xref: /netbsd-src/sys/dev/pci/if_nfe.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: if_nfe.c,v 1.3 2006/03/26 00:34:14 chs Exp $	*/
2 /*	$OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.3 2006/03/26 00:34:14 chs Exp $");
25 
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41 
42 #include <machine/bus.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49 
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57 
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61 
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72 
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75 
76 int	nfe_match(struct device *, struct cfdata *, void *);
77 void	nfe_attach(struct device *, struct device *, void *);
78 void	nfe_power(int, void *);
79 void	nfe_miibus_statchg(struct device *);
80 int	nfe_miibus_readreg(struct device *, int, int);
81 void	nfe_miibus_writereg(struct device *, int, int, int);
82 int	nfe_intr(void *);
83 int	nfe_ioctl(struct ifnet *, u_long, caddr_t);
84 void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void	nfe_rxeof(struct nfe_softc *);
91 void	nfe_txeof(struct nfe_softc *);
92 int	nfe_encap(struct nfe_softc *, struct mbuf *);
93 void	nfe_start(struct ifnet *);
94 void	nfe_watchdog(struct ifnet *);
95 int	nfe_init(struct ifnet *);
96 void	nfe_stop(struct ifnet *, int);
97 struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *);
98 void	nfe_jfree(struct mbuf *, caddr_t, size_t, void *);
99 int	nfe_jpool_alloc(struct nfe_softc *);
100 void	nfe_jpool_free(struct nfe_softc *);
101 int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int	nfe_ifmedia_upd(struct ifnet *);
108 void	nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void	nfe_setmulti(struct nfe_softc *);
110 void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void	nfe_tick(void *);
113 
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115 
116 /*#define NFE_NO_JUMBO*/
117 
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x)	do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126 
127 /* deal with naming differences */
128 
129 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135 
136 #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140 
141 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145 
146 #ifdef	_LP64
147 #define	__LP64__ 1
148 #endif
149 
150 const struct nfe_product {
151 	pci_vendor_id_t		vendor;
152 	pci_product_id_t	product;
153 } nfe_devices[] = {
154 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }
169 };
170 
171 int
172 nfe_match(struct device *dev, struct cfdata *match, void *aux)
173 {
174 	struct pci_attach_args *pa = aux;
175 	const struct nfe_product *np;
176 	int i;
177 
178 	for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
179 		np = &nfe_devices[i];
180 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
181 		    PCI_PRODUCT(pa->pa_id) == np->product)
182 			return 1;
183 	}
184 	return 0;
185 }
186 
187 void
188 nfe_attach(struct device *parent, struct device *self, void *aux)
189 {
190 	struct nfe_softc *sc = (struct nfe_softc *)self;
191 	struct pci_attach_args *pa = aux;
192 	pci_chipset_tag_t pc = pa->pa_pc;
193 	pci_intr_handle_t ih;
194 	const char *intrstr;
195 	struct ifnet *ifp;
196 	bus_size_t memsize;
197 	pcireg_t memtype;
198 
199 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
200 	switch (memtype) {
201 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
202 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
203 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
204 		    &sc->sc_memh, NULL, &memsize) == 0)
205 			break;
206 		/* FALLTHROUGH */
207 	default:
208 		printf(": could not map mem space\n");
209 		return;
210 	}
211 
212 	if (pci_intr_map(pa, &ih) != 0) {
213 		printf(": could not map interrupt\n");
214 		return;
215 	}
216 
217 	intrstr = pci_intr_string(pc, ih);
218 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
219 	if (sc->sc_ih == NULL) {
220 		printf(": could not establish interrupt");
221 		if (intrstr != NULL)
222 			printf(" at %s", intrstr);
223 		printf("\n");
224 		return;
225 	}
226 	printf(": %s", intrstr);
227 
228 	sc->sc_dmat = pa->pa_dmat;
229 
230 	nfe_get_macaddr(sc, sc->sc_enaddr);
231 	printf(", address %s\n", ether_sprintf(sc->sc_enaddr));
232 
233 	sc->sc_flags = 0;
234 
235 	switch (PCI_PRODUCT(pa->pa_id)) {
236 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
237 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
238 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
239 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
240 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
241 		break;
242 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
243 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
244 		sc->sc_flags |= NFE_40BIT_ADDR;
245 		break;
246 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
247 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
248 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
249 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
250 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
251 		break;
252 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
253 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
254 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
255 		    NFE_HW_VLAN;
256 		break;
257 	}
258 
259 #ifndef NFE_NO_JUMBO
260 	/* enable jumbo frames for adapters that support it */
261 	if (sc->sc_flags & NFE_JUMBO_SUP)
262 		sc->sc_flags |= NFE_USE_JUMBO;
263 #endif
264 
265 	/*
266 	 * Allocate Tx and Rx rings.
