1 /* $NetBSD: if_pcn.c,v 1.24 2004/10/30 18:09:22 thorpej Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Device driver for the AMD PCnet-PCI series of Ethernet 40 * chips: 41 * 42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI 43 * Local Bus 44 * 45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller 46 * for PCI Local Bus 47 * 48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps 49 * Ethernet Controller for PCI Local Bus 50 * 51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller 52 * with OnNow Support 53 * 54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI 55 * Ethernet Controller with Integrated PHY 56 * 57 * This also supports the virtual PCnet-PCI Ethernet interface found 58 * in VMware. 59 * 60 * TODO: 61 * 62 * * Split this into bus-specific and bus-independent portions. 63 * The core could also be used for the ILACC (Am79900) 32-bit 64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE). 65 */ 66 67 #include "opt_pcn.h" 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.24 2004/10/30 18:09:22 thorpej Exp $"); 71 72 #include "bpfilter.h" 73 #include "rnd.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/callout.h> 78 #include <sys/mbuf.h> 79 #include <sys/malloc.h> 80 #include <sys/kernel.h> 81 #include <sys/socket.h> 82 #include <sys/ioctl.h> 83 #include <sys/errno.h> 84 #include <sys/device.h> 85 #include <sys/queue.h> 86 87 #if NRND > 0 88 #include <sys/rnd.h> 89 #endif 90 91 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */ 92 93 #include <net/if.h> 94 #include <net/if_dl.h> 95 #include <net/if_media.h> 96 #include <net/if_ether.h> 97 98 #if NBPFILTER > 0 99 #include <net/bpf.h> 100 #endif 101 102 #include <machine/bus.h> 103 #include <machine/intr.h> 104 #include <machine/endian.h> 105 106 #include <dev/mii/mii.h> 107 #include <dev/mii/miivar.h> 108 109 #include <dev/ic/am79900reg.h> 110 #include <dev/ic/lancereg.h> 111 112 #include <dev/pci/pcireg.h> 113 #include <dev/pci/pcivar.h> 114 #include <dev/pci/pcidevs.h> 115 116 #include <dev/pci/if_pcnreg.h> 117 118 /* 119 * Transmit descriptor list size. This is arbitrary, but allocate 120 * enough descriptors for 128 pending transmissions, and 4 segments 121 * per packet. This MUST work out to a power of 2. 122 * 123 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL! 124 * 125 * So we play a little trick here. We give each packet up to 16 126 * DMA segments, but only allocate the max of 512 descriptors. The 127 * transmit logic can deal with this, we just are hoping to sneak by. 128 */ 129 #define PCN_NTXSEGS 16 130 131 #define PCN_TXQUEUELEN 128 132 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1) 133 #define PCN_NTXDESC 512 134 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1) 135 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK) 136 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK) 137 138 /* Tx interrupt every N + 1 packets. */ 139 #define PCN_TXINTR_MASK 7 140 141 /* 142 * Receive descriptor list size. We have one Rx buffer per incoming 143 * packet, so this logic is a little simpler. 144 */ 145 #define PCN_NRXDESC 128 146 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1) 147 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK) 148 149 /* 150 * Control structures are DMA'd to the PCnet chip. We allocate them in 151 * a single clump that maps to a single DMA segment to make several things 152 * easier. 153 */ 154 struct pcn_control_data { 155 /* The transmit descriptors. */ 156 struct letmd pcd_txdescs[PCN_NTXDESC]; 157 158 /* The receive descriptors. */ 159 struct lermd pcd_rxdescs[PCN_NRXDESC]; 160 161 /* The init block. */ 162 struct leinit pcd_initblock; 163 }; 164 165 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x) 166 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)]) 167 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)]) 168 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock) 169 170 /* 171 * Software state for transmit jobs. 172 */ 173 struct pcn_txsoft { 174 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 175 bus_dmamap_t txs_dmamap; /* our DMA map */ 176 int txs_firstdesc; /* first descriptor in packet */ 177 int txs_lastdesc; /* last descriptor in packet */ 178 }; 179 180 /* 181 * Software state for receive jobs. 182 */ 183 struct pcn_rxsoft { 184 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 185 bus_dmamap_t rxs_dmamap; /* our DMA map */ 186 }; 187 188 /* 189 * Description of Rx FIFO watermarks for various revisions. 190 */ 191 static const char * const pcn_79c970_rcvfw[] = { 192 "16 bytes", 193 "64 bytes", 194 "128 bytes", 195 NULL, 196 }; 197 198 static const char * const pcn_79c971_rcvfw[] = { 199 "16 bytes", 200 "64 bytes", 201 "112 bytes", 202 NULL, 203 }; 204 205 /* 206 * Description of Tx start points for various revisions. 207 */ 208 static const char * const pcn_79c970_xmtsp[] = { 209 "8 bytes", 210 "64 bytes", 211 "128 bytes", 212 "248 bytes", 213 }; 214 215 static const char * const pcn_79c971_xmtsp[] = { 216 "20 bytes", 217 "64 bytes", 218 "128 bytes", 219 "248 bytes", 220 }; 221 222 static const char * const pcn_79c971_xmtsp_sram[] = { 223 "44 bytes", 224 "64 bytes", 225 "128 bytes", 226 "store-and-forward", 227 }; 228 229 /* 230 * Description of Tx FIFO watermarks for various revisions. 231 */ 232 static const char * const pcn_79c970_xmtfw[] = { 233 "16 bytes", 234 "64 bytes", 235 "128 bytes", 236 NULL, 237 }; 238 239 static const char * const pcn_79c971_xmtfw[] = { 240 "16 bytes", 241 "64 bytes", 242 "108 bytes", 243 NULL, 244 }; 245 246 /* 247 * Software state per device. 248 */ 249 struct pcn_softc { 250 struct device sc_dev; /* generic device information */ 251 bus_space_tag_t sc_st; /* bus space tag */ 252 bus_space_handle_t sc_sh; /* bus space handle */ 253 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 254 struct ethercom sc_ethercom; /* Ethernet common data */ 255 void *sc_sdhook; /* shutdown hook */ 256 257 /* Points to our media routines, etc. */ 258 const struct pcn_variant *sc_variant; 259 260 void *sc_ih; /* interrupt cookie */ 261 262 struct mii_data sc_mii; /* MII/media information */ 263 264 struct callout sc_tick_ch; /* tick callout */ 265 266 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 267 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 268 269 /* Software state for transmit and receive descriptors. */ 270 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN]; 271 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC]; 272 273 /* Control data structures */ 274 struct pcn_control_data *sc_control_data; 275 #define sc_txdescs sc_control_data->pcd_txdescs 276 #define sc_rxdescs sc_control_data->pcd_rxdescs 277 #define sc_initblock sc_control_data->pcd_initblock 278 279 #ifdef PCN_EVENT_COUNTERS 280 /* Event counters. */ 281 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 282 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 283 struct evcnt sc_ev_txintr; /* Tx interrupts */ 284 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 285 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */ 286 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */ 287 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */ 288 289 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */ 290 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */ 291 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */ 292 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */ 293 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */ 294 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */ 295 struct evcnt sc_ev_txcopy; /* Tx copies required */ 296 #endif /* PCN_EVENT_COUNTERS */ 297 298 const char * const *sc_rcvfw_desc; /* Rx FIFO watermark info */ 299 int sc_rcvfw; 300 301 const