1 /* $NetBSD: if_nfe.c,v 1.6 2006/10/12 01:31:30 christos Exp $ */ 2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */ 22 23 #include <sys/cdefs.h> 24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.6 2006/10/12 01:31:30 christos Exp $"); 25 26 #include "opt_inet.h" 27 #include "bpfilter.h" 28 #include "vlan.h" 29 30 #include <sys/param.h> 31 #include <sys/endian.h> 32 #include <sys/systm.h> 33 #include <sys/types.h> 34 #include <sys/sockio.h> 35 #include <sys/mbuf.h> 36 #include <sys/queue.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/device.h> 40 #include <sys/socket.h> 41 42 #include <machine/bus.h> 43 44 #include <net/if.h> 45 #include <net/if_dl.h> 46 #include <net/if_media.h> 47 #include <net/if_ether.h> 48 #include <net/if_arp.h> 49 50 #ifdef INET 51 #include <netinet/in.h> 52 #include <netinet/in_systm.h> 53 #include <netinet/in_var.h> 54 #include <netinet/ip.h> 55 #include <netinet/if_inarp.h> 56 #endif 57 58 #if NVLAN > 0 59 #include <net/if_types.h> 60 #endif 61 62 #if NBPFILTER > 0 63 #include <net/bpf.h> 64 #endif 65 66 #include <dev/mii/mii.h> 67 #include <dev/mii/miivar.h> 68 69 #include <dev/pci/pcireg.h> 70 #include <dev/pci/pcivar.h> 71 #include <dev/pci/pcidevs.h> 72 73 #include <dev/pci/if_nfereg.h> 74 #include <dev/pci/if_nfevar.h> 75 76 int nfe_match(struct device *, struct cfdata *, void *); 77 void nfe_attach(struct device *, struct device *, void *); 78 void nfe_power(int, void *); 79 void nfe_miibus_statchg(struct device *); 80 int nfe_miibus_readreg(struct device *, int, int); 81 void nfe_miibus_writereg(struct device *, int, int, int); 82 int nfe_intr(void *); 83 int nfe_ioctl(struct ifnet *, u_long, caddr_t); 84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); 85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); 86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int); 87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int); 88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); 89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); 90 void nfe_rxeof(struct nfe_softc *); 91 void nfe_txeof(struct nfe_softc *); 92 int nfe_encap(struct nfe_softc *, struct mbuf *); 93 void nfe_start(struct ifnet *); 94 void nfe_watchdog(struct ifnet *); 95 int nfe_init(struct ifnet *); 96 void nfe_stop(struct ifnet *, int); 97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *); 98 void nfe_jfree(struct mbuf *, caddr_t, size_t, void *); 99 int nfe_jpool_alloc(struct nfe_softc *); 100 void nfe_jpool_free(struct nfe_softc *); 101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 107 int nfe_ifmedia_upd(struct ifnet *); 108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *); 109 void nfe_setmulti(struct nfe_softc *); 110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *); 111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *); 112 void nfe_tick(void *); 113 114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL); 115 116 /*#define NFE_NO_JUMBO*/ 117 118 #ifdef NFE_DEBUG 119 int nfedebug = 0; 120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0) 121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0) 122 #else 123 #define DPRINTF(x) 124 #define DPRINTFN(n,x) 125 #endif 126 127 /* deal with naming differences */ 128 129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \ 130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1 131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \ 132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2 133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \ 134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN 135 136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \ 137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1 138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \ 139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2 140 141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \ 142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \ 144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2 145 146 #ifdef _LP64 147 #define __LP64__ 1 148 #endif 149 150 const struct nfe_product { 151 pci_vendor_id_t vendor; 152 pci_product_id_t product; 153 } nfe_devices[] = { 154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN }, 155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN }, 156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 }, 157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 }, 158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 }, 159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 }, 160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 }, 161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 }, 162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 }, 163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 }, 164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 }, 165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 }, 166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 }, 167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 }, 168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }, 169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 }, 170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 }, 171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 }, 172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 }, 173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 }, 174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 }, 175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 }, 176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 } 177 }; 178 179 int 180 nfe_match(struct device *dev __unused, struct cfdata *match __unused, void *aux) 181 { 182 struct pci_attach_args *pa = aux; 183 const struct nfe_product *np; 184 int i; 185 186 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) { 187 np = &nfe_devices[i]; 188 if (PCI_VENDOR(pa->pa_id) == np->vendor && 189 PCI_PRODUCT(pa->pa_id) == np->product) 190 return 1; 191 } 192 return 0; 193 } 194 195 void 196 nfe_attach(struct device *parent __unused, struct device *self, void *aux) 197 { 198 struct nfe_softc *sc = (struct nfe_softc *)self; 199 struct pci_attach_args *pa = aux; 200 pci_chipset_tag_t pc = pa->pa_pc; 201 pci_intr_handle_t ih; 202 const char *intrstr; 203 struct ifnet *ifp; 204 bus_size_t memsize; 205 