267 	 */
268 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
269 		printf("%s: could not allocate Tx ring\n",
270 		    sc->sc_dev.dv_xname);
271 		return;
272 	}
273 
274 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
275 		printf("%s: could not allocate Rx ring\n",
276 		    sc->sc_dev.dv_xname);
277 		nfe_free_tx_ring(sc, &sc->txq);
278 		return;
279 	}
280 
281 	ifp = &sc->sc_ethercom.ec_if;
282 	ifp->if_softc = sc;
283 	ifp->if_mtu = ETHERMTU;
284 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
285 	ifp->if_ioctl = nfe_ioctl;
286 	ifp->if_start = nfe_start;
287 	ifp->if_watchdog = nfe_watchdog;
288 	ifp->if_init = nfe_init;
289 	ifp->if_baudrate = IF_Gbps(1);
290 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
291 	IFQ_SET_READY(&ifp->if_snd);
292 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
293 
294 #if NVLAN > 0
295 	if (sc->sc_flags & NFE_HW_VLAN)
296 		sc->sc_ethercom.ec_capabilities |=
297 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
298 #endif
299 #ifdef NFE_CSUM
300 	if (sc->sc_flags & NFE_HW_CSUM) {
301 		ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
302 		    IFCAP_CSUM_UDPv4;
303 	}
304 #endif
305 
306 	sc->sc_mii.mii_ifp = ifp;
307 	sc->sc_mii.mii_readreg = nfe_miibus_readreg;
308 	sc->sc_mii.mii_writereg = nfe_miibus_writereg;
309 	sc->sc_mii.mii_statchg = nfe_miibus_statchg;
310 
311 	ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
312 	    nfe_ifmedia_sts);
313 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
314 	    MII_OFFSET_ANY, 0);
315 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
316 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
317 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
318 		    0, NULL);
319 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
320 	} else
321 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
322 
323 	if_attach(ifp);
324 	ether_ifattach(ifp, sc->sc_enaddr);
325 
326 	callout_init(&sc->sc_tick_ch);
327 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
328 
329 	sc->sc_powerhook = powerhook_establish(nfe_power, sc);
330 }
331 
332 void
333 nfe_power(int why, void *arg)
334 {
335 	struct nfe_softc *sc = arg;
336 	struct ifnet *ifp;
337 
338 	if (why == PWR_RESUME) {
339 		ifp = &sc->sc_ethercom.ec_if;
340 		if (ifp->if_flags & IFF_UP) {
341 			ifp->if_flags &= ~IFF_RUNNING;
342 			nfe_init(ifp);
343 			if (ifp->if_flags & IFF_RUNNING)
344 				nfe_start(ifp);
345 		}
346 	}
347 }
348 
349 void
350 nfe_miibus_statchg(struct device *dev)
351 {
352 	struct nfe_softc *sc = (struct nfe_softc *)dev;
353 	struct mii_data *mii = &sc->sc_mii;
354 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
355 
356 	phy = NFE_READ(sc, NFE_PHY_IFACE);
357 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
358 
359 	seed = NFE_READ(sc, NFE_RNDSEED);
360 	seed &= ~NFE_SEED_MASK;
361 
362 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
363 		phy  |= NFE_PHY_HDX;	/* half-duplex */
364 		misc |= NFE_MISC1_HDX;
365 	}
366 
367 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
368 	case IFM_1000_T:	/* full-duplex only */
369 		link |= NFE_MEDIA_1000T;
370 		seed |= NFE_SEED_1000T;
371 		phy  |= NFE_PHY_1000T;
372 		break;
373 	case IFM_100_TX:
374 		link |= NFE_MEDIA_100TX;
375 		seed |= NFE_SEED_100TX;
376 		phy  |= NFE_PHY_100TX;
377 		break;
378 	case IFM_10_T:
379 		link |= NFE_MEDIA_10T;
380 		seed |= NFE_SEED_10T;
381 		break;
382 	}
383 
384 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
385 
386 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
387 	NFE_WRITE(sc, NFE_MISC1, misc);
388 	NFE_WRITE(sc, NFE_LINKSPEED, link);
389 }
390 
391 int
392 nfe_miibus_readreg(struct device *dev, int phy, int reg)
393 {
394 	struct nfe_softc *sc = (struct nfe_softc *)dev;
395 	uint32_t val;
396 	int ntries;
397 
398 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
399 
400 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
401 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
402 		DELAY(100);
403 	}
404 
405 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
406 
407 	for (ntries = 0; ntries < 1000; ntries++) {
408 		DELAY(100);
409 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
410 			break;
411 	}
412 	if (ntries == 1000) {
413 		DPRINTFN(2, ("%s: timeout waiting for PHY\n",
414 		    sc->sc_dev.dv_xname));
415 		return 0;
416 	}
417 
418 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
419 		DPRINTFN(2, ("%s: could not read PHY\n",
420 		    sc->sc_dev.dv_xname));
421 		return 0;
422 	}
423 
424 	val = NFE_READ(sc, NFE_PHY_DATA);
425 	if (val != 0xffffffff && val != 0)
426 		sc->mii_phyaddr = phy;
427 
428 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
429 	    sc->sc_dev.dv_xname, phy, reg, val));
430 
431 	return val;
432 }
433 
434 void
435 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
436 {
437 	struct nfe_softc *sc = (struct nfe_softc *)dev;
438 	uint32_t ctl;
439 	int ntries;
440 
441 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
442 
443 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
444 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
445 		DELAY(100);
446 	}
447 
448 	NFE_WRITE(sc, NFE_PHY_DATA, val);
449 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
450 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
451 
452 	for (ntries = 0; ntries < 1000; ntries++) {
453 		DELAY(100);
454 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
455 			break;
456 	}
457 #ifdef NFE_DEBUG
458 	if (nfedebug >= 2 && ntries == 1000)
459 		printf("could not write to PHY\n");
460 #endif
461 }
462 
463 int
464 nfe_intr(void *arg)
465 {
466 	struct nfe_softc *sc = arg;
467 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
468 	uint32_t r;
469 
470 	if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0)
471 		return 0;	/* not for us */
472 	NFE_WRITE(sc, NFE_IRQ_STATUS, r);
473 
474 	DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
475 
476 	if (r & NFE_IRQ_LINK) {
477 		NFE_READ(sc, NFE_PHY_STATUS);
478 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
479 		DPRINTF(("%s: link state changed\n", sc->sc_dev.dv_xname));
480 	}
481 
482 	if (ifp->if_flags & IFF_RUNNING) {
483 		/* check Rx ring */
484 		nfe_rxeof(sc);
485 
486 		/* check Tx ring */
487 		nfe_txeof(sc);
488 	}
489 
490 	return 1;
491 }
492 
493 int
494 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
495 {
496 	struct nfe_softc *sc = ifp->if_softc;
497 	struct ifreq *ifr = (struct ifreq *)data;
498 	struct ifaddr *ifa = (struct ifaddr *)data;
499 	int s, error = 0;
500 
501 	s = splnet();
502 
503 	switch (cmd) {
504 	case SIOCSIFADDR:
505 		ifp->if_flags |= IFF_UP;
506 		nfe_init(ifp);
507 		switch (ifa->ifa_addr->sa_family) {
508 #ifdef INET
509 		case AF_INET:
510 			arp_ifinit(ifp, ifa);
511 			break;
512 #endif
513 		default:
514 			break;
515 		}
516 		break;
517 	case SIOCSIFMTU:
518 		if (ifr->ifr_mtu < ETHERMIN ||
519 		    ((sc->sc_flags & NFE_USE_JUMBO) &&
520 		    ifr->ifr_mtu > ETHERMTU_JUMBO) ||
521 		    (!(sc->sc_flags & NFE_USE_JUMBO) &&
522 		    ifr->ifr_mtu > ETHERMTU))
523 			error = EINVAL;
524 		else if (ifp->if_mtu != ifr->ifr_mtu)
525 			ifp->if_mtu = ifr->ifr_mtu;
526 		break;
527 	case SIOCSIFFLAGS:
528 		if (ifp->if_flags & IFF_UP) {
529 			/*
530 			 * If only the PROMISC or ALLMULTI flag changes, then
531 			 * don't do a full re-init of the chip, just update
532 			 * the Rx filter.
