1 /* $NetBSD: if_nfe.c,v 1.59 2014/03/29 19:28:25 christos Exp $ */ 2 /* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */ 3 4 /*- 5 * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */ 22 23 #include <sys/cdefs.h> 24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.59 2014/03/29 19:28:25 christos Exp $"); 25 26 #include "opt_inet.h" 27 #include "vlan.h" 28 29 #include <sys/param.h> 30 #include <sys/endian.h> 31 #include <sys/systm.h> 32 #include <sys/types.h> 33 #include <sys/sockio.h> 34 #include <sys/mbuf.h> 35 #include <sys/mutex.h> 36 #include <sys/queue.h> 37 #include <sys/kernel.h> 38 #include <sys/device.h> 39 #include <sys/callout.h> 40 #include <sys/socket.h> 41 42 #include <sys/bus.h> 43 44 #include <net/if.h> 45 #include <net/if_dl.h> 46 #include <net/if_media.h> 47 #include <net/if_ether.h> 48 #include <net/if_arp.h> 49 50 #ifdef INET 51 #include <netinet/in.h> 52 #include <netinet/in_systm.h> 53 #include <netinet/in_var.h> 54 #include <netinet/ip.h> 55 #include <netinet/if_inarp.h> 56 #endif 57 58 #if NVLAN > 0 59 #include <net/if_types.h> 60 #endif 61 62 #include <net/bpf.h> 63 64 #include <dev/mii/mii.h> 65 #include <dev/mii/miivar.h> 66 67 #include <dev/pci/pcireg.h> 68 #include <dev/pci/pcivar.h> 69 #include <dev/pci/pcidevs.h> 70 71 #include <dev/pci/if_nfereg.h> 72 #include <dev/pci/if_nfevar.h> 73 74 static int nfe_ifflags_cb(struct ethercom *); 75 76 int nfe_match(device_t, cfdata_t, void *); 77 void nfe_attach(device_t, device_t, void *); 78 int nfe_detach(device_t, int); 79 void nfe_power(int, void *); 80 void nfe_miibus_statchg(struct ifnet *); 81 int nfe_miibus_readreg(device_t, int, int); 82 void nfe_miibus_writereg(device_t, int, int, int); 83 int nfe_intr(void *); 84 int nfe_ioctl(struct ifnet *, u_long, void *); 85 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); 86 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); 87 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int); 88 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int); 89 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); 90 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); 91 void nfe_rxeof(struct nfe_softc *); 92 void nfe_txeof(struct nfe_softc *); 93 int nfe_encap(struct nfe_softc *, struct mbuf *); 94 void nfe_start(struct ifnet *); 95 void nfe_watchdog(struct ifnet *); 96 int nfe_init(struct ifnet *); 97 void nfe_stop(struct ifnet *, int); 98 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int); 99 void nfe_jfree(struct mbuf *, void *, size_t, void *); 100 int nfe_jpool_alloc(struct nfe_softc *); 101 void nfe_jpool_free(struct nfe_softc *); 102 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 103 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 104 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 105 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 106 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 107 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 108 void nfe_setmulti(struct nfe_softc *); 109 void nfe_get_macaddr(struct nfe_softc *, uint8_t *); 110 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *); 111 void nfe_tick(void *); 112 void nfe_poweron(device_t); 113 bool nfe_resume(device_t, const pmf_qual_t *); 114 115 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), 116 nfe_match, nfe_attach, nfe_detach, NULL); 117 118 /* #define NFE_NO_JUMBO */ 119 120 #ifdef NFE_DEBUG 121 int nfedebug = 0; 122 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0) 123 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0) 124 #else 125 #define DPRINTF(x) 126 #define DPRINTFN(n,x) 127 #endif 128 129 /* deal with naming differences */ 130 131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \ 132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1 133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \ 134 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2 135 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \ 136 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN 137 138 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \ 139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1 140 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \ 141 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2 142 143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \ 144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 145 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \ 146 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2 147 148 #ifdef _LP64 149 #define __LP64__ 1 150 #endif 151 152 const struct nfe_product { 153 pci_vendor_id_t vendor; 154 pci_product_id_t product; 155 } nfe_devices[] = { 156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN }, 157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN }, 158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 }, 159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 }, 160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 }, 161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 }, 162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 }, 163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 }, 164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 }, 165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 }, 166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 }, 167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 }, 168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 }, 169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 }, 170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }, 171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 }, 172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 }, 173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 }, 174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 }, 175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 }, 176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 }, 177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 }, 178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }, 179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 }, 180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 }, 181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 }, 182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 }, 183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 }, 184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 }, 185 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 }, 186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }, 187 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 }, 188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 }, 189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 }, 190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 }, 191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 }, 192 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 }, 193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 }, 194 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 } 195 }; 196 197 int 198 nfe_match(device_t dev, cfdata_t match, void *aux) 199 { 200 struct pci_attach_args *pa = aux; 201 const struct nfe_product *np; 202 int i; 203 204 for (i = 0; i < __arraycount(nfe_devices); i++) { 205 np = &nfe_devices[i]; 206 if (PCI_VENDOR(pa->pa_id) == np->vendor && 207 PCI_PRODUCT(pa->pa_id) == np->product) 208 return 1; 209 } 210 return 0; 211 } 212 213 void 214 nfe_attach(device_t parent, device_t self, void *aux) 215 { 216 struct nfe_softc *sc = device_private(self); 217 struct pci_attach_args *pa = aux; 218 pci_chipset_tag_t pc = pa->pa_pc; 219 pci_intr_handle_t ih; 220 const char *intrstr; 221 struct ifnet *ifp; 222 pcireg_t memtype, csr; 223 int mii_flags = 0; 224 char intrbuf[PCI_INTRSTR_LEN]; 225 226 sc->sc_dev = self; 227 sc->sc_pc = pa->pa_pc; 228 pci_aprint_devinfo(pa, NULL); 229 230 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA); 231 switch (memtype) { 232 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 233 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 234 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt, 235 &sc->sc_memh, NULL, &sc->sc_mems) == 0) 236 break; 237 /* FALLTHROUGH */ 238 default: 239 aprint_error_dev(self, "could not map mem space\n"); 240 return; 241 } 242 243 if (pci_intr_map(pa, &ih) != 0) { 244 aprint_error_dev(self, "could not map interrupt\n"); 245 goto fail; 246 } 247 248 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 249 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc); 250 if (sc->sc_ih == NULL) { 251 aprint_error_dev(self, "could not establish interrupt"); 252 if (intrstr != NULL) 253 aprint_error(" at %s", intrstr); 254 aprint_error("\n"); 255 goto fail; 256 } 257 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 258 259 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 260 csr |= PCI_COMMAND_MASTER_ENABLE; 261 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr); 262 263 sc->sc_flags = 0; 264 265 switch (PCI_PRODUCT(pa->pa_id)) { 266 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: 267 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: 268 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: 269 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: 270 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM; 271 break; 272 case PCI_PRODUCT_NVIDIA_MCP51_LAN1: 273 case PCI_PRODUCT_NVIDIA_MCP51_LAN2: 274 sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT; 275 break; 276 case PCI_PRODUCT_NVIDIA_MCP61_LAN1: 277 case PCI_PRODUCT_NVIDIA_MCP61_LAN2: 278 case PCI_PRODUCT_NVIDIA_MCP61_LAN3: 279 case PCI_PRODUCT_NVIDIA_MCP61_LAN4: 280 case PCI_PRODUCT_NVIDIA_MCP67_LAN1: 281 case PCI_PRODUCT_NVIDIA_MCP67_LAN2: 282 case PCI_PRODUCT_NVIDIA_MCP67_LAN3: 283 case PCI_PRODUCT_NVIDIA_MCP67_LAN4: 284 case PCI_PRODUCT_NVIDIA_MCP73_LAN1: 285 case PCI_PRODUCT_NVIDIA_MCP73_LAN2: 286 case PCI_PRODUCT_NVIDIA_MCP73_LAN3: 287 case PCI_PRODUCT_NVIDIA_MCP73_LAN4: 288 sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR | 289 NFE_PWR_MGMT; 290 break; 291 case PCI_PRODUCT_NVIDIA_MCP77_LAN1: 292 case PCI_PRODUCT_NVIDIA_MCP77_LAN2: 293 case PCI_PRODUCT_NVIDIA_MCP77_LAN3: 294 case PCI_PRODUCT_NVIDIA_MCP77_LAN4: 295 sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | 296 NFE_CORRECT_MACADDR | NFE_PWR_MGMT; 297 break; 298 case PCI_PRODUCT_NVIDIA_MCP79_LAN1: 299 case PCI_PRODUCT_NVIDIA_MCP79_LAN2: 300 case PCI_PRODUCT_NVIDIA_MCP79_LAN3: 301 case PCI_PRODUCT_NVIDIA_MCP79_LAN4: 302 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 303 NFE_CORRECT_MACADDR | NFE_PWR_MGMT; 304 break; 305 case PCI_PRODUCT_NVIDIA_CK804_LAN1: 306 case PCI_PRODUCT_NVIDIA_CK804_LAN2: 307 case PCI_PRODUCT_NVIDIA_MCP04_LAN1: 308 case PCI_PRODUCT_NVIDIA_MCP04_LAN2: 309 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM; 310 break; 311 case PCI_PRODUCT_NVIDIA_MCP65_LAN1: 312 case PCI_PRODUCT_NVIDIA_MCP65_LAN2: 313 case PCI_PRODUCT_NVIDIA_MCP65_LAN3: 314 case PCI_PRODUCT_NVIDIA_MCP65_LAN4: 315 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | 316 NFE_CORRECT_MACADDR | NFE_PWR_MGMT; 317 mii_flags = MIIF_DOPAUSE; 318 break; 319 case PCI_PRODUCT_NVIDIA_MCP55_LAN1: 320 case PCI_PRODUCT_NVIDIA_MCP55_LAN2: 321 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 322 NFE_HW_VLAN | NFE_PWR_MGMT; 323 break; 324 } 325 326 if (pci_dma64_available(pa) && (sc->sc_flags & NFE_40BIT_ADDR) != 0) 327 sc->sc_dmat = pa->pa_dmat64; 328 else 329 sc->sc_dmat = pa->pa_dmat; 330 331 nfe_poweron(self); 332 333 #ifndef NFE_NO_JUMBO 334 /* enable jumbo frames for adapters that support it */ 335 if (sc->sc_flags & NFE_JUMBO_SUP) 336 sc->sc_flags |= NFE_USE_JUMBO; 337 #endif 338 339 /* Check for reversed ethernet address */ 340 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0) 341 sc->sc_flags |= NFE_CORRECT_MACADDR; 342 343 nfe_get_macaddr(sc, sc->sc_enaddr); 344 aprint_normal_dev(self, "Ethernet address %s\n", 345 ether_sprintf(sc->sc_enaddr)); 346 347 /* 348 * Allocate Tx and Rx rings. 