pcireg_t memtype; 206 207 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA); 208 switch (memtype) { 209 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 210 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 211 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt, 212 &sc->sc_memh, NULL, &memsize) == 0) 213 break; 214 /* FALLTHROUGH */ 215 default: 216 printf(": could not map mem space\n"); 217 return; 218 } 219 220 if (pci_intr_map(pa, &ih) != 0) { 221 printf(": could not map interrupt\n"); 222 return; 223 } 224 225 intrstr = pci_intr_string(pc, ih); 226 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc); 227 if (sc->sc_ih == NULL) { 228 printf(": could not establish interrupt"); 229 if (intrstr != NULL) 230 printf(" at %s", intrstr); 231 printf("\n"); 232 return; 233 } 234 printf(": %s", intrstr); 235 236 sc->sc_dmat = pa->pa_dmat; 237 238 nfe_get_macaddr(sc, sc->sc_enaddr); 239 printf(", address %s\n", ether_sprintf(sc->sc_enaddr)); 240 241 sc->sc_flags = 0; 242 243 switch (PCI_PRODUCT(pa->pa_id)) { 244 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: 245 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: 246 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: 247 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: 248 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM; 249 break; 250 case PCI_PRODUCT_NVIDIA_MCP51_LAN1: 251 case PCI_PRODUCT_NVIDIA_MCP51_LAN2: 252 case PCI_PRODUCT_NVIDIA_MCP61_LAN1: 253 case PCI_PRODUCT_NVIDIA_MCP61_LAN2: 254 case PCI_PRODUCT_NVIDIA_MCP61_LAN3: 255 case PCI_PRODUCT_NVIDIA_MCP61_LAN4: 256 sc->sc_flags |= NFE_40BIT_ADDR; 257 break; 258 case PCI_PRODUCT_NVIDIA_CK804_LAN1: 259 case PCI_PRODUCT_NVIDIA_CK804_LAN2: 260 case PCI_PRODUCT_NVIDIA_MCP04_LAN1: 261 case PCI_PRODUCT_NVIDIA_MCP04_LAN2: 262 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM; 263 break; 264 case PCI_PRODUCT_NVIDIA_MCP55_LAN1: 265 case PCI_PRODUCT_NVIDIA_MCP55_LAN2: 266 case PCI_PRODUCT_NVIDIA_MCP65_LAN1: 267 case PCI_PRODUCT_NVIDIA_MCP65_LAN2: 268 case PCI_PRODUCT_NVIDIA_MCP65_LAN3: 269 case PCI_PRODUCT_NVIDIA_MCP65_LAN4: 270 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 271 NFE_HW_VLAN; 272 break; 273 } 274 275 #ifndef NFE_NO_JUMBO 276 /* enable jumbo frames for adapters that support it */ 277 if (sc->sc_flags & NFE_JUMBO_SUP) 278 sc->sc_flags |= NFE_USE_JUMBO; 279 #endif 280 281 /* 282 * Allocate Tx and Rx rings. 283 */ 284 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) { 285 printf("%s: could not allocate Tx ring\n", 286 sc->sc_dev.dv_xname); 287 return; 288 } 289 290 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) { 291 printf("%s: could not allocate Rx ring\n", 292 sc->sc_dev.dv_xname); 293 nfe_free_tx_ring(sc, &sc->txq); 294 return; 295 } 296 297 ifp = &sc->sc_ethercom.ec_if; 298 ifp->if_softc = sc; 299 ifp->if_mtu = ETHERMTU; 300 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 301 ifp->if_ioctl = nfe_ioctl; 302 ifp->if_start = nfe_start; 303 ifp->if_watchdog = nfe_watchdog; 304 ifp->if_init = nfe_init; 305 ifp->if_baudrate = IF_Gbps(1); 306 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN); 307 IFQ_SET_READY(&ifp->if_snd); 308 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 309 310 #if NVLAN > 0 311 if (sc->sc_flags & NFE_HW_VLAN) 312 sc->sc_ethercom.ec_capabilities |= 313 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU; 314 #endif 315 #ifdef NFE_CSUM 316 if (sc->sc_flags & NFE_HW_CSUM) { 317 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | 318 IFCAP_CSUM_UDPv4; 319 } 320 #endif 321 322 sc->sc_mii.mii_ifp = ifp; 323 sc->sc_mii.mii_readreg = nfe_miibus_readreg; 324 sc->sc_mii.mii_writereg = nfe_miibus_writereg; 325 sc->sc_mii.mii_statchg = nfe_miibus_statchg; 326 327 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd, 328 nfe_ifmedia_sts); 329 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 330 MII_OFFSET_ANY, 0); 331 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 332 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); 333 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL, 334 0, NULL); 335 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL); 336 } else 337 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO); 338 339 if_attach(ifp); 340 ether_ifattach(ifp, sc->sc_enaddr); 341 342 callout_init(&sc->sc_tick_ch); 343 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc); 344 345 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname, 346 nfe_power, sc); 347 } 348 349 void 350 nfe_power(int why, void *arg) 351 { 352 struct nfe_softc *sc = arg; 353 struct ifnet *ifp; 354 355 if (why == PWR_RESUME) { 356 ifp = &sc->sc_ethercom.ec_if; 357 if (ifp->if_flags & IFF_UP) { 358 ifp->if_flags &= ~IFF_RUNNING; 359 nfe_init(ifp); 360 if (ifp->if_flags & IFF_RUNNING) 361 nfe_start(ifp); 362 } 363 } 364 } 365 366 void 367 nfe_miibus_statchg(struct device *dev) 368 { 369 struct nfe_softc *sc = (struct nfe_softc *)dev; 370 struct mii_data *mii = &sc->sc_mii; 371 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET; 372 373 phy = NFE_READ(sc, NFE_PHY_IFACE); 374 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T); 375 376 seed = NFE_READ(sc, NFE_RNDSEED); 377 seed &= ~NFE_SEED_MASK; 378 379 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 380 phy |= NFE_PHY_HDX; /* half-duplex */ 381 misc |= NFE_MISC1_HDX; 382 } 383 384 switch (IFM_SUBTYPE(mii->mii_media_active)) { 385 case IFM_1000_T: /* full-duplex only */ 386 link |= NFE_MEDIA_1000T; 387 seed |= NFE_SEED_1000T; 388 phy |= NFE_PHY_1000T; 389 break; 390 case IFM_100_TX: 391 link |= NFE_MEDIA_100TX; 392 seed |= NFE_SEED_100TX; 393 phy |= NFE_PHY_100TX; 394 break; 395 case IFM_10_T: 396 link |= NFE_MEDIA_10T; 397 seed |= NFE_SEED_10T; 398 break; 399 } 400 401 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */ 402 403 NFE_WRITE(sc, NFE_PHY_IFACE, phy); 404 NFE_WRITE(sc, NFE_MISC1, misc); 405 NFE_WRITE(sc, NFE_LINKSPEED, link); 406 } 407 408 int 409 nfe_miibus_readreg(struct device *dev, int phy, int reg) 410 { 411 struct nfe_softc *sc = (struct nfe_softc *)dev; 412 uint32_t val; 413 int ntries; 414 415 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 416 417 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 418 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 419 DELAY(100); 420 } 421 