char * const *sc_xmtsp_desc; /* Tx start point info */ 302 int sc_xmtsp; 303 304 const char * const *sc_xmtfw_desc; /* Tx FIFO watermark info */ 305 int sc_xmtfw; 306 307 int sc_flags; /* misc. flags; see below */ 308 int sc_swstyle; /* the software style in use */ 309 310 int sc_txfree; /* number of free Tx descriptors */ 311 int sc_txnext; /* next ready Tx descriptor */ 312 313 int sc_txsfree; /* number of free Tx jobs */ 314 int sc_txsnext; /* next free Tx job */ 315 int sc_txsdirty; /* dirty Tx jobs */ 316 317 int sc_rxptr; /* next ready Rx descriptor/job */ 318 319 uint32_t sc_csr5; /* prototype CSR5 register */ 320 uint32_t sc_mode; /* prototype MODE register */ 321 int sc_phyaddr; /* PHY address */ 322 323 #if NRND > 0 324 rndsource_element_t rnd_source; /* random source */ 325 #endif 326 }; 327 328 /* sc_flags */ 329 #define PCN_F_HAS_MII 0x0001 /* has MII */ 330 331 #ifdef PCN_EVENT_COUNTERS 332 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++ 333 #else 334 #define PCN_EVCNT_INCR(ev) /* nothing */ 335 #endif 336 337 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x))) 338 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x))) 339 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF) 340 341 #define PCN_CDTXSYNC(sc, x, n, ops) \ 342 do { \ 343 int __x, __n; \ 344 \ 345 __x = (x); \ 346 __n = (n); \ 347 \ 348 /* If it will wrap around, sync to the end of the ring. */ \ 349 if ((__x + __n) > PCN_NTXDESC) { \ 350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 351 PCN_CDTXOFF(__x), sizeof(struct letmd) * \ 352 (PCN_NTXDESC - __x), (ops)); \ 353 __n -= (PCN_NTXDESC - __x); \ 354 __x = 0; \ 355 } \ 356 \ 357 /* Now sync whatever is left. */ \ 358 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 359 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \ 360 } while (/*CONSTCOND*/0) 361 362 #define PCN_CDRXSYNC(sc, x, ops) \ 363 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 364 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops)) 365 366 #define PCN_CDINITSYNC(sc, ops) \ 367 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 368 PCN_CDINITOFF, sizeof(struct leinit), (ops)) 369 370 #define PCN_INIT_RXDESC(sc, x) \ 371 do { \ 372 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 373 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \ 374 struct mbuf *__m = __rxs->rxs_mbuf; \ 375 \ 376 /* \ 377 * Note: We scoot the packet forward 2 bytes in the buffer \ 378 * so that the payload after the Ethernet header is aligned \ 379 * to a 4-byte boundary. \ 380 */ \ 381 __m->m_data = __m->m_ext.ext_buf + 2; \ 382 \ 383 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \ 384 __rmd->rmd2 = \ 385 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \ 386 __rmd->rmd0 = 0; \ 387 } else { \ 388 __rmd->rmd2 = 0; \ 389 __rmd->rmd0 = \ 390 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \ 391 } \ 392 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \ 393 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \ 394 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\ 395 } while(/*CONSTCOND*/0) 396 397 static void pcn_start(struct ifnet *); 398 static void pcn_watchdog(struct ifnet *); 399 static int pcn_ioctl(struct ifnet *, u_long, caddr_t); 400 static int pcn_init(struct ifnet *); 401 static void pcn_stop(struct ifnet *, int); 402 403 static void pcn_shutdown(void *); 404 405 static void pcn_reset(struct pcn_softc *); 406 static void pcn_rxdrain(struct pcn_softc *); 407 static int pcn_add_rxbuf(struct pcn_softc *, int); 408 static void pcn_tick(void *); 409 410 static void pcn_spnd(struct pcn_softc *); 411 412 static void pcn_set_filter(struct pcn_softc *); 413 414 static int pcn_intr(void *); 415 static void pcn_txintr(struct pcn_softc *); 416 static int pcn_rxintr(struct pcn_softc *); 417 418 static int pcn_mii_readreg(struct device *, int, int); 419 static void pcn_mii_writereg(struct device *, int, int, int); 420 static void pcn_mii_statchg(struct device *); 421 422 static void pcn_79c970_mediainit(struct pcn_softc *); 423 static int pcn_79c970_mediachange(struct ifnet *); 424 static void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *); 425 426 static void pcn_79c971_mediainit(struct pcn_softc *); 427 static int pcn_79c971_mediachange(struct ifnet *); 428 static void pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *); 429 430 /* 431 * Description of a PCnet-PCI variant. Used to select media access 432 * method, mostly, and to print a nice description of the chip. 433 */ 434 static const struct pcn_variant { 435 const char *pcv_desc; 436 void (*pcv_mediainit)(struct pcn_softc *); 437 uint16_t pcv_chipid; 438 } pcn_variants[] = { 439 { "Am79c970 PCnet-PCI", 440 pcn_79c970_mediainit, 441 PARTID_Am79c970 }, 442 443 { "Am79c970A PCnet-PCI II", 444 pcn_79c970_mediainit, 445 PARTID_Am79c970A }, 446 447 { "Am79c971 PCnet-FAST", 448 pcn_79c971_mediainit, 449 PARTID_Am79c971 }, 450 451 { "Am79c972 PCnet-FAST+", 452 pcn_79c971_mediainit, 453 PARTID_Am79c972 }, 454 455 { "Am79c973 PCnet-FAST III", 456 pcn_79c971_mediainit, 457 PARTID_Am79c973 }, 458 459 { "Am79c975 PCnet-FAST III", 460 pcn_79c971_mediainit, 461 PARTID_Am79c975 }, 462 463 { "Unknown PCnet-PCI variant", 464 pcn_79c971_mediainit, 465 0 }, 466 }; 467 468 int pcn_copy_small = 0; 469 470 static int pcn_match(struct device *, struct cfdata *, void *); 471 static void pcn_attach(struct device *, struct device *, void *); 472 473 CFATTACH_DECL(pcn, sizeof(struct pcn_softc), 474 pcn_match, pcn_attach, NULL, NULL); 475 476 /* 477 * Routines to read and write the PCnet-PCI CSR/BCR space. 478 */ 479 480 static __inline uint32_t 481 pcn_csr_read(struct pcn_softc *sc, int reg) 482 { 483 484 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 485 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP)); 486 } 487 488 static __inline void 489 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val) 490 { 491 492 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 493 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val); 494 } 495 496 static __inline uint32_t 497 pcn_bcr_read(struct pcn_softc *sc, int reg) 498 { 499 500 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 501 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP)); 502 } 503 504 static __inline void 505 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val) 506 { 507 508 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg); 509 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val); 510 } 511 512 static const struct pcn_variant * 513 pcn_lookup_variant(uint16_t chipid) 514 { 515 const struct pcn_variant *pcv; 516 517 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) { 518 if (chipid == pcv->pcv_chipid) 519 return (pcv); 520 } 521 522 /* 523 * This covers unknown chips, which we simply treat like 524 * a generic PCnet-FAST. 525 */ 526 return (pcv); 527 } 528 529 static int 530 pcn_match(struct device *parent, struct cfdata *cf, void *aux) 531 { 532 struct pci_attach_args *pa = aux; 533 534 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD) 535 return (0); 536 537 switch (PCI_PRODUCT(pa->pa_id)) { 538 case PCI_PRODUCT_AMD_PCNET_PCI: 539 /* Beat if_le_pci.c */ 540 return (10); 541 } 542 543 return (0); 544 } 545 546 static void 547 pcn_attach(struct device *parent, struct device *self, void *aux) 548 { 549 struct pcn_softc *sc = (struct pcn_softc *) self; 550 struct pci_attach_args *pa = aux; 551 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 552 pci_chipset_tag_t pc = pa->pa_pc; 553 pci_intr_handle_t ih; 554 const char *intrstr = NULL; 555 bus_space_tag_t iot, memt; 556 bus_space_handle_t ioh, memh; 557 bus_dma_segment_t seg; 558 int ioh_valid, memh_valid; 559 int i, rseg, error; 560 pcireg_t pmode; 561 uint32_t chipid, reg; 562 uint8_t enaddr[ETHER_ADDR_LEN]; 563 int pmreg; 564 565 callout_init(&sc->sc_tick_ch); 566 567 printf(": AMD PCnet-PCI Ethernet\n"); 568 569 /* 570 * Map the device. 