1 /* $NetBSD: if_pcn.c,v 1.79 2024/07/05 04:31:51 rin Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Device driver for the AMD PCnet-PCI series of Ethernet 40 * chips: 41 * 42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI 43 * Local Bus 44 * 45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller 46 * for PCI Local Bus 47 * 48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps 49 * Ethernet Controller for PCI Local Bus 50 * 51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller 52 * with OnNow Support 53 * 54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI 55 * Ethernet Controller with Integrated PHY 56 * 57 * This also supports the virtual PCnet-PCI Ethernet interface found 58 * in VMware. 59 * 60 * TODO: 61 * 62 * * Split this into bus-specific and bus-independent portions. 63 * The core could also be used for the ILACC (Am79900) 32-bit 64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE). 65 */ 66 67 #include <sys/cdefs.h> 68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.79 2024/07/05 04:31:51 rin Exp $"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/callout.h> 73 #include <sys/mbuf.h> 74 #include <sys/kernel.h> 75 #include <sys/socket.h> 76 #include <sys/ioctl.h> 77 #include <sys/errno.h> 78 #include <sys/device.h> 79 #include <sys/queue.h> 80 81 #include <sys/rndsource.h> 82 83 #include <net/if.h> 84 #include <net/if_dl.h> 85 #include <net/if_media.h> 86 #include <net/if_ether.h> 87 88 #include <net/bpf.h> 89 90 #include <sys/bus.h> 91 #include <sys/intr.h> 92 #include <machine/endian.h> 93 94 #include <dev/mii/mii.h> 95 #include <dev/mii/miivar.h> 96 97 #include <dev/ic/am79900reg.h> 98 #include <dev/ic/lancereg.h> 99 100 #include <dev/pci/pcireg.h> 101 #include <dev/pci/pcivar.h> 102 #include <dev/pci/pcidevs.h> 103 104 #include <dev/pci/if_pcnreg.h> 105 106 /* 107 * Transmit descriptor list size. This is arbitrary, but allocate 108 * enough descriptors for 128 pending transmissions, and 4 segments 109 * per packet. This MUST work out to a power of 2. 110 * 111 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL! 112 * 113 * So we play a little trick here. We give each packet up to 16 114 * DMA segments, but only allocate the max of 512 descriptors. The 115 * transmit logic can deal with this, we just are hoping to sneak by. 116 */ 117 #define PCN_NTXSEGS 16 118 #define PCN_NTXSEGS_VMWARE 8 /* bug in VMware's emulation */ 119 120 #define PCN_TXQUEUELEN 128 121 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1) 122 #define PCN_NTXDESC 512 123 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1) 124 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK) 125 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK) 126 127 /* Tx interrupt every N + 1 packets. */ 128 #define PCN_TXINTR_MASK 7 129 130 /* 131 * Receive descriptor list size. We have one Rx buffer per incoming 132 * packet, so this logic is a little simpler. 133 */ 134 #define PCN_NRXDESC 128 135 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1) 136 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK) 137 138 /* 139 * Control structures are DMA'd to the PCnet chip. We allocate them in 140 * a single clump that maps to a single DMA segment to make several things 141 * easier. 142 */ 143 struct pcn_control_data { 144 /* The transmit descriptors. */ 145 struct letmd pcd_txdescs[PCN_NTXDESC]; 146 147 /* The receive descriptors. */ 148 struct lermd pcd_rxdescs[PCN_NRXDESC]; 149 150 /* The init block. */ 151 struct leinit pcd_initblock; 152 }; 153 154 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x) 155 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)]) 156 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)]) 157 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock) 158 159 /* 160 * Software state for transmit jobs. 161 */ 162 struct pcn_txsoft { 163 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 164 bus_dmamap_t txs_dmamap; /* our DMA map */ 165 int txs_firstdesc; /* first descriptor in packet */ 166 int txs_lastdesc; /* last descriptor in packet */ 167 }; 168 169 /* 170 * Software state for receive jobs. 171 */ 172 struct pcn_rxsoft { 173 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 174 bus_dmamap_t rxs_dmamap; /* our DMA map */ 175 }; 176 177 /* 178 * Description of Rx FIFO watermarks for various revisions. 179 */ 180 static const char * const pcn_79c970_rcvfw[] = { 181 "16 bytes", 182 "64 bytes", 183 "128 bytes", 184 NULL, 185 }; 186 187 static const char * const pcn_79c971_rcvfw[] = { 188 "16 bytes", 189 "64 bytes", 190 "112 bytes", 191 NULL, 192 }; 193 194 /* 195 * Description of Tx start points for various revisions. 196 */ 197 static const char * const pcn_79c970_xmtsp[] = { 198 "8 bytes", 199 "64 bytes", 200 "128 bytes", 201 "248 bytes", 202 }; 203 204 static const char * const pcn_79c971_xmtsp[] = { 205 "20 bytes", 206 "64 bytes", 207 "128 bytes", 208 "248 bytes", 209 }; 210 211 static const char * const pcn_79c971_xmtsp_sram[] = { 212 "44 bytes", 213 "64 bytes", 214 "128 bytes", 215 "store-and-forward", 216 }; 217 218 /* 219 * Description of Tx FIFO watermarks for various revisions. 220 */ 221 static const char * const pcn_79c970_xmtfw[] = { 222 "16 bytes", 223 "64 bytes", 224 "128 bytes", 225 NULL, 226 }; 227 228 static const char * const pcn_79c971_xmtfw[] = { 229 "16 bytes", 230 "64 bytes", 231 "108 bytes", 232 NULL, 233 }; 234 235 /* 236 * Software state per device. 237 */ 238 struct pcn_softc { 239 device_t sc_dev; /* generic device information */ 240 bus_space_tag_t sc_st; /* bus space tag */ 241 bus_space_handle_t sc_sh; /* bus space handle */ 242 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 243 struct ethercom sc_ethercom; /* Ethernet common data */ 244 245 /* Points to our media routines, etc. */ 246 const struct pcn_variant *sc_variant; 247 248 void *sc_ih; /* interrupt cookie */ 249 250 struct mii_data sc_mii; /* MII/media information */ 251 252 callout_t sc_tick_ch; /* tick callout */ 253 254 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 255 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 256 257 /* Software state for transmit and receive descriptors. */ 258 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN]; 259 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC]; 260 261 /* Control data structures */ 262 struct pcn_control_data *sc_control_data; 263 #define sc_txdescs sc_control_data->pcd_txdescs 264 #define sc_rxdescs sc_control_data->pcd_rxdescs 265 #define sc_initblock sc_control_data->pcd_initblock 266 267 #ifdef PCN_EVENT_COUNTERS 268 /* Event counters. */ 269 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 270 struct evcnt sc_ev_txintr; /* Tx interrupts */ 271 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 272 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */ 273 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */ 274 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */ 275 276 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */ 277 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */ 278 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */ 279 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */ 280 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */ 281 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */ 282 struct evcnt sc_ev_txcopy; /* Tx copies required */ 283 #endif /* PCN_EVENT_COUNTERS */ 284 285 const char * const *sc_rcvfw_desc; /* Rx FIFO watermark info */ 286 int sc_rcvfw; 287 288 const char * const *sc_xmtsp_desc; /* Tx start point info */ 289 int sc_xmtsp; 290 291 const char * const *sc_xmtfw_desc; /* Tx FIFO watermark info */ 292 int sc_xmtfw; 293 294 