422 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg); 423 424 for (ntries = 0; ntries < 1000; ntries++) { 425 DELAY(100); 426 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 427 break; 428 } 429 if (ntries == 1000) { 430 DPRINTFN(2, ("%s: timeout waiting for PHY\n", 431 sc->sc_dev.dv_xname)); 432 return 0; 433 } 434 435 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) { 436 DPRINTFN(2, ("%s: could not read PHY\n", 437 sc->sc_dev.dv_xname)); 438 return 0; 439 } 440 441 val = NFE_READ(sc, NFE_PHY_DATA); 442 if (val != 0xffffffff && val != 0) 443 sc->mii_phyaddr = phy; 444 445 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n", 446 sc->sc_dev.dv_xname, phy, reg, val)); 447 448 return val; 449 } 450 451 void 452 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val) 453 { 454 struct nfe_softc *sc = (struct nfe_softc *)dev; 455 uint32_t ctl; 456 int ntries; 457 458 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 459 460 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 461 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 462 DELAY(100); 463 } 464 465 NFE_WRITE(sc, NFE_PHY_DATA, val); 466 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg; 467 NFE_WRITE(sc, NFE_PHY_CTL, ctl); 468 469 for (ntries = 0; ntries < 1000; ntries++) { 470 DELAY(100); 471 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 472 break; 473 } 474 #ifdef NFE_DEBUG 475 if (nfedebug >= 2 && ntries == 1000) 476 printf("could not write to PHY\n"); 477 #endif 478 } 479 480 int 481 nfe_intr(void *arg) 482 { 483 struct nfe_softc *sc = arg; 484 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 485 uint32_t r; 486 487 if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0) 488 return 0; /* not for us */ 489 NFE_WRITE(sc, NFE_IRQ_STATUS, r); 490 491 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r)); 492 493 if (r & NFE_IRQ_LINK) { 494 NFE_READ(sc, NFE_PHY_STATUS); 495 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 496 DPRINTF(("%s: link state changed\n", sc->sc_dev.dv_xname)); 497 } 498 499 if (ifp->if_flags & IFF_RUNNING) { 500 /* check Rx ring */ 501 nfe_rxeof(sc); 502 503 /* check Tx ring */ 504 nfe_txeof(sc); 505 } 506 507 return 1; 508 } 509 510 int 511 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 512 { 513 struct nfe_softc *sc = ifp->if_softc; 514 struct ifreq *ifr = (struct ifreq *)data; 515 struct ifaddr *ifa = (struct ifaddr *)data; 516 int s, error = 0; 517 518 s = splnet(); 519 520 switch (cmd) { 521 case SIOCSIFADDR: 522 ifp->if_flags |= IFF_UP; 523 nfe_init(ifp); 524 switch (ifa->ifa_addr->sa_family) { 525 #ifdef INET 526 case AF_INET: 527 arp_ifinit(ifp, ifa); 528 break; 529 #endif 530 default: 531 break; 532 } 533 break; 534 case SIOCSIFMTU: 535 if (ifr->ifr_mtu < ETHERMIN || 536 ((sc->sc_flags & NFE_USE_JUMBO) && 537 ifr->ifr_mtu > ETHERMTU_JUMBO) || 538 (!(sc->sc_flags & NFE_USE_JUMBO) && 539 ifr->ifr_mtu > ETHERMTU)) 540 error = EINVAL; 541 else if (ifp->if_mtu != ifr->ifr_mtu) 542 ifp->if_mtu = ifr->ifr_mtu; 543 break; 544 case SIOCSIFFLAGS: 545 if (ifp->if_flags & IFF_UP) { 546 /* 547 * If only the PROMISC or ALLMULTI flag changes, then 548 * don't do a full re-init of the chip, just update 549 * the Rx filter. 550 */ 551 if ((ifp->if_flags & IFF_RUNNING) && 552 ((ifp->if_flags ^ sc->sc_if_flags) & 553 (IFF_ALLMULTI | IFF_PROMISC)) != 0) 554 nfe_setmulti(sc); 555 else 556 nfe_init(ifp); 557 } else { 558 if (ifp->if_flags & IFF_RUNNING) 559 nfe_stop(ifp, 1); 560 } 561 sc->sc_if_flags = ifp->if_flags; 562 break; 563 case SIOCADDMULTI: 564 case SIOCDELMULTI: 565 error = (cmd == SIOCADDMULTI) ? 566 ether_addmulti(ifr, &sc->sc_ethercom) : 567 ether_delmulti(ifr, &sc->sc_ethercom); 568 569 if (error == ENETRESET) { 570 if (ifp->if_flags & IFF_RUNNING) 571 nfe_setmulti(sc); 572 error = 0; 573 } 574 break; 575 case SIOCSIFMEDIA: 576 case SIOCGIFMEDIA: 577 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 578 break; 579 default: 580 error = ether_ioctl(ifp, cmd, data); 581 if (error == ENETRESET) { 582 if (ifp->if_flags & IFF_RUNNING) 583 nfe_setmulti(sc); 584 error = 0; 585 } 586 break; 587 588 } 589 590 splx(s); 591 592 return error; 593 } 594 595 void 596 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) 597 { 598 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 599 (caddr_t)desc32 - (caddr_t)sc->txq.desc32, 600 sizeof (struct nfe_desc32), ops); 601 } 602 603 void 604 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) 605 { 606 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 607 (caddr_t)desc64 - (caddr_t)sc->txq.desc64, 608 sizeof (struct nfe_desc64), ops); 609 } 610 611 void 612 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops) 613 { 614 if (end > start) { 615 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 616 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32, 617 (caddr_t)&sc->txq.desc32[end] - 618 (caddr_t)&sc->txq.desc32[start], ops); 619 return; 620 } 621 /* sync from 'start' to end of ring */ 622 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 623 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32, 624 (caddr_t)&sc->txq.desc32[NFE_TX_RING_COUNT] - 625 (caddr_t)&sc->txq.desc32[start], ops); 626 627 /* sync from start of ring to 'end' */ 628 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, 629 (caddr_t)&sc->txq.desc32[end] - (caddr_t)sc->txq.desc32, ops); 630 } 631 632 void 633 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops) 634 { 635 if (end > start) { 636 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 637 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64, 638 (caddr_t)&sc->txq.desc64[end] - 639 (caddr_t)&sc->txq.desc64[start], ops); 640 return; 641 } 642 /* sync from 'start' to end of ring */ 643 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 644 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64, 645 (caddr_t)&sc->txq.desc64[NFE_TX_RING_COUNT] - 646 (caddr_t)&sc->txq.desc64[start], ops); 647 648 /* sync from start of ring to 'end' */ 649 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, 650 (caddr_t)&sc->txq.desc64[end] - (caddr_t)sc->txq.desc64, ops); 651 } 652 653 void 654 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) 655 { 656 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 657 (caddr_t)desc32 - (caddr_t)sc->rxq.desc32, 