csr0 & LE_C0_TXON) == 0) { 1278 printf("%s: transmitter disabled\n", 1279 device_xname(sc->sc_dev)); 1280 ifp->if_oerrors++; 1281 wantinit = 1; 1282 } 1283 } 1284 1285 if (handled) { 1286 if (wantinit) 1287 pcn_init(ifp); 1288 1289 /* Try to get more packets going. */ 1290 pcn_start(ifp); 1291 } 1292 1293 return (handled); 1294 } 1295 1296 /* 1297 * pcn_spnd: 1298 * 1299 * Suspend the chip. 1300 */ 1301 static void 1302 pcn_spnd(struct pcn_softc *sc) 1303 { 1304 int i; 1305 1306 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND); 1307 1308 for (i = 0; i < 10000; i++) { 1309 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND) 1310 return; 1311 delay(5); 1312 } 1313 1314 printf("%s: WARNING: chip failed to enter suspended state\n", 1315 device_xname(sc->sc_dev)); 1316 } 1317 1318 /* 1319 * pcn_txintr: 1320 * 1321 * Helper; handle transmit interrupts. 1322 */ 1323 static void 1324 pcn_txintr(struct pcn_softc *sc) 1325 { 1326 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1327 struct pcn_txsoft *txs; 1328 uint32_t tmd1, tmd2, tmd; 1329 int i, j; 1330 1331 ifp->if_flags &= ~IFF_OACTIVE; 1332 1333 /* 1334 * Go through our Tx list and free mbufs for those 1335 * frames which have been transmitted. 1336 */ 1337 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN; 1338 i = PCN_NEXTTXS(i), sc->sc_txsfree++) { 1339 txs = &sc->sc_txsoft[i]; 1340 1341 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 1342 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1343 1344 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1); 1345 if (tmd1 & LE_T1_OWN) 1346 break; 1347 1348 /* 1349 * Slightly annoying -- we have to loop through the 1350 * descriptors we've used looking for ERR, since it 1351 * can appear on any descriptor in the chain. 1352 */ 1353 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) { 1354 tmd = le32toh(sc->sc_txdescs[j].tmd1); 1355 if (tmd & LE_T1_ERR) { 1356 ifp->if_oerrors++; 1357 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) 1358 tmd2 = le32toh(sc->sc_txdescs[j].tmd0); 1359 else 1360 tmd2 = le32toh(sc->sc_txdescs[j].tmd2); 1361 if (tmd2 & LE_T2_UFLO) { 1362 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) { 1363 sc->sc_xmtsp++; 1364 printf("%s: transmit " 1365 "underrun; new threshold: " 1366 "%s\n", 1367 device_xname(sc->sc_dev), 1368 sc->sc_xmtsp_desc[ 1369 sc->sc_xmtsp]); 1370 pcn_spnd(sc); 1371 pcn_csr_write(sc, LE_CSR80, 1372 LE_C80_RCVFW(sc->sc_rcvfw) | 1373 LE_C80_XMTSP(sc->sc_xmtsp) | 1374 LE_C80_XMTFW(sc->sc_xmtfw)); 1375 pcn_csr_write(sc, LE_CSR5, 1376 sc->sc_csr5); 1377 } else { 1378 printf("%s: transmit " 1379 "underrun\n", 1380 device_xname(sc->sc_dev)); 1381 } 1382 } else if (tmd2 & LE_T2_BUFF) { 1383 printf("%s: transmit buffer error\n", 1384 device_xname(sc->sc_dev)); 1385 } 1386 if (tmd2 & LE_T2_LCOL) 1387 ifp->if_collisions++; 1388 if (tmd2 & LE_T2_RTRY) 1389 ifp->if_collisions += 16; 1390 goto next_packet; 1391 } 1392 if (j == txs->txs_lastdesc) 1393 break; 1394 } 1395 if (tmd1 & LE_T1_ONE) 1396 ifp->if_collisions++; 1397 else if (tmd & LE_T1_MORE) { 1398 /* Real number is unknown. */ 1399 ifp->if_collisions += 2; 1400 } 1401 ifp->if_opackets++; 1402 next_packet: 1403 sc->sc_txfree += txs->txs_dmamap->dm_nsegs; 1404 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1405 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1406 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1407 m_freem(txs->txs_mbuf); 1408 txs->txs_mbuf = NULL; 1409 } 1410 1411 /* Update the dirty transmit buffer pointer. */ 1412 sc->sc_txsdirty = i; 1413 1414 /* 1415 * If there are no more pending transmissions, cancel the watchdog 1416 * timer. 1417 */ 1418 if (sc->sc_txsfree == PCN_TXQUEUELEN) 1419 ifp->if_timer = 0; 1420 } 1421 1422 /* 1423 * pcn_rxintr: 1424 * 1425 * Helper; handle receive interrupts. 