int sc_flags; /* misc. flags; see below */ 295 int sc_swstyle; /* the software style in use */ 296 297 int sc_txfree; /* number of free Tx descriptors */ 298 int sc_txnext; /* next ready Tx descriptor */ 299 300 int sc_txsfree; /* number of free Tx jobs */ 301 int sc_txsnext; /* next free Tx job */ 302 int sc_txsdirty; /* dirty Tx jobs */ 303 304 int sc_rxptr; /* next ready Rx descriptor/job */ 305 306 uint32_t sc_csr5; /* prototype CSR5 register */ 307 uint32_t sc_mode; /* prototype MODE register */ 308 309 krndsource_t rnd_source; /* random source */ 310 }; 311 312 /* sc_flags */ 313 #define PCN_F_HAS_MII 0x0001 /* has MII */ 314 315 #ifdef PCN_EVENT_COUNTERS 316 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++ 317 #else 318 #define PCN_EVCNT_INCR(ev) /* nothing */ 319 #endif 320 321 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x))) 322 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x))) 323 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF) 324 325 #define PCN_CDTXSYNC(sc, x, n, ops) \ 326 do { \ 327 int __x, __n; \ 328 \ 329 __x = (x); \ 330 __n = (n); \ 331 \ 332 /* If it will wrap around, sync to the end of the ring. */ \ 333 if ((__x + __n) > PCN_NTXDESC) { \ 334 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 335 PCN_CDTXOFF(__x), sizeof(struct letmd) * \ 336 (PCN_NTXDESC - __x), (ops)); \ 337 __n -= (PCN_NTXDESC - __x); \ 338 __x = 0; \ 339 } \ 340 \ 341 /* Now sync whatever is left. */ \ 342 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 343 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \ 344 } while (/*CONSTCOND*/0) 345 346 #define PCN_CDRXSYNC(sc, x, ops) \ 347 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 348 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops)) 349 350 #define PCN_CDINITSYNC(sc, ops) \ 351 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 352 PCN_CDINITOFF, sizeof(struct leinit), (ops)) 353 354 #define PCN_INIT_RXDESC(sc, x) \ 355 do { \ 356 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 357 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \ 358 struct mbuf *__m = __rxs->rxs_mbuf; \ 359 \ 360 /* \ 361 * Note: We scoot the packet forward 2 bytes in the buffer \ 362 * so that the payload after the Ethernet header is aligned \ 363 * to a 4-byte boundary. \ 364 */ \ 365 __m->m_data = __m->m_ext.ext_buf + 2; \ 366 \ 367 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \ 368 __rmd->rmd2 = \ 369 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \ 370 __rmd->rmd0 = 0; \ 371 } else { \ 372 __rmd->rmd2 = 0; \ 373 __rmd->rmd0 = \ 374 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \ 375 } \ 376 __rmd->rmd1 = htole32(LE_R1_OWN | LE_R1_ONES | \ 377 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \ 378 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);\ 379 } while(/*CONSTCOND*/0) 380 381 static void pcn_start(struct ifnet *); 382 static void pcn_watchdog(struct ifnet *); 383 static int pcn_ioctl(struct ifnet *, u_long, void *); 384 static int pcn_init(struct ifnet *); 385 static void pcn_stop(struct ifnet *, int); 386 387 static bool pcn_shutdown(device_t, int); 388 389 static void pcn_reset(struct pcn_softc *); 390 static void pcn_rxdrain(struct pcn_softc *); 391 static int pcn_add_rxbuf(struct pcn_softc *, int); 392 static void pcn_tick(void *); 393 394 static void pcn_spnd(struct pcn_softc *); 395 396 static void pcn_set_filter(struct pcn_softc *); 397 398 static int pcn_intr(void *); 399 static void pcn_txintr(struct pcn_softc *); 400 static int pcn_rxintr(struct pcn_softc *); 401 402 static int pcn_mii_readreg(device_t, int, int, uint16_t *); 403 static int pcn_mii_writereg(device_t, int, int, uint16_t); 404 static void pcn_mii_statchg(struct ifnet *); 405 406 static void pcn_79c970_mediainit(struct pcn_softc *); 407 static int pcn_79c970_mediachange(struct ifnet *); 408 static void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *); 409 410 static void pcn_79c971_mediainit(struct pcn_softc *); 411 412 /* 413 * Description of a PCnet-PCI variant. Used to select media access 414 * method, mostly, and to print a nice description of the chip. 415 */ 416 static const struct pcn_variant { 417 const char *pcv_desc; 418 void (*pcv_mediainit)(struct pcn_softc *); 419 uint16_t pcv_chipid; 420 } pcn_variants[] = { 421 { "Am79c970 PCnet-PCI", 422 pcn_79c970_mediainit, 423 PARTID_Am79c970 }, 424 425 { "Am79c970A PCnet-PCI II", 426 pcn_79c970_mediainit, 427 PARTID_Am79c970A }, 428 429 { "Am79c971 PCnet-FAST", 430 pcn_79c971_mediainit, 431 PARTID_Am79c971 }, 432 433 { "Am79c972 PCnet-FAST+", 434 pcn_79c971_mediainit, 435 PARTID_Am79c972 }, 436 437 { "Am79c973 PCnet-FAST III", 438 pcn_79c971_mediainit, 439 PARTID_Am79c973 }, 440 441 { "Am79c975 PCnet-FAST III", 442 pcn_79c971_mediainit, 443 PARTID_Am79c975 }, 444 445 { "Unknown PCnet-PCI variant", 446 pcn_79c971_mediainit, 447 0 }, 448 }; 449 450 int pcn_copy_small = 0; 451 452 static int pcn_match(device_t, cfdata_t, void *); 453 static void pcn_attach(device_t, device_t, void *); 454 455 CFATTACH_DECL_NEW(pcn, sizeof(struct pcn_softc), 456 pcn_match, pcn_attach, NULL, NULL); 457 458 /* 459 * Routines to read and write the PCnet-PCI CSR/BCR space. 460 */ 461 462 static inline uint32_t 463 pcn_csr_read(struct pcn_softc *sc, int reg) 464 { 465 466 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 467 return bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP); 468 } 469 470 static inline void 471 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val) 472 { 473 474 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 475 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val); 476 } 477 478 static inline uint32_t 479 pcn_bcr_read(struct pcn_softc *sc, int reg) 480 { 481 482 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 483 return bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP); 484 } 485 486 static inline void 487 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val) 488 { 489 490 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 491 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val); 492 } 493 494 static bool 495 pcn_is_vmware(const char *enaddr) 496 { 497 498 /* 499 * VMware uses the OUI 00:0c:29 for auto-generated MAC 500 * addresses. 501 */ 502 if (enaddr[0] == 0x00 && enaddr[1] == 0x0c && enaddr[2] == 0x29) 503 return TRUE; 504 505 /* 506 * VMware uses the OUI 00:50:56 for manually-set MAC 507 * addresses (and some auto-generated ones). 508 */ 509 if (enaddr[0] == 0x00 && enaddr[1] == 0x50 && enaddr[2] == 0x56) 510 return TRUE; 511 512 return FALSE; 513 } 514 515 static const struct pcn_variant * 516 pcn_lookup_variant(uint16_t chipid) 517 { 518 const struct pcn_variant *pcv; 519 520 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) { 521 if (chipid == pcv->pcv_chipid) 522 return pcv; 523 } 524 525 /* 526 * This covers unknown chips, which we simply treat like 527 * a generic PCnet-FAST. 528 */ 529 return pcv; 530 } 531 532 static int 533 pcn_match(device_t parent, cfdata_t cf, void *aux) 534 { 535 struct pci_attach_args *pa = aux; 536 537 /* 538 * IBM Makes a PCI variant of this card which shows up as a 539 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25) 540 * this card is truly a pcn card, so we have a special case match for 541 * it 542 */ 543 544 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT && 545 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX && 546 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK) 547 return 1; 548 549 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD) 550 return 0; 551 552 switch (PCI_PRODUCT(pa->pa_id)) { 553 case PCI_PRODUCT_AMD_PCNET_PCI: 554 /* Beat if_le_pci.c */ 555 return 10; 556 } 557 558 return 0; 559 } 560 561 static void 562 pcn_attach(device_t parent, device_t self, void *aux) 563 { 564 struct pcn_softc *sc = device_private(self); 565 struct pci_attach_args *pa = aux; 566 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 567 pci_chipset_tag_t pc = pa->pa_pc; 568 pci_intr_handle_t ih; 569 const char *intrstr = NULL; 570 bus_space_tag_t iot, memt; 571 bus_space_handle_t ioh, memh; 572 bus_dma_segment_t seg; 573 int ioh_valid, memh_valid; 574 int ntxsegs, i, rseg, error; 575 uint32_t chipid, reg; 576 uint8_t enaddr[ETHER_ADDR_LEN]; 577 prop_object_t obj; 578 bool is_vmware; 579 char intrbuf[PCI_INTRSTR_LEN]; 580 581 sc->sc_dev = self; 582 callout_init(&sc->sc_tick_ch, 0); 583 callout_setfunc(&sc->sc_tick_ch, pcn_tick, sc); 584 585 aprint_normal(": AMD PCnet-PCI Ethernet\n"); 586 587 /* 588 * Map the device. 