349 */ 350 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) { 351 aprint_error_dev(self, "could not allocate Tx ring\n"); 352 goto fail; 353 } 354 355 mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET); 356 357 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) { 358 aprint_error_dev(self, "could not allocate Rx ring\n"); 359 nfe_free_tx_ring(sc, &sc->txq); 360 goto fail; 361 } 362 363 ifp = &sc->sc_ethercom.ec_if; 364 ifp->if_softc = sc; 365 ifp->if_mtu = ETHERMTU; 366 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 367 ifp->if_ioctl = nfe_ioctl; 368 ifp->if_start = nfe_start; 369 ifp->if_stop = nfe_stop; 370 ifp->if_watchdog = nfe_watchdog; 371 ifp->if_init = nfe_init; 372 ifp->if_baudrate = IF_Gbps(1); 373 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN); 374 IFQ_SET_READY(&ifp->if_snd); 375 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 376 377 if (sc->sc_flags & NFE_USE_JUMBO) 378 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 379 380 #if NVLAN > 0 381 if (sc->sc_flags & NFE_HW_VLAN) 382 sc->sc_ethercom.ec_capabilities |= 383 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU; 384 #endif 385 if (sc->sc_flags & NFE_HW_CSUM) { 386 ifp->if_capabilities |= 387 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 388 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 389 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 390 } 391 392 sc->sc_mii.mii_ifp = ifp; 393 sc->sc_mii.mii_readreg = nfe_miibus_readreg; 394 sc->sc_mii.mii_writereg = nfe_miibus_writereg; 395 sc->sc_mii.mii_statchg = nfe_miibus_statchg; 396 397 sc->sc_ethercom.ec_mii = &sc->sc_mii; 398 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange, 399 ether_mediastatus); 400 401 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags); 402 403 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 404 aprint_error_dev(self, "no PHY found!\n"); 405 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL, 406 0, NULL); 407 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL); 408 } else 409 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO); 410 411 if_attach(ifp); 412 ether_ifattach(ifp, sc->sc_enaddr); 413 ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb); 414 415 callout_init(&sc->sc_tick_ch, 0); 416 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc); 417 418 if (pmf_device_register(self, NULL, nfe_resume)) 419 pmf_class_network_register(self, ifp); 420 else 421 aprint_error_dev(self, "couldn't establish power handler\n"); 422 423 return; 424 425 fail: 426 if (sc->sc_ih != NULL) { 427 pci_intr_disestablish(pc, sc->sc_ih); 428 sc->sc_ih = NULL; 429 } 430 if (sc->sc_mems != 0) { 431 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems); 432 sc->sc_mems = 0; 433 } 434 } 435 436 int 437 nfe_detach(device_t self, int flags) 438 { 439 struct nfe_softc *sc = device_private(self); 440 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 441 int s; 442 443 s = splnet(); 444 445 nfe_stop(ifp, 1); 446 447 pmf_device_deregister(self); 448 callout_destroy(&sc->sc_tick_ch); 449 ether_ifdetach(ifp); 450 if_detach(ifp); 451 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 452 453 nfe_free_rx_ring(sc, &sc->rxq); 454 mutex_destroy(&sc->rxq.mtx); 455 nfe_free_tx_ring(sc, &sc->txq); 456 457 if (sc->sc_ih != NULL) { 458 pci_intr_disestablish(sc->sc_pc, sc->sc_ih); 459 sc->sc_ih = NULL; 460 } 461 462 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) { 463 nfe_set_macaddr(sc, sc->sc_enaddr); 464 } else { 465 NFE_WRITE(sc, NFE_MACADDR_LO, 466 sc->sc_enaddr[0] << 8 | sc->sc_enaddr[1]); 467 NFE_WRITE(sc, NFE_MACADDR_HI, 468 sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 | 469 sc->sc_enaddr[4] << 8 | sc->sc_enaddr[5]); 470 } 471 472 if (sc->sc_mems != 0) { 473 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems); 474 sc->sc_mems = 0; 475 } 476 477 splx(s); 478 479 return 0; 480 } 481 482 void 483 nfe_miibus_statchg(struct ifnet *ifp) 484 { 485 struct nfe_softc *sc = ifp->if_softc; 486 struct mii_data *mii = &sc->sc_mii; 487 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET; 488 489 phy = NFE_READ(sc, NFE_PHY_IFACE); 490 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T); 491 492 seed = NFE_READ(sc, NFE_RNDSEED); 493 seed &= ~NFE_SEED_MASK; 494 495 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 496 phy |= NFE_PHY_HDX; /* half-duplex */ 497 misc |= NFE_MISC1_HDX; 498 } 499 500 switch (IFM_SUBTYPE(mii->mii_media_active)) { 501 case IFM_1000_T: /* full-duplex only */ 502 link |= NFE_MEDIA_1000T; 503 seed |= NFE_SEED_1000T; 504 phy |= NFE_PHY_1000T; 505 break; 506 case IFM_100_TX: 507 link |= NFE_MEDIA_100TX; 508 seed |= NFE_SEED_100TX; 509 phy |= NFE_PHY_100TX; 510 break; 511 case IFM_10_T: 512 link |= NFE_MEDIA_10T; 513 seed |= NFE_SEED_10T; 514 break; 515 } 516 517 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */ 518 519 NFE_WRITE(sc, NFE_PHY_IFACE, phy); 520 NFE_WRITE(sc, NFE_MISC1, misc); 521 NFE_WRITE(sc, NFE_LINKSPEED, link); 522 } 523 524 int 525 nfe_miibus_readreg(device_t dev, int phy, int reg) 526 { 527 struct nfe_softc *sc = device_private(dev); 528 uint32_t val; 529 int ntries; 530 531 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 532 533 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 534 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 535 DELAY(100); 536 } 537 538 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg); 539 540 for (ntries = 0; ntries < 1000; ntries++) { 541 DELAY(100); 542 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 543 break; 544 } 545 if (ntries == 1000) { 546 DPRINTFN(2, ("%s: timeout waiting for PHY\n", 547 device_xname(sc->sc_dev))); 548 return 0; 549 } 550 551 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) { 552 DPRINTFN(2, ("%s: could not read PHY\n", 553 device_xname(sc->sc_dev))); 554 return 0; 555 } 556 557 val = NFE_READ(sc, NFE_PHY_DATA); 558 if (val != 0xffffffff && val != 0) 559 sc->mii_phyaddr = phy; 560 561 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n", 562 device_xname(sc->sc_dev), phy, reg, val)); 563 564 return val; 565 } 566 567 void 568 nfe_miibus_writereg(device_t dev, int phy, int reg, int val) 569 { 570 struct nfe_softc *sc = device_private(dev); 571 uint32_t ctl; 572 int ntries; 573 574 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 575 576 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 577 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 578 DELAY(100); 579 } 580 581 NFE_WRITE(sc, NFE_PHY_DATA, val); 582 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg; 583 NFE_WRITE(sc, NFE_PHY_CTL, ctl); 584 585 for (ntries = 0; ntries < 1000; ntries++) { 586 DELAY(100); 587 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 588 break; 589 } 590 #ifdef NFE_DEBUG 591 if (nfedebug >= 2 && ntries == 1000) 592 printf("could not write to PHY\n"); 593 #endif 594 } 595 596 int 597 nfe_intr(void *arg) 598 { 599 struct nfe_softc *sc = arg; 600 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 601 uint32_t r; 602 int handled; 603 604 if ((ifp->if_flags & IFF_UP) == 0) 605 return 0; 606 607 handled = 0; 608 609 for (;;) { 610 r = NFE_READ(sc, NFE_IRQ_STATUS); 611 if ((r & NFE_IRQ_WANTED) == 0) 612 break; 613 614 NFE_WRITE(sc, NFE_IRQ_STATUS, r); 615 handled = 1; 616 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r)); 617 618 if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) { 619 /* check Rx ring */ 620 nfe_rxeof(sc); 621 } 622 if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) { 623 /* check Tx ring */ 624 nfe_txeof(sc); 625 } 626 if ((r & NFE_IRQ_LINK) != 0) { 627 NFE_READ(sc, NFE_PHY_STATUS); 628 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 629 DPRINTF(("%s: link state changed\n", 630 device_xname(sc->sc_dev))); 631 } 632 } 633 634 if (handled && !IF_IS_EMPTY(&ifp->if_snd)) 635 nfe_start(ifp); 636 637 return handled; 638 } 639 640 static int 641 nfe_ifflags_cb(struct ethercom *ec) 642 { 643 struct ifnet *ifp = &ec->ec_if; 644 struct nfe_softc *sc = ifp->if_softc; 645 int change = ifp->if_flags ^ sc->sc_if_flags; 646 647 /* 648 * If only the PROMISC flag changes, then 649 * don't do a full re-init of the chip, just update 650 * the Rx filter. 651 */ 652 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) 653 return ENETRESET; 654 else if ((change & IFF_PROMISC) != 0) 655 nfe_setmulti(sc); 656 657 return 0; 658 } 659 660 int 661 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data) 662 { 663 struct nfe_softc *sc = ifp->if_softc; 664 struct ifaddr *ifa = (struct ifaddr *)data; 665 int s, error = 0; 666 667 s = splnet(); 668 669 switch (cmd) { 670 case SIOCINITIFADDR: 671 ifp->if_flags |= IFF_UP; 672 nfe_init(ifp); 673 switch (ifa->ifa_addr->sa_family) { 674 #ifdef INET 675 case AF_INET: 676 arp_ifinit(ifp, ifa); 677 break; 678 #endif 679 default: 680 break; 681 } 682 break; 683 default: 684 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 685 break; 686 687 error = 0; 688 689 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 690 ; 691 else if (ifp->if_flags & IFF_RUNNING) 692 nfe_setmulti(sc); 693 break; 694 } 695 sc->sc_if_flags = ifp->if_flags; 696 697 splx(s); 698 699 return error; 700 } 701 702 void 703 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) 704 { 705 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 706 (char *)desc32 - (char *)sc->txq.desc32, 707 sizeof (struct nfe_desc32), ops); 708 } 709 710 void 711 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) 712 { 713 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 714 (char *)desc64 - (char *)sc->txq.desc64, 715 sizeof (struct nfe_desc64), ops); 716 } 717 718 void 719 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops) 720 { 721 if (end > start) { 722 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 723 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32, 724 (char *)&sc->txq.desc32[end] - 725 (char *)&sc->txq.desc32[start], ops); 726 return; 727 } 728 /* sync from 'start' to end of ring */ 729 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 730 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32, 731 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] - 732 (char *)&sc->txq.desc32[start], ops); 733 734 /* sync from start of ring to 'end' */ 735 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, 736 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops); 737 } 738 739 void 740 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops) 741 { 742 if (end > start) { 743 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 744 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64, 745 (char *)&sc->txq.desc64[end] - 746 (char *)&sc->txq.desc64[start], ops); 747 return; 748 } 749 /* sync from 'start' to end of ring */ 750 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 751 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64, 752 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] - 753 (char *)&sc->txq.desc64[start], ops); 754 755 /* sync from start of ring to 'end' */ 756 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, 757 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops); 758 } 759 760 void 761 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) 762 { 763 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 764 (char *)desc32 - (char *)sc->rxq.desc32, 765 sizeof (struct nfe_desc32), ops); 766 } 767 768 void 769 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) 770 { 771 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 772 (char *)desc64 - (char *)sc->rxq.desc64, 773 sizeof (struct nfe_desc64), ops); 774 } 775 776 void 777 nfe_rxeof(struct nfe_softc *sc) 778 { 779 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 780 struct nfe_desc32 *desc32; 781 struct nfe_desc64 *desc64; 782 struct nfe_rx_data *data; 783 struct nfe_jbuf *jbuf; 784 struct mbuf *m, *mnew; 785 bus_addr_t physaddr; 786 uint16_t flags; 787 int error, len, i; 788 789 desc32 = NULL; 790 desc64 = NULL; 791 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) { 792 data = &sc->rxq.data[i]; 793 794 if (sc->sc_flags & NFE_40BIT_ADDR) { 795 desc64 = &sc->rxq.desc64[i]; 796 nfe_rxdesc64_sync(sc, desc64, 797 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 798 799 flags = le16toh(desc64->flags); 800 len = le16toh(desc64->length) & 0x3fff; 801 } else { 802 desc32 = &sc->rxq.desc32[i]; 803 nfe_rxdesc32_sync(sc, desc32, 804 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 805 806 flags = le16toh(desc32->flags); 807 len = le16toh(desc32->length) & 0x3fff; 808 } 809 810 if ((flags & NFE_RX_READY) != 0) 811 break; 812 813 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 814 if ((flags & NFE_RX_VALID_V1) == 0) 815 goto skip; 816 817 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { 818 flags &= ~NFE_RX_ERROR; 819 len--; /* fix buffer length */ 820 } 821 } else { 822 if ((flags & NFE_RX_VALID_V2) == 0) 823 goto skip; 824 825 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { 826 flags &= ~NFE_RX_ERROR; 827 len--; /* fix buffer length */ 828 } 829 } 830 831 if (flags & NFE_RX_ERROR) { 832 ifp->if_ierrors++; 833 goto skip; 834 } 835 836 /* 837 * Try to allocate a new mbuf for this ring element and load 838 * it before processing the current mbuf. If the ring element 839 * cannot be loaded, drop the received packet and reuse the 840 * old mbuf. In the unlikely case that the old mbuf can't be 841 * reloaded either, explicitly panic. 