1426 */ 1427 static int 1428 pcn_rxintr(struct pcn_softc *sc) 1429 { 1430 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1431 struct pcn_rxsoft *rxs; 1432 struct mbuf *m; 1433 uint32_t rmd1; 1434 int i, len; 1435 1436 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) { 1437 rxs = &sc->sc_rxsoft[i]; 1438 1439 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1440 1441 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1); 1442 1443 if (rmd1 & LE_R1_OWN) 1444 break; 1445 1446 /* 1447 * Check for errors and make sure the packet fit into 1448 * a single buffer. We have structured this block of 1449 * code the way it is in order to compress it into 1450 * one test in the common case (no error). 1451 */ 1452 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) != 1453 (LE_R1_STP|LE_R1_ENP))) { 1454 /* Make sure the packet is in a single buffer. */ 1455 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) != 1456 (LE_R1_STP|LE_R1_ENP)) { 1457 printf("%s: packet spilled into next buffer\n", 1458 device_xname(sc->sc_dev)); 1459 return (1); /* pcn_intr() will re-init */ 1460 } 1461 1462 /* 1463 * If the packet had an error, simple recycle the 1464 * buffer. 1465 */ 1466 if (rmd1 & LE_R1_ERR) { 1467 ifp->if_ierrors++; 1468 /* 1469 * If we got an overflow error, chances 1470 * are there will be a CRC error. In 1471 * this case, just print the overflow 1472 * error, and skip the others. 1473 */ 1474 if (rmd1 & LE_R1_OFLO) 1475 printf("%s: overflow error\n", 1476 device_xname(sc->sc_dev)); 1477 else { 1478 #define PRINTIT(x, str) \ 1479 if (rmd1 & (x)) \ 1480 printf("%s: %s\n", \ 1481 device_xname(sc->sc_dev), \ 1482 str); 1483 PRINTIT(LE_R1_FRAM, "framing error"); 1484 PRINTIT(LE_R1_CRC, "CRC error"); 1485 PRINTIT(LE_R1_BUFF, "buffer error"); 1486 } 1487 #undef PRINTIT 1488 PCN_INIT_RXDESC(sc, i); 1489 continue; 1490 } 1491 } 1492 1493 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1494 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1495 1496 /* 1497 * No errors; receive the packet. 1498 */ 1499 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) 1500 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK; 1501 else 1502 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK; 1503 1504 /* 1505 * The LANCE family includes the CRC with every packet; 1506 * trim it off here. 1507 */ 1508 len -= ETHER_CRC_LEN; 1509 1510 /* 1511 * If the packet is small enough to fit in a 1512 * single header mbuf, allocate one and copy 1513 * the data into it. This greatly reduces 1514 * memory consumption when we receive lots 1515 * of small packets. 1516 * 1517 * Otherwise, we add a new buffer to the receive 1518 * chain. If this fails, we drop the packet and 1519 * recycle the old buffer. 1520 */ 1521 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) { 1522 MGETHDR(m, M_DONTWAIT, MT_DATA); 1523 if (m == NULL) 1524 goto dropit; 1525 m->m_data += 2; 1526 memcpy(mtod(m, void *), 1527 mtod(rxs->rxs_mbuf, void *), len); 1528 PCN_INIT_RXDESC(sc, i); 1529 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1530 rxs->rxs_dmamap->dm_mapsize, 1531 BUS_DMASYNC_PREREAD); 1532 } else { 1533 m = rxs->rxs_mbuf; 1534 if (pcn_add_rxbuf(sc, i) != 0) { 1535 dropit: 1536 ifp->if_ierrors++; 1537 PCN_INIT_RXDESC(sc, i); 1538 bus_dmamap_sync(sc->sc_dmat, 1539 rxs->rxs_dmamap, 0, 1540 rxs->rxs_dmamap->dm_mapsize, 1541 BUS_DMASYNC_PREREAD); 1542 continue; 1543 } 1544 } 1545 1546 m->m_pkthdr.rcvif = ifp; 1547 m->m_pkthdr.len = m->m_len = len; 1548 1549 /* Pass this up to any BPF listeners. */ 1550 bpf_mtap(ifp, m); 1551 1552 /* Pass it on. */ 1553 (*ifp->if_input)(ifp, m); 1554 ifp->if_ipackets++; 1555 } 1556 1557 /* Update the receive pointer. */ 1558 sc->sc_rxptr = i; 1559 return (0); 1560 } 1561 1562 /* 1563 * pcn_tick: 1564 * 1565 * One second timer, used to tick the MII. 1566 */ 1567 static void 1568 pcn_tick(void *arg) 1569 { 1570 struct pcn_softc *sc = arg; 1571 int s; 1572 1573 s = splnet(); 1574 mii_tick(&sc->sc_mii); 1575 splx(s); 1576 1577 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc); 1578 } 1579 1580 /* 1581 * pcn_reset: 1582 * 1583 * Perform a soft reset on the PCnet-PCI. 1584 */ 1585 static void 1586 pcn_reset(struct pcn_softc *sc) 1587 { 1588 1589 /* 1590 * The PCnet-PCI chip is reset by reading from the 1591 * RESET register. Note that while the NE2100 LANCE 1592 * boards require a write after the read, the PCnet-PCI 1593 * chips do not require this. 1594 * 1595 * Since we don't know if we're in 16-bit or 32-bit 1596 * mode right now, issue both (it's safe) in the 1597 * hopes that one will succeed. 1598 */ 1599 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET); 1600 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET); 1601 1602 /* Wait 1ms for it to finish. */ 1603 delay(1000); 1604 1605 /* 1606 * Select 32-bit I/O mode by issuing a 32-bit write to the 1607 * RDP. Since the RAP is 0 after a reset, writing a 0 1608 * to RDP is safe (since it simply clears CSR0). 1609 */ 1610 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0); 1611 } 1612 1613 /* 1614 * pcn_init: [ifnet interface function] 1615 * 1616 * Initialize the interface. Must be called at splnet(). 1617 */ 1618 static int 1619 pcn_init(struct ifnet *ifp) 1620 { 1621 struct pcn_softc *sc = ifp->if_softc; 1622 struct pcn_rxsoft *rxs; 1623 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 1624 int i, error = 0; 1625 uint32_t reg; 1626 1627 /* Cancel any pending I/O. */ 1628 pcn_stop(ifp, 0); 1629 1630 /* Reset the chip to a known state. */ 1631 pcn_reset(sc); 1632 1633 /* 1634 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything 1635 * else. 1636 * 1637 * XXX It'd be really nice to use SSTYLE 2 on all the chips, 1638 * because the structure layout is compatible with ILACC, 1639 * but the burst mode is only available in SSTYLE 3, and 1640 * burst mode should provide some performance enhancement. 1641 */ 1642 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970) 1643 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2; 1644 else 1645 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3; 1646 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle); 1647 1648 /* Initialize the transmit descriptor ring. */ 1649 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 1650 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC, 1651 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1652 sc->sc_txfree = PCN_NTXDESC; 1653 sc->sc_txnext = 0; 1654 1655 /* Initialize the transmit job descriptors. */ 1656 for (i = 0; i < PCN_TXQUEUELEN; i++) 1657 sc->sc_txsoft[i].txs_mbuf = NULL; 1658 sc->sc_txsfree = PCN_TXQUEUELEN; 1659 sc->sc_txsnext = 0; 1660 sc->sc_txsdirty = 0; 1661 1662 /* 1663 * Initialize the receive descriptor and receive job 1664 * descriptor rings. 1665 */ 1666 for (i = 0; i < PCN_NRXDESC; i++) { 1667 rxs = &sc->sc_rxsoft[i]; 1668 if (rxs->rxs_mbuf == NULL) { 1669 if ((error = pcn_add_rxbuf(sc, i)) != 0) { 1670 printf("%s: unable to allocate or map rx " 1671 "buffer %d, error = %d\n", 1672 device_xname(sc->sc_dev), i, error); 1673 /* 1674 * XXX Should attempt to run with fewer receive 1675 * XXX buffers instead of just failing. 