589 */ 590 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, 591 &iot, &ioh, NULL, NULL) == 0); 592 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM, 593 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, 594 &memt, &memh, NULL, NULL) == 0); 595 596 if (memh_valid) { 597 sc->sc_st = memt; 598 sc->sc_sh = memh; 599 } else if (ioh_valid) { 600 sc->sc_st = iot; 601 sc->sc_sh = ioh; 602 } else { 603 aprint_error_dev(self, "unable to map device registers\n"); 604 return; 605 } 606 607 sc->sc_dmat = pa->pa_dmat; 608 609 /* Make sure bus mastering is enabled. */ 610 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 611 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 612 PCI_COMMAND_MASTER_ENABLE); 613 614 /* power up chip */ 615 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, 616 NULL)) && error != EOPNOTSUPP) { 617 aprint_error_dev(self, "cannot activate %d\n", error); 618 return; 619 } 620 621 /* 622 * Reset the chip to a known state. This also puts the 623 * chip into 32-bit mode. 624 */ 625 pcn_reset(sc); 626 627 /* 628 * On some systems with the chip is an on-board device, the 629 * EEPROM is not used. Handle this by reading the MAC address 630 * from the CSRs (assuming that boot firmware has written 631 * it there). 632 */ 633 obj = prop_dictionary_get(device_properties(sc->sc_dev), 634 "am79c970-no-eeprom"); 635 if (prop_bool_true(obj)) { 636 for (i = 0; i < 3; i++) { 637 uint32_t val; 638 val = pcn_csr_read(sc, LE_CSR12 + i); 639 enaddr[2 * i] = val & 0xff; 640 enaddr[2 * i + 1] = (val >> 8) & 0xff; 641 } 642 } else { 643 for (i = 0; i < ETHER_ADDR_LEN; i++) { 644 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh, 645 PCN32_APROM + i); 646 } 647 } 648 649 /* Check to see if this is a VMware emulated network interface. */ 650 is_vmware = pcn_is_vmware(enaddr); 651 652 /* 653 * Now that the device is mapped, attempt to figure out what 654 * kind of chip we have. Note that IDL has all 32 bits of 655 * the chip ID when we're in 32-bit mode. 656 */ 657 chipid = pcn_csr_read(sc, LE_CSR88); 658 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid)); 659 660 aprint_normal_dev(self, "%s rev %d, Ethernet address %s\n", 661 sc->sc_variant->pcv_desc, CHIPID_VER(chipid), 662 ether_sprintf(enaddr)); 663 664 /* 665 * VMware has a bug in its network interface emulation; we must 666 * limit the number of Tx segments. 667 */ 668 if (is_vmware) { 669 ntxsegs = PCN_NTXSEGS_VMWARE; 670 prop_dictionary_set_bool(device_properties(sc->sc_dev), 671 "am79c970-vmware-tx-bug", TRUE); 672 aprint_verbose_dev(self, 673 "VMware Tx segment count bug detected\n"); 674 } else { 675 ntxsegs = PCN_NTXSEGS; 676 } 677 678 /* 679 * Map and establish our interrupt. 680 */ 681 if (pci_intr_map(pa, &ih)) { 682 aprint_error_dev(self, "unable to map interrupt\n"); 683 return; 684 } 685 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 686 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, pcn_intr, sc, 687 device_xname(self)); 688 if (sc->sc_ih == NULL) { 689 aprint_error_dev(self, "unable to establish interrupt"); 690 if (intrstr != NULL) 691 aprint_error(" at %s", intrstr); 692 aprint_error("\n"); 693 return; 694 } 695 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 696 697 /* 698 * Allocate the control data structures, and create and load the 699 * DMA map for it. 700 */ 701 if ((error = bus_dmamem_alloc(sc->sc_dmat, 702 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 703 0)) != 0) { 704 aprint_error_dev(self, "unable to allocate control data, " 705 "error = %d\n", error); 706 goto fail_0; 707 } 708 709 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 710 sizeof(struct pcn_control_data), (void **)&sc->sc_control_data, 711 BUS_DMA_COHERENT)) != 0) { 712 aprint_error_dev(self, "unable to map control data, " 713 "error = %d\n", error); 714 goto fail_1; 715 } 716 717 if ((error = bus_dmamap_create(sc->sc_dmat, 718 sizeof(struct pcn_control_data), 1, 719 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 720 aprint_error_dev(self, "unable to create control data DMA map, " 721 "error = %d\n", error); 722 goto fail_2; 723 } 724 725 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 726 sc->sc_control_data, sizeof(struct pcn_control_data), NULL, 727 0)) != 0) { 728 aprint_error_dev(self, 729 "unable to load control data DMA map, error = %d\n", error); 730 goto fail_3; 731 } 732 733 /* Create the transmit buffer DMA maps. */ 734 for (i = 0; i < PCN_TXQUEUELEN; i++) { 735 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 736 ntxsegs, MCLBYTES, 0, 0, 737 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 738 aprint_error_dev(self, 739 "unable to create tx DMA map %d, error = %d\n", 740 i, error); 741 goto fail_4; 742 } 743 } 744 745 /* Create the receive buffer DMA maps. */ 746 for (i = 0; i < PCN_NRXDESC; i++) { 747 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 748 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 749 aprint_error_dev(self, 750 "unable to create rx DMA map %d, error = %d\n", 751 i, error); 752 goto fail_5; 753 } 754 sc->sc_rxsoft[i].rxs_mbuf = NULL; 755 } 756 757 /* Initialize our media structures. */ 758 (*sc->sc_variant->pcv_mediainit)(sc); 759 760 /* 761 * Initialize FIFO watermark info. 762 */ 763 switch (sc->sc_variant->pcv_chipid) { 764 case PARTID_Am79c970: 765 case PARTID_Am79c970A: 766 sc->sc_rcvfw_desc = pcn_79c970_rcvfw; 767 sc->sc_xmtsp_desc = pcn_79c970_xmtsp; 768 sc->sc_xmtfw_desc = pcn_79c970_xmtfw; 769 break; 770 771 default: 772 sc->sc_rcvfw_desc = pcn_79c971_rcvfw; 773 /* 774 * Read BCR25 to determine how much SRAM is 775 * on the board. If > 0, then we the chip 776 * uses different Start Point thresholds. 777 * 778 * Note BCR25 and BCR26 are loaded from the 779 * EEPROM on RST, and unaffected by S_RESET, 780 * so we don't really have to worry about 781 * them except for this. 782 */ 783 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff; 784 if (reg != 0) 785 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram; 786 else 787 sc->sc_xmtsp_desc = pcn_79c971_xmtsp; 788 sc->sc_xmtfw_desc = pcn_79c971_xmtfw; 789 break; 790 } 791 792 /* 793 * Set up defaults -- see the tables above for what these 794 * values mean. 795 * 796 * XXX How should we tune RCVFW and XMTFW? 