533 			 */
534 			if ((ifp->if_flags & IFF_RUNNING) &&
535 			    ((ifp->if_flags ^ sc->sc_if_flags) &
536 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
537 				nfe_setmulti(sc);
538 			else
539 				nfe_init(ifp);
540 		} else {
541 			if (ifp->if_flags & IFF_RUNNING)
542 				nfe_stop(ifp, 1);
543 		}
544 		sc->sc_if_flags = ifp->if_flags;
545 		break;
546 	case SIOCADDMULTI:
547 	case SIOCDELMULTI:
548 		error = (cmd == SIOCADDMULTI) ?
549 		    ether_addmulti(ifr, &sc->sc_ethercom) :
550 		    ether_delmulti(ifr, &sc->sc_ethercom);
551 
552 		if (error == ENETRESET) {
553 			if (ifp->if_flags & IFF_RUNNING)
554 				nfe_setmulti(sc);
555 			error = 0;
556 		}
557 		break;
558 	case SIOCSIFMEDIA:
559 	case SIOCGIFMEDIA:
560 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
561 		break;
562 	default:
563 		error = ether_ioctl(ifp, cmd, data);
564 		if (error == ENETRESET) {
565 			if (ifp->if_flags & IFF_RUNNING)
566 				nfe_setmulti(sc);
567 			error = 0;
568 		}
569 		break;
570 
571 	}
572 
573 	splx(s);
574 
575 	return error;
576 }
577 
578 void
579 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
580 {
581 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
582 	    (caddr_t)desc32 - (caddr_t)sc->txq.desc32,
583 	    sizeof (struct nfe_desc32), ops);
584 }
585 
586 void
587 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
588 {
589 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
590 	    (caddr_t)desc64 - (caddr_t)sc->txq.desc64,
591 	    sizeof (struct nfe_desc64), ops);
592 }
593 
594 void
595 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
596 {
597 	if (end > start) {
598 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
599 		    (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
600 		    (caddr_t)&sc->txq.desc32[end] -
601 		    (caddr_t)&sc->txq.desc32[start], ops);
602 		return;
603 	}
604 	/* sync from 'start' to end of ring */
605 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
606 	    (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
607 	    (caddr_t)&sc->txq.desc32[NFE_TX_RING_COUNT] -
608 	    (caddr_t)&sc->txq.desc32[start], ops);
609 
610 	/* sync from start of ring to 'end' */
611 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
612 	    (caddr_t)&sc->txq.desc32[end] - (caddr_t)sc->txq.desc32, ops);
613 }
614 
615 void
616 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
617 {
618 	if (end > start) {
619 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
620 		    (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
621 		    (caddr_t)&sc->txq.desc64[end] -
622 		    (caddr_t)&sc->txq.desc64[start], ops);
623 		return;
624 	}
625 	/* sync from 'start' to end of ring */
626 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
627 	    (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
628 	    (caddr_t)&sc->txq.desc64[NFE_TX_RING_COUNT] -
629 	    (caddr_t)&sc->txq.desc64[start], ops);
630 
631 	/* sync from start of ring to 'end' */
632 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
633 	    (caddr_t)&sc->txq.desc64[end] - (caddr_t)sc->txq.desc64, ops);
634 }
635 
636 void
637 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
638 {
639 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
640 	    (caddr_t)desc32 - (caddr_t)sc->rxq.desc32,
641 	    sizeof (struct nfe_desc32), ops);
642 }
643 
644 void
645 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
646 {
647 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
648 	    (caddr_t)desc64 - (caddr_t)sc->rxq.desc64,
649 	    sizeof (struct nfe_desc64), ops);
650 }
651 
652 void
653 nfe_rxeof(struct nfe_softc *sc)
654 {
655 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
656 	struct nfe_desc32 *desc32;
657 	struct nfe_desc64 *desc64;
658 	struct nfe_rx_data *data;
659 	struct nfe_jbuf *jbuf;
660 	struct mbuf *m, *mnew;
661 	bus_addr_t physaddr;
662 	uint16_t flags;
663 	int error, len;
664 
665 	desc32 = NULL;
666 	desc64 = NULL;
667 	for (;;) {
668 		data = &sc->rxq.data[sc->rxq.cur];
669 
670 		if (sc->sc_flags & NFE_40BIT_ADDR) {
671 			desc64 = &sc->rxq.desc64[sc->rxq.cur];
672 			nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
673 
674 			flags = le16toh(desc64->flags);
675 			len = le16toh(desc64->length) & 0x3fff;
676 		} else {
677 			desc32 = &sc->rxq.desc32[sc->rxq.cur];
678 			nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
679 
680 			flags = le16toh(desc32->flags);
681 			len = le16toh(desc32->length) & 0x3fff;
682 		}
683 
684 		if (flags & NFE_RX_READY)
685 			break;
686 
687 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
688 			if (!(flags & NFE_RX_VALID_V1))
689 				goto skip;
690 
691 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
692 				flags &= ~NFE_RX_ERROR;
693 				len--;	/* fix buffer length */
694 			}
695 		} else {
696 			if (!(flags & NFE_RX_VALID_V2))
697 				goto skip;
698 
699 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
700 				flags &= ~NFE_RX_ERROR;
701 				len--;	/* fix buffer length */
702 			}
703 		}
704 
705 		if (flags & NFE_RX_ERROR) {
706 			ifp->if_ierrors++;
707 			goto skip;
708 		}
709 
710 		/*
711 		 * Try to allocate a new mbuf for this ring element and load
712 		 * it before processing the current mbuf. If the ring element
713 		 * cannot be loaded, drop the received packet and reuse the
714 		 * old mbuf. In the unlikely case that the old mbuf can't be
715 		 * reloaded either, explicitly panic.