842 */ 843 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 844 if (mnew == NULL) { 845 ifp->if_ierrors++; 846 goto skip; 847 } 848 849 if (sc->sc_flags & NFE_USE_JUMBO) { 850 physaddr = 851 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr; 852 if ((jbuf = nfe_jalloc(sc, i)) == NULL) { 853 if (len > MCLBYTES) { 854 m_freem(mnew); 855 ifp->if_ierrors++; 856 goto skip1; 857 } 858 MCLGET(mnew, M_DONTWAIT); 859 if ((mnew->m_flags & M_EXT) == 0) { 860 m_freem(mnew); 861 ifp->if_ierrors++; 862 goto skip1; 863 } 864 865 (void)memcpy(mtod(mnew, void *), 866 mtod(data->m, const void *), len); 867 m = mnew; 868 goto mbufcopied; 869 } else { 870 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc); 871 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap, 872 mtod(data->m, char *) - (char *)sc->rxq.jpool, 873 NFE_JBYTES, BUS_DMASYNC_POSTREAD); 874 875 physaddr = jbuf->physaddr; 876 } 877 } else { 878 MCLGET(mnew, M_DONTWAIT); 879 if ((mnew->m_flags & M_EXT) == 0) { 880 m_freem(mnew); 881 ifp->if_ierrors++; 882 goto skip; 883 } 884 885 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 886 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 887 bus_dmamap_unload(sc->sc_dmat, data->map); 888 889 error = bus_dmamap_load(sc->sc_dmat, data->map, 890 mtod(mnew, void *), MCLBYTES, NULL, 891 BUS_DMA_READ | BUS_DMA_NOWAIT); 892 if (error != 0) { 893 m_freem(mnew); 894 895 /* try to reload the old mbuf */ 896 error = bus_dmamap_load(sc->sc_dmat, data->map, 897 mtod(data->m, void *), MCLBYTES, NULL, 898 BUS_DMA_READ | BUS_DMA_NOWAIT); 899 if (error != 0) { 900 /* very unlikely that it will fail.. */ 901 panic("%s: could not load old rx mbuf", 902 device_xname(sc->sc_dev)); 903 } 904 ifp->if_ierrors++; 905 goto skip; 906 } 907 physaddr = data->map->dm_segs[0].ds_addr; 908 } 909 910 /* 911 * New mbuf successfully loaded, update Rx ring and continue 912 * processing. 913 */ 914 m = data->m; 915 data->m = mnew; 916 917 mbufcopied: 918 /* finalize mbuf */ 919 m->m_pkthdr.len = m->m_len = len; 920 m->m_pkthdr.rcvif = ifp; 921 922 if ((sc->sc_flags & NFE_HW_CSUM) != 0) { 923 /* 924 * XXX 925 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets? 926 */ 927 if (flags & NFE_RX_IP_CSUMOK) { 928 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 929 DPRINTFN(3, ("%s: ip4csum-rx ok\n", 930 device_xname(sc->sc_dev))); 931 } 932 /* 933 * XXX 934 * no way to check M_CSUM_TCP_UDP_BAD or 935 * other protocols? 936 */ 937 if (flags & NFE_RX_UDP_CSUMOK) { 938 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 939 DPRINTFN(3, ("%s: udp4csum-rx ok\n", 940 device_xname(sc->sc_dev))); 941 } else if (flags & NFE_RX_TCP_CSUMOK) { 942 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 943 DPRINTFN(3, ("%s: tcp4csum-rx ok\n", 944 device_xname(sc->sc_dev))); 945 } 946 } 947 bpf_mtap(ifp, m); 948 ifp->if_ipackets++; 949 (*ifp->if_input)(ifp, m); 950 951 skip1: 952 /* update mapping address in h/w descriptor */ 953 if (sc->sc_flags & NFE_40BIT_ADDR) { 954 #if defined(__LP64__) 955 desc64->physaddr[0] = htole32(physaddr >> 32); 956 #endif 957 desc64->physaddr[1] = htole32(physaddr & 0xffffffff); 958 } else { 959 desc32->physaddr = htole32(physaddr); 960 } 961 962 skip: 963 if (sc->sc_flags & NFE_40BIT_ADDR) { 964 desc64->length = htole16(sc->rxq.bufsz); 965 desc64->flags = htole16(NFE_RX_READY); 966 967 nfe_rxdesc64_sync(sc, desc64, 968 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 969 } else { 970 desc32->length = htole16(sc->rxq.bufsz); 971 desc32->flags = htole16(NFE_RX_READY); 972 973 nfe_rxdesc32_sync(sc, desc32, 974 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 975 } 976 } 977 /* update current RX pointer */ 978 sc->rxq.cur = i; 979 } 980 981 void 982 nfe_txeof(struct nfe_softc *sc) 983 { 984 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 985 struct nfe_desc32 *desc32; 986 struct nfe_desc64 *desc64; 987 struct nfe_tx_data *data = NULL; 988 int i; 989 uint16_t flags; 990 char buf[128]; 991 992 for (i = sc->txq.next; 993 sc->txq.queued > 0; 994 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) { 995 if (sc->sc_flags & NFE_40BIT_ADDR) { 996 desc64 = &sc->txq.desc64[i]; 997 nfe_txdesc64_sync(sc, desc64, 998 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 999 1000 flags = le16toh(desc64->flags); 1001 } else { 1002 desc32 = &sc->txq.desc32[i]; 1003 nfe_txdesc32_sync(sc, desc32, 1004 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1005 1006 flags = le16toh(desc32->flags); 1007 } 1008 1009 if ((flags & NFE_TX_VALID) != 0) 1010 break; 1011 1012 data = &sc->txq.data[i]; 1013 1014 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 1015 if ((flags & NFE_TX_LASTFRAG_V1) == 0 && 1016 data->m == NULL) 1017 continue; 1018 1019 if ((flags & NFE_TX_ERROR_V1) != 0) { 1020 snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags); 1021 aprint_error_dev(sc->sc_dev, "tx v1 error %s\n", 1022 buf); 1023 ifp->if_oerrors++; 1024 } else 1025 ifp->if_opackets++; 1026 } else { 1027 if ((flags & NFE_TX_LASTFRAG_V2) == 0 && 1028 data->m == NULL) 1029 continue; 1030 1031 if ((flags & NFE_TX_ERROR_V2) != 0) { 1032 snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags); 1033 aprint_error_dev(sc->sc_dev, "tx v2 error %s\n", 1034 buf); 1035 ifp->if_oerrors++; 1036 } else 1037 ifp->if_opackets++; 1038 } 1039 1040 if (data->m == NULL) { /* should not get there */ 1041 aprint_error_dev(sc->sc_dev, 1042 "last fragment bit w/o associated mbuf!