571 */ 572 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, 573 &iot, &ioh, NULL, NULL) == 0); 574 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM, 575 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, 576 &memt, &memh, NULL, NULL) == 0); 577 578 if (memh_valid) { 579 sc->sc_st = memt; 580 sc->sc_sh = memh; 581 } else if (ioh_valid) { 582 sc->sc_st = iot; 583 sc->sc_sh = ioh; 584 } else { 585 printf("%s: unable to map device registers\n", 586 sc->sc_dev.dv_xname); 587 return; 588 } 589 590 sc->sc_dmat = pa->pa_dmat; 591 592 /* Make sure bus mastering is enabled. */ 593 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 594 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 595 PCI_COMMAND_MASTER_ENABLE); 596 597 /* Get it out of power save mode, if needed. */ 598 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) { 599 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) & 600 PCI_PMCSR_STATE_MASK; 601 if (pmode == PCI_PMCSR_STATE_D3) { 602 /* 603 * The card has lost all configuration data in 604 * this state, so punt. 605 */ 606 printf("%s: unable to wake from power state D3\n", 607 sc->sc_dev.dv_xname); 608 return; 609 } 610 if (pmode != PCI_PMCSR_STATE_D0) { 611 printf("%s: waking up from power date D%d\n", 612 sc->sc_dev.dv_xname, pmode); 613 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR, 614 PCI_PMCSR_STATE_D0); 615 } 616 } 617 618 /* 619 * Reset the chip to a known state. This also puts the 620 * chip into 32-bit mode. 621 */ 622 pcn_reset(sc); 623 624 #if !defined(PCN_NO_PROM) 625 626 /* 627 * Read the Ethernet address from the EEPROM. 628 */ 629 for (i = 0; i < ETHER_ADDR_LEN; i++) 630 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh, 631 PCN32_APROM + i); 632 #else 633 /* 634 * The PROM is not used; instead we assume that the MAC address 635 * has been programmed into the device's physical address 636 * registers by the boot firmware 637 */ 638 639 for (i=0; i < 3; i++) { 640 uint32_t val; 641 val = pcn_csr_read(sc, LE_CSR12 + i); 642 enaddr[2*i] = val & 0x0ff; 643 enaddr[2*i+1] = (val >> 8) & 0x0ff; 644 } 645 #endif 646 647 /* 648 * Now that the device is mapped, attempt to figure out what 649 * kind of chip we have. Note that IDL has all 32 bits of 650 * the chip ID when we're in 32-bit mode. 651 */ 652 chipid = pcn_csr_read(sc, LE_CSR88); 653 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid)); 654 655 printf("%s: %s rev %d, Ethernet address %s\n", 656 sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid), 657 ether_sprintf(enaddr)); 658 659 /* 660 * Map and establish our interrupt. 661 */ 662 if (pci_intr_map(pa, &ih)) { 663 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname); 664 return; 665 } 666 intrstr = pci_intr_string(pc, ih); 667 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc); 668 if (sc->sc_ih == NULL) { 669 printf("%s: unable to establish interrupt", 670 sc->sc_dev.dv_xname); 671 if (intrstr != NULL) 672 printf(" at %s", intrstr); 673 printf("\n"); 674 return; 675 } 676 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 677 678 /* 679 * Allocate the control data structures, and create and load the 680 * DMA map for it. 681 */ 682 if ((error = bus_dmamem_alloc(sc->sc_dmat, 683 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 684 0)) != 0) { 685 printf("%s: unable to allocate control data, error = %d\n", 686 sc->sc_dev.dv_xname, error); 687 goto fail_0; 688 } 689 690 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 691 sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data, 692 BUS_DMA_COHERENT)) != 0) { 693 printf("%s: unable to map control data, error = %d\n", 694 sc->sc_dev.dv_xname, error); 695 goto fail_1; 696 } 697 698 if ((error = bus_dmamap_create(sc->sc_dmat, 699 sizeof(struct pcn_control_data), 1, 700 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 701 printf("%s: unable to create control data DMA map, " 702 "error = %d\n", sc->sc_dev.dv_xname, error); 703 goto fail_2; 704 } 705 706 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 707 sc->sc_control_data, sizeof(struct pcn_control_data), NULL, 708 0)) != 0) { 709 printf("%s: unable to load control data DMA map, error = %d\n", 710 sc->sc_dev.dv_xname, error); 711 goto fail_3; 712 } 713 714 /* Create the transmit buffer DMA maps. */ 715 for (i = 0; i < PCN_TXQUEUELEN; i++) { 716 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 717 PCN_NTXSEGS, MCLBYTES, 0, 0, 718 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 719 printf("%s: unable to create tx DMA map %d, " 720 "error = %d\n", sc->sc_dev.dv_xname, i, error); 721 goto fail_4; 722 } 723 } 724 725 /* Create the receive buffer DMA maps. */ 726 for (i = 0; i < PCN_NRXDESC; i++) { 727 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 728 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 729 printf("%s: unable to create rx DMA map %d, " 730 "error = %d\n", sc->sc_dev.dv_xname, i, error); 731 goto fail_5; 732 } 733 sc->sc_rxsoft[i].rxs_mbuf = NULL; 734 } 735 736 /* Initialize our media structures. */ 737 (*sc->sc_variant->pcv_mediainit)(sc); 738 739 /* 740 * Initialize FIFO watermark info. 741 */ 742 switch (sc->sc_variant->pcv_chipid) { 743 case PARTID_Am79c970: 744 case PARTID_Am79c970A: 745 sc->sc_rcvfw_desc = pcn_79c970_rcvfw; 746 sc->sc_xmtsp_desc = pcn_79c970_xmtsp; 747 sc->sc_xmtfw_desc = pcn_79c970_xmtfw; 748 break; 749 750 default: 751 sc->sc_rcvfw_desc = pcn_79c971_rcvfw; 752 /* 753 * Read BCR25 to determine how much SRAM is 754 * on the board. If > 0, then we the chip 755 * uses different Start Point thresholds. 756 * 757 * Note BCR25 and BCR26 are loaded from the 758 * EEPROM on RST, and unaffected by S_RESET, 759 * so we don't really have to worry about 760 * them except for this. 761 */ 762 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff; 763 if (reg != 0) 764 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram; 765 else 766 sc->sc_xmtsp_desc = pcn_79c971_xmtsp; 767 sc->sc_xmtfw_desc = pcn_79c971_xmtfw; 768 break; 769 } 770 771 /* 772 * Set up defaults -- see the tables above for what these 773 * values mean. 774 * 775 * XXX How should we tune RCVFW and XMTFW? 776 */ 777 sc->sc_rcvfw = 1; /* minimum for full-duplex */ 778 sc->sc_xmtsp = 1; 779 sc->sc_xmtfw = 0; 780 781 ifp = &sc->sc_ethercom.ec_if; 782 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 783 ifp->if_softc = sc; 784 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 785 ifp->if_ioctl = pcn_ioctl; 786 ifp->if_start = pcn_start; 787 ifp->if_watchdog = pcn_watchdog; 788 ifp->if_init = pcn_init; 789 ifp->if_stop = pcn_stop; 790 IFQ_SET_READY(&ifp->if_snd); 791 792 /* Attach the interface. */ 793 if_attach(ifp); 794 ether_ifattach(ifp, enaddr); 795 #if NRND > 0 796 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, 797 RND_TYPE_NET, 0); 798 #endif 799 800 #ifdef PCN_EVENT_COUNTERS 801 /* Attach event counters. */ 802 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 803 NULL, sc->sc_dev.dv_xname, "txsstall"); 804 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 805 NULL, sc->sc_dev.dv_xname, "txdstall"); 806 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR, 807 NULL, sc->sc_dev.dv_xname, "txintr"); 808 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 809 NULL, sc->sc_dev.dv_xname, "rxintr"); 810 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC, 811 NULL, sc->sc_dev.dv_xname, "babl"); 812 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC, 813 NULL, sc->sc_dev.dv_xname, "miss"); 814 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC, 815 NULL, sc->sc_dev.dv_xname, "merr"); 816 817 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC, 818 NULL, sc->sc_dev.dv_xname, "txseg1"); 819 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC, 820 NULL, sc->sc_dev.dv_xname, "txseg2"); 821 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC, 822 NULL, sc->sc_dev.dv_xname, "txseg3"); 823 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC, 824 NULL, sc->sc_dev.dv_xname, "txseg4"); 825 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC, 826 NULL, sc->sc_dev.dv_xname, "txseg5"); 827 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC, 828 NULL, sc->sc_dev.dv_xname, "txsegmore"); 829 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC, 830 NULL, sc->sc_dev.dv_xname, "txcopy"); 831 #endif /* PCN_EVENT_COUNTERS */ 832 833 /* Make sure the interface is shutdown during reboot. */ 834 sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc); 835 if (sc->sc_sdhook == NULL) 836 printf("%s: WARNING: unable to establish shutdown hook\n", 837 sc->sc_dev.dv_xname); 838 return; 839 840 /* 841 * Free any resources we've allocated during the failed attach 842 * attempt. Do this in reverse order and fall through. 