1676 */ 1677 pcn_rxdrain(sc); 1678 goto out; 1679 } 1680 } else 1681 PCN_INIT_RXDESC(sc, i); 1682 } 1683 sc->sc_rxptr = 0; 1684 1685 /* Initialize MODE for the initialization block. */ 1686 sc->sc_mode = 0; 1687 if (ifp->if_flags & IFF_PROMISC) 1688 sc->sc_mode |= LE_C15_PROM; 1689 if ((ifp->if_flags & IFF_BROADCAST) == 0) 1690 sc->sc_mode |= LE_C15_DRCVBC; 1691 1692 /* 1693 * If we have MII, simply select MII in the MODE register, 1694 * and clear ASEL. Otherwise, let ASEL stand (for now), 1695 * and leave PORTSEL alone (it is ignored with ASEL is set). 1696 */ 1697 if (sc->sc_flags & PCN_F_HAS_MII) { 1698 pcn_bcr_write(sc, LE_BCR2, 1699 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL); 1700 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII); 1701 1702 /* 1703 * Disable MII auto-negotiation. We handle that in 1704 * our own MII layer. 1705 */ 1706 pcn_bcr_write(sc, LE_BCR32, 1707 pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS); 1708 } 1709 1710 /* 1711 * Set the Tx and Rx descriptor ring addresses in the init 1712 * block, the TLEN and RLEN other fields of the init block 1713 * MODE register. 1714 */ 1715 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0)); 1716 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0)); 1717 sc->sc_initblock.init_mode = htole32(sc->sc_mode | 1718 ((ffs(PCN_NTXDESC) - 1) << 28) | 1719 ((ffs(PCN_NRXDESC) - 1) << 20)); 1720 1721 /* Set the station address in the init block. */ 1722 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] | 1723 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24)); 1724 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] | 1725 (enaddr[5] << 8)); 1726 1727 /* Set the multicast filter in the init block. */ 1728 pcn_set_filter(sc); 1729 1730 /* Initialize CSR3. */ 1731 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO); 1732 1733 /* Initialize CSR4. */ 1734 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT| 1735 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM); 1736 1737 /* Initialize CSR5. */ 1738 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE; 1739 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5); 1740 1741 /* 1742 * If we have an Am79c971 or greater, initialize CSR7. 1743 * 1744 * XXX Might be nice to use the MII auto-poll interrupt someday. 1745 */ 1746 switch (sc->sc_variant->pcv_chipid) { 1747 case PARTID_Am79c970: 1748 case PARTID_Am79c970A: 1749 /* Not available on these chips. */ 1750 break; 1751 1752 default: 1753 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE); 1754 break; 1755 } 1756 1757 /* 1758 * On the Am79c970A and greater, initialize BCR18 to 1759 * enable burst mode. 1760 * 1761 * Also enable the "no underflow" option on the Am79c971 and 1762 * higher, which prevents the chip from generating transmit 1763 * underflows, yet sill provides decent performance. Note if 1764 * chip is not connected to external SRAM, then we still have 1765 * to handle underflow errors (the NOUFLO bit is ignored in 1766 * that case). 1767 */ 1768 reg = pcn_bcr_read(sc, LE_BCR18); 1769 switch (sc->sc_variant->pcv_chipid) { 1770 case PARTID_Am79c970: 1771 break; 1772 1773 case PARTID_Am79c970A: 1774 reg |= LE_B18_BREADE|LE_B18_BWRITE; 1775 break; 1776 1777 default: 1778 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO; 1779 break; 1780 } 1781 pcn_bcr_write(sc, LE_BCR18, reg); 1782 1783 /* 1784 * Initialize CSR80 (FIFO thresholds for Tx and Rx). 1785 */ 1786 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) | 1787 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw)); 1788 1789 /* 1790 * Send the init block to the chip, and wait for it 1791 * to be processed. 