797 */ 798 sc->sc_rcvfw = 1; /* minimum for full-duplex */ 799 sc->sc_xmtsp = 1; 800 sc->sc_xmtfw = 0; 801 802 ifp = &sc->sc_ethercom.ec_if; 803 strcpy(ifp->if_xname, device_xname(self)); 804 ifp->if_softc = sc; 805 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 806 ifp->if_ioctl = pcn_ioctl; 807 ifp->if_start = pcn_start; 808 ifp->if_watchdog = pcn_watchdog; 809 ifp->if_init = pcn_init; 810 ifp->if_stop = pcn_stop; 811 IFQ_SET_READY(&ifp->if_snd); 812 813 /* Attach the interface. */ 814 if_attach(ifp); 815 if_deferred_start_init(ifp, NULL); 816 ether_ifattach(ifp, enaddr); 817 rnd_attach_source(&sc->rnd_source, device_xname(self), 818 RND_TYPE_NET, RND_FLAG_DEFAULT); 819 820 #ifdef PCN_EVENT_COUNTERS 821 /* Attach event counters. */ 822 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 823 NULL, device_xname(self), "txdstall"); 824 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR, 825 NULL, device_xname(self), "txintr"); 826 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 827 NULL, device_xname(self), "rxintr"); 828 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC, 829 NULL, device_xname(self), "babl"); 830 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC, 831 NULL, device_xname(self), "miss"); 832 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC, 833 NULL, device_xname(self), "merr"); 834 835 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC, 836 NULL, device_xname(self), "txseg1"); 837 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC, 838 NULL, device_xname(self), "txseg2"); 839 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC, 840 NULL, device_xname(self), "txseg3"); 841 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC, 842 NULL, device_xname(self), "txseg4"); 843 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC, 844 NULL, device_xname(self), "txseg5"); 845 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC, 846 NULL, device_xname(self), "txsegmore"); 847 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC, 848 NULL, device_xname(self), "txcopy"); 849 #endif /* PCN_EVENT_COUNTERS */ 850 851 /* 852 * Establish power handler with shutdown hook, to make sure 853 * the interface is shutdown during reboot. 854 */ 855 if (pmf_device_register1(self, NULL, NULL, pcn_shutdown)) 856 pmf_class_network_register(self, ifp); 857 else 858 aprint_error_dev(self, "couldn't establish power handler\n"); 859 860 return; 861 862 /* 863 * Free any resources we've allocated during the failed attach 864 * attempt. Do this in reverse order and fall through. 865 */ 866 fail_5: 867 for (i = 0; i < PCN_NRXDESC; i++) { 868 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 869 bus_dmamap_destroy(sc->sc_dmat, 870 sc->sc_rxsoft[i].rxs_dmamap); 871 } 872 fail_4: 873 for (i = 0; i < PCN_TXQUEUELEN; i++) { 874 if (sc->sc_txsoft[i].txs_dmamap != NULL) 875 bus_dmamap_destroy(sc->sc_dmat, 876 sc->sc_txsoft[i].txs_dmamap); 877 } 878 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 879 fail_3: 880 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 881 fail_2: 882 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 883 sizeof(struct pcn_control_data)); 884 fail_1: 885 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 886 fail_0: 887 return; 888 } 889 890 /* 891 * pcn_shutdown: 892 * 893 * Make sure the interface is stopped at reboot time. 894 */ 895 static bool 896 pcn_shutdown(device_t self, int howto) 897 { 898 struct pcn_softc *sc = device_private(self); 899 900 pcn_stop(&sc->sc_ethercom.ec_if, 1); 901 /* explicitly reset the chip for some onboard one with lazy firmware */ 902 pcn_reset(sc); 903 904 return true; 905 } 906 907 /* 908 * pcn_start: [ifnet interface function] 909 * 910 * Start packet transmission on the interface. 911 */ 912 static void 913 pcn_start(struct ifnet *ifp) 914 { 915 struct pcn_softc *sc = ifp->if_softc; 916 struct mbuf *m0, *m; 917 struct pcn_txsoft *txs; 918 bus_dmamap_t dmamap; 919 int error, nexttx, lasttx = -1, ofree, seg; 920 921 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING) 922 return; 923 924 /* 925 * Remember the previous number of free descriptors and 926 * the first descriptor we'll use. 927 */ 928 ofree = sc->sc_txfree; 929 930 /* 931 * Loop through the send queue, setting up transmit descriptors 932 * until we drain the queue, or use up all available transmit 933 * descriptors. 934 */ 935 while (sc->sc_txsfree != 0) { 936 /* Grab a packet off the queue. */ 937 IFQ_POLL(&ifp->if_snd, m0); 938 if (m0 == NULL) 939 break; 940 m = NULL; 941 942 txs = &sc->sc_txsoft[sc->sc_txsnext]; 943 dmamap = txs->txs_dmamap; 944 945 /* 946 * Load the DMA map. If this fails, the packet either 947 * didn't fit in the allotted number of segments, or we 948 * were short on resources. In this case, we'll copy 949 * and try again. 950 */ 951 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 952 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) { 953 PCN_EVCNT_INCR(&sc->sc_ev_txcopy); 954 MGETHDR(m, M_DONTWAIT, MT_DATA); 955 if (m == NULL) { 956 printf("%s: unable to allocate Tx mbuf\n", 957 device_xname(sc->sc_dev)); 958 break; 959 } 960 if (m0->m_pkthdr.len > MHLEN) { 961 MCLGET(m, M_DONTWAIT); 962 if ((m->m_flags & M_EXT) == 0) { 963 printf("%s: unable to allocate Tx " 964 "cluster\n", 965 device_xname(sc->sc_dev)); 966 m_freem(m); 967 break; 968 } 969 } 970 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 971 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 972 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 973 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); 974 if (error) { 975 printf("%s: unable to load Tx buffer, " 976 "error = %d\n", device_xname(sc->sc_dev), 977 error); 978 m_freem(m); 979 break; 980 } 981 } 982 983 /* 984 * Ensure we have enough descriptors free to describe 985 * the packet. Note, we always reserve one descriptor 986 * at the end of the ring as a termination point, to 987 * prevent wrap-around. 988 */ 989 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { 990 /* 991 * Not enough free descriptors to transmit this 992 * packet. 993 */ 994 bus_dmamap_unload(sc->sc_dmat, dmamap); 995 m_freem(m); 996 PCN_EVCNT_INCR(&sc->sc_ev_txdstall); 997 break; 998 } 999 1000 IFQ_DEQUEUE(&ifp->if_snd, m0); 1001 if (m != NULL) { 1002 m_freem(m0); 1003 m0 = m; 1004 } 1005 1006 /* 1007 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1008 */ 1009 1010 /* Sync the DMA map. */ 1011 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1012 BUS_DMASYNC_PREWRITE); 1013 1014 #ifdef PCN_EVENT_COUNTERS 1015 switch (dmamap->dm_nsegs) { 1016 case 1: 1017 PCN_EVCNT_INCR(&sc->sc_ev_txseg1); 1018 break; 1019 case 2: 1020 PCN_EVCNT_INCR(&sc->sc_ev_txseg2); 1021 break; 1022 case 3: 1023 PCN_EVCNT_INCR(&sc->sc_ev_txseg3); 1024 break; 1025 case 4: 1026 PCN_EVCNT_INCR(&sc->sc_ev_txseg4); 1027 break; 1028 case 5: 1029 PCN_EVCNT_INCR(&sc->sc_ev_txseg5); 1030 break; 1031 default: 1032 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore); 1033 break; 1034 } 1035 #endif /* PCN_EVENT_COUNTERS */ 1036 1037 /* 1038 * Initialize the transmit descriptors. 1039 */ 1040 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { 1041 for (nexttx = sc->sc_txnext, seg = 0; 1042 seg < dmamap->dm_nsegs; 1043 seg++, nexttx = PCN_NEXTTX(nexttx)) { 1044 /* 1045 * If this is the first descriptor we're 1046 * enqueueing, don't set the OWN bit just 1047 * yet. That could cause a race condition. 1048 * We'll do it below. 1049 */ 1050 sc->sc_txdescs[nexttx].tmd0 = 0; 1051 sc->sc_txdescs[nexttx].tmd2 = 1052 htole32(dmamap->dm_segs[seg].ds_addr); 1053 sc->sc_txdescs[nexttx].tmd1 = 1054 htole32(LE_T1_ONES | 1055 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) | 1056 (LE_BCNT(dmamap->dm_segs[seg].ds_len) & 1057 LE_T1_BCNT_MASK)); 1058 lasttx = nexttx; 1059 } 1060 } else { 1061 for (nexttx = sc->sc_txnext, seg = 0; 1062 seg < dmamap->dm_nsegs; 1063 seg++, nexttx = PCN_NEXTTX(nexttx)) { 1064 /* 1065 * If this is the first descriptor we're 1066 * enqueueing, don't set the OWN bit just 1067 * yet. That could cause a race condition. 1068 * We'll do it below. 