843 */ 844 fail_5: 845 for (i = 0; i < PCN_NRXDESC; i++) { 846 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 847 bus_dmamap_destroy(sc->sc_dmat, 848 sc->sc_rxsoft[i].rxs_dmamap); 849 } 850 fail_4: 851 for (i = 0; i < PCN_TXQUEUELEN; i++) { 852 if (sc->sc_txsoft[i].txs_dmamap != NULL) 853 bus_dmamap_destroy(sc->sc_dmat, 854 sc->sc_txsoft[i].txs_dmamap); 855 } 856 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 857 fail_3: 858 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 859 fail_2: 860 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data, 861 sizeof(struct pcn_control_data)); 862 fail_1: 863 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 864 fail_0: 865 return; 866 } 867 868 /* 869 * pcn_shutdown: 870 * 871 * Make sure the interface is stopped at reboot time. 872 */ 873 static void 874 pcn_shutdown(void *arg) 875 { 876 struct pcn_softc *sc = arg; 877 878 pcn_stop(&sc->sc_ethercom.ec_if, 1); 879 } 880 881 /* 882 * pcn_start: [ifnet interface function] 883 * 884 * Start packet transmission on the interface. 885 */ 886 static void 887 pcn_start(struct ifnet *ifp) 888 { 889 struct pcn_softc *sc = ifp->if_softc; 890 struct mbuf *m0, *m; 891 struct pcn_txsoft *txs; 892 bus_dmamap_t dmamap; 893 int error, nexttx, lasttx = -1, ofree, seg; 894 895 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 896 return; 897 898 /* 899 * Remember the previous number of free descriptors and 900 * the first descriptor we'll use. 901 */ 902 ofree = sc->sc_txfree; 903 904 /* 905 * Loop through the send queue, setting up transmit descriptors 906 * until we drain the queue, or use up all available transmit 907 * descriptors. 908 */ 909 for (;;) { 910 /* Grab a packet off the queue. */ 911 IFQ_POLL(&ifp->if_snd, m0); 912 if (m0 == NULL) 913 break; 914 m = NULL; 915 916 /* Get a work queue entry. */ 917 if (sc->sc_txsfree == 0) { 918 PCN_EVCNT_INCR(&sc->sc_ev_txsstall); 919 break; 920 } 921 922 txs = &sc->sc_txsoft[sc->sc_txsnext]; 923 dmamap = txs->txs_dmamap; 924 925 /* 926 * Load the DMA map. If this fails, the packet either 927 * didn't fit in the alloted number of segments, or we 928 * were short on resources. In this case, we'll copy 929 * and try again. 930 */ 931 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 932 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) { 933 PCN_EVCNT_INCR(&sc->sc_ev_txcopy); 934 MGETHDR(m, M_DONTWAIT, MT_DATA); 935 if (m == NULL) { 936 printf("%s: unable to allocate Tx mbuf\n", 937 sc->sc_dev.dv_xname); 938 break; 939 } 940 if (m0->m_pkthdr.len > MHLEN) { 941 MCLGET(m, M_DONTWAIT); 942 if ((m->m_flags & M_EXT) == 0) { 943 printf("%s: unable to allocate Tx " 944 "cluster\n", sc->sc_dev.dv_xname); 945 m_freem(m); 946 break; 947 } 948 } 949 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); 950 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 951 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 952 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 953 if (error) { 954 printf("%s: unable to load Tx buffer, " 955 "error = %d\n", sc->sc_dev.dv_xname, error); 956 break; 957 } 958 } 959 960 /* 961 * Ensure we have enough descriptors free to describe 962 * the packet. Note, we always reserve one descriptor 963 * at the end of the ring as a termination point, to 964 * prevent wrap-around. 965 */ 966 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { 967 /* 968 * Not enough free descriptors to transmit this 969 * packet. We haven't committed anything yet, 970 * so just unload the DMA map, put the packet 971 * back on the queue, and punt. Notify the upper 972 * layer that there are not more slots left. 973 * 974 * XXX We could allocate an mbuf and copy, but 975 * XXX is it worth it? 976 */ 977 ifp->if_flags |= IFF_OACTIVE; 978 bus_dmamap_unload(sc->sc_dmat, dmamap); 979 if (m != NULL) 980 m_freem(m); 981 PCN_EVCNT_INCR(&sc->sc_ev_txdstall); 982 break; 983 } 984 985 IFQ_DEQUEUE(&ifp->if_snd, m0); 986 if (m != NULL) { 987 m_freem(m0); 988 m0 = m; 989 } 990 991 /* 992 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 993 */ 994 995 /* Sync the DMA map. */ 996 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 997 BUS_DMASYNC_PREWRITE); 998 999 #ifdef PCN_EVENT_COUNTERS 1000 switch (dmamap->dm_nsegs) { 1001 case 1: 1002 PCN_EVCNT_INCR(&sc->sc_ev_txseg1); 1003 break; 1004 case 2: 1005 PCN_EVCNT_INCR(&sc->sc_ev_txseg2); 1006 break; 1007 case 3: 1008 PCN_EVCNT_INCR(&sc->sc_ev_txseg3); 1009 break; 1010 case 4: 1011 PCN_EVCNT_INCR(&sc->sc_ev_txseg4); 1012 break; 1013 case 5: 1014 PCN_EVCNT_INCR(&sc->sc_ev_txseg5); 1015 break; 1016 default: 1017 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore); 1018 break; 1019 } 1020 #endif /* PCN_EVENT_COUNTERS */ 1021 1022 /* 1023 * Initialize the transmit descriptors. 1024 */ 1025 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { 1026 for (nexttx = sc->sc_txnext, seg = 0; 1027 seg < dmamap->dm_nsegs; 1028 seg++, nexttx = PCN_NEXTTX(nexttx)) { 1029 /* 1030 * If this is the first descriptor we're 1031 * enqueueing, don't set the OWN bit just 1032 * yet. That could cause a race condition. 1033 * We'll do it below. 1034 */ 1035 sc->sc_txdescs[nexttx].tmd0 = 0; 1036 sc->sc_txdescs[nexttx].tmd2 = 1037 htole32(dmamap->dm_segs[seg].ds_addr); 1038 sc->sc_txdescs[nexttx].tmd1 = 1039 htole32(LE_T1_ONES | 1040 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) | 1041 (LE_BCNT(dmamap->dm_segs[seg].ds_len) & 1042 LE_T1_BCNT_MASK)); 1043 lasttx = nexttx; 1044 } 1045 } else { 1046 for (nexttx = sc->sc_txnext, seg = 0; 1047 seg < dmamap->dm_nsegs; 1048 seg++, nexttx = PCN_NEXTTX(nexttx)) { 1049 /* 1050 * If this is the first descriptor we're 1051 * enqueueing, don't set the OWN bit just 1052 * yet. That could cause a race condition. 1053 * We'll do it below. 