658 sizeof (struct nfe_desc32), ops); 659 } 660 661 void 662 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) 663 { 664 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 665 (caddr_t)desc64 - (caddr_t)sc->rxq.desc64, 666 sizeof (struct nfe_desc64), ops); 667 } 668 669 void 670 nfe_rxeof(struct nfe_softc *sc) 671 { 672 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 673 struct nfe_desc32 *desc32; 674 struct nfe_desc64 *desc64; 675 struct nfe_rx_data *data; 676 struct nfe_jbuf *jbuf; 677 struct mbuf *m, *mnew; 678 bus_addr_t physaddr; 679 uint16_t flags; 680 int error, len; 681 682 desc32 = NULL; 683 desc64 = NULL; 684 for (;;) { 685 data = &sc->rxq.data[sc->rxq.cur]; 686 687 if (sc->sc_flags & NFE_40BIT_ADDR) { 688 desc64 = &sc->rxq.desc64[sc->rxq.cur]; 689 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD); 690 691 flags = le16toh(desc64->flags); 692 len = le16toh(desc64->length) & 0x3fff; 693 } else { 694 desc32 = &sc->rxq.desc32[sc->rxq.cur]; 695 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD); 696 697 flags = le16toh(desc32->flags); 698 len = le16toh(desc32->length) & 0x3fff; 699 } 700 701 if (flags & NFE_RX_READY) 702 break; 703 704 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 705 if (!(flags & NFE_RX_VALID_V1)) 706 goto skip; 707 708 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { 709 flags &= ~NFE_RX_ERROR; 710 len--; /* fix buffer length */ 711 } 712 } else { 713 if (!(flags & NFE_RX_VALID_V2)) 714 goto skip; 715 716 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { 717 flags &= ~NFE_RX_ERROR; 718 len--; /* fix buffer length */ 719 } 720 } 721 722 if (flags & NFE_RX_ERROR) { 723 ifp->if_ierrors++; 724 goto skip; 725 } 726 727 /* 728 * Try to allocate a new mbuf for this ring element and load 729 * it before processing the current mbuf. If the ring element 730 * cannot be loaded, drop the received packet and reuse the 731 * old mbuf. In the unlikely case that the old mbuf can't be 732 * reloaded either, explicitly panic. 733 */ 734 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 735 if (mnew == NULL) { 736 ifp->if_ierrors++; 737 goto skip; 738 } 739 740 if (sc->sc_flags & NFE_USE_JUMBO) { 741 if ((jbuf = nfe_jalloc(sc)) == NULL) { 742 m_freem(mnew); 743 ifp->if_ierrors++; 744 goto skip; 745 } 746 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc); 747 748 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap, 749 mtod(data->m, caddr_t) - sc->rxq.jpool, NFE_JBYTES, 750 BUS_DMASYNC_POSTREAD); 751 752 physaddr = jbuf->physaddr; 753 } else { 754 MCLGET(mnew, M_DONTWAIT); 755 if (!(mnew->m_flags & M_EXT)) { 756 m_freem(mnew); 757 ifp->if_ierrors++; 758 goto skip; 759 } 760 761 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 762 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 763 bus_dmamap_unload(sc->sc_dmat, data->map); 764 765 error = bus_dmamap_load(sc->sc_dmat, data->map, 766 mtod(mnew, void *), MCLBYTES, NULL, 767 BUS_DMA_READ | BUS_DMA_NOWAIT); 768 if (error != 0) { 769 m_freem(mnew); 770 771 /* try to reload the old mbuf */ 772 error = bus_dmamap_load(sc->sc_dmat, data->map, 773 mtod(data->m, void *), MCLBYTES, NULL, 774 BUS_DMA_READ | BUS_DMA_NOWAIT); 775 if (error != 0) { 776 /* very unlikely that it will fail.. */ 777 panic("%s: could not load old rx mbuf", 778 sc->sc_dev.dv_xname); 779 } 780 ifp->if_ierrors++; 781 goto skip; 782 } 783 physaddr = data->map->dm_segs[0].ds_addr; 784 } 785 786 /* 787 * New mbuf successfully loaded, update Rx ring and continue 788 * processing. 789 */ 790 m = data->m; 791 data->m = mnew; 792 793 /* finalize mbuf */ 794 m->m_pkthdr.len = m->m_len = len; 795 m->m_pkthdr.rcvif = ifp; 796 797 #ifdef notyet 798 if (sc->sc_flags & NFE_HW_CSUM) { 799 if (flags & NFE_RX_IP_CSUMOK) 800 m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; 801 if (flags & NFE_RX_UDP_CSUMOK) 802 m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK; 803 if (flags & NFE_RX_TCP_CSUMOK) 804 m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK; 805 } 806 #elif defined(NFE_CSUM) 807 if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK)) 808 m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK; 809 #endif 810 811 #if NBPFILTER > 0 812 if (ifp->if_bpf) 813 bpf_mtap(ifp->if_bpf, m); 814 #endif 815 ifp->if_ipackets++; 816 (*ifp->if_input)(ifp, m); 817 818 /* update mapping address in h/w descriptor */ 819 if (sc->sc_flags & NFE_40BIT_ADDR) { 820 #if defined(__LP64__) 821 desc64->physaddr[0] = htole32(physaddr >> 32); 822 #endif 823 desc64->physaddr[1] = htole32(physaddr & 0xffffffff); 824 } else { 825 desc32->physaddr = htole32(physaddr); 826 } 827 828 skip: if (sc->sc_flags & NFE_40BIT_ADDR) { 829 desc64->length = htole16(sc->rxq.bufsz); 830 desc64->flags = htole16(NFE_RX_READY); 831 832 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE); 833 } else { 834 desc32->length = htole16(sc->rxq.bufsz); 835 desc32->flags = htole16(NFE_RX_READY); 836 837 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE); 838 } 839 840 sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT; 841 } 842 } 843 844 void 845 nfe_txeof(struct nfe_softc *sc) 846 { 847 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 848 struct nfe_desc32 *desc32; 849 struct nfe_desc64 *desc64; 850 struct nfe_tx_data *data = NULL; 851 uint16_t flags; 852 853 while (sc->txq.next != sc->txq.cur) { 854 if (sc->sc_flags & NFE_40BIT_ADDR) { 855 desc64 = &sc->txq.desc64[sc->txq.next]; 856 nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD); 857 858 flags = le16toh(desc64->flags); 859 } else { 860 desc32 = &sc->txq.desc32[sc->txq.next]; 861 nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD); 862 863 flags = le16toh(desc32->flags); 864 } 865 866 if (flags & NFE_TX_VALID) 867 break; 868 869 data = &sc->txq.data[sc->txq.next]; 870 871 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 872 if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL) 873 goto skip; 874 875 if ((flags & NFE_TX_ERROR_V1) != 0) { 876 printf("%s: tx v1 error 0x%04x\n", 877 sc->sc_dev.dv_xname, flags); 878 ifp->if_oerrors++; 879 } else 880 ifp->if_opackets++; 881 } else { 882 if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL) 883 goto skip; 884 885 if ((flags & NFE_TX_ERROR_V2) != 0) { 886 printf("%s: tx v2 error 0x%04x\n", 887 sc->sc_dev.dv_xname, flags); 888 ifp->if_oerrors++; 889 } else 890 ifp->if_opackets++; 891 } 892 893 if (data->m == NULL) { /* should not get there */ 894 printf("%s: last fragment bit w/o associated mbuf!