1069 */ 1070 sc->sc_txdescs[nexttx].tmd0 = 1071 htole32(dmamap->dm_segs[seg].ds_addr); 1072 sc->sc_txdescs[nexttx].tmd2 = 0; 1073 sc->sc_txdescs[nexttx].tmd1 = 1074 htole32(LE_T1_ONES | 1075 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) | 1076 (LE_BCNT(dmamap->dm_segs[seg].ds_len) & 1077 LE_T1_BCNT_MASK)); 1078 lasttx = nexttx; 1079 } 1080 } 1081 1082 KASSERT(lasttx != -1); 1083 /* Interrupt on the packet, if appropriate. */ 1084 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0) 1085 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT); 1086 1087 /* Set `start of packet' and `end of packet' appropriately. */ 1088 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP); 1089 sc->sc_txdescs[sc->sc_txnext].tmd1 |= 1090 htole32(LE_T1_OWN | LE_T1_STP); 1091 1092 /* Sync the descriptors we're using. */ 1093 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 1094 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1095 1096 /* Kick the transmitter. */ 1097 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA | LE_C0_TDMD); 1098 1099 /* 1100 * Store a pointer to the packet so we can free it later, 1101 * and remember what txdirty will be once the packet is 1102 * done. 1103 */ 1104 txs->txs_mbuf = m0; 1105 txs->txs_firstdesc = sc->sc_txnext; 1106 txs->txs_lastdesc = lasttx; 1107 1108 /* Advance the tx pointer. */ 1109 sc->sc_txfree -= dmamap->dm_nsegs; 1110 sc->sc_txnext = nexttx; 1111 1112 sc->sc_txsfree--; 1113 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext); 1114 1115 /* Pass the packet to any BPF listeners. */ 1116 bpf_mtap(ifp, m0, BPF_D_OUT); 1117 } 1118 1119 if (sc->sc_txfree != ofree) { 1120 /* Set a watchdog timer in case the chip flakes out. */ 1121 ifp->if_timer = 5; 1122 } 1123 } 1124 1125 /* 1126 * pcn_watchdog: [ifnet interface function] 1127 * 1128 * Watchdog timer handler. 1129 */ 1130 static void 1131 pcn_watchdog(struct ifnet *ifp) 1132 { 1133 struct pcn_softc *sc = ifp->if_softc; 1134 1135 /* 1136 * Since we're not interrupting every packet, sweep 1137 * up before we report an error. 1138 */ 1139 pcn_txintr(sc); 1140 1141 if (sc->sc_txfree != PCN_NTXDESC) { 1142 printf("%s: device timeout (txfree %d txsfree %d)\n", 1143 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree); 1144 if_statinc(ifp, if_oerrors); 1145 1146 /* Reset the interface. */ 1147 (void) pcn_init(ifp); 1148 } 1149 1150 /* Try to get more packets going. */ 1151 pcn_start(ifp); 1152 } 1153 1154 /* 1155 * pcn_ioctl: [ifnet interface function] 1156 * 1157 * Handle control requests from the operator. 1158 */ 1159 static int 1160 pcn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1161 { 1162 int s, error; 1163 1164 s = splnet(); 1165 1166 switch (cmd) { 1167 default: 1168 error = ether_ioctl(ifp, cmd, data); 1169 if (error == ENETRESET) { 1170 /* 1171 * Multicast list has changed; set the hardware filter 1172 * accordingly. 1173 */ 1174 if (ifp->if_flags & IFF_RUNNING) 1175 error = pcn_init(ifp); 1176 else 1177 error = 0; 1178 } 1179 break; 1180 } 1181 1182 /* Try to get more packets going. */ 1183 pcn_start(ifp); 1184 1185 splx(s); 1186 return error; 1187 } 1188 1189 /* 1190 * pcn_intr: 1191 * 1192 * Interrupt service routine. 1193 */ 1194 static int 1195 pcn_intr(void *arg) 1196 { 1197 struct pcn_softc *sc = arg; 1198 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1199 uint32_t csr0; 1200 int wantinit, handled = 0; 1201 1202 for (wantinit = 0; wantinit == 0;) { 1203 csr0 = pcn_csr_read(sc, LE_CSR0); 1204 if ((csr0 & LE_C0_INTR) == 0) 1205 break; 1206 1207 rnd_add_uint32(&sc->rnd_source, csr0); 1208 1209 /* ACK the bits and re-enable interrupts. */ 1210 pcn_csr_write(sc, LE_CSR0, csr0 & 1211 (LE_C0_INEA | LE_C0_BABL | LE_C0_MISS | LE_C0_MERR | 1212 LE_C0_RINT | LE_C0_TINT | LE_C0_IDON)); 1213 1214 handled = 1; 1215 1216 if (csr0 & LE_C0_RINT) { 1217 PCN_EVCNT_INCR(&sc->sc_ev_rxintr); 1218 wantinit = pcn_rxintr(sc); 1219 } 1220 1221 if (csr0 & LE_C0_TINT) { 1222 PCN_EVCNT_INCR(&sc->sc_ev_txintr); 1223 pcn_txintr(sc); 1224 } 1225 1226 if (csr0 & LE_C0_ERR) { 1227 if (csr0 & LE_C0_BABL) { 1228 PCN_EVCNT_INCR(&sc->sc_ev_babl); 1229 if_statinc(ifp, if_oerrors); 1230 } 1231 if (csr0 & LE_C0_MISS) { 1232 PCN_EVCNT_INCR(&sc->sc_ev_miss); 1233 if_statinc(ifp, if_ierrors); 1234 } 1235 if (csr0 & LE_C0_MERR) { 1236 PCN_EVCNT_INCR(&sc->sc_ev_merr); 1237 printf("%s: memory error\n", 1238 device_xname(sc->sc_dev)); 1239 wantinit = 1; 1240 break; 1241 } 1242 } 1243 1244 if ((csr0 & LE_C0_RXON) == 0) { 1245 printf("%s: receiver disabled\n", 1246 device_xname(sc->sc_dev)); 1247 if_statinc(ifp, if_ierrors); 1248 wantinit = 1; 1249 } 1250 1251 if ((csr0 & LE_C0_TXON) == 0) { 1252 printf("%s: transmitter disabled\n", 1253 device_xname(sc->sc_dev)); 1254 if_statinc(ifp, if_oerrors); 1255 wantinit = 1; 1256 } 1257 } 1258 1259 if (handled) { 1260 if (wantinit) 1261 pcn_init(ifp); 1262 1263 /* Try to get more packets going. */ 1264 if_schedule_deferred_start(ifp); 1265 } 1266 1267 return handled; 1268 } 1269 1270 /* 1271 * pcn_spnd: 1272 * 1273 * Suspend the chip. 1274 */ 1275 static void 1276 pcn_spnd(struct pcn_softc *sc) 1277 { 1278 int i; 1279 1280 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND); 1281 1282 for (i = 0; i < 10000; i++) { 1283 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND) 1284 return; 1285 delay(5); 1286 } 1287 1288 printf("%s: WARNING: chip failed to enter suspended state\n", 1289 device_xname(sc->sc_dev)); 1290 } 1291 1292 /* 1293 * pcn_txintr: 1294 * 1295 * Helper; handle transmit interrupts. 1296 */ 1297 static void 1298 pcn_txintr(struct pcn_softc *sc) 1299 { 1300 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1301 struct pcn_txsoft *txs; 1302 uint32_t tmd1, tmd2, tmd; 1303 int i, j; 1304 1305 /* 1306 * Go through our Tx list and free mbufs for those 1307 * frames which have been transmitted. 1308 */ 1309 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN; 1310 i = PCN_NEXTTXS(i), sc->sc_txsfree++) { 1311 txs = &sc->sc_txsoft[i]; 1312 1313 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 1314 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1315 1316 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1); 1317 if (tmd1 & LE_T1_OWN) 1318 break; 1319 1320 /* 1321 * Slightly annoying -- we have to loop through the 1322 * descriptors we've used looking for ERR, since it 1323 * can appear on any descriptor in the chain. 1324 */ 1325 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) { 1326 tmd = le32toh(sc->sc_txdescs[j].tmd1); 1327 if (tmd & LE_T1_ERR) { 1328 if_statinc(ifp, if_oerrors); 1329 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) 1330 tmd2 = le32toh(sc->sc_txdescs[j].tmd0); 1331 else 1332 tmd2 = le32toh(sc->sc_txdescs[j].tmd2); 1333 if (tmd2 & LE_T2_UFLO) { 1334 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) { 1335 sc->sc_xmtsp++; 1336 printf("%s: transmit " 1337 "underrun; new threshold: " 1338 "%s\n", 1339 device_xname(sc->sc_dev), 1340 sc->sc_xmtsp_desc[ 1341 sc->sc_xmtsp]); 1342 pcn_spnd(sc); 1343 pcn_csr_write(sc, LE_CSR80, 1344 LE_C80_RCVFW(sc->sc_rcvfw) | 1345 LE_C80_XMTSP(sc->sc_xmtsp) | 1346 LE_C80_XMTFW(sc->sc_xmtfw)); 1347 pcn_csr_write(sc, LE_CSR5, 1348 sc->sc_csr5); 1349 } else { 1350 printf("%s: transmit " 1351 "underrun\n", 1352 device_xname(sc->sc_dev)); 1353 } 1354 } else if (tmd2 & LE_T2_BUFF) { 1355 printf("%s: transmit buffer error\n", 1356 device_xname(sc->sc_dev)); 1357 } 1358 if (tmd2 & LE_T2_LCOL) 1359 if_statinc(ifp, if_collisions); 1360 if (tmd2 & LE_T2_RTRY) 1361 if_statadd(ifp, if_collisions, 16); 1362 goto next_packet; 1363 } 1364 if (j == txs->txs_lastdesc) 1365 break; 1366 } 1367 if (tmd1 & LE_T1_ONE) 1368 if_statinc(ifp, if_collisions); 1369 else if (tmd & LE_T1_MORE) { 1370 /* Real number is unknown. */ 1371 if_statadd(ifp, if_collisions, 2); 1372 } 1373 if_statinc(ifp, if_opackets); 1374 next_packet: 1375 sc->sc_txfree += txs->txs_dmamap->dm_nsegs; 1376 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1377 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1378 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1379 m_freem(txs->txs_mbuf); 1380 txs->txs_mbuf = NULL; 1381 } 1382 1383 /* Update the dirty transmit buffer pointer. */ 1384 sc->sc_txsdirty = i; 1385 1386 /* 1387 * If there are no more pending transmissions, cancel the watchdog 1388 * timer. 