1054 */ 1055 sc->sc_txdescs[nexttx].tmd0 = 1056 htole32(dmamap->dm_segs[seg].ds_addr); 1057 sc->sc_txdescs[nexttx].tmd2 = 0; 1058 sc->sc_txdescs[nexttx].tmd1 = 1059 htole32(LE_T1_ONES | 1060 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) | 1061 (LE_BCNT(dmamap->dm_segs[seg].ds_len) & 1062 LE_T1_BCNT_MASK)); 1063 lasttx = nexttx; 1064 } 1065 } 1066 1067 KASSERT(lasttx != -1); 1068 /* Interrupt on the packet, if appropriate. */ 1069 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0) 1070 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT); 1071 1072 /* Set `start of packet' and `end of packet' appropriately. */ 1073 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP); 1074 sc->sc_txdescs[sc->sc_txnext].tmd1 |= 1075 htole32(LE_T1_OWN|LE_T1_STP); 1076 1077 /* Sync the descriptors we're using. */ 1078 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 1079 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1080 1081 /* Kick the transmitter. */ 1082 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD); 1083 1084 /* 1085 * Store a pointer to the packet so we can free it later, 1086 * and remember what txdirty will be once the packet is 1087 * done. 1088 */ 1089 txs->txs_mbuf = m0; 1090 txs->txs_firstdesc = sc->sc_txnext; 1091 txs->txs_lastdesc = lasttx; 1092 1093 /* Advance the tx pointer. */ 1094 sc->sc_txfree -= dmamap->dm_nsegs; 1095 sc->sc_txnext = nexttx; 1096 1097 sc->sc_txsfree--; 1098 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext); 1099 1100 #if NBPFILTER > 0 1101 /* Pass the packet to any BPF listeners. */ 1102 if (ifp->if_bpf) 1103 bpf_mtap(ifp->if_bpf, m0); 1104 #endif /* NBPFILTER > 0 */ 1105 } 1106 1107 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) { 1108 /* No more slots left; notify upper layer. */ 1109 ifp->if_flags |= IFF_OACTIVE; 1110 } 1111 1112 if (sc->sc_txfree != ofree) { 1113 /* Set a watchdog timer in case the chip flakes out. */ 1114 ifp->if_timer = 5; 1115 } 1116 } 1117 1118 /* 1119 * pcn_watchdog: [ifnet interface function] 1120 * 1121 * Watchdog timer handler. 1122 */ 1123 static void 1124 pcn_watchdog(struct ifnet *ifp) 1125 { 1126 struct pcn_softc *sc = ifp->if_softc; 1127 1128 /* 1129 * Since we're not interrupting every packet, sweep 1130 * up before we report an error. 1131 */ 1132 pcn_txintr(sc); 1133 1134 if (sc->sc_txfree != PCN_NTXDESC) { 1135 printf("%s: device timeout (txfree %d txsfree %d)\n", 1136 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree); 1137 ifp->if_oerrors++; 1138 1139 /* Reset the interface. */ 1140 (void) pcn_init(ifp); 1141 } 1142 1143 /* Try to get more packets going. */ 1144 pcn_start(ifp); 1145 } 1146 1147 /* 1148 * pcn_ioctl: [ifnet interface function] 1149 * 1150 * Handle control requests from the operator. 1151 */ 1152 static int 1153 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1154 { 1155 struct pcn_softc *sc = ifp->if_softc; 1156 struct ifreq *ifr = (struct ifreq *) data; 1157 int s, error; 1158 1159 s = splnet(); 1160 1161 switch (cmd) { 1162 case SIOCSIFMEDIA: 1163 case SIOCGIFMEDIA: 1164 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 1165 break; 1166 1167 default: 1168 error = ether_ioctl(ifp, cmd, data); 1169 if (error == ENETRESET) { 1170 /* 1171 * Multicast list has changed; set the hardware filter 1172 * accordingly. 1173 */ 1174 if (ifp->if_flags & IFF_RUNNING) 1175 error = pcn_init(ifp); 1176 else 1177 error = 0; 1178 } 1179 break; 1180 } 1181 1182 /* Try to get more packets going. */ 1183 pcn_start(ifp); 1184 1185 splx(s); 1186 return (error); 1187 } 1188 1189 /* 1190 * pcn_intr: 1191 * 1192 * Interrupt service routine. 1193 */ 1194 static int 1195 pcn_intr(void *arg) 1196 { 1197 struct pcn_softc *sc = arg; 1198 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1199 uint32_t csr0; 1200 int wantinit, handled = 0; 1201 1202 for (wantinit = 0; wantinit == 0;) { 1203 csr0 = pcn_csr_read(sc, LE_CSR0); 1204 if ((csr0 & LE_C0_INTR) == 0) 1205 break; 1206 1207 #if NRND > 0 1208 if (RND_ENABLED(&sc->rnd_source)) 1209 rnd_add_uint32(&sc->rnd_source, csr0); 1210 #endif 1211 1212 /* ACK the bits and re-enable interrupts. */ 1213 pcn_csr_write(sc, LE_CSR0, csr0 & 1214 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT| 1215 LE_C0_TINT|LE_C0_IDON)); 1216 1217 handled = 1; 1218 1219 if (csr0 & LE_C0_RINT) { 1220 PCN_EVCNT_INCR(&sc->sc_ev_rxintr); 1221 wantinit = pcn_rxintr(sc); 1222 } 1223 1224 if (csr0 & LE_C0_TINT) { 1225 PCN_EVCNT_INCR(&sc->sc_ev_txintr); 1226 pcn_txintr(sc); 1227 } 1228 1229 if (csr0 & LE_C0_ERR) { 1230 if (csr0 & LE_C0_BABL) { 1231 PCN_EVCNT_INCR(&sc->sc_ev_babl); 1232 ifp->if_oerrors++; 1233 } 1234 if (csr0 & LE_C0_MISS) { 1235 PCN_EVCNT_INCR(&sc->sc_ev_miss); 1236 ifp->if_ierrors++; 1237 } 1238 if (csr0 & LE_C0_MERR) { 1239 PCN_EVCNT_INCR(&sc->sc_ev_merr); 1240 printf("%s: memory error\n", 1241 sc->sc_dev.dv_xname); 1242 wantinit = 1; 1243 break; 1244 } 1245 } 1246 1247 if ((csr0 & LE_C0_RXON) == 0) { 1248 printf("%s: receiver disabled\n", 1249 sc->sc_dev.dv_xname); 1250 ifp->if_ierrors++; 1251 wantinit = 1; 1252 } 1253 1254 if ((csr0 & LE_C0_TXON) == 0) { 1255 printf("%s: transmitter disabled\n", 1256 sc->sc_dev.dv_xname); 1257 ifp->if_oerrors++; 1258 wantinit = 1; 1259 } 1260 } 1261 1262 if (handled) { 1263 if (wantinit) 1264 pcn_init(ifp); 1265 1266 /* Try to get more packets going. */ 1267 pcn_start(ifp); 1268 } 1269 1270 return (handled); 1271 } 1272 1273 /* 1274 * pcn_spnd: 1275 * 1276 * Suspend the chip. 1277 */ 1278 static void 1279 pcn_spnd(struct pcn_softc *sc) 1280 { 1281 int i; 1282 1283 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND); 1284 1285 for (i = 0; i < 10000; i++) { 1286 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND) 1287 return; 1288 delay(5); 1289 } 1290 1291 printf("%s: WARNING: chip failed to enter suspended state\n", 1292 sc->sc_dev.dv_xname); 1293 } 1294 1295 /* 1296 * pcn_txintr: 1297 * 1298 * Helper; handle transmit interrupts. 1299 */ 1300 static void 1301 pcn_txintr(struct pcn_softc *sc) 1302 { 1303 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1304 struct pcn_txsoft *txs; 1305 uint32_t tmd1, tmd2, tmd; 1306 int i, j; 1307 1308 ifp->if_flags &= ~IFF_OACTIVE; 1309 1310 /* 1311 * Go through our Tx list and free mbufs for those 1312 * frames which have been transmitted. 1313 */ 1314 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN; 1315 i = PCN_NEXTTXS(i), sc->sc_txsfree++) { 1316 txs = &sc->sc_txsoft[i]; 1317 1318 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 1319 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1320 1321 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1); 1322 if (tmd1 & LE_T1_OWN) 1323 break; 1324 1325 /* 1326 * Slightly annoying -- we have to loop through the 1327 * descriptors we've used looking for ERR, since it 1328 * can appear on any descriptor in the chain. 1329 */ 1330 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) { 1331 tmd = le32toh(sc->sc_txdescs[j].tmd1); 1332 if (tmd & LE_T1_ERR) { 1333 ifp->if_oerrors++; 1334 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) 1335 tmd2 = le32toh(sc->sc_txdescs[j].tmd0); 1336 else 1337 tmd2 = le32toh(sc->sc_txdescs[j].tmd2); 1338 if (tmd2 & LE_T2_UFLO) { 1339 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) { 1340 sc->sc_xmtsp++; 1341 printf("%s: transmit " 1342 "underrun; new threshold: " 1343 "%s\n", 1344 sc->sc_dev.dv_xname, 1345 sc->sc_xmtsp_desc[ 1346 sc->sc_xmtsp]); 1347 pcn_spnd(sc); 1348 pcn_csr_write(sc, LE_CSR80, 1349 LE_C80_RCVFW(sc->sc_rcvfw) | 1350 LE_C80_XMTSP(sc->sc_xmtsp) | 1351 LE_C80_XMTFW(sc->sc_xmtfw)); 1352 pcn_csr_write(sc, LE_CSR5, 1353 sc->sc_csr5); 1354 } else { 1355 printf("%s: transmit " 1356 "underrun\n", 1357 sc->sc_dev.dv_xname); 1358 } 1359 } else if (tmd2 & LE_T2_BUFF) { 1360 printf("%s: transmit buffer error\n", 1361 sc->sc_dev.dv_xname); 1362 } 1363 if (tmd2 & LE_T2_LCOL) 1364 ifp->if_collisions++; 1365 if (tmd2 & LE_T2_RTRY) 1366 ifp->if_collisions += 16; 1367 goto next_packet; 1368 } 1369 if (j == txs->txs_lastdesc) 1370 break; 1371 } 1372 if (tmd1 & LE_T1_ONE) 1373 ifp->if_collisions++; 1374 else if (tmd & LE_T1_MORE) { 1375 /* Real number is unknown. */ 1376 ifp->if_collisions += 2; 1377 } 1378 ifp->if_opackets++; 1379 next_packet: 1380 sc->sc_txfree += txs->txs_dmamap->dm_nsegs; 1381 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1382 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1383 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1384 m_freem(txs->txs_mbuf); 1385 txs->txs_mbuf = NULL; 1386 } 1387 1388 /* Update the dirty transmit buffer pointer. */ 1389 sc->sc_txsdirty = i; 1390 1391 /* 1392 * If there are no more pending transmissions, cancel the watchdog 1393 * timer. 