716 		 */
717 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
718 		if (mnew == NULL) {
719 			ifp->if_ierrors++;
720 			goto skip;
721 		}
722 
723 		if (sc->sc_flags & NFE_USE_JUMBO) {
724 			if ((jbuf = nfe_jalloc(sc)) == NULL) {
725 				m_freem(mnew);
726 				ifp->if_ierrors++;
727 				goto skip;
728 			}
729 			MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
730 
731 			bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
732 			    mtod(data->m, caddr_t) - sc->rxq.jpool, NFE_JBYTES,
733 			    BUS_DMASYNC_POSTREAD);
734 
735 			physaddr = jbuf->physaddr;
736 		} else {
737 			MCLGET(mnew, M_DONTWAIT);
738 			if (!(mnew->m_flags & M_EXT)) {
739 				m_freem(mnew);
740 				ifp->if_ierrors++;
741 				goto skip;
742 			}
743 
744 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
745 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
746 			bus_dmamap_unload(sc->sc_dmat, data->map);
747 
748 			error = bus_dmamap_load(sc->sc_dmat, data->map,
749 			    mtod(mnew, void *), MCLBYTES, NULL,
750 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
751 			if (error != 0) {
752 				m_freem(mnew);
753 
754 				/* try to reload the old mbuf */
755 				error = bus_dmamap_load(sc->sc_dmat, data->map,
756 				    mtod(data->m, void *), MCLBYTES, NULL,
757 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
758 				if (error != 0) {
759 					/* very unlikely that it will fail.. */
760 					panic("%s: could not load old rx mbuf",
761 					    sc->sc_dev.dv_xname);
762 				}
763 				ifp->if_ierrors++;
764 				goto skip;
765 			}
766 			physaddr = data->map->dm_segs[0].ds_addr;
767 		}
768 
769 		/*
770 		 * New mbuf successfully loaded, update Rx ring and continue
771 		 * processing.
772 		 */
773 		m = data->m;
774 		data->m = mnew;
775 
776 		/* finalize mbuf */
777 		m->m_pkthdr.len = m->m_len = len;
778 		m->m_pkthdr.rcvif = ifp;
779 
780 #ifdef notyet
781 		if (sc->sc_flags & NFE_HW_CSUM) {
782 			if (flags & NFE_RX_IP_CSUMOK)
783 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
784 			if (flags & NFE_RX_UDP_CSUMOK)
785 				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
786 			if (flags & NFE_RX_TCP_CSUMOK)
787 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
788 		}
789 #elif defined(NFE_CSUM)
790 		if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK))
791 			m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
792 #endif
793 
794 #if NBPFILTER > 0
795 		if (ifp->if_bpf)
796 			bpf_mtap(ifp->if_bpf, m);
797 #endif
798 		ifp->if_ipackets++;
799 		(*ifp->if_input)(ifp, m);
800 
801 		/* update mapping address in h/w descriptor */
802 		if (sc->sc_flags & NFE_40BIT_ADDR) {
803 #if defined(__LP64__)
804 			desc64->physaddr[0] = htole32(physaddr >> 32);
805 #endif
806 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
807 		} else {
808 			desc32->physaddr = htole32(physaddr);
809 		}
810 
811 skip:		if (sc->sc_flags & NFE_40BIT_ADDR) {
812 			desc64->length = htole16(sc->rxq.bufsz);
813 			desc64->flags = htole16(NFE_RX_READY);
814 
815 			nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE);
816 		} else {
817 			desc32->length = htole16(sc->rxq.bufsz);
818 			desc32->flags = htole16(NFE_RX_READY);
819 
820 			nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE);
821 		}
822 
823 		sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT;
824 	}
825 }
826 
827 void
828 nfe_txeof(struct nfe_softc *sc)
829 {
830 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
831 	struct nfe_desc32 *desc32;
832 	struct nfe_desc64 *desc64;
833 	struct nfe_tx_data *data = NULL;
834 	uint16_t flags;
835 
836 	while (sc->txq.next != sc->txq.cur) {
837 		if (sc->sc_flags & NFE_40BIT_ADDR) {
838 			desc64 = &sc->txq.desc64[sc->txq.next];
839 			nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
840 
841 			flags = le16toh(desc64->flags);
842 		} else {
843 			desc32 = &sc->txq.desc32[sc->txq.next];
844 			nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
845 
846 			flags = le16toh(desc32->flags);
847 		}
848 
849 		if (flags & NFE_TX_VALID)
850 			break;
851 
852 		data = &sc->txq.data[sc->txq.next];
853 
854 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
855 			if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
856 				goto skip;
857 
858 			if ((flags & NFE_TX_ERROR_V1) != 0) {
859 				printf("%s: tx v1 error 0x%04x\n",
860 				    sc->sc_dev.dv_xname, flags);
861 				ifp->if_oerrors++;
862 			} else
863 				ifp->if_opackets++;
864 		} else {
865 			if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
866 				goto skip;
867 
868 			if ((flags & NFE_TX_ERROR_V2) != 0) {
869 				printf("%s: tx v2 error 0x%04x\n",
870 				    sc->sc_dev.dv_xname, flags);
871 				ifp->if_oerrors++;
872 			} else
873 				ifp->if_opackets++;
874 		}
875 
876 		if (data->m == NULL) {	/* should not get there */
877 			printf("%s: last fragment bit w/o associated mbuf!\n",
878 			    sc->sc_dev.dv_xname);
879 			goto skip;
880 		}
881 
882 		/* last fragment of the mbuf chain transmitted */
883 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
884 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
885 		bus_dmamap_unload(sc->sc_dmat, data->active);
886 		m_freem(data->m);
887 		data->m = NULL;
888 
889 		ifp->if_timer = 0;
890 
891 skip:		sc->txq.queued--;