1389 */ 1390 if (sc->sc_txsfree == PCN_TXQUEUELEN) 1391 ifp->if_timer = 0; 1392 } 1393 1394 /* 1395 * pcn_rxintr: 1396 * 1397 * Helper; handle receive interrupts. 1398 */ 1399 static int 1400 pcn_rxintr(struct pcn_softc *sc) 1401 { 1402 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1403 struct pcn_rxsoft *rxs; 1404 struct mbuf *m; 1405 uint32_t rmd1; 1406 int i, len; 1407 1408 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) { 1409 rxs = &sc->sc_rxsoft[i]; 1410 1411 PCN_CDRXSYNC(sc, i, 1412 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1413 1414 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1); 1415 1416 if (rmd1 & LE_R1_OWN) 1417 break; 1418 1419 /* 1420 * Check for errors and make sure the packet fit into 1421 * a single buffer. We have structured this block of 1422 * code the way it is in order to compress it into 1423 * one test in the common case (no error). 1424 */ 1425 if (__predict_false((rmd1 & (LE_R1_STP | LE_R1_ENP |LE_R1_ERR)) 1426 != (LE_R1_STP | LE_R1_ENP))) { 1427 /* Make sure the packet is in a single buffer. */ 1428 if ((rmd1 & (LE_R1_STP | LE_R1_ENP)) != 1429 (LE_R1_STP | LE_R1_ENP)) { 1430 printf("%s: packet spilled into next buffer\n", 1431 device_xname(sc->sc_dev)); 1432 return 1; /* pcn_intr() will re-init */ 1433 } 1434 1435 /* 1436 * If the packet had an error, simple recycle the 1437 * buffer. 1438 */ 1439 if (rmd1 & LE_R1_ERR) { 1440 if_statinc(ifp, if_ierrors); 1441 /* 1442 * If we got an overflow error, chances 1443 * are there will be a CRC error. In 1444 * this case, just print the overflow 1445 * error, and skip the others. 1446 */ 1447 if (rmd1 & LE_R1_OFLO) 1448 printf("%s: overflow error\n", 1449 device_xname(sc->sc_dev)); 1450 else { 1451 #define PRINTIT(x, str) \ 1452 if (rmd1 & (x)) \ 1453 printf("%s: %s\n", \ 1454 device_xname(sc->sc_dev), \ 1455 str); 1456 PRINTIT(LE_R1_FRAM, "framing error"); 1457 PRINTIT(LE_R1_CRC, "CRC error"); 1458 PRINTIT(LE_R1_BUFF, "buffer error"); 1459 } 1460 #undef PRINTIT 1461 PCN_INIT_RXDESC(sc, i); 1462 continue; 1463 } 1464 } 1465 1466 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1467 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1468 1469 /* 1470 * No errors; receive the packet. 1471 */ 1472 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) 1473 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK; 1474 else 1475 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK; 1476 1477 /* 1478 * The LANCE family includes the CRC with every packet; 1479 * trim it off here. 1480 */ 1481 len -= ETHER_CRC_LEN; 1482 1483 /* 1484 * If the packet is small enough to fit in a 1485 * single header mbuf, allocate one and copy 1486 * the data into it. This greatly reduces 1487 * memory consumption when we receive lots 1488 * of small packets. 1489 * 1490 * Otherwise, we add a new buffer to the receive 1491 * chain. If this fails, we drop the packet and 1492 * recycle the old buffer. 1493 */ 1494 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) { 1495 MGETHDR(m, M_DONTWAIT, MT_DATA); 1496 if (m == NULL) 1497 goto dropit; 1498 m->m_data += 2; 1499 memcpy(mtod(m, void *), 1500 mtod(rxs->rxs_mbuf, void *), len); 1501 PCN_INIT_RXDESC(sc, i); 1502 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1503 rxs->rxs_dmamap->dm_mapsize, 1504 BUS_DMASYNC_PREREAD); 1505 } else { 1506 m = rxs->rxs_mbuf; 1507 if (pcn_add_rxbuf(sc, i) != 0) { 1508 dropit: 1509 if_statinc(ifp, if_ierrors); 1510 PCN_INIT_RXDESC(sc, i); 1511 bus_dmamap_sync(sc->sc_dmat, 1512 rxs->rxs_dmamap, 0, 1513 rxs->rxs_dmamap->dm_mapsize, 1514 BUS_DMASYNC_PREREAD); 1515 continue; 1516 } 1517 } 1518 1519 m_set_rcvif(m, ifp); 1520 m->m_pkthdr.len = m->m_len = len; 1521 1522 /* Pass it on. */ 1523 if_percpuq_enqueue(ifp->if_percpuq, m); 1524 } 1525 1526 /* Update the receive pointer. */ 1527 sc->sc_rxptr = i; 1528 return 0; 1529 } 1530 1531 /* 1532 * pcn_tick: 1533 * 1534 * One second timer, used to tick the MII. 1535 */ 1536 static void 1537 pcn_tick(void *arg) 1538 { 1539 struct pcn_softc *sc = arg; 1540 int s; 1541 1542 s = splnet(); 1543 mii_tick(&sc->sc_mii); 1544 splx(s); 1545 1546 callout_schedule(&sc->sc_tick_ch, hz); 1547 } 1548 1549 /* 1550 * pcn_reset: 1551 * 1552 * Perform a soft reset on the PCnet-PCI. 1553 */ 1554 static void 1555 pcn_reset(struct pcn_softc *sc) 1556 { 1557 1558 /* 1559 * The PCnet-PCI chip is reset by reading from the 1560 * RESET register. Note that while the NE2100 LANCE 1561 * boards require a write after the read, the PCnet-PCI 1562 * chips do not require this. 1563 * 1564 * Since we don't know if we're in 16-bit or 32-bit 1565 * mode right now, issue both (it's safe) in the 1566 * hopes that one will succeed. 1567 */ 1568 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET); 1569 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET); 1570 1571 /* Wait 1ms for it to finish. */ 1572 delay(1000); 1573 1574 /* 1575 * Select 32-bit I/O mode by issuing a 32-bit write to the 1576 * RDP. Since the RAP is 0 after a reset, writing a 0 1577 * to RDP is safe (since it simply clears CSR0). 1578 */ 1579 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0); 1580 } 1581 1582 /* 1583 * pcn_init: [ifnet interface function] 1584 * 1585 * Initialize the interface. Must be called at splnet(). 1586 */ 1587 static int 1588 pcn_init(struct ifnet *ifp) 1589 { 1590 struct pcn_softc *sc = ifp->if_softc; 1591 struct pcn_rxsoft *rxs; 1592 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 1593 int i, error = 0; 1594 uint32_t reg; 1595 1596 /* Cancel any pending I/O. */ 1597 pcn_stop(ifp, 0); 1598 1599 /* Reset the chip to a known state. */ 1600 pcn_reset(sc); 1601 1602 /* 1603 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything 1604 * else. 1605 * 1606 * XXX It'd be really nice to use SSTYLE 2 on all the chips, 1607 * because the structure layout is compatible with ILACC, 1608 * but the burst mode is only available in SSTYLE 3, and 1609 * burst mode should provide some performance enhancement. 1610 */ 1611 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970) 1612 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2; 1613 else 1614 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3; 1615 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle); 1616 1617 /* Initialize the transmit descriptor ring. */ 1618 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 1619 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC, 1620 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1621 sc->sc_txfree = PCN_NTXDESC; 1622 sc->sc_txnext = 0; 1623 1624 /* Initialize the transmit job descriptors. */ 1625 for (i = 0; i < PCN_TXQUEUELEN; i++) 1626 sc->sc_txsoft[i].txs_mbuf = NULL; 1627 sc->sc_txsfree = PCN_TXQUEUELEN; 1628 sc->sc_txsnext = 0; 1629 sc->sc_txsdirty = 0; 1630 1631 /* 1632 * Initialize the receive descriptor and receive job 1633 * descriptor rings. 1634 */ 1635 for (i = 0; i < PCN_NRXDESC; i++) { 1636 rxs = &sc->sc_rxsoft[i]; 1637 if (rxs->rxs_mbuf == NULL) { 1638 if ((error = pcn_add_rxbuf(sc, i)) != 0) { 1639 printf("%s: unable to allocate or map rx " 1640 "buffer %d, error = %d\n", 1641 device_xname(sc->sc_dev), i, error); 1642 /* 1643 * XXX Should attempt to run with fewer receive 1644 * XXX buffers instead of just failing. 