1394 */ 1395 if (sc->sc_txsfree == PCN_TXQUEUELEN) 1396 ifp->if_timer = 0; 1397 } 1398 1399 /* 1400 * pcn_rxintr: 1401 * 1402 * Helper; handle receive interrupts. 1403 */ 1404 static int 1405 pcn_rxintr(struct pcn_softc *sc) 1406 { 1407 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1408 struct pcn_rxsoft *rxs; 1409 struct mbuf *m; 1410 uint32_t rmd1; 1411 int i, len; 1412 1413 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) { 1414 rxs = &sc->sc_rxsoft[i]; 1415 1416 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1417 1418 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1); 1419 1420 if (rmd1 & LE_R1_OWN) 1421 break; 1422 1423 /* 1424 * Check for errors and make sure the packet fit into 1425 * a single buffer. We have structured this block of 1426 * code the way it is in order to compress it into 1427 * one test in the common case (no error). 1428 */ 1429 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) != 1430 (LE_R1_STP|LE_R1_ENP))) { 1431 /* Make sure the packet is in a single buffer. */ 1432 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) != 1433 (LE_R1_STP|LE_R1_ENP)) { 1434 printf("%s: packet spilled into next buffer\n", 1435 sc->sc_dev.dv_xname); 1436 return (1); /* pcn_intr() will re-init */ 1437 } 1438 1439 /* 1440 * If the packet had an error, simple recycle the 1441 * buffer. 1442 */ 1443 if (rmd1 & LE_R1_ERR) { 1444 ifp->if_ierrors++; 1445 /* 1446 * If we got an overflow error, chances 1447 * are there will be a CRC error. In 1448 * this case, just print the overflow 1449 * error, and skip the others. 1450 */ 1451 if (rmd1 & LE_R1_OFLO) 1452 printf("%s: overflow error\n", 1453 sc->sc_dev.dv_xname); 1454 else { 1455 #define PRINTIT(x, str) \ 1456 if (rmd1 & (x)) \ 1457 printf("%s: %s\n", \ 1458 sc->sc_dev.dv_xname, str); 1459 PRINTIT(LE_R1_FRAM, "framing error"); 1460 PRINTIT(LE_R1_CRC, "CRC error"); 1461 PRINTIT(LE_R1_BUFF, "buffer error"); 1462 } 1463 #undef PRINTIT 1464 PCN_INIT_RXDESC(sc, i); 1465 continue; 1466 } 1467 } 1468 1469 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1470 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1471 1472 /* 1473 * No errors; receive the packet. 1474 */ 1475 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) 1476 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK; 1477 else 1478 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK; 1479 1480 /* 1481 * The LANCE family includes the CRC with every packet; 1482 * trim it off here. 1483 */ 1484 len -= ETHER_CRC_LEN; 1485 1486 /* 1487 * If the packet is small enough to fit in a 1488 * single header mbuf, allocate one and copy 1489 * the data into it. This greatly reduces 1490 * memory consumption when we receive lots 1491 * of small packets. 1492 * 1493 * Otherwise, we add a new buffer to the receive 1494 * chain. If this fails, we drop the packet and 1495 * recycle the old buffer. 1496 */ 1497 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) { 1498 MGETHDR(m, M_DONTWAIT, MT_DATA); 1499 if (m == NULL) 1500 goto dropit; 1501 m->m_data += 2; 1502 memcpy(mtod(m, caddr_t), 1503 mtod(rxs->rxs_mbuf, caddr_t), len); 1504 PCN_INIT_RXDESC(sc, i); 1505 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1506 rxs->rxs_dmamap->dm_mapsize, 1507 BUS_DMASYNC_PREREAD); 1508 } else { 1509 m = rxs->rxs_mbuf; 1510 if (pcn_add_rxbuf(sc, i) != 0) { 1511 dropit: 1512 ifp->if_ierrors++; 1513 PCN_INIT_RXDESC(sc, i); 1514 bus_dmamap_sync(sc->sc_dmat, 1515 rxs->rxs_dmamap, 0, 1516 rxs->rxs_dmamap->dm_mapsize, 1517 BUS_DMASYNC_PREREAD); 1518 continue; 1519 } 1520 } 1521 1522 m->m_pkthdr.rcvif = ifp; 1523 m->m_pkthdr.len = m->m_len = len; 1524 1525 #if NBPFILTER > 0 1526 /* Pass this up to any BPF listeners. */ 1527 if (ifp->if_bpf) 1528 bpf_mtap(ifp->if_bpf, m); 1529 #endif /* NBPFILTER > 0 */ 1530 1531 /* Pass it on. */ 1532 (*ifp->if_input)(ifp, m); 1533 ifp->if_ipackets++; 1534 } 1535 1536 /* Update the receive pointer. */ 1537 sc->sc_rxptr = i; 1538 return (0); 1539 } 1540 1541 /* 1542 * pcn_tick: 1543 * 1544 * One second timer, used to tick the MII. 1545 */ 1546 static void 1547 pcn_tick(void *arg) 1548 { 1549 struct pcn_softc *sc = arg; 1550 int s; 1551 1552 s = splnet(); 1553 mii_tick(&sc->sc_mii); 1554 splx(s); 1555 1556 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc); 1557 } 1558 1559 /* 1560 * pcn_reset: 1561 * 1562 * Perform a soft reset on the PCnet-PCI. 1563 */ 1564 static void 1565 pcn_reset(struct pcn_softc *sc) 1566 { 1567 1568 /* 1569 * The PCnet-PCI chip is reset by reading from the 1570 * RESET register. Note that while the NE2100 LANCE 1571 * boards require a write after the read, the PCnet-PCI 1572 * chips do not require this. 1573 * 1574 * Since we don't know if we're in 16-bit or 32-bit 1575 * mode right now, issue both (it's safe) in the 1576 * hopes that one will succeed. 1577 */ 1578 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET); 1579 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET); 1580 1581 /* Wait 1ms for it to finish. */ 1582 delay(1000); 1583 1584 /* 1585 * Select 32-bit I/O mode by issuing a 32-bit write to the 1586 * RDP. Since the RAP is 0 after a reset, writing a 0 1587 * to RDP is safe (since it simply clears CSR0). 1588 */ 1589 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0); 1590 } 1591 1592 /* 1593 * pcn_init: [ifnet interface function] 1594 * 1595 * Initialize the interface. Must be called at splnet(). 1596 */ 1597 static int 1598 pcn_init(struct ifnet *ifp) 1599 { 1600 struct pcn_softc *sc = ifp->if_softc; 1601 struct pcn_rxsoft *rxs; 1602 uint8_t *enaddr = LLADDR(ifp->if_sadl); 1603 int i, error = 0; 1604 uint32_t reg; 1605 1606 /* Cancel any pending I/O. */ 1607 pcn_stop(ifp, 0); 1608 1609 /* Reset the chip to a known state. */ 1610 pcn_reset(sc); 1611 1612 /* 1613 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything 1614 * else. 1615 * 1616 * XXX It'd be really nice to use SSTYLE 2 on all the chips, 1617 * because the structure layout is compatible with ILACC, 1618 * but the burst mode is only available in SSTYLE 3, and 1619 * burst mode should provide some performance enhancement. 1620 */ 1621 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970) 1622 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2; 1623 else 1624 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3; 1625 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle); 1626 1627 /* Initialize the transmit descriptor ring. */ 1628 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 1629 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC, 1630 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1631 sc->sc_txfree = PCN_NTXDESC; 1632 sc->sc_txnext = 0; 1633 1634 /* Initialize the transmit job descriptors. */ 1635 for (i = 0; i < PCN_TXQUEUELEN; i++) 1636 sc->sc_txsoft[i].txs_mbuf = NULL; 1637 sc->sc_txsfree = PCN_TXQUEUELEN; 1638 sc->sc_txsnext = 0; 1639 sc->sc_txsdirty = 0; 1640 1641 /* 1642 * Initialize the receive descriptor and receive job 1643 * descriptor rings. 1644 */ 1645 for (i = 0; i < PCN_NRXDESC; i++) { 1646 rxs = &sc->sc_rxsoft[i]; 1647 if (rxs->rxs_mbuf == NULL) { 1648 if ((error = pcn_add_rxbuf(sc, i)) != 0) { 1649 printf("%s: unable to allocate or map rx " 1650 "buffer %d, error = %d\n", 1651 sc->sc_dev.dv_xname, i, error); 1652 /* 1653 * XXX Should attempt to run with fewer receive 1654 * XXX buffers instead of just failing. 1655 */ 1656 pcn_rxdrain(sc); 1657 goto out; 1658 } 1659 } else 1660 PCN_INIT_RXDESC(sc, i); 1661 } 1662 sc->sc_rxptr = 0; 1663 1664 /* Initialize MODE for the initialization block. */ 1665 sc->sc_mode = 0; 1666 if (ifp->if_flags & IFF_PROMISC) 1667 sc->sc_mode |= LE_C15_PROM; 1668 if ((ifp->if_flags & IFF_BROADCAST) == 0) 1669 sc->sc_mode |= LE_C15_DRCVBC; 1670 1671 /* 1672 * If we have MII, simply select MII in the MODE register, 1673 * and clear ASEL. Otherwise, let ASEL stand (for now), 1674 * and leave PORTSEL alone (it is ignored with ASEL is set). 