\n", 895 sc->sc_dev.dv_xname); 896 goto skip; 897 } 898 899 /* last fragment of the mbuf chain transmitted */ 900 bus_dmamap_sync(sc->sc_dmat, data->active, 0, 901 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); 902 bus_dmamap_unload(sc->sc_dmat, data->active); 903 m_freem(data->m); 904 data->m = NULL; 905 906 ifp->if_timer = 0; 907 908 skip: sc->txq.queued--; 909 sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT; 910 } 911 912 if (data != NULL) { /* at least one slot freed */ 913 ifp->if_flags &= ~IFF_OACTIVE; 914 nfe_start(ifp); 915 } 916 } 917 918 int 919 nfe_encap(struct nfe_softc *sc, struct mbuf *m0) 920 { 921 struct nfe_desc32 *desc32; 922 struct nfe_desc64 *desc64; 923 struct nfe_tx_data *data; 924 bus_dmamap_t map; 925 uint16_t flags = NFE_TX_VALID; 926 #if NVLAN > 0 927 struct m_tag *mtag; 928 uint32_t vtag = 0; 929 #endif 930 int error, i; 931 932 desc32 = NULL; 933 desc64 = NULL; 934 data = NULL; 935 map = sc->txq.data[sc->txq.cur].map; 936 937 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT); 938 if (error != 0) { 939 printf("%s: could not map mbuf (error %d)\n", 940 sc->sc_dev.dv_xname, error); 941 return error; 942 } 943 944 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) { 945 bus_dmamap_unload(sc->sc_dmat, map); 946 return ENOBUFS; 947 } 948 949 #if NVLAN > 0 950 /* setup h/w VLAN tagging */ 951 if (sc->sc_ethercom.ec_nvlans) { 952 mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL); 953 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag); 954 } 955 #endif 956 #ifdef NFE_CSUM 957 if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT) 958 flags |= NFE_TX_IP_CSUM; 959 if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)) 960 flags |= NFE_TX_TCP_CSUM; 961 #endif 962 963 for (i = 0; i < map->dm_nsegs; i++) { 964 data = &sc->txq.data[sc->txq.cur]; 965 966 if (sc->sc_flags & NFE_40BIT_ADDR) { 967 desc64 = &sc->txq.desc64[sc->txq.cur]; 968 #if defined(__LP64__) 969 desc64->physaddr[0] = 970 htole32(map->dm_segs[i].ds_addr >> 32); 971 #endif 972 desc64->physaddr[1] = 973 htole32(map->dm_segs[i].ds_addr & 0xffffffff); 974 desc64->length = htole16(map->dm_segs[i].ds_len - 1); 975 desc64->flags = htole16(flags); 976 #if NVLAN > 0 977 desc64->vtag = htole32(vtag); 978 #endif 979 } else { 980 desc32 = &sc->txq.desc32[sc->txq.cur]; 981 982 desc32->physaddr = htole32(map->dm_segs[i].ds_addr); 983 desc32->length = htole16(map->dm_segs[i].ds_len - 1); 984 desc32->flags = htole16(flags); 985 } 986 987 /* csum flags and vtag belong to the first fragment only */ 988 if (map->dm_nsegs > 1) { 989 flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM); 990 #if NVLAN > 0 991 vtag = 0; 992 #endif 993 } 994 995 sc->txq.queued++; 996 sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT; 997 } 998 999 /* the whole mbuf chain has been DMA mapped, fix last descriptor */ 1000 if (sc->sc_flags & NFE_40BIT_ADDR) { 1001 flags |= NFE_TX_LASTFRAG_V2; 1002 desc64->flags = htole16(flags); 1003 } else { 1004 if (sc->sc_flags & NFE_JUMBO_SUP) 1005 flags |= NFE_TX_LASTFRAG_V2; 1006 else 1007 flags |= NFE_TX_LASTFRAG_V1; 1008 desc32->flags = htole16(flags); 1009 } 1010 1011 data->m = m0; 1012 data->active = map; 1013 1014 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1015 BUS_DMASYNC_PREWRITE); 1016 1017 return 0; 1018 } 1019 1020 void 1021 nfe_start(struct ifnet *ifp) 1022 { 1023 struct nfe_softc *sc = ifp->if_softc; 1024 int old = sc->txq.cur; 1025 struct mbuf *m0; 1026 1027 for (;;) { 1028 IFQ_POLL(&ifp->if_snd, m0); 1029 if (m0 == NULL) 1030 break; 1031 1032 if (nfe_encap(sc, m0) != 0) { 1033 ifp->if_flags |= IFF_OACTIVE; 1034 break; 1035 } 1036 1037 /* packet put in h/w queue, remove from s/w queue */ 1038 IFQ_DEQUEUE(&ifp->if_snd, m0); 1039 1040 #if NBPFILTER > 0 1041 if (ifp->if_bpf != NULL) 1042 bpf_mtap(ifp->if_bpf, m0); 1043 #endif 1044 } 1045 if (sc->txq.cur == old) /* nothing sent */ 1046 return; 1047 1048 if (sc->sc_flags & NFE_40BIT_ADDR) 1049 nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE); 1050 else 1051 nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE); 1052 1053 /* kick Tx */ 1054 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); 1055 1056 /* 1057 * Set a timeout in case the chip goes out to lunch. 1058 */ 1059 ifp->if_timer = 5; 1060 } 1061 1062 void 1063 nfe_watchdog(struct ifnet *ifp) 1064 { 1065 struct nfe_softc *sc = ifp->if_softc; 1066 1067 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); 1068 1069 ifp->if_flags &= ~IFF_RUNNING; 1070 nfe_init(ifp); 1071 1072 ifp->if_oerrors++; 1073 } 1074 1075 int 1076 nfe_init(struct ifnet *ifp) 1077 { 1078 struct nfe_softc *sc = ifp->if_softc; 1079 uint32_t tmp; 1080 1081 if (ifp->if_flags & IFF_RUNNING) 1082 return 0; 1083 1084 nfe_stop(ifp, 0); 1085 1086 NFE_WRITE(sc, NFE_TX_UNK, 0); 1087 NFE_WRITE(sc, NFE_STATUS, 0); 1088 1089 sc->rxtxctl = NFE_RXTX_BIT2; 1090 if (sc->sc_flags & NFE_40BIT_ADDR) 1091 sc->rxtxctl |= NFE_RXTX_V3MAGIC; 1092 else if (sc->sc_flags & NFE_JUMBO_SUP) 1093 sc->rxtxctl |= NFE_RXTX_V2MAGIC; 1094 #ifdef NFE_CSUM 1095 if (sc->sc_flags & NFE_HW_CSUM) 1096 sc->rxtxctl |= NFE_RXTX_RXCSUM; 1097 #endif 1098 #if NVLAN > 0 1099 /* 1100 * Although the adapter is capable of stripping VLAN tags from received 1101 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on 1102 * purpose. This will be done in software by our network stack. 