\n"); 1043 continue; 1044 } 1045 1046 /* last fragment of the mbuf chain transmitted */ 1047 bus_dmamap_sync(sc->sc_dmat, data->active, 0, 1048 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1049 bus_dmamap_unload(sc->sc_dmat, data->active); 1050 m_freem(data->m); 1051 data->m = NULL; 1052 } 1053 1054 sc->txq.next = i; 1055 1056 if (sc->txq.queued < NFE_TX_RING_COUNT) { 1057 /* at least one slot freed */ 1058 ifp->if_flags &= ~IFF_OACTIVE; 1059 } 1060 1061 if (sc->txq.queued == 0) { 1062 /* all queued packets are sent */ 1063 ifp->if_timer = 0; 1064 } 1065 } 1066 1067 int 1068 nfe_encap(struct nfe_softc *sc, struct mbuf *m0) 1069 { 1070 struct nfe_desc32 *desc32; 1071 struct nfe_desc64 *desc64; 1072 struct nfe_tx_data *data; 1073 bus_dmamap_t map; 1074 uint16_t flags, csumflags; 1075 #if NVLAN > 0 1076 struct m_tag *mtag; 1077 uint32_t vtag = 0; 1078 #endif 1079 int error, i, first; 1080 1081 desc32 = NULL; 1082 desc64 = NULL; 1083 data = NULL; 1084 1085 flags = 0; 1086 csumflags = 0; 1087 first = sc->txq.cur; 1088 1089 map = sc->txq.data[first].map; 1090 1091 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT); 1092 if (error != 0) { 1093 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", 1094 error); 1095 return error; 1096 } 1097 1098 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) { 1099 bus_dmamap_unload(sc->sc_dmat, map); 1100 return ENOBUFS; 1101 } 1102 1103 #if NVLAN > 0 1104 /* setup h/w VLAN tagging */ 1105 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) 1106 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag); 1107 #endif 1108 if ((sc->sc_flags & NFE_HW_CSUM) != 0) { 1109 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) 1110 csumflags |= NFE_TX_IP_CSUM; 1111 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) 1112 csumflags |= NFE_TX_TCP_UDP_CSUM; 1113 } 1114 1115 for (i = 0; i < map->dm_nsegs; i++) { 1116 data = &sc->txq.data[sc->txq.cur]; 1117 1118 if (sc->sc_flags & NFE_40BIT_ADDR) { 1119 desc64 = &sc->txq.desc64[sc->txq.cur]; 1120 #if defined(__LP64__) 1121 desc64->physaddr[0] = 1122 htole32(map->dm_segs[i].ds_addr >> 32); 1123 #endif 1124 desc64->physaddr[1] = 1125 htole32(map->dm_segs[i].ds_addr & 0xffffffff); 1126 desc64->length = htole16(map->dm_segs[i].ds_len - 1); 1127 desc64->flags = htole16(flags); 1128 desc64->vtag = 0; 1129 } else { 1130 desc32 = &sc->txq.desc32[sc->txq.cur]; 1131 1132 desc32->physaddr = htole32(map->dm_segs[i].ds_addr); 1133 desc32->length = htole16(map->dm_segs[i].ds_len - 1); 1134 desc32->flags = htole16(flags); 1135 } 1136 1137 /* 1138 * Setting of the valid bit in the first descriptor is 1139 * deferred until the whole chain is fully setup. 1140 */ 1141 flags |= NFE_TX_VALID; 1142 1143 sc->txq.queued++; 1144 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur); 1145 } 1146 1147 /* the whole mbuf chain has been setup */ 1148 if (sc->sc_flags & NFE_40BIT_ADDR) { 1149 /* fix last descriptor */ 1150 flags |= NFE_TX_LASTFRAG_V2; 1151 desc64->flags = htole16(flags); 1152 1153 /* Checksum flags and vtag belong to the first fragment only. */ 1154 #if NVLAN > 0 1155 sc->txq.desc64[first].vtag = htole32(vtag); 1156 #endif 1157 sc->txq.desc64[first].flags |= htole16(csumflags); 1158 1159 /* finally, set the valid bit in the first descriptor */ 1160 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID); 1161 } else { 1162 /* fix last descriptor */ 1163 if (sc->sc_flags & NFE_JUMBO_SUP) 1164 flags |= NFE_TX_LASTFRAG_V2; 1165 else 1166 flags |= NFE_TX_LASTFRAG_V1; 1167 desc32->flags = htole16(flags); 1168 1169 /* Checksum flags belong to the first fragment only. */ 1170 sc->txq.desc32[first].flags |= htole16(csumflags); 1171 1172 /* finally, set the valid bit in the first descriptor */ 1173 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID); 1174 } 1175 1176 data->m = m0; 1177 data->active = map; 1178 1179 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1180 BUS_DMASYNC_PREWRITE); 1181 1182 return 0; 1183 } 1184 1185 void 1186 nfe_start(struct ifnet *ifp) 1187 { 1188 struct nfe_softc *sc = ifp->if_softc; 1189 int old = sc->txq.queued; 1190 struct mbuf *m0; 1191 1192 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1193 return; 1194 1195 for (;;) { 1196 IFQ_POLL(&ifp->if_snd, m0); 1197 if (m0 == NULL) 1198 break; 1199 1200 if (nfe_encap(sc, m0) != 0) { 1201 ifp->if_flags |= IFF_OACTIVE; 1202 break; 1203 } 1204 1205 /* packet put in h/w queue, remove from s/w queue */ 1206 IFQ_DEQUEUE(&ifp->if_snd, m0); 1207 1208 bpf_mtap(ifp, m0); 1209 } 1210 1211 if (sc->txq.queued != old) { 1212 /* packets are queued */ 1213 if (sc->sc_flags & NFE_40BIT_ADDR) 1214 nfe_txdesc64_rsync(sc, old, sc->txq.cur, 1215 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1216 else 1217 nfe_txdesc32_rsync(sc, old, sc->txq.cur, 1218 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1219 /* kick Tx */ 1220 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); 1221 1222 /* 1223 * Set a timeout in case the chip goes out to lunch. 1224 */ 1225 ifp->if_timer = 5; 1226 } 1227 } 1228 1229 void 1230 nfe_watchdog(struct ifnet *ifp) 1231 { 1232 struct nfe_softc *sc = ifp->if_softc; 1233 1234 aprint_error_dev(sc->sc_dev, "watchdog timeout\n"); 1235 1236 ifp->if_flags &= ~IFF_RUNNING; 1237 nfe_init(ifp); 1238 1239 ifp->if_oerrors++; 1240 } 1241 1242 int 1243 nfe_init(struct ifnet *ifp) 1244 { 1245 struct nfe_softc *sc = ifp->if_softc; 1246 uint32_t tmp; 1247 int rc = 0, s; 1248 1249 if (ifp->if_flags & IFF_RUNNING) 1250 return 0; 1251 1252 nfe_stop(ifp, 0); 1253 1254 NFE_WRITE(sc, NFE_TX_UNK, 0); 1255 NFE_WRITE(sc, NFE_STATUS, 0); 1256 1257 sc->rxtxctl = NFE_RXTX_BIT2; 1258 if (sc->sc_flags & NFE_40BIT_ADDR) 1259 sc->rxtxctl |= NFE_RXTX_V3MAGIC; 1260 else if (sc->sc_flags & NFE_JUMBO_SUP) 1261 sc->rxtxctl |= NFE_RXTX_V2MAGIC; 1262 if (sc->sc_flags & NFE_HW_CSUM) 1263 sc->rxtxctl |= NFE_RXTX_RXCSUM; 1264 #if NVLAN > 0 1265 /* 1266 * Although the adapter is capable of stripping VLAN tags from received 1267 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on 1268 * purpose. This will be done in software by our network stack. 