1675 */ 1676 if (sc->sc_flags & PCN_F_HAS_MII) { 1677 pcn_bcr_write(sc, LE_BCR2, 1678 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL); 1679 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII); 1680 1681 /* 1682 * Disable MII auto-negotiation. We handle that in 1683 * our own MII layer. 1684 */ 1685 pcn_bcr_write(sc, LE_BCR32, 1686 pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS); 1687 } 1688 1689 /* 1690 * Set the Tx and Rx descriptor ring addresses in the init 1691 * block, the TLEN and RLEN other fields of the init block 1692 * MODE register. 1693 */ 1694 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0)); 1695 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0)); 1696 sc->sc_initblock.init_mode = htole32(sc->sc_mode | 1697 ((ffs(PCN_NTXDESC) - 1) << 28) | 1698 ((ffs(PCN_NRXDESC) - 1) << 20)); 1699 1700 /* Set the station address in the init block. */ 1701 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] | 1702 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24)); 1703 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] | 1704 (enaddr[5] << 8)); 1705 1706 /* Set the multicast filter in the init block. */ 1707 pcn_set_filter(sc); 1708 1709 /* Initialize CSR3. */ 1710 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO); 1711 1712 /* Initialize CSR4. */ 1713 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT| 1714 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM); 1715 1716 /* Initialize CSR5. */ 1717 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE; 1718 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5); 1719 1720 /* 1721 * If we have an Am79c971 or greater, initialize CSR7. 1722 * 1723 * XXX Might be nice to use the MII auto-poll interrupt someday. 1724 */ 1725 switch (sc->sc_variant->pcv_chipid) { 1726 case PARTID_Am79c970: 1727 case PARTID_Am79c970A: 1728 /* Not available on these chips. */ 1729 break; 1730 1731 default: 1732 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE); 1733 break; 1734 } 1735 1736 /* 1737 * On the Am79c970A and greater, initialize BCR18 to 1738 * enable burst mode. 1739 * 1740 * Also enable the "no underflow" option on the Am79c971 and 1741 * higher, which prevents the chip from generating transmit 1742 * underflows, yet sill provides decent performance. Note if 1743 * chip is not connected to external SRAM, then we still have 1744 * to handle underflow errors (the NOUFLO bit is ignored in 1745 * that case). 1746 */ 1747 reg = pcn_bcr_read(sc, LE_BCR18); 1748 switch (sc->sc_variant->pcv_chipid) { 1749 case PARTID_Am79c970: 1750 break; 1751 1752 case PARTID_Am79c970A: 1753 reg |= LE_B18_BREADE|LE_B18_BWRITE; 1754 break; 1755 1756 default: 1757 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO; 1758 break; 1759 } 1760 pcn_bcr_write(sc, LE_BCR18, reg); 1761 1762 /* 1763 * Initialize CSR80 (FIFO thresholds for Tx and Rx). 1764 */ 1765 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) | 1766 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw)); 1767 1768 /* 1769 * Send the init block to the chip, and wait for it 1770 * to be processed. 1771 */ 1772 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE); 1773 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff); 1774 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff); 1775 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT); 1776 delay(100); 1777 for (i = 0; i < 10000; i++) { 1778 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON) 1779 break; 1780 delay(10); 1781 } 1782 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE); 1783 if (i == 10000) { 1784 printf("%s: timeout processing init block\n", 1785 sc->sc_dev.dv_xname); 1786 error = EIO; 1787 goto out; 1788 } 1789 1790 /* Set the media. */ 1791 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp); 1792 1793 /* Enable interrupts and external activity (and ACK IDON). */ 1794 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON); 1795 1796 if (sc->sc_flags & PCN_F_HAS_MII) { 1797 /* Start the one second MII clock. */ 1798 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc); 1799 } 1800 1801 /* ...all done! */ 1802 ifp->if_flags |= IFF_RUNNING; 1803 ifp->if_flags &= ~IFF_OACTIVE; 1804 1805 out: 1806 if (error) 1807 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 1808 return (error); 1809 } 1810 1811 /* 1812 * pcn_rxdrain: 1813 * 1814 * Drain the receive queue. 1815 */ 1816 static void 1817 pcn_rxdrain(struct pcn_softc *sc) 1818 { 1819 struct pcn_rxsoft *rxs; 1820 int i; 1821 1822 for (i = 0; i < PCN_NRXDESC; i++) { 1823 rxs = &sc->sc_rxsoft[i]; 1824 if (rxs->rxs_mbuf != NULL) { 1825 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1826 m_freem(rxs->rxs_mbuf); 1827 rxs->rxs_mbuf = NULL; 1828 } 1829 } 1830 } 1831 1832 /* 1833 * pcn_stop: [ifnet interface function] 1834 * 1835 * Stop transmission on the interface. 1836 */ 1837 static void 1838 pcn_stop(struct ifnet *ifp, int disable) 1839 { 1840 struct pcn_softc *sc = ifp->if_softc; 1841 struct pcn_txsoft *txs; 1842 int i; 1843 1844 if (sc->sc_flags & PCN_F_HAS_MII) { 1845 /* Stop the one second clock. */ 1846 callout_stop(&sc->sc_tick_ch); 1847 1848 /* Down the MII. */ 1849 mii_down(&sc->sc_mii); 1850 } 1851 1852 /* Stop the chip. */ 1853 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP); 1854 1855 /* Release any queued transmit buffers. */ 1856 for (i = 0; i < PCN_TXQUEUELEN; i++) { 1857 txs = &sc->sc_txsoft[i]; 1858 if (txs->txs_mbuf != NULL) { 1859 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1860 m_freem(txs->txs_mbuf); 1861 txs->txs_mbuf = NULL; 1862 } 1863 } 1864 1865 if (disable) 1866 pcn_rxdrain(sc); 1867 1868 /* Mark the interface as down and cancel the watchdog timer. */ 1869 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1870 ifp->if_timer = 0; 1871 } 1872 1873 /* 1874 * pcn_add_rxbuf: 1875 * 1876 * Add a receive buffer to the indicated descriptor. 1877 */ 1878 static int 1879 pcn_add_rxbuf(struct pcn_softc *sc, int idx) 1880 { 1881 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx]; 1882 struct mbuf *m; 1883 int error; 1884 1885 MGETHDR(m, M_DONTWAIT, MT_DATA); 1886 if (m == NULL) 1887 return (ENOBUFS); 1888 1889 MCLGET(m, M_DONTWAIT); 1890 if ((m->m_flags & M_EXT) == 0) { 1891 m_freem(m); 1892 return (ENOBUFS); 1893 } 1894 1895 if (rxs->rxs_mbuf != NULL) 1896 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1897 1898 rxs->rxs_mbuf = m; 1899 1900 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 1901 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 1902 BUS_DMA_READ|BUS_DMA_NOWAIT); 1903 if (error) { 1904 printf("%s: can't load rx DMA map %d, error = %d\n", 1905 sc->sc_dev.dv_xname, idx, error); 1906 panic("pcn_add_rxbuf"); 1907 } 1908 1909 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1910 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1911 1912 PCN_INIT_RXDESC(sc, idx); 1913 1914 return (0); 1915 } 1916 1917 /* 1918 * pcn_set_filter: 1919 * 1920 * Set up the receive filter. 1921 */ 1922 static void 1923 pcn_set_filter(struct pcn_softc *sc) 1924 { 1925 struct ethercom *ec = &sc->sc_ethercom; 1926 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1927 struct ether_multi *enm; 1928 struct ether_multistep step; 1929 uint32_t crc; 1930 1931 /* 1932 * Set up the multicast address filter by passing all multicast 1933 * addresses through a CRC generator, and then using the high 1934 * order 6 bits as an index into the 64-bit logical address 1935 * filter. The high order bits select the word, while the rest 1936 * of the bits select the bit within the word. 1937 */ 1938 1939 if (ifp->if_flags & IFF_PROMISC) 1940 goto allmulti; 1941 1942 sc->sc_initblock.init_ladrf[0] = 1943 sc->sc_initblock.init_ladrf[1] = 1944 sc->sc_initblock.init_ladrf[2] = 1945 sc->sc_initblock.init_ladrf[3] = 0; 1946 1947 ETHER_FIRST_MULTI(step, ec, enm); 1948 while (enm != NULL) { 1949 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1950 /* 1951 * We must listen to a range of multicast addresses. 