892 		sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT;
893 	}
894 
895 	if (data != NULL) {	/* at least one slot freed */
896 		ifp->if_flags &= ~IFF_OACTIVE;
897 		nfe_start(ifp);
898 	}
899 }
900 
901 int
902 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
903 {
904 	struct nfe_desc32 *desc32;
905 	struct nfe_desc64 *desc64;
906 	struct nfe_tx_data *data;
907 	bus_dmamap_t map;
908 	uint16_t flags = NFE_TX_VALID;
909 #if NVLAN > 0
910 	struct m_tag *mtag;
911 	uint32_t vtag = 0;
912 #endif
913 	int error, i;
914 
915 	desc32 = NULL;
916 	desc64 = NULL;
917 	data = NULL;
918 	map = sc->txq.data[sc->txq.cur].map;
919 
920 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
921 	if (error != 0) {
922 		printf("%s: could not map mbuf (error %d)\n",
923 		    sc->sc_dev.dv_xname, error);
924 		return error;
925 	}
926 
927 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
928 		bus_dmamap_unload(sc->sc_dmat, map);
929 		return ENOBUFS;
930 	}
931 
932 #if NVLAN > 0
933 	/* setup h/w VLAN tagging */
934 	if (sc->sc_ethercom.ec_nvlans) {
935 		mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL);
936 		vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
937 	}
938 #endif
939 #ifdef NFE_CSUM
940 	if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
941 		flags |= NFE_TX_IP_CSUM;
942 	if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT))
943 		flags |= NFE_TX_TCP_CSUM;
944 #endif
945 
946 	for (i = 0; i < map->dm_nsegs; i++) {
947 		data = &sc->txq.data[sc->txq.cur];
948 
949 		if (sc->sc_flags & NFE_40BIT_ADDR) {
950 			desc64 = &sc->txq.desc64[sc->txq.cur];
951 #if defined(__LP64__)
952 			desc64->physaddr[0] =
953 			    htole32(map->dm_segs[i].ds_addr >> 32);
954 #endif
955 			desc64->physaddr[1] =
956 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
957 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
958 			desc64->flags = htole16(flags);
959 #if NVLAN > 0
960 			desc64->vtag = htole32(vtag);
961 #endif
962 		} else {
963 			desc32 = &sc->txq.desc32[sc->txq.cur];
964 
965 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
966 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
967 			desc32->flags = htole16(flags);
968 		}
969 
970 		/* csum flags and vtag belong to the first fragment only */
971 		if (map->dm_nsegs > 1) {
972 			flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
973 #if NVLAN > 0
974 			vtag = 0;
975 #endif
976 		}
977 
978 		sc->txq.queued++;
979 		sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT;
980 	}
981 
982 	/* the whole mbuf chain has been DMA mapped, fix last descriptor */
983 	if (sc->sc_flags & NFE_40BIT_ADDR) {
984 		flags |= NFE_TX_LASTFRAG_V2;
985 		desc64->flags = htole16(flags);
986 	} else {
987 		if (sc->sc_flags & NFE_JUMBO_SUP)
988 			flags |= NFE_TX_LASTFRAG_V2;
989 		else
990 			flags |= NFE_TX_LASTFRAG_V1;
991 		desc32->flags = htole16(flags);
992 	}
993 
994 	data->m = m0;
995 	data->active = map;
996 
997 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
998 	    BUS_DMASYNC_PREWRITE);
999 
1000 	return 0;
1001 }
1002 
1003 void
1004 nfe_start(struct ifnet *ifp)
1005 {
1006 	struct nfe_softc *sc = ifp->if_softc;
1007 	int old = sc->txq.cur;
1008 	struct mbuf *m0;
1009 
1010 	for (;;) {
1011 		IFQ_POLL(&ifp->if_snd, m0);
1012 		if (m0 == NULL)
1013 			break;
1014 
1015 		if (nfe_encap(sc, m0) != 0) {
1016 			ifp->if_flags |= IFF_OACTIVE;
1017 			break;
1018 		}
1019 
1020 		/* packet put in h/w queue, remove from s/w queue */
1021 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1022 
1023 #if NBPFILTER > 0
1024 		if (ifp->if_bpf != NULL)
1025 			bpf_mtap(ifp->if_bpf, m0);
1026 #endif
1027 	}
1028 	if (sc->txq.cur == old)	/* nothing sent */
1029 		return;
1030 
1031 	if (sc->sc_flags & NFE_40BIT_ADDR)
1032 		nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1033 	else
1034 		nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1035 
1036 	/* kick Tx */
1037 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1038 
1039 	/*
1040 	 * Set a timeout in case the chip goes out to lunch.
1041 	 */
1042 	ifp->if_timer = 5;
1043 }
1044 
1045 void
1046 nfe_watchdog(struct ifnet *ifp)
1047 {
1048 	struct nfe_softc *sc = ifp->if_softc;
1049 
1050 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1051 
1052 	ifp->if_flags &= ~IFF_RUNNING;
1053 	nfe_init(ifp);
1054 
1055 	ifp->if_oerrors++;
1056 }
1057 
1058 int
1059 nfe_init(struct ifnet *ifp)
1060 {
1061 	struct nfe_softc *sc = ifp->if_softc;
1062 	uint32_t tmp;
1063 
1064 	if (ifp->if_flags & IFF_RUNNING)
1065 		return 0;
1066 
1067 	nfe_stop(ifp, 0);
1068 
1069 	NFE_WRITE(sc, NFE_TX_UNK, 0);
1070 	NFE_WRITE(sc, NFE_STATUS, 0);
1071 
1072 	sc->rxtxctl = NFE_RXTX_BIT2;
1073 	if (sc->sc_flags & NFE_40BIT_ADDR)
1074 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1075 	else if (sc->sc_flags & NFE_JUMBO_SUP)
1076 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1077 #ifdef NFE_CSUM
1078 	if (sc->sc_flags & NFE_HW_CSUM)
1079 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1080 #endif
1081 #if NVLAN > 0
1082 	/*
1083 	 * Although the adapter is capable of stripping VLAN tags from received
1084 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1085 	 * purpose.  This will be done in software by our network stack.