1645 */ 1646 pcn_rxdrain(sc); 1647 goto out; 1648 } 1649 } else 1650 PCN_INIT_RXDESC(sc, i); 1651 } 1652 sc->sc_rxptr = 0; 1653 1654 /* Initialize MODE for the initialization block. */ 1655 sc->sc_mode = 0; 1656 if (ifp->if_flags & IFF_PROMISC) 1657 sc->sc_mode |= LE_C15_PROM; 1658 if ((ifp->if_flags & IFF_BROADCAST) == 0) 1659 sc->sc_mode |= LE_C15_DRCVBC; 1660 1661 /* 1662 * If we have MII, simply select MII in the MODE register, 1663 * and clear ASEL. Otherwise, let ASEL stand (for now), 1664 * and leave PORTSEL alone (it is ignored with ASEL is set). 1665 */ 1666 if (sc->sc_flags & PCN_F_HAS_MII) { 1667 pcn_bcr_write(sc, LE_BCR2, 1668 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL); 1669 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII); 1670 1671 /* 1672 * Disable MII auto-negotiation. We handle that in 1673 * our own MII layer. 1674 */ 1675 pcn_bcr_write(sc, LE_BCR32, 1676 pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS); 1677 } 1678 1679 /* 1680 * Set the Tx and Rx descriptor ring addresses in the init 1681 * block, the TLEN and RLEN other fields of the init block 1682 * MODE register. 1683 */ 1684 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0)); 1685 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0)); 1686 sc->sc_initblock.init_mode = htole32(sc->sc_mode | 1687 (((uint32_t)ffs(PCN_NTXDESC) - 1) << 28) | 1688 ((ffs(PCN_NRXDESC) - 1) << 20)); 1689 1690 /* Set the station address in the init block. */ 1691 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] | 1692 (enaddr[1] << 8) | (enaddr[2] << 16) | 1693 ((uint32_t)enaddr[3] << 24)); 1694 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] | 1695 (enaddr[5] << 8)); 1696 1697 /* Set the multicast filter in the init block. */ 1698 pcn_set_filter(sc); 1699 1700 /* Initialize CSR3. */ 1701 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM | LE_C3_IDONM | LE_C3_DXSUFLO); 1702 1703 /* Initialize CSR4. */ 1704 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS | LE_C4_APAD_XMT | 1705 LE_C4_MFCOM | LE_C4_RCVCCOM | LE_C4_TXSTRTM); 1706 1707 /* Initialize CSR5. */ 1708 sc->sc_csr5 = LE_C5_LTINTEN | LE_C5_SINTE; 1709 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5); 1710 1711 /* 1712 * If we have an Am79c971 or greater, initialize CSR7. 1713 * 1714 * XXX Might be nice to use the MII auto-poll interrupt someday. 1715 */ 1716 switch (sc->sc_variant->pcv_chipid) { 1717 case PARTID_Am79c970: 1718 case PARTID_Am79c970A: 1719 /* Not available on these chips. */ 1720 break; 1721 1722 default: 1723 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE); 1724 break; 1725 } 1726 1727 /* 1728 * On the Am79c970A and greater, initialize BCR18 to 1729 * enable burst mode. 1730 * 1731 * Also enable the "no underflow" option on the Am79c971 and 1732 * higher, which prevents the chip from generating transmit 1733 * underflows, yet sill provides decent performance. Note if 1734 * chip is not connected to external SRAM, then we still have 1735 * to handle underflow errors (the NOUFLO bit is ignored in 1736 * that case). 1737 */ 1738 reg = pcn_bcr_read(sc, LE_BCR18); 1739 switch (sc->sc_variant->pcv_chipid) { 1740 case PARTID_Am79c970: 1741 break; 1742 1743 case PARTID_Am79c970A: 1744 reg |= LE_B18_BREADE | LE_B18_BWRITE; 1745 break; 1746 1747 default: 1748 reg |= LE_B18_BREADE | LE_B18_BWRITE | LE_B18_NOUFLO; 1749 break; 1750 } 1751 pcn_bcr_write(sc, LE_BCR18, reg); 1752 1753 /* 1754 * Initialize CSR80 (FIFO thresholds for Tx and Rx). 1755 */ 1756 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) | 1757 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw)); 1758 1759 /* 1760 * Send the init block to the chip, and wait for it 1761 * to be processed. 1762 */ 1763 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE); 1764 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff); 1765 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff); 1766 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT); 1767 delay(100); 1768 for (i = 0; i < 10000; i++) { 1769 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON) 1770 break; 1771 delay(10); 1772 } 1773 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE); 1774 if (i == 10000) { 1775 printf("%s: timeout processing init block\n", 1776 device_xname(sc->sc_dev)); 1777 error = EIO; 1778 goto out; 1779 } 1780 1781 /* Set the media. */ 1782 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0) 1783 goto out; 1784 1785 /* Enable interrupts and external activity (and ACK IDON). */ 1786 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA | LE_C0_STRT | LE_C0_IDON); 1787 1788 if (sc->sc_flags & PCN_F_HAS_MII) { 1789 /* Start the one second MII clock. */ 1790 callout_schedule(&sc->sc_tick_ch, hz); 1791 } 1792 1793 /* ...all done! */ 1794 ifp->if_flags |= IFF_RUNNING; 1795 1796 out: 1797 if (error) 1798 printf("%s: interface not running\n", device_xname(sc->sc_dev)); 1799 return error; 1800 } 1801 1802 /* 1803 * pcn_rxdrain: 1804 * 1805 * Drain the receive queue. 1806 */ 1807 static void 1808 pcn_rxdrain(struct pcn_softc *sc) 1809 { 1810 struct pcn_rxsoft *rxs; 1811 int i; 1812 1813 for (i = 0; i < PCN_NRXDESC; i++) { 1814 rxs = &sc->sc_rxsoft[i]; 1815 if (rxs->rxs_mbuf != NULL) { 1816 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1817 m_freem(rxs->rxs_mbuf); 1818 rxs->rxs_mbuf = NULL; 1819 } 1820 } 1821 } 1822 1823 /* 1824 * pcn_stop: [ifnet interface function] 1825 * 1826 * Stop transmission on the interface. 1827 */ 1828 static void 1829 pcn_stop(struct ifnet *ifp, int disable) 1830 { 1831 struct pcn_softc *sc = ifp->if_softc; 1832 struct pcn_txsoft *txs; 1833 int i; 1834 1835 if (sc->sc_flags & PCN_F_HAS_MII) { 1836 /* Stop the one second clock. */ 1837 callout_stop(&sc->sc_tick_ch); 1838 1839 /* Down the MII. */ 1840 mii_down(&sc->sc_mii); 1841 } 1842 1843 /* Stop the chip. */ 1844 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP); 1845 1846 /* Release any queued transmit buffers. */ 1847 for (i = 0; i < PCN_TXQUEUELEN; i++) { 1848 txs = &sc->sc_txsoft[i]; 1849 if (txs->txs_mbuf != NULL) { 1850 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1851 m_freem(txs->txs_mbuf); 1852 txs->txs_mbuf = NULL; 1853 } 1854 } 1855 1856 /* Mark the interface as down and cancel the watchdog timer. */ 1857 ifp->if_flags &= ~IFF_RUNNING; 1858 ifp->if_timer = 0; 1859 1860 if (disable) 1861 pcn_rxdrain(sc); 1862 } 1863 1864 /* 1865 * pcn_add_rxbuf: 1866 * 1867 * Add a receive buffer to the indicated descriptor. 1868 */ 1869 static int 1870 pcn_add_rxbuf(struct pcn_softc *sc, int idx) 1871 { 1872 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx]; 1873 struct mbuf *m; 1874 int error; 1875 1876 MGETHDR(m, M_DONTWAIT, MT_DATA); 1877 if (m == NULL) 1878 return ENOBUFS; 1879 1880 MCLGET(m, M_DONTWAIT); 1881 if ((m->m_flags & M_EXT) == 0) { 1882 m_freem(m); 1883 return ENOBUFS; 1884 } 1885 1886 if (rxs->rxs_mbuf != NULL) 1887 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1888 1889 rxs->rxs_mbuf = m; 1890 1891 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 1892 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 1893 BUS_DMA_READ | BUS_DMA_NOWAIT); 1894 if (error) { 1895 printf("%s: can't load rx DMA map %d, error = %d\n", 1896 device_xname(sc->sc_dev), idx, error); 1897 panic("pcn_add_rxbuf"); 1898 } 1899 1900 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1901 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1902 1903 PCN_INIT_RXDESC(sc, idx); 1904 1905 return 0; 1906 } 1907 1908 /* 1909 * pcn_set_filter: 1910 * 1911 * Set up the receive filter. 