1952 * For now, just accept all multicasts, rather than 1953 * trying to set only those filter bits needed to match 1954 * the range. (At this time, the only use of address 1955 * ranges is for IP multicast routing, for which the 1956 * range is big enough to require all bits set.) 1957 */ 1958 goto allmulti; 1959 } 1960 1961 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 1962 1963 /* Just want the 6 most significant bits. */ 1964 crc >>= 26; 1965 1966 /* Set the corresponding bit in the filter. */ 1967 sc->sc_initblock.init_ladrf[crc >> 4] |= 1968 htole16(1 << (crc & 0xf)); 1969 1970 ETHER_NEXT_MULTI(step, enm); 1971 } 1972 1973 ifp->if_flags &= ~IFF_ALLMULTI; 1974 return; 1975 1976 allmulti: 1977 ifp->if_flags |= IFF_ALLMULTI; 1978 sc->sc_initblock.init_ladrf[0] = 1979 sc->sc_initblock.init_ladrf[1] = 1980 sc->sc_initblock.init_ladrf[2] = 1981 sc->sc_initblock.init_ladrf[3] = 0xffff; 1982 } 1983 1984 /* 1985 * pcn_79c970_mediainit: 1986 * 1987 * Initialize media for the Am79c970. 1988 */ 1989 static void 1990 pcn_79c970_mediainit(struct pcn_softc *sc) 1991 { 1992 const char *sep = ""; 1993 1994 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange, 1995 pcn_79c970_mediastatus); 1996 1997 #define ADD(str, m, d) \ 1998 do { \ 1999 printf("%s%s", sep, str); \ 2000 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \ 2001 sep = ", "; \ 2002 } while (/*CONSTCOND*/0) 2003 2004 printf("%s: ", sc->sc_dev.dv_xname); 2005 ADD("10base5", IFM_10_5, PORTSEL_AUI); 2006 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 2007 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI); 2008 ADD("10baseT", IFM_10_T, PORTSEL_10T); 2009 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 2010 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T); 2011 ADD("auto", IFM_AUTO, 0); 2012 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A) 2013 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0); 2014 printf("\n"); 2015 2016 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 2017 } 2018 2019 /* 2020 * pcn_79c970_mediastatus: [ifmedia interface function] 2021 * 2022 * Get the current interface media status (Am79c970 version). 2023 */ 2024 static void 2025 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2026 { 2027 struct pcn_softc *sc = ifp->if_softc; 2028 2029 /* 2030 * The currently selected media is always the active media. 2031 * Note: We have no way to determine what media the AUTO 2032 * process picked. 2033 */ 2034 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media; 2035 } 2036 2037 /* 2038 * pcn_79c970_mediachange: [ifmedia interface function] 2039 * 2040 * Set hardware to newly-selected media (Am79c970 version). 2041 */ 2042 static int 2043 pcn_79c970_mediachange(struct ifnet *ifp) 2044 { 2045 struct pcn_softc *sc = ifp->if_softc; 2046 uint32_t reg; 2047 2048 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) { 2049 /* 2050 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL. 2051 */ 2052 reg = pcn_bcr_read(sc, LE_BCR2); 2053 reg |= LE_B2_ASEL; 2054 pcn_bcr_write(sc, LE_BCR2, reg); 2055 } else { 2056 /* 2057 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value. 2058 */ 2059 reg = pcn_bcr_read(sc, LE_BCR2); 2060 reg &= ~LE_B2_ASEL; 2061 pcn_bcr_write(sc, LE_BCR2, reg); 2062 2063 reg = pcn_csr_read(sc, LE_CSR15); 2064 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) | 2065 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data); 2066 pcn_csr_write(sc, LE_CSR15, reg); 2067 } 2068 2069 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) { 2070 reg = LE_B9_FDEN; 2071 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5) 2072 reg |= LE_B9_AUIFD; 2073 pcn_bcr_write(sc, LE_BCR9, reg); 2074 } else 2075 pcn_bcr_write(sc, LE_BCR9, 0); 2076 2077 return (0); 2078 } 2079 2080 /* 2081 * pcn_79c971_mediainit: 2082 * 2083 * Initialize media for the Am79c971. 2084 */ 2085 static void 2086 pcn_79c971_mediainit(struct pcn_softc *sc) 2087 { 2088 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2089 2090 /* We have MII. */ 2091 sc->sc_flags |= PCN_F_HAS_MII; 2092 2093 /* 2094 * The built-in 10BASE-T interface is mapped to the MII 2095 * on the PCNet-FAST. Unfortunately, there's no EEPROM 2096 * word that tells us which PHY to use. Since the 10BASE-T 2097 * interface is always at PHY 31, we make a note of the 2098 * first PHY that responds, and disallow any PHYs after 2099 * it. This is all handled in the MII read routine. 2100 */ 2101 sc->sc_phyaddr = -1; 2102 2103 /* Initialize our media structures and probe the MII. */ 2104 sc->sc_mii.mii_ifp = ifp; 2105 sc->sc_mii.mii_readreg = pcn_mii_readreg; 2106 sc->sc_mii.mii_writereg = pcn_mii_writereg; 2107 sc->sc_mii.mii_statchg = pcn_mii_statchg; 2108 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange, 2109 pcn_79c971_mediastatus); 2110 2111 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 2112 MII_OFFSET_ANY, 0); 2113 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 2114 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 2115 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 2116 } else 2117 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 2118 } 2119 2120 /* 2121 * pcn_79c971_mediastatus: [ifmedia interface function] 2122 * 2123 * Get the current interface media status (Am79c971 version). 2124 */ 2125 static void 2126 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2127 { 2128 struct pcn_softc *sc = ifp->if_softc; 2129 2130 mii_pollstat(&sc->sc_mii); 2131 ifmr->ifm_status = sc->sc_mii.mii_media_status; 2132 ifmr->ifm_active = sc->sc_mii.mii_media_active; 2133 } 2134 2135 /* 2136 * pcn_79c971_mediachange: [ifmedia interface function] 2137 * 2138 * Set hardware to newly-selected media (Am79c971 version). 2139 */ 2140 static int 2141 pcn_79c971_mediachange(struct ifnet *ifp) 2142 { 2143 struct pcn_softc *sc = ifp->if_softc; 2144 2145 if (ifp->if_flags & IFF_UP) 2146 mii_mediachg(&sc->sc_mii); 2147 return (0); 2148 } 2149 2150 /* 2151 * pcn_mii_readreg: [mii interface function] 2152 * 2153 * Read a PHY register on the MII. 2154 */ 2155 static int 2156 pcn_mii_readreg(struct device *self, int phy, int reg) 2157 { 2158 struct pcn_softc *sc = (void *) self; 2159 uint32_t rv; 2160 2161 if (sc->sc_phyaddr != -1 && phy != sc->sc_phyaddr) 2162 return (0); 2163 2164 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT)); 2165 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD; 2166 if (rv == 0xffff) 2167 return (0); 2168 2169 if (sc->sc_phyaddr == -1) 2170 sc->sc_phyaddr = phy; 2171 2172 return (rv); 2173 } 2174 2175 /* 2176 * pcn_mii_writereg: [mii interface function] 2177 * 2178 * Write a PHY register on the MII. 2179 */ 2180 static void 2181 pcn_mii_writereg(struct device *self, int phy, int reg, int val) 2182 { 2183 struct pcn_softc *sc = (void *) self; 2184 2185 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT)); 2186 pcn_bcr_write(sc, LE_BCR34, val); 2187 } 2188 2189 /* 2190 * pcn_mii_statchg: [mii interface function] 2191 * 2192 * Callback from MII layer when media changes. 2193 */ 2194 static void 2195 pcn_mii_statchg(struct device *self) 2196 { 2197 struct pcn_softc *sc = (void *) self; 2198 2199 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 2200 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN); 2201 else 2202 pcn_bcr_write(sc, LE_BCR9, 0); 2203 } 2204