1086 	 */
1087 	if (sc->sc_flags & NFE_HW_VLAN)
1088 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1089 #endif
1090 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1091 	DELAY(10);
1092 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1093 
1094 #if NVLAN
1095 	if (sc->sc_flags & NFE_HW_VLAN)
1096 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1097 #endif
1098 
1099 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1100 
1101 	/* set MAC address */
1102 	nfe_set_macaddr(sc, sc->sc_enaddr);
1103 
1104 	/* tell MAC where rings are in memory */
1105 #ifdef __LP64__
1106 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1107 #endif
1108 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1109 #ifdef __LP64__
1110 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1111 #endif
1112 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1113 
1114 	NFE_WRITE(sc, NFE_RING_SIZE,
1115 	    (NFE_RX_RING_COUNT - 1) << 16 |
1116 	    (NFE_TX_RING_COUNT - 1));
1117 
1118 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1119 
1120 	/* force MAC to wakeup */
1121 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1122 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1123 	DELAY(10);
1124 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1125 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1126 
1127 #if 1
1128 	/* configure interrupts coalescing/mitigation */
1129 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1130 #else
1131 	/* no interrupt mitigation: one interrupt per packet */
1132 	NFE_WRITE(sc, NFE_IMTIMER, 970);
1133 #endif
1134 
1135 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1136 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1137 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1138 
1139 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1140 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1141 
1142 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1143 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1144 
1145 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1146 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1147 	DELAY(10);
1148 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1149 
1150 	/* set Rx filter */
1151 	nfe_setmulti(sc);
1152 
1153 	nfe_ifmedia_upd(ifp);
1154 
1155 	/* enable Rx */
1156 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1157 
1158 	/* enable Tx */
1159 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1160 
1161 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1162 
1163 	/* enable interrupts */
1164 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1165 
1166 	callout_schedule(&sc->sc_tick_ch, hz);
1167 
1168 	ifp->if_flags |= IFF_RUNNING;
1169 	ifp->if_flags &= ~IFF_OACTIVE;
1170 
1171 	return 0;
1172 }
1173 
1174 void
1175 nfe_stop(struct ifnet *ifp, int disable)
1176 {
1177 	struct nfe_softc *sc = ifp->if_softc;
1178 
1179 	callout_stop(&sc->sc_tick_ch);
1180 
1181 	ifp->if_timer = 0;
1182 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1183 
1184 	mii_down(&sc->sc_mii);
1185 
1186 	/* abort Tx */
1187 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1188 
1189 	/* disable Rx */
1190 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1191 
1192 	/* disable interrupts */
1193 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1194 
1195 	/* reset Tx and Rx rings */
1196 	nfe_reset_tx_ring(sc, &sc->txq);
1197 	nfe_reset_rx_ring(sc, &sc->rxq);
1198 }
1199 
1200 int
1201 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1202 {
1203 	struct nfe_desc32 *desc32;
1204 	struct nfe_desc64 *desc64;
1205 	struct nfe_rx_data *data;
1206 	struct nfe_jbuf *jbuf;
1207 	void **desc;
1208 	bus_addr_t physaddr;
1209 	int i, nsegs, error, descsize;
1210 
1211 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1212 		desc = (void **)&ring->desc64;
1213 		descsize = sizeof (struct nfe_desc64);
1214 	} else {
1215 		desc = (void **)&ring->desc32;
1216 		descsize = sizeof (struct nfe_desc32);
1217 	}
1218 
1219 	ring->cur = ring->next = 0;
1220 	ring->bufsz = MCLBYTES;
1221 
1222 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1223 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1224 	if (error != 0) {
1225 		printf("%s: could not create desc DMA map\n",
1226 		    sc->sc_dev.dv_xname);
1227 		goto fail;
1228 	}
1229 
1230 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1231 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1232 	if (error != 0) {
1233 		printf("%s: could not allocate DMA memory\n",
1234 		    sc->sc_dev.dv_xname);
1235 		goto fail;
1236 	}
1237 
1238 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1239 	    NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1240 	if (error != 0) {
1241 		printf("%s: could not map desc DMA memory\n",
1242 		    sc->sc_dev.dv_xname);
1243 		goto fail;
1244 	}
1245 
1246 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1247 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1248 	if (error != 0) {
1249 		printf("%s: could not load desc DMA map\n",
1250 		    sc->sc_dev.dv_xname);
1251 		goto fail;
1252 	}
1253 
1254 	bzero(*desc, NFE_RX_RING_COUNT * descsize);
1255 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1256 
1257 	if (sc->sc_flags & NFE_USE_JUMBO) {
1258 		ring->bufsz = NFE_JBYTES;
1259 		if ((error = nfe_jpool_alloc(sc)) != 0) {
1260 			printf("%s: could not allocate jumbo frames\n",
1261 			    sc->sc_dev.dv_xname);
1262 			goto fail;
1263 		}
1264 	}
1265 
1266 	/*
1267 	 * Pre-allocate Rx buffers and populate Rx ring.
1268 	 */
1269 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1270 		data = &sc->rxq.data[i];
1271 
1272 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1273 		if (data->m == NULL) {
1274 			printf("%s: could not allocate rx mbuf\n",
1275 			    sc->sc_dev.dv_xname);
1276 			error = ENOMEM;
1277 			goto fail;
1278 		}
1279 
1280 		if (sc->sc_flags & NFE_USE_JUMBO) {
1281 			if ((jbuf = nfe_jalloc(sc)) == NULL) {
1282 				printf("%s: could not allocate jumbo buffer\n",
1283 				    sc->sc_dev.dv_xname);
1284 				goto fail;
1285 			}
1286 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1287 			    sc);
1288 
1289 			physaddr = jbuf->physaddr;
1290 		} else {
1291 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1292 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1293 			if (error != 0) {
1294 				printf("%s: could not create DMA map\n",
1295 				    sc->sc_dev.dv_xname);
1296 				goto fail;
1297 			}
1298 			MCLGET(data->m, M_DONTWAIT);
1299 			if (!(data->m->m_flags & M_EXT)) {
1300 				printf("%s: could not allocate mbuf cluster\n",
1301 				    sc->sc_dev.dv_xname);
1302 				error = ENOMEM;
1303 				goto fail;
1304 			}
1305 
1306 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1307 			    mtod(data->m, void *), MCLBYTES, NULL,
1308 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
1309 			if (error != 0) {
1310 				printf("%s: could not load rx buf DMA map",
1311 				    sc->sc_dev.dv_xname);
1312 				goto fail;
1313 			}
1314 			physaddr = data->map->dm_segs[0].ds_addr;
1315 		}
1316 
1317 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1318 			desc64 = &sc->rxq.desc64[i];
1319 #if defined(__LP64__)
1320 			desc64->physaddr[0] = htole32(physaddr >> 32);
1321 #endif
1322 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1323 			desc64->length = htole16(sc->rxq.bufsz);
1324 			desc64->flags = htole16(NFE_RX_READY);
1325 		} else {
1326 			desc32 = &sc->rxq.desc32[i];
1327 			desc32->physaddr = htole32(physaddr);
1328 			desc32->length = htole16(sc->rxq.bufsz);
1329 			desc32->flags = htole16(NFE_RX_READY);
1330 		}
1331 	}
1332 
1333 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1334 	    BUS_DMASYNC_PREWRITE);
1335 
1336 	return 0;
1337 
1338 fail:	nfe_free_rx_ring(sc, ring);
1339 	return error;
1340 }
1341 
1342 void
1343 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1344 {
1345 	int i;
1346 
1347 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1348 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1349 			ring->desc64[i].length = htole16(ring->bufsz);
1350 			ring->desc64[i].flags = htole16(NFE_RX_READY);
1351 		} else {
1352 			ring->desc32[i].length = htole16(ring->bufsz);
1353 			ring->desc32[i].flags = htole16(NFE_RX_READY);
1354 		}
1355 	}
1356 
1357 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1358 	    BUS_DMASYNC_PREWRITE);
1359 
1360 	ring->cur = ring->next = 0;
1361 }
1362 
1363 void
1364 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1365 {
1366 	struct nfe_rx_data *data;
1367 	void *desc;
1368 	int i, descsize;
1369 
1370 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1371 		desc = ring->desc64;
1372 		descsize = sizeof (struct nfe_desc64);
1373 	} else {
1374 		desc = ring->desc32;
1375 		descsize = sizeof (struct nfe_desc32);
1376 	}
1377 
1378 	if (desc != NULL) {
1379 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1380 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1381 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1382 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1383 		    NFE_RX_RING_COUNT * descsize);
1384 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1385 	}
1386 
1387 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1388 		data = &ring->data[i];
1389 
1390 		if (data->map != NULL) {
1391 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1392 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1393 			bus_dmamap_unload(sc->sc_dmat, data->map);
1394 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1395 		}
1396 		if (data->m != NULL)
1397 			m_freem(data->m);
1398 	}
1399 }
1400 
1401 struct nfe_jbuf *
1402 nfe_jalloc(struct nfe_softc *sc)
1403 {
1404 	struct nfe_jbuf *jbuf;
1405 
1406 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1407 	if (jbuf == NULL)
1408 		return NULL;
1409 	SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1410 	return jbuf;
1411 }
1412 
1413 /*
1414  * This is called automatically by the network stack when the mbuf is freed.