1792 */ 1793 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE); 1794 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff); 1795 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff); 1796 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT); 1797 delay(100); 1798 for (i = 0; i < 10000; i++) { 1799 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON) 1800 break; 1801 delay(10); 1802 } 1803 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE); 1804 if (i == 10000) { 1805 printf("%s: timeout processing init block\n", 1806 device_xname(sc->sc_dev)); 1807 error = EIO; 1808 goto out; 1809 } 1810 1811 /* Set the media. */ 1812 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0) 1813 goto out; 1814 1815 /* Enable interrupts and external activity (and ACK IDON). */ 1816 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON); 1817 1818 if (sc->sc_flags & PCN_F_HAS_MII) { 1819 /* Start the one second MII clock. */ 1820 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc); 1821 } 1822 1823 /* ...all done! */ 1824 ifp->if_flags |= IFF_RUNNING; 1825 ifp->if_flags &= ~IFF_OACTIVE; 1826 1827 out: 1828 if (error) 1829 printf("%s: interface not running\n", device_xname(sc->sc_dev)); 1830 return (error); 1831 } 1832 1833 /* 1834 * pcn_rxdrain: 1835 * 1836 * Drain the receive queue. 1837 */ 1838 static void 1839 pcn_rxdrain(struct pcn_softc *sc) 1840 { 1841 struct pcn_rxsoft *rxs; 1842 int i; 1843 1844 for (i = 0; i < PCN_NRXDESC; i++) { 1845 rxs = &sc->sc_rxsoft[i]; 1846 if (rxs->rxs_mbuf != NULL) { 1847 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1848 m_freem(rxs->rxs_mbuf); 1849 rxs->rxs_mbuf = NULL; 1850 } 1851 } 1852 } 1853 1854 /* 1855 * pcn_stop: [ifnet interface function] 1856 * 1857 * Stop transmission on the interface. 1858 */ 1859 static void 1860 pcn_stop(struct ifnet *ifp, int disable) 1861 { 1862 struct pcn_softc *sc = ifp->if_softc; 1863 struct pcn_txsoft *txs; 1864 int i; 1865 1866 if (sc->sc_flags & PCN_F_HAS_MII) { 1867 /* Stop the one second clock. */ 1868 callout_stop(&sc->sc_tick_ch); 1869 1870 /* Down the MII. */ 1871 mii_down(&sc->sc_mii); 1872 } 1873 1874 /* Stop the chip. */ 1875 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP); 1876 1877 /* Release any queued transmit buffers. */ 1878 for (i = 0; i < PCN_TXQUEUELEN; i++) { 1879 txs = &sc->sc_txsoft[i]; 1880 if (txs->txs_mbuf != NULL) { 1881 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1882 m_freem(txs->txs_mbuf); 1883 txs->txs_mbuf = NULL; 1884 } 1885 } 1886 1887 /* Mark the interface as down and cancel the watchdog timer. */ 1888 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1889 ifp->if_timer = 0; 1890 1891 if (disable) 1892 pcn_rxdrain(sc); 1893 } 1894 1895 /* 1896 * pcn_add_rxbuf: 1897 * 1898 * Add a receive buffer to the indicated descriptor. 1899 */ 1900 static int 1901 pcn_add_rxbuf(struct pcn_softc *sc, int idx) 1902 { 1903 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx]; 1904 struct mbuf *m; 1905 int error; 1906 1907 MGETHDR(m, M_DONTWAIT, MT_DATA); 1908 if (m == NULL) 1909 return (ENOBUFS); 1910 1911 MCLGET(m, M_DONTWAIT); 1912 if ((m->m_flags & M_EXT) == 0) { 1913 m_freem(m); 1914 return (ENOBUFS); 1915 } 1916 1917 if (rxs->rxs_mbuf != NULL) 1918 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1919 1920 rxs->rxs_mbuf = m; 1921 1922 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 1923 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 1924 BUS_DMA_READ|BUS_DMA_NOWAIT); 1925 if (error) { 1926 printf("%s: can't load rx DMA map %d, error = %d\n", 1927 device_xname(sc->sc_dev), idx, error); 1928 panic("pcn_add_rxbuf"); 1929 } 1930 1931 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1932 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1933 1934 PCN_INIT_RXDESC(sc, idx); 1935 1936 return (0); 1937 } 1938 1939 /* 1940 * pcn_set_filter: 1941 * 1942 * Set up the receive filter. 