1269 */ 1270 if (sc->sc_flags & NFE_HW_VLAN) 1271 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT; 1272 #endif 1273 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl); 1274 DELAY(10); 1275 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 1276 1277 #if NVLAN 1278 if (sc->sc_flags & NFE_HW_VLAN) 1279 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE); 1280 #endif 1281 1282 NFE_WRITE(sc, NFE_SETUP_R6, 0); 1283 1284 /* set MAC address */ 1285 nfe_set_macaddr(sc, sc->sc_enaddr); 1286 1287 /* tell MAC where rings are in memory */ 1288 #ifdef __LP64__ 1289 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32); 1290 #endif 1291 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff); 1292 #ifdef __LP64__ 1293 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32); 1294 #endif 1295 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff); 1296 1297 NFE_WRITE(sc, NFE_RING_SIZE, 1298 (NFE_RX_RING_COUNT - 1) << 16 | 1299 (NFE_TX_RING_COUNT - 1)); 1300 1301 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz); 1302 1303 /* force MAC to wakeup */ 1304 tmp = NFE_READ(sc, NFE_PWR_STATE); 1305 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP); 1306 DELAY(10); 1307 tmp = NFE_READ(sc, NFE_PWR_STATE); 1308 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID); 1309 1310 s = splnet(); 1311 NFE_WRITE(sc, NFE_IRQ_MASK, 0); 1312 nfe_intr(sc); /* XXX clear IRQ status registers */ 1313 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); 1314 splx(s); 1315 1316 #if 1 1317 /* configure interrupts coalescing/mitigation */ 1318 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT); 1319 #else 1320 /* no interrupt mitigation: one interrupt per packet */ 1321 NFE_WRITE(sc, NFE_IMTIMER, 970); 1322 #endif 1323 1324 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC); 1325 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); 1326 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC); 1327 1328 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */ 1329 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC); 1330 1331 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC); 1332 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE); 1333 1334 sc->rxtxctl &= ~NFE_RXTX_BIT2; 1335 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 1336 DELAY(10); 1337 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl); 1338 1339 /* set Rx filter */ 1340 nfe_setmulti(sc); 1341 1342 if ((rc = ether_mediachange(ifp)) != 0) 1343 goto out; 1344 1345 nfe_tick(sc); 1346 1347 /* enable Rx */ 1348 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START); 1349 1350 /* enable Tx */ 1351 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START); 1352 1353 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1354 1355 /* enable interrupts */ 1356 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); 1357 1358 callout_schedule(&sc->sc_tick_ch, hz); 1359 1360 ifp->if_flags |= IFF_RUNNING; 1361 ifp->if_flags &= ~IFF_OACTIVE; 1362 1363 out: 1364 return rc; 1365 } 1366 1367 void 1368 nfe_stop(struct ifnet *ifp, int disable) 1369 { 1370 struct nfe_softc *sc = ifp->if_softc; 1371 1372 callout_stop(&sc->sc_tick_ch); 1373 1374 ifp->if_timer = 0; 1375 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1376 1377 mii_down(&sc->sc_mii); 1378 1379 /* abort Tx */ 1380 NFE_WRITE(sc, NFE_TX_CTL, 0); 1381 1382 /* disable Rx */ 1383 NFE_WRITE(sc, NFE_RX_CTL, 0); 1384 1385 /* disable interrupts */ 1386 NFE_WRITE(sc, NFE_IRQ_MASK, 0); 1387 1388 /* reset Tx and Rx rings */ 1389 nfe_reset_tx_ring(sc, &sc->txq); 1390 nfe_reset_rx_ring(sc, &sc->rxq); 1391 } 1392 1393 int 1394 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1395 { 1396 struct nfe_desc32 *desc32; 1397 struct nfe_desc64 *desc64; 1398 struct nfe_rx_data *data; 1399 struct nfe_jbuf *jbuf; 1400 void **desc; 1401 bus_addr_t physaddr; 1402 int i, nsegs, error, descsize; 1403 1404 if (sc->sc_flags & NFE_40BIT_ADDR) { 1405 desc = (void **)&ring->desc64; 1406 descsize = sizeof (struct nfe_desc64); 1407 } else { 1408 desc = (void **)&ring->desc32; 1409 descsize = sizeof (struct nfe_desc32); 1410 } 1411 1412 ring->cur = ring->next = 0; 1413 ring->bufsz = MCLBYTES; 1414 1415 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1, 1416 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); 1417 if (error != 0) { 1418 aprint_error_dev(sc->sc_dev, 1419 "could not create desc DMA map\n"); 1420 ring->map = NULL; 1421 goto fail; 1422 } 1423 1424 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1425 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 1426 if (error != 0) { 1427 aprint_error_dev(sc->sc_dev, 1428 "could not allocate DMA memory\n"); 1429 goto fail; 1430 } 1431 1432 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 1433 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT); 1434 if (error != 0) { 1435 aprint_error_dev(sc->sc_dev, 1436 "could not map desc DMA memory\n"); 1437 goto fail; 1438 } 1439 1440 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, 1441 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); 1442 if (error != 0) { 1443 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n"); 1444 goto fail; 1445 } 1446 1447 memset(*desc, 0, NFE_RX_RING_COUNT * descsize); 1448 ring->physaddr = ring->map->dm_segs[0].ds_addr; 1449 1450 if (sc->sc_flags & NFE_USE_JUMBO) { 1451 ring->bufsz = NFE_JBYTES; 1452 if ((error = nfe_jpool_alloc(sc)) != 0) { 1453 aprint_error_dev(sc->sc_dev, 1454 "could not allocate jumbo frames\n"); 1455 goto fail; 1456 } 1457 } 1458 1459 /* 1460 * Pre-allocate Rx buffers and populate Rx ring. 1461 */ 1462 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1463 data = &sc->rxq.data[i]; 1464 1465 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 1466 if (data->m == NULL) { 1467 aprint_error_dev(sc->sc_dev, 1468 "could not allocate rx mbuf\n"); 1469 error = ENOMEM; 1470 goto fail; 1471 } 1472 1473 if (sc->sc_flags & NFE_USE_JUMBO) { 1474 if ((jbuf = nfe_jalloc(sc, i)) == NULL) { 1475 aprint_error_dev(sc->sc_dev, 1476 "could not allocate jumbo buffer\n"); 1477 goto fail; 1478 } 1479 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, 1480 sc); 1481 1482 physaddr = jbuf->physaddr; 1483 } else { 1484 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1485 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); 1486 if (error != 0) { 1487 aprint_error_dev(sc->sc_dev, 1488 "could not create DMA map\n"); 1489 data->map = NULL; 1490 goto fail; 1491 } 1492 MCLGET(data->m, M_DONTWAIT); 1493 if (!