1415  * Caution must be taken that the NIC might be reset by the time the mbuf is
1416  * freed.
1417  */
1418 void
1419 nfe_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
1420 {
1421 	struct nfe_softc *sc = arg;
1422 	struct nfe_jbuf *jbuf;
1423 	int i;
1424 
1425 	/* find the jbuf from the base pointer */
1426 	i = (buf - sc->rxq.jpool) / NFE_JBYTES;
1427 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
1428 		printf("%s: request to free a buffer (%p) not managed by us\n",
1429 		    sc->sc_dev.dv_xname, buf);
1430 		return;
1431 	}
1432 	jbuf = &sc->rxq.jbuf[i];
1433 
1434 	/* ..and put it back in the free list */
1435 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1436 
1437         if (m != NULL)
1438                 pool_cache_put(&mbpool_cache, m);
1439 }
1440 
1441 int
1442 nfe_jpool_alloc(struct nfe_softc *sc)
1443 {
1444 	struct nfe_rx_ring *ring = &sc->rxq;
1445 	struct nfe_jbuf *jbuf;
1446 	bus_addr_t physaddr;
1447 	caddr_t buf;
1448 	int i, nsegs, error;
1449 
1450 	/*
1451 	 * Allocate a big chunk of DMA'able memory.
1452 	 */
1453 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1454 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1455 	if (error != 0) {
1456 		printf("%s: could not create jumbo DMA map\n",
1457 		    sc->sc_dev.dv_xname);
1458 		goto fail;
1459 	}
1460 
1461 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1462 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1463 	if (error != 0) {
1464 		printf("%s could not allocate jumbo DMA memory\n",
1465 		    sc->sc_dev.dv_xname);
1466 		goto fail;
1467 	}
1468 
1469 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1470 	    &ring->jpool, BUS_DMA_NOWAIT);
1471 	if (error != 0) {
1472 		printf("%s: could not map jumbo DMA memory\n",
1473 		    sc->sc_dev.dv_xname);
1474 		goto fail;
1475 	}
1476 
1477 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1478 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1479 	if (error != 0) {
1480 		printf("%s: could not load jumbo DMA map\n",
1481 		    sc->sc_dev.dv_xname);
1482 		goto fail;
1483 	}
1484 
1485 	/* ..and split it into 9KB chunks */
1486 	SLIST_INIT(&ring->jfreelist);
1487 
1488 	buf = ring->jpool;
1489 	physaddr = ring->jmap->dm_segs[0].ds_addr;
1490 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1491 		jbuf = &ring->jbuf[i];
1492 
1493 		jbuf->buf = buf;
1494 		jbuf->physaddr = physaddr;
1495 
1496 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1497 
1498 		buf += NFE_JBYTES;
1499 		physaddr += NFE_JBYTES;
1500 	}
1501 
1502 	return 0;
1503 
1504 fail:	nfe_jpool_free(sc);
1505 	return error;
1506 }
1507 
1508 void
1509 nfe_jpool_free(struct nfe_softc *sc)
1510 {
1511 	struct nfe_rx_ring *ring = &sc->rxq;
1512 
1513 	if (ring->jmap != NULL) {
1514 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1515 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1516 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1517 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1518 	}
1519 	if (ring->jpool != NULL) {
1520 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1521 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1522 	}
1523 }
1524 
1525 int
1526 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1527 {
1528 	int i, nsegs, error;
1529 	void **desc;
1530 	int descsize;
1531 
1532 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1533 		desc = (void **)&ring->desc64;
1534 		descsize = sizeof (struct nfe_desc64);
1535 	} else {
1536 		desc = (void **)&ring->desc32;
1537 		descsize = sizeof (struct nfe_desc32);
1538 	}
1539 
1540 	ring->queued = 0;
1541 	ring->cur = ring->next = 0;
1542 
1543 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1544 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1545 
1546 	if (error != 0) {
1547 		printf("%s: could not create desc DMA map\n",
1548 		    sc->sc_dev.dv_xname);
1549 		goto fail;
1550 	}
1551 
1552 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1553 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1554 	if (error != 0) {
1555 		printf("%s: could not allocate DMA memory\n",
1556 		    sc->sc_dev.dv_xname);
1557 		goto fail;
1558 	}
1559 
1560 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1561 	    NFE_TX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1562 	if (error != 0) {
1563 		printf("%s: could not map desc DMA memory\n",
1564 		    sc->sc_dev.dv_xname);
1565 		goto fail;
1566 	}
1567 
1568 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1569 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1570 	if (error != 0) {
1571 		printf("%s: could not load desc DMA map\n",
1572 		    sc->sc_dev.dv_xname);
1573 		goto fail;
1574 	}
1575 
1576 	bzero(*desc, NFE_TX_RING_COUNT * descsize);
1577 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1578 
1579 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1580 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1581 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1582 		    &ring->data[i].map);
1583 		if (error != 0) {
1584 			printf("%s: could not create DMA map\n",
1585 			    sc->sc_dev.dv_xname);
1586 			goto fail;
1587 		}
1588 	}
1589 
1590 	return 0;
1591 
1592 fail:	nfe_free_tx_ring(sc, ring);
1593 	return error;
1594 }
1595 
1596 void
1597 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1598 {
1599 	struct nfe_tx_data *data;