1943 */ 1944 static void 1945 pcn_set_filter(struct pcn_softc *sc) 1946 { 1947 struct ethercom *ec = &sc->sc_ethercom; 1948 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1949 struct ether_multi *enm; 1950 struct ether_multistep step; 1951 uint32_t crc; 1952 1953 /* 1954 * Set up the multicast address filter by passing all multicast 1955 * addresses through a CRC generator, and then using the high 1956 * order 6 bits as an index into the 64-bit logical address 1957 * filter. The high order bits select the word, while the rest 1958 * of the bits select the bit within the word. 1959 */ 1960 1961 if (ifp->if_flags & IFF_PROMISC) 1962 goto allmulti; 1963 1964 sc->sc_initblock.init_ladrf[0] = 1965 sc->sc_initblock.init_ladrf[1] = 1966 sc->sc_initblock.init_ladrf[2] = 1967 sc->sc_initblock.init_ladrf[3] = 0; 1968 1969 ETHER_FIRST_MULTI(step, ec, enm); 1970 while (enm != NULL) { 1971 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1972 /* 1973 * We must listen to a range of multicast addresses. 1974 * For now, just accept all multicasts, rather than 1975 * trying to set only those filter bits needed to match 1976 * the range. (At this time, the only use of address 1977 * ranges is for IP multicast routing, for which the 1978 * range is big enough to require all bits set.) 1979 */ 1980 goto allmulti; 1981 } 1982 1983 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 1984 1985 /* Just want the 6 most significant bits. */ 1986 crc >>= 26; 1987 1988 /* Set the corresponding bit in the filter. */ 1989 sc->sc_initblock.init_ladrf[crc >> 4] |= 1990 htole16(1 << (crc & 0xf)); 1991 1992 ETHER_NEXT_MULTI(step, enm); 1993 } 1994 1995 ifp->if_flags &= ~IFF_ALLMULTI; 1996 return; 1997 1998 allmulti: 1999 ifp->if_flags |= IFF_ALLMULTI; 2000 sc->sc_initblock.init_ladrf[0] = 2001 sc->sc_initblock.init_ladrf[1] = 2002 sc->sc_initblock.init_ladrf[2] = 2003 sc->sc_initblock.init_ladrf[3] = 0xffff; 2004 } 2005 2006 /* 2007 * pcn_79c970_mediainit: 2008 * 2009 * Initialize media for the Am79c970. 2010 */ 2011 static void 2012 pcn_79c970_mediainit(struct pcn_softc *sc) 2013 { 2014 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2015 const char *sep = ""; 2016 2017 sc->sc_mii.mii_ifp = ifp; 2018 2019 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange, 2020 pcn_79c970_mediastatus); 2021 2022 #define ADD(str, m, d) \ 2023 do { \ 2024 aprint_normal("%s%s", sep, str); \ 2025 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \ 2026 sep = ", "; \ 2027 } while (/*CONSTCOND*/0) 2028 2029 aprint_normal("%s: ", device_xname(sc->sc_dev)); 2030 ADD("10base5", IFM_10_5, PORTSEL_AUI); 2031 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 2032 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI); 2033 ADD("10baseT", IFM_10_T, PORTSEL_10T); 2034 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 2035 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T); 2036 ADD("auto", IFM_AUTO, 0); 2037 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 2038 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0); 2039 aprint_normal("\n"); 2040 2041 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 2042 } 2043 2044 /* 2045 * pcn_79c970_mediastatus: [ifmedia interface function] 2046 * 2047 * Get the current interface media status (Am79c970 version). 2048 */ 2049 static void 2050 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2051 { 2052 struct pcn_softc *sc = ifp->if_softc; 2053 2054 /* 2055 * The currently selected media is always the active media. 2056 * Note: We have no way to determine what media the AUTO 2057 * process picked. 2058 */ 2059 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media; 2060 } 2061 2062 /* 2063 * pcn_79c970_mediachange: [ifmedia interface function] 2064 * 2065 * Set hardware to newly-selected media (Am79c970 version). 