1103 */ 1104 if (sc->sc_flags & NFE_HW_VLAN) 1105 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT; 1106 #endif 1107 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl); 1108 DELAY(10); 1109 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 1110 1111 #if NVLAN 1112 if (sc->sc_flags & NFE_HW_VLAN) 1113 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE); 1114 #endif 1115 1116 NFE_WRITE(sc, NFE_SETUP_R6, 0); 1117 1118 /* set MAC address */ 1119 nfe_set_macaddr(sc, sc->sc_enaddr); 1120 1121 /* tell MAC where rings are in memory */ 1122 #ifdef __LP64__ 1123 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32); 1124 #endif 1125 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff); 1126 #ifdef __LP64__ 1127 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32); 1128 #endif 1129 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff); 1130 1131 NFE_WRITE(sc, NFE_RING_SIZE, 1132 (NFE_RX_RING_COUNT - 1) << 16 | 1133 (NFE_TX_RING_COUNT - 1)); 1134 1135 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz); 1136 1137 /* force MAC to wakeup */ 1138 tmp = NFE_READ(sc, NFE_PWR_STATE); 1139 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP); 1140 DELAY(10); 1141 tmp = NFE_READ(sc, NFE_PWR_STATE); 1142 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID); 1143 1144 #if 1 1145 /* configure interrupts coalescing/mitigation */ 1146 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT); 1147 #else 1148 /* no interrupt mitigation: one interrupt per packet */ 1149 NFE_WRITE(sc, NFE_IMTIMER, 970); 1150 #endif 1151 1152 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC); 1153 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); 1154 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC); 1155 1156 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */ 1157 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC); 1158 1159 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC); 1160 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC); 1161 1162 sc->rxtxctl &= ~NFE_RXTX_BIT2; 1163 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 1164 DELAY(10); 1165 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl); 1166 1167 /* set Rx filter */ 1168 nfe_setmulti(sc); 1169 1170 nfe_ifmedia_upd(ifp); 1171 1172 /* enable Rx */ 1173 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START); 1174 1175 /* enable Tx */ 1176 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START); 1177 1178 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1179 1180 /* enable interrupts */ 1181 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); 1182 1183 callout_schedule(&sc->sc_tick_ch, hz); 1184 1185 ifp->if_flags |= IFF_RUNNING; 1186 ifp->if_flags &= ~IFF_OACTIVE; 1187 1188 return 0; 1189 } 1190 1191 void 1192 nfe_stop(struct ifnet *ifp, int disable __unused) 1193 { 1194 struct nfe_softc *sc = ifp->if_softc; 1195 1196 callout_stop(&sc->sc_tick_ch); 1197 1198 ifp->if_timer = 0; 1199 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1200 1201 mii_down(&sc->sc_mii); 1202 1203 /* abort Tx */ 1204 NFE_WRITE(sc, NFE_TX_CTL, 0); 1205 1206 /* disable Rx */ 1207 NFE_WRITE(sc, NFE_RX_CTL, 0); 1208 1209 /* disable interrupts */ 1210 NFE_WRITE(sc, NFE_IRQ_MASK, 0); 1211 1212 /* reset Tx and Rx rings */ 1213 nfe_reset_tx_ring(sc, &sc->txq); 1214 nfe_reset_rx_ring(sc, &sc->rxq); 1215 } 1216 1217 int 1218 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1219 { 1220 struct nfe_desc32 *desc32; 1221 struct nfe_desc64 *desc64; 1222 struct nfe_rx_data *data; 1223 struct nfe_jbuf *jbuf; 1224 void **desc; 1225 bus_addr_t physaddr; 1226 int i, nsegs, error, descsize; 1227 1228 if (sc->sc_flags & NFE_40BIT_ADDR) { 1229 desc = (void **)&ring->desc64; 1230 descsize = sizeof (struct nfe_desc64); 1231 } else { 1232 desc = (void **)&ring->desc32; 1233 descsize = sizeof (struct nfe_desc32); 1234 } 1235 1236 ring->cur = ring->next = 0; 1237 ring->bufsz = MCLBYTES; 1238 1239 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1, 1240 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); 1241 if (error != 0) { 1242 printf("%s: could not create desc DMA map\n", 1243 sc->sc_dev.dv_xname); 1244 goto fail; 1245 } 1246 1247 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1248 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 1249 if (error != 0) { 1250 printf("%s: could not allocate DMA memory\n", 1251 sc->sc_dev.dv_xname); 1252 goto fail; 1253 } 1254 1255 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 1256 NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT); 1257 if (error != 0) { 1258 printf("%s: could not map desc DMA memory\n", 1259 sc->sc_dev.dv_xname); 1260 goto fail; 1261 } 1262 1263 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, 1264 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); 1265 if (error != 0) { 1266 printf("%s: could not load desc DMA map\n", 1267 sc->sc_dev.dv_xname); 1268 goto fail; 1269 } 1270 1271 bzero(*desc, NFE_RX_RING_COUNT * descsize); 1272 ring->physaddr = ring->map->dm_segs[0].ds_addr; 1273 1274 if (sc->sc_flags & NFE_USE_JUMBO) { 1275 ring->bufsz = NFE_JBYTES; 1276 if ((error = nfe_jpool_alloc(sc)) != 0) { 1277 printf("%s: could not allocate jumbo frames\n", 1278 sc->sc_dev.dv_xname); 1279 goto fail; 1280 } 1281 } 1282 1283 /* 1284 * Pre-allocate Rx buffers and populate Rx ring. 1285 */ 1286 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1287 data = &sc->rxq.data[i]; 1288 1289 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 1290 if (data->m == NULL) { 1291 printf("%s: could not allocate rx mbuf\n", 1292 sc->sc_dev.dv_xname); 1293 error = ENOMEM; 1294 goto fail; 1295 } 1296 1297 if (sc->sc_flags & NFE_USE_JUMBO) { 1298 if ((jbuf = nfe_jalloc(sc)) == NULL) { 1299 printf("%s: could not allocate jumbo buffer\n", 1300 sc->sc_dev.dv_xname); 1301 goto fail; 1302 } 1303 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, 1304 sc); 1305 1306 physaddr = jbuf->physaddr; 1307 } else { 1308 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1309 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); 1310 if (error != 0) { 1311 printf("%s: could not create DMA map\n", 1312 sc->sc_dev.dv_xname); 1313 goto fail; 1314 } 1315 MCLGET(data->m, M_DONTWAIT); 1316 if (!