1912 */ 1913 static void 1914 pcn_set_filter(struct pcn_softc *sc) 1915 { 1916 struct ethercom *ec = &sc->sc_ethercom; 1917 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1918 struct ether_multi *enm; 1919 struct ether_multistep step; 1920 uint32_t crc; 1921 1922 /* 1923 * Set up the multicast address filter by passing all multicast 1924 * addresses through a CRC generator, and then using the high 1925 * order 6 bits as an index into the 64-bit logical address 1926 * filter. The high order bits select the word, while the rest 1927 * of the bits select the bit within the word. 1928 */ 1929 1930 if (ifp->if_flags & IFF_PROMISC) 1931 goto allmulti; 1932 1933 sc->sc_initblock.init_ladrf[0] = 1934 sc->sc_initblock.init_ladrf[1] = 1935 sc->sc_initblock.init_ladrf[2] = 1936 sc->sc_initblock.init_ladrf[3] = 0; 1937 1938 ETHER_LOCK(ec); 1939 ETHER_FIRST_MULTI(step, ec, enm); 1940 while (enm != NULL) { 1941 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1942 /* 1943 * We must listen to a range of multicast addresses. 1944 * For now, just accept all multicasts, rather than 1945 * trying to set only those filter bits needed to match 1946 * the range. (At this time, the only use of address 1947 * ranges is for IP multicast routing, for which the 1948 * range is big enough to require all bits set.) 1949 */ 1950 ETHER_UNLOCK(ec); 1951 goto allmulti; 1952 } 1953 1954 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 1955 1956 /* Just want the 6 most significant bits. */ 1957 crc >>= 26; 1958 1959 /* Set the corresponding bit in the filter. */ 1960 sc->sc_initblock.init_ladrf[crc >> 4] |= 1961 htole16(1 << (crc & 0xf)); 1962 1963 ETHER_NEXT_MULTI(step, enm); 1964 } 1965 ETHER_UNLOCK(ec); 1966 1967 ifp->if_flags &= ~IFF_ALLMULTI; 1968 return; 1969 1970 allmulti: 1971 ifp->if_flags |= IFF_ALLMULTI; 1972 sc->sc_initblock.init_ladrf[0] = 1973 sc->sc_initblock.init_ladrf[1] = 1974 sc->sc_initblock.init_ladrf[2] = 1975 sc->sc_initblock.init_ladrf[3] = 0xffff; 1976 } 1977 1978 /* 1979 * pcn_79c970_mediainit: 1980 * 1981 * Initialize media for the Am79c970. 1982 */ 1983 static void 1984 pcn_79c970_mediainit(struct pcn_softc *sc) 1985 { 1986 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1987 struct mii_data * const mii = &sc->sc_mii; 1988 const char *sep = ""; 1989 1990 mii->mii_ifp = ifp; 1991 1992 ifmedia_init(&mii->mii_media, IFM_IMASK, pcn_79c970_mediachange, 1993 pcn_79c970_mediastatus); 1994 1995 #define ADD(str, m, d) \ 1996 do { \ 1997 aprint_normal("%s%s", sep, str); \ 1998 ifmedia_add(&mii->mii_media, IFM_ETHER | (m), (d), NULL); \ 1999 sep = ", "; \ 2000 } while (/*CONSTCOND*/0) 2001 2002 aprint_normal("%s: ", device_xname(sc->sc_dev)); 2003 ADD("10base5", IFM_10_5, PORTSEL_AUI); 2004 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 2005 ADD("10base5-FDX", IFM_10_5 | IFM_FDX, PORTSEL_AUI); 2006 ADD("10baseT", IFM_10_T, PORTSEL_10T); 2007 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 2008 ADD("10baseT-FDX", IFM_10_T | IFM_FDX, PORTSEL_10T); 2009 ADD("auto", IFM_AUTO, 0); 2010 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 2011 ADD("auto-FDX", IFM_AUTO | IFM_FDX, 0); 2012 aprint_normal("\n"); 2013 2014 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 2015 } 2016 2017 /* 2018 * pcn_79c970_mediastatus: [ifmedia interface function] 2019 * 2020 * Get the current interface media status (Am79c970 version). 2021 */ 2022 static void 2023 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2024 { 2025 struct pcn_softc *sc = ifp->if_softc; 2026 2027 /* 2028 * The currently selected media is always the active media. 2029 * Note: We have no way to determine what media the AUTO 2030 * process picked. 2031 */ 2032 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media; 2033 } 2034 2035 /* 2036 * pcn_79c970_mediachange: [ifmedia interface function] 2037 * 2038 * Set hardware to newly-selected media (Am79c970 version). 2039 */ 2040 static int 2041 pcn_79c970_mediachange(struct ifnet *ifp) 2042 { 2043 struct pcn_softc *sc = ifp->if_softc; 2044 uint32_t reg; 2045 2046 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) { 2047 /* 2048 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL. 2049 */ 2050 reg = pcn_bcr_read(sc, LE_BCR2); 2051 reg |= LE_B2_ASEL; 2052 pcn_bcr_write(sc, LE_BCR2, reg); 2053 } else { 2054 /* 2055 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value. 2056 */ 2057 reg = pcn_bcr_read(sc, LE_BCR2); 2058 reg &= ~LE_B2_ASEL; 2059 pcn_bcr_write(sc, LE_BCR2, reg); 2060 2061 reg = pcn_csr_read(sc, LE_CSR15); 2062 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) | 2063 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data); 2064 pcn_csr_write(sc, LE_CSR15, reg); 2065 } 2066 2067 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) { 2068 reg = LE_B9_FDEN; 2069 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5) 2070 reg |= LE_B9_AUIFD; 2071 pcn_bcr_write(sc, LE_BCR9, reg); 2072 } else 2073 pcn_bcr_write(sc, LE_BCR9, 0); 2074 2075 return 0; 2076 } 2077 2078 /* 2079 * pcn_79c971_mediainit: 2080 * 2081 * Initialize media for the Am79c971. 2082 */ 2083 static void 2084 pcn_79c971_mediainit(struct pcn_softc *sc) 2085 { 2086 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2087 struct mii_data * const mii = &sc->sc_mii; 2088 2089 /* We have MII. */ 2090 sc->sc_flags |= PCN_F_HAS_MII; 2091 2092 /* 2093 * The built-in 10BASE-T interface is mapped to the MII 2094 * on the PCNet-FAST. Unfortunately, there's no EEPROM 2095 * word that tells us which PHY to use. 2096 * This driver used to ignore all but the first PHY to 2097 * answer, but this code was removed to support multiple 2098 * external PHYs. As the default instance will be the first 2099 * one to answer, no harm is done by letting the possibly 2100 * non-connected internal PHY show up. 2101 */ 2102 2103 /* Initialize our media structures and probe the MII. */ 2104 mii->mii_ifp = ifp; 2105 mii->mii_readreg = pcn_mii_readreg; 2106 mii->mii_writereg = pcn_mii_writereg; 2107 mii->mii_statchg = pcn_mii_statchg; 2108 2109 sc->sc_ethercom.ec_mii = mii; 2110 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); 2111 2112 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 2113 MII_OFFSET_ANY, 0); 2114 if (LIST_FIRST(&mii->mii_phys) == NULL) { 2115 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 2116 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 2117 } else 2118 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 2119 } 2120 2121 /* 2122 * pcn_mii_readreg: [mii interface function] 2123 * 2124 * Read a PHY register on the MII. 2125 */ 2126 static int 2127 pcn_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 2128 { 2129 struct pcn_softc *sc = device_private(self); 2130 2131 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT)); 2132 *val = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD; 2133 if (*val == 0xffff) 2134 return -1; 2135 2136 return 0; 2137 } 2138 2139 /* 2140 * pcn_mii_writereg: [mii interface function] 2141 * 2142 * Write a PHY register on the MII. 2143 */ 2144 static int 2145 pcn_mii_writereg(device_t self, int phy, int reg, uint16_t val) 2146 { 2147 struct pcn_softc *sc = device_private(self); 2148 2149 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT)); 2150 pcn_bcr_write(sc, LE_BCR34, val); 2151 2152 return 0; 2153 } 2154 2155 /* 2156 * pcn_mii_statchg: [mii interface function] 2157 * 2158 * Callback from MII layer when media changes. 2159 */ 2160 static void 2161 pcn_mii_statchg(struct ifnet *ifp) 2162 { 2163 struct pcn_softc *sc = ifp->if_softc; 2164 2165 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 2166 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN); 2167 else 2168 pcn_bcr_write(sc, LE_BCR9, 0); 2169 } 2170