2066 */ 2067 static int 2068 pcn_79c970_mediachange(struct ifnet *ifp) 2069 { 2070 struct pcn_softc *sc = ifp->if_softc; 2071 uint32_t reg; 2072 2073 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) { 2074 /* 2075 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL. 2076 */ 2077 reg = pcn_bcr_read(sc, LE_BCR2); 2078 reg |= LE_B2_ASEL; 2079 pcn_bcr_write(sc, LE_BCR2, reg); 2080 } else { 2081 /* 2082 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value. 2083 */ 2084 reg = pcn_bcr_read(sc, LE_BCR2); 2085 reg &= ~LE_B2_ASEL; 2086 pcn_bcr_write(sc, LE_BCR2, reg); 2087 2088 reg = pcn_csr_read(sc, LE_CSR15); 2089 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) | 2090 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data); 2091 pcn_csr_write(sc, LE_CSR15, reg); 2092 } 2093 2094 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) { 2095 reg = LE_B9_FDEN; 2096 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5) 2097 reg |= LE_B9_AUIFD; 2098 pcn_bcr_write(sc, LE_BCR9, reg); 2099 } else 2100 pcn_bcr_write(sc, LE_BCR9, 0); 2101 2102 return (0); 2103 } 2104 2105 /* 2106 * pcn_79c971_mediainit: 2107 * 2108 * Initialize media for the Am79c971. 2109 */ 2110 static void 2111 pcn_79c971_mediainit(struct pcn_softc *sc) 2112 { 2113 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2114 2115 /* We have MII. */ 2116 sc->sc_flags |= PCN_F_HAS_MII; 2117 2118 /* 2119 * The built-in 10BASE-T interface is mapped to the MII 2120 * on the PCNet-FAST. Unfortunately, there's no EEPROM 2121 * word that tells us which PHY to use. 2122 * This driver used to ignore all but the first PHY to 2123 * answer, but this code was removed to support multiple 2124 * external PHYs. As the default instance will be the first 2125 * one to answer, no harm is done by letting the possibly 2126 * non-connected internal PHY show up. 2127 */ 2128 2129 /* Initialize our media structures and probe the MII. */ 2130 sc->sc_mii.mii_ifp = ifp; 2131 sc->sc_mii.mii_readreg = pcn_mii_readreg; 2132 sc->sc_mii.mii_writereg = pcn_mii_writereg; 2133 sc->sc_mii.mii_statchg = pcn_mii_statchg; 2134 2135 sc->sc_ethercom.ec_mii = &sc->sc_mii; 2136 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange, 2137 ether_mediastatus); 2138 2139 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 2140 MII_OFFSET_ANY, 0); 2141 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 2142 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 2143 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 2144 } else 2145 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 2146 } 2147 2148 /* 2149 * pcn_mii_readreg: [mii interface function] 2150 * 2151 * Read a PHY register on the MII. 2152 */ 2153 static int 2154 pcn_mii_readreg(device_t self, int phy, int reg) 2155 { 2156 struct pcn_softc *sc = device_private(self); 2157 uint32_t rv; 2158 2159 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT)); 2160 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD; 2161 if (rv == 0xffff) 2162 return (0); 2163 2164 return (rv); 2165 } 2166 2167 /* 2168 * pcn_mii_writereg: [mii interface function] 2169 * 2170 * Write a PHY register on the MII. 2171 */ 2172 static void 2173 pcn_mii_writereg(device_t self, int phy, int reg, int val) 2174 { 2175 struct pcn_softc *sc = device_private(self); 2176 2177 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT)); 2178 pcn_bcr_write(sc, LE_BCR34, val); 2179 } 2180 2181 /* 2182 * pcn_mii_statchg: [mii interface function] 2183 * 2184 * Callback from MII layer when media changes. 2185 */ 2186 static void 2187 pcn_mii_statchg(struct ifnet *ifp) 2188 { 2189 struct pcn_softc *sc = ifp->if_softc; 2190 2191 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 2192 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN); 2193 else 2194 pcn_bcr_write(sc, LE_BCR9, 0); 2195 } 2196