(data->m->m_flags & M_EXT)) { 1317 printf("%s: could not allocate mbuf cluster\n", 1318 sc->sc_dev.dv_xname); 1319 error = ENOMEM; 1320 goto fail; 1321 } 1322 1323 error = bus_dmamap_load(sc->sc_dmat, data->map, 1324 mtod(data->m, void *), MCLBYTES, NULL, 1325 BUS_DMA_READ | BUS_DMA_NOWAIT); 1326 if (error != 0) { 1327 printf("%s: could not load rx buf DMA map", 1328 sc->sc_dev.dv_xname); 1329 goto fail; 1330 } 1331 physaddr = data->map->dm_segs[0].ds_addr; 1332 } 1333 1334 if (sc->sc_flags & NFE_40BIT_ADDR) { 1335 desc64 = &sc->rxq.desc64[i]; 1336 #if defined(__LP64__) 1337 desc64->physaddr[0] = htole32(physaddr >> 32); 1338 #endif 1339 desc64->physaddr[1] = htole32(physaddr & 0xffffffff); 1340 desc64->length = htole16(sc->rxq.bufsz); 1341 desc64->flags = htole16(NFE_RX_READY); 1342 } else { 1343 desc32 = &sc->rxq.desc32[i]; 1344 desc32->physaddr = htole32(physaddr); 1345 desc32->length = htole16(sc->rxq.bufsz); 1346 desc32->flags = htole16(NFE_RX_READY); 1347 } 1348 } 1349 1350 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 1351 BUS_DMASYNC_PREWRITE); 1352 1353 return 0; 1354 1355 fail: nfe_free_rx_ring(sc, ring); 1356 return error; 1357 } 1358 1359 void 1360 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1361 { 1362 int i; 1363 1364 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1365 if (sc->sc_flags & NFE_40BIT_ADDR) { 1366 ring->desc64[i].length = htole16(ring->bufsz); 1367 ring->desc64[i].flags = htole16(NFE_RX_READY); 1368 } else { 1369 ring->desc32[i].length = htole16(ring->bufsz); 1370 ring->desc32[i].flags = htole16(NFE_RX_READY); 1371 } 1372 } 1373 1374 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 1375 BUS_DMASYNC_PREWRITE); 1376 1377 ring->cur = ring->next = 0; 1378 } 1379 1380 void 1381 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1382 { 1383 struct nfe_rx_data *data; 1384 void *desc; 1385 int i, descsize; 1386 1387 if (sc->sc_flags & NFE_40BIT_ADDR) { 1388 desc = ring->desc64; 1389 descsize = sizeof (struct nfe_desc64); 1390 } else { 1391 desc = ring->desc32; 1392 descsize = sizeof (struct nfe_desc32); 1393 } 1394 1395 if (desc != NULL) { 1396 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 1397 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1398 bus_dmamap_unload(sc->sc_dmat, ring->map); 1399 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc, 1400 NFE_RX_RING_COUNT * descsize); 1401 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 1402 } 1403 1404 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1405 data = &ring->data[i]; 1406 1407 if (data->map != NULL) { 1408 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1409 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1410 bus_dmamap_unload(sc->sc_dmat, data->map); 1411 bus_dmamap_destroy(sc->sc_dmat, data->map); 1412 } 1413 if (data->m != NULL) 1414 m_freem(data->m); 1415 } 1416 } 1417 1418 struct nfe_jbuf * 1419 nfe_jalloc(struct nfe_softc *sc) 1420 { 1421 struct nfe_jbuf *jbuf; 1422 1423 jbuf = SLIST_FIRST(&sc->rxq.jfreelist); 1424 if (jbuf == NULL) 1425 return NULL; 1426 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext); 1427 return jbuf; 1428 } 1429 1430 /* 1431 * This is called automatically by the network stack when the mbuf is freed. 1432 * Caution must be taken that the NIC might be reset by the time the mbuf is 1433 * freed. 1434 */ 1435 void 1436 nfe_jfree(struct mbuf *m, caddr_t buf, size_t size __unused, void *arg) 1437 { 1438 struct nfe_softc *sc = arg; 1439 struct nfe_jbuf *jbuf; 1440 int i; 1441 1442 /* find the jbuf from the base pointer */ 1443 i = (buf - sc->rxq.jpool) / NFE_JBYTES; 1444 if (i < 0 || i >= NFE_JPOOL_COUNT) { 1445 printf("%s: request to free a buffer (%p) not managed by us\n", 1446 sc->sc_dev.dv_xname, buf); 1447 return; 1448 } 1449 jbuf = &sc->rxq.jbuf[i]; 1450 1451 /* ..and put it back in the free list */ 1452 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext); 1453 1454 if (m != NULL) 1455 pool_cache_put(&mbpool_cache, m); 1456 } 1457 1458 int 1459 nfe_jpool_alloc(struct nfe_softc *sc) 1460 { 1461 struct nfe_rx_ring *ring = &sc->rxq; 1462 struct nfe_jbuf *jbuf; 1463 bus_addr_t physaddr; 1464 caddr_t buf; 1465 int i, nsegs, error; 1466 1467 /* 1468 * Allocate a big chunk of DMA'able memory. 1469 */ 1470 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1, 1471 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap); 1472 if (error != 0) { 1473 printf("%s: could not create jumbo DMA map\n", 1474 sc->sc_dev.dv_xname); 1475 goto fail; 1476 } 1477 1478 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0, 1479 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT); 1480 if (error != 0) { 1481 printf("%s could not allocate jumbo DMA memory\n", 1482 sc->sc_dev.dv_xname); 1483 goto fail; 1484 } 1485 1486 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE, 1487 &ring->jpool, BUS_DMA_NOWAIT); 1488 if (error != 0) { 1489 printf("%s: could not map jumbo DMA memory\n", 1490 sc->sc_dev.dv_xname); 1491 goto fail; 1492 } 1493 1494 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool, 1495 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); 1496 if (error != 0) { 1497 printf("%s: could not load jumbo DMA map\n", 1498 sc->sc_dev.dv_xname); 1499 goto fail; 1500 } 1501 1502 /* ..and split it into 9KB chunks */ 1503 SLIST_INIT(&ring->jfreelist); 1504 1505 buf = ring->jpool; 1506 physaddr = ring->jmap->dm_segs[0].ds_addr; 1507 for (i = 0; i < NFE_JPOOL_COUNT; i++) { 1508 jbuf = &ring->jbuf[i]; 1509 1510 jbuf->buf = buf; 1511 jbuf->physaddr = physaddr; 1512 1513 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext); 1514 1515 buf += NFE_JBYTES; 1516 physaddr += NFE_JBYTES; 1517 } 1518 1519 return 0; 1520 1521 fail: nfe_jpool_free(sc); 1522 return error; 1523 } 1524 1525 void 1526 nfe_jpool_free(struct nfe_softc *sc) 1527 { 1528 struct nfe_rx_ring *ring = &sc->rxq; 1529 1530 if (ring->jmap != NULL) { 1531 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0, 1532 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1533 bus_dmamap_unload(sc->sc_dmat, ring->jmap); 1534 bus_dmamap_destroy(sc->sc_dmat, ring->jmap); 1535 } 1536 if (ring->jpool != NULL) { 1537 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE); 1538 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1); 1539 } 1540 } 1541 1542 int 1543 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1544 { 1545 int i, nsegs, error; 1546 void **desc; 1547 int descsize; 1548 1549 if (sc->sc_flags & NFE_40BIT_ADDR) { 1550 desc = (void **)&ring->desc64; 1551 descsize = sizeof (struct nfe_desc64); 1552 } else { 1553 desc = (void **)&ring->desc32; 1554 descsize = sizeof (struct nfe_desc32); 1555 } 1556 1557 ring->queued = 0; 1558 ring->cur = ring->next = 0; 1559 1560 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1, 1561 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); 1562 1563 if (error != 0) { 1564 printf("%s: could not create desc DMA map\n", 1565 sc->sc_dev.dv_xname); 1566 goto fail; 1567 } 1568 1569 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1570 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 1571 if (error != 