1600 	int i;
1601 
1602 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1603 		if (sc->sc_flags & NFE_40BIT_ADDR)
1604 			ring->desc64[i].flags = 0;
1605 		else
1606 			ring->desc32[i].flags = 0;
1607 
1608 		data = &ring->data[i];
1609 
1610 		if (data->m != NULL) {
1611 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1612 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1613 			bus_dmamap_unload(sc->sc_dmat, data->active);
1614 			m_freem(data->m);
1615 			data->m = NULL;
1616 		}
1617 	}
1618 
1619 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1620 	    BUS_DMASYNC_PREWRITE);
1621 
1622 	ring->queued = 0;
1623 	ring->cur = ring->next = 0;
1624 }
1625 
1626 void
1627 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1628 {
1629 	struct nfe_tx_data *data;
1630 	void *desc;
1631 	int i, descsize;
1632 
1633 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1634 		desc = ring->desc64;
1635 		descsize = sizeof (struct nfe_desc64);
1636 	} else {
1637 		desc = ring->desc32;
1638 		descsize = sizeof (struct nfe_desc32);
1639 	}
1640 
1641 	if (desc != NULL) {
1642 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1643 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1644 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1645 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1646 		    NFE_TX_RING_COUNT * descsize);
1647 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1648 	}
1649 
1650 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1651 		data = &ring->data[i];
1652 
1653 		if (data->m != NULL) {
1654 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1655 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1656 			bus_dmamap_unload(sc->sc_dmat, data->active);
1657 			m_freem(data->m);
1658 		}
1659 	}
1660 
1661 	/* ..and now actually destroy the DMA mappings */
1662 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1663 		data = &ring->data[i];
1664 		if (data->map == NULL)
1665 			continue;
1666 		bus_dmamap_destroy(sc->sc_dmat, data->map);
1667 	}
1668 }
1669 
1670 int
1671 nfe_ifmedia_upd(struct ifnet *ifp)
1672 {
1673 	struct nfe_softc *sc = ifp->if_softc;
1674 	struct mii_data *mii = &sc->sc_mii;
1675 	struct mii_softc *miisc;
1676 
1677 	if (mii->mii_instance != 0) {
1678 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1679 			mii_phy_reset(miisc);
1680 	}
1681 	return mii_mediachg(mii);
1682 }
1683 
1684 void
1685 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1686 {
1687 	struct nfe_softc *sc = ifp->if_softc;
1688 	struct mii_data *mii = &sc->sc_mii;
1689 
1690 	mii_pollstat(mii);
1691 	ifmr->ifm_status = mii->mii_media_status;
1692 	ifmr->ifm_active = mii->mii_media_active;
1693 }
1694 
1695 void
1696 nfe_setmulti(struct nfe_softc *sc)
1697 {
1698 	struct ethercom *ec = &sc->sc_ethercom;
1699 	struct ifnet *ifp = &ec->ec_if;
1700 	struct ether_multi *enm;
1701 	struct ether_multistep step;
1702 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1703 	uint32_t filter = NFE_RXFILTER_MAGIC;
1704 	int i;
1705 
1706 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1707 		bzero(addr, ETHER_ADDR_LEN);
1708 		bzero(mask, ETHER_ADDR_LEN);
1709 		goto done;
1710 	}
1711 
1712 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1713 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1714 
1715 	ETHER_FIRST_MULTI(step, ec, enm);
1716 	while (enm != NULL) {
1717 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1718 			ifp->if_flags |= IFF_ALLMULTI;
1719 			bzero(addr, ETHER_ADDR_LEN);
1720 			bzero(mask, ETHER_ADDR_LEN);
1721 			goto done;
1722 		}
1723 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1724 			addr[i] &=  enm->enm_addrlo[i];
1725 			mask[i] &= ~enm->enm_addrlo[i];
1726 		}
1727 		ETHER_NEXT_MULTI(step, enm);
1728 	}
1729 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1730 		mask[i] |= addr[i];
1731 
1732 done:
1733 	addr[0] |= 0x01;	/* make sure multicast bit is set */
1734 
1735 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
1736 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1737 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
1738 	    addr[5] <<  8 | addr[4]);
1739 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
1740 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1741 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
1742 	    mask[5] <<  8 | mask[4]);
1743 
1744 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1745 	NFE_WRITE(sc, NFE_RXFILTER, filter);
1746 }
1747 
1748 void
1749 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1750 {
1751 	uint32_t tmp;
1752 
1753 	tmp = NFE_READ(sc, NFE_MACADDR_LO);
1754 	addr[0] = (tmp >> 8) & 0xff;
1755 	addr[1] = (tmp & 0xff);
1756 
1757 	tmp = NFE_READ(sc, NFE_MACADDR_HI);
1758 	addr[2] = (tmp >> 24) & 0xff;
1759 	addr[3] = (tmp >> 16) & 0xff;
1760 	addr[4] = (tmp >>  8) & 0xff;
1761 	addr[5] = (tmp & 0xff);
1762 }
1763 
1764 void
1765 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1766 {
1767 	NFE_WRITE(sc, NFE_MACADDR_LO,
1768 	    addr[5] <<  8 | addr[4]);
1769 	NFE_WRITE(sc, NFE_MACADDR_HI,
1770 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1771 }
1772 
1773 void
1774 nfe_tick(void *arg)
1775 {
1776 	struct nfe_softc *sc = arg;
1777 	int s;
1778 
1779 	s = splnet();
1780 	mii_tick(&sc->sc_mii);
1781 	splx(s);
1782 
1783 	callout_schedule(&sc->sc_tick_ch, hz);
1784 }
1785