0) { 1572 printf("%s: could not allocate DMA memory\n", 1573 sc->sc_dev.dv_xname); 1574 goto fail; 1575 } 1576 1577 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 1578 NFE_TX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT); 1579 if (error != 0) { 1580 printf("%s: could not map desc DMA memory\n", 1581 sc->sc_dev.dv_xname); 1582 goto fail; 1583 } 1584 1585 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, 1586 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); 1587 if (error != 0) { 1588 printf("%s: could not load desc DMA map\n", 1589 sc->sc_dev.dv_xname); 1590 goto fail; 1591 } 1592 1593 bzero(*desc, NFE_TX_RING_COUNT * descsize); 1594 ring->physaddr = ring->map->dm_segs[0].ds_addr; 1595 1596 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1597 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES, 1598 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT, 1599 &ring->data[i].map); 1600 if (error != 0) { 1601 printf("%s: could not create DMA map\n", 1602 sc->sc_dev.dv_xname); 1603 goto fail; 1604 } 1605 } 1606 1607 return 0; 1608 1609 fail: nfe_free_tx_ring(sc, ring); 1610 return error; 1611 } 1612 1613 void 1614 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1615 { 1616 struct nfe_tx_data *data; 1617 int i; 1618 1619 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1620 if (sc->sc_flags & NFE_40BIT_ADDR) 1621 ring->desc64[i].flags = 0; 1622 else 1623 ring->desc32[i].flags = 0; 1624 1625 data = &ring->data[i]; 1626 1627 if (data->m != NULL) { 1628 bus_dmamap_sync(sc->sc_dmat, data->active, 0, 1629 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1630 bus_dmamap_unload(sc->sc_dmat, data->active); 1631 m_freem(data->m); 1632 data->m = NULL; 1633 } 1634 } 1635 1636 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 1637 BUS_DMASYNC_PREWRITE); 1638 1639 ring->queued = 0; 1640 ring->cur = ring->next = 0; 1641 } 1642 1643 void 1644 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1645 { 1646 struct nfe_tx_data *data; 1647 void *desc; 1648 int i, descsize; 1649 1650 if (sc->sc_flags & NFE_40BIT_ADDR) { 1651 desc = ring->desc64; 1652 descsize = sizeof (struct nfe_desc64); 1653 } else { 1654 desc = ring->desc32; 1655 descsize = sizeof (struct nfe_desc32); 1656 } 1657 1658 if (desc != NULL) { 1659 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 1660 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1661 bus_dmamap_unload(sc->sc_dmat, ring->map); 1662 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc, 1663 NFE_TX_RING_COUNT * descsize); 1664 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 1665 } 1666 1667 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1668 data = &ring->data[i]; 1669 1670 if (data->m != NULL) { 1671 bus_dmamap_sync(sc->sc_dmat, data->active, 0, 1672 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1673 bus_dmamap_unload(sc->sc_dmat, data->active); 1674 m_freem(data->m); 1675 } 1676 } 1677 1678 /* ..and now actually destroy the DMA mappings */ 1679 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1680 data = &ring->data[i]; 1681 if (data->map == NULL) 1682 continue; 1683 bus_dmamap_destroy(sc->sc_dmat, data->map); 1684 } 1685 } 1686 1687 int 1688 nfe_ifmedia_upd(struct ifnet *ifp) 1689 { 1690 struct nfe_softc *sc = ifp->if_softc; 1691 struct mii_data *mii = &sc->sc_mii; 1692 struct mii_softc *miisc; 1693 1694 if (mii->mii_instance != 0) { 1695 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 1696 mii_phy_reset(miisc); 1697 } 1698 return mii_mediachg(mii); 1699 } 1700 1701 void 1702 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1703 { 1704 struct nfe_softc *sc = ifp->if_softc; 1705 struct mii_data *mii = &sc->sc_mii; 1706 1707 mii_pollstat(mii); 1708 ifmr->ifm_status = mii->mii_media_status; 1709 ifmr->ifm_active = mii->mii_media_active; 1710 } 1711 1712 void 1713 nfe_setmulti(struct nfe_softc *sc) 1714 { 1715 struct ethercom *ec = &sc->sc_ethercom; 1716 struct ifnet *ifp = &ec->ec_if; 1717 struct ether_multi *enm; 1718 struct ether_multistep step; 1719 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN]; 1720 uint32_t filter = NFE_RXFILTER_MAGIC; 1721 int i; 1722 1723 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 1724 bzero(addr, ETHER_ADDR_LEN); 1725 bzero(mask, ETHER_ADDR_LEN); 1726 goto done; 1727 } 1728 1729 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN); 1730 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN); 1731 1732 ETHER_FIRST_MULTI(step, ec, enm); 1733 while (enm != NULL) { 1734 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1735 ifp->if_flags |= IFF_ALLMULTI; 1736 bzero(addr, ETHER_ADDR_LEN); 1737 bzero(mask, ETHER_ADDR_LEN); 1738 goto done; 1739 } 1740 for (i = 0; i < ETHER_ADDR_LEN; i++) { 1741 addr[i] &= enm->enm_addrlo[i]; 1742 mask[i] &= ~enm->enm_addrlo[i]; 1743 } 1744 ETHER_NEXT_MULTI(step, enm); 1745 } 1746 for (i = 0; i < ETHER_ADDR_LEN; i++) 1747 mask[i] |= addr[i]; 1748 1749 done: 1750 addr[0] |= 0x01; /* make sure multicast bit is set */ 1751 1752 NFE_WRITE(sc, NFE_MULTIADDR_HI, 1753 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); 1754 NFE_WRITE(sc, NFE_MULTIADDR_LO, 1755 addr[5] << 8 | addr[4]); 1756 NFE_WRITE(sc, NFE_MULTIMASK_HI, 1757 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]); 1758 NFE_WRITE(sc, NFE_MULTIMASK_LO, 1759 mask[5] << 8 | mask[4]); 1760 1761 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M; 1762 NFE_WRITE(sc, NFE_RXFILTER, filter); 1763 } 1764 1765 void 1766 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr) 1767 { 1768 uint32_t tmp; 1769 1770 tmp = NFE_READ(sc, NFE_MACADDR_LO); 1771 addr[0] = (tmp >> 8) & 0xff; 1772 addr[1] = (tmp & 0xff); 1773 1774 tmp = NFE_READ(sc, NFE_MACADDR_HI); 1775 addr[2] = (tmp >> 24) & 0xff; 1776 addr[3] = (tmp >> 16) & 0xff; 1777 addr[4] = (tmp >> 8) & 0xff; 1778 addr[5] = (tmp & 0xff); 1779 } 1780 1781 void 1782 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr) 1783 { 1784 NFE_WRITE(sc, NFE_MACADDR_LO, 1785 addr[5] << 8 | addr[4]); 1786 NFE_WRITE(sc, NFE_MACADDR_HI, 1787 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); 1788 } 1789 1790 void 1791 nfe_tick(void *arg) 1792 { 1793 struct nfe_softc *sc = arg; 1794 int s; 1795 1796 s = splnet(); 1797 mii_tick(&sc->sc_mii); 1798 splx(s); 1799 1800 callout_schedule(&sc->sc_tick_ch, hz); 1801 } 1802