(data->m->m_flags & M_EXT)) { 1494 aprint_error_dev(sc->sc_dev, 1495 "could not allocate mbuf cluster\n"); 1496 error = ENOMEM; 1497 goto fail; 1498 } 1499 1500 error = bus_dmamap_load(sc->sc_dmat, data->map, 1501 mtod(data->m, void *), MCLBYTES, NULL, 1502 BUS_DMA_READ | BUS_DMA_NOWAIT); 1503 if (error != 0) { 1504 aprint_error_dev(sc->sc_dev, 1505 "could not load rx buf DMA map"); 1506 goto fail; 1507 } 1508 physaddr = data->map->dm_segs[0].ds_addr; 1509 } 1510 1511 if (sc->sc_flags & NFE_40BIT_ADDR) { 1512 desc64 = &sc->rxq.desc64[i]; 1513 #if defined(__LP64__) 1514 desc64->physaddr[0] = htole32(physaddr >> 32); 1515 #endif 1516 desc64->physaddr[1] = htole32(physaddr & 0xffffffff); 1517 desc64->length = htole16(sc->rxq.bufsz); 1518 desc64->flags = htole16(NFE_RX_READY); 1519 } else { 1520 desc32 = &sc->rxq.desc32[i]; 1521 desc32->physaddr = htole32(physaddr); 1522 desc32->length = htole16(sc->rxq.bufsz); 1523 desc32->flags = htole16(NFE_RX_READY); 1524 } 1525 } 1526 1527 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 1528 BUS_DMASYNC_PREWRITE); 1529 1530 return 0; 1531 1532 fail: nfe_free_rx_ring(sc, ring); 1533 return error; 1534 } 1535 1536 void 1537 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1538 { 1539 int i; 1540 1541 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1542 if (sc->sc_flags & NFE_40BIT_ADDR) { 1543 ring->desc64[i].length = htole16(ring->bufsz); 1544 ring->desc64[i].flags = htole16(NFE_RX_READY); 1545 } else { 1546 ring->desc32[i].length = htole16(ring->bufsz); 1547 ring->desc32[i].flags = htole16(NFE_RX_READY); 1548 } 1549 } 1550 1551 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 1552 BUS_DMASYNC_PREWRITE); 1553 1554 ring->cur = ring->next = 0; 1555 } 1556 1557 void 1558 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1559 { 1560 struct nfe_rx_data *data; 1561 void *desc; 1562 int i, descsize; 1563 1564 if (sc->sc_flags & NFE_40BIT_ADDR) { 1565 desc = ring->desc64; 1566 descsize = sizeof (struct nfe_desc64); 1567 } else { 1568 desc = ring->desc32; 1569 descsize = sizeof (struct nfe_desc32); 1570 } 1571 1572 if (desc != NULL) { 1573 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 1574 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1575 bus_dmamap_unload(sc->sc_dmat, ring->map); 1576 bus_dmamem_unmap(sc->sc_dmat, (void *)desc, 1577 NFE_RX_RING_COUNT * descsize); 1578 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 1579 } 1580 1581 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1582 data = &ring->data[i]; 1583 1584 if (data->map != NULL) { 1585 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1586 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1587 bus_dmamap_unload(sc->sc_dmat, data->map); 1588 bus_dmamap_destroy(sc->sc_dmat, data->map); 1589 } 1590 if (data->m != NULL) 1591 m_freem(data->m); 1592 } 1593 1594 nfe_jpool_free(sc); 1595 } 1596 1597 struct nfe_jbuf * 1598 nfe_jalloc(struct nfe_softc *sc, int i) 1599 { 1600 struct nfe_jbuf *jbuf; 1601 1602 mutex_enter(&sc->rxq.mtx); 1603 jbuf = SLIST_FIRST(&sc->rxq.jfreelist); 1604 if (jbuf != NULL) 1605 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext); 1606 mutex_exit(&sc->rxq.mtx); 1607 if (jbuf == NULL) 1608 return NULL; 1609 sc->rxq.jbufmap[i] = 1610 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES; 1611 return jbuf; 1612 } 1613 1614 /* 1615 * This is called automatically by the network stack when the mbuf is freed. 1616 * Caution must be taken that the NIC might be reset by the time the mbuf is 1617 * freed. 1618 */ 1619 void 1620 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg) 1621 { 1622 struct nfe_softc *sc = arg; 1623 struct nfe_jbuf *jbuf; 1624 int i; 1625 1626 /* find the jbuf from the base pointer */ 1627 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES; 1628 if (i < 0 || i >= NFE_JPOOL_COUNT) { 1629 aprint_error_dev(sc->sc_dev, 1630 "request to free a buffer (%p) not managed by us\n", buf); 1631 return; 1632 } 1633 jbuf = &sc->rxq.jbuf[i]; 1634 1635 /* ..and put it back in the free list */ 1636 mutex_enter(&sc->rxq.mtx); 1637 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext); 1638 mutex_exit(&sc->rxq.mtx); 1639 1640 if (m != NULL) 1641 pool_cache_put(mb_cache, m); 1642 } 1643 1644 int 1645 nfe_jpool_alloc(struct nfe_softc *sc) 1646 { 1647 struct nfe_rx_ring *ring = &sc->rxq; 1648 struct nfe_jbuf *jbuf; 1649 bus_addr_t physaddr; 1650 char *buf; 1651 int i, nsegs, error; 1652 1653 /* 1654 * Allocate a big chunk of DMA'able memory. 1655 */ 1656 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1, 1657 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap); 1658 if (error != 0) { 1659 aprint_error_dev(sc->sc_dev, 1660 "could not create jumbo DMA map\n"); 1661 ring->jmap = NULL; 1662 goto fail; 1663 } 1664 1665 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0, 1666 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT); 1667 if (error != 0) { 1668 aprint_error_dev(sc->sc_dev, 1669 "could not allocate jumbo DMA memory\n"); 1670 goto fail; 1671 } 1672 1673 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE, 1674 &ring->jpool, BUS_DMA_NOWAIT); 1675 if (error != 0) { 1676 aprint_error_dev(sc->sc_dev, 1677 "could not map jumbo DMA memory\n"); 1678 goto fail; 1679 } 1680 1681 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool, 1682 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); 1683 if (error != 0) { 1684 aprint_error_dev(sc->sc_dev, 1685 "could not load jumbo DMA map\n"); 1686 goto fail; 1687 } 1688 1689 /* ..and split it into 9KB chunks */ 1690 SLIST_INIT(&ring->jfreelist); 1691 1692 buf = ring->jpool; 1693 physaddr = ring->jmap->dm_segs[0].ds_addr; 1694 for (i = 0; i < NFE_JPOOL_COUNT; i++) { 1695 jbuf = &ring->jbuf[i]; 1696 1697 jbuf->buf = buf; 1698 jbuf->physaddr = physaddr; 1699 1700 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext); 1701 1702 buf += NFE_JBYTES; 1703 physaddr += NFE_JBYTES; 1704 } 1705 1706 return 0; 1707 1708 fail: nfe_jpool_free(sc); 1709 return error; 1710 } 1711 1712 void 1713 nfe_jpool_free(struct nfe_softc *sc) 1714 { 1715 struct nfe_rx_ring *ring = &sc->rxq; 1716 1717 if (ring->jmap != NULL) { 1718 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0, 1719 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1720 bus_dmamap_unload(sc->sc_dmat, ring->jmap); 1721 bus_dmamap_destroy(sc->sc_dmat, ring->jmap); 1722 ring->jmap = NULL; 1723 } 1724 if (ring->jpool != NULL) { 1725 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE); 1726 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1); 1727 ring->jpool = NULL; 1728 } 1729 } 1730 1731 int 1732 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1733 { 1734 int i, nsegs, error; 1735 void **desc; 1736 int descsize; 1737 1738 if (sc->sc_flags & NFE_40BIT_ADDR) { 1739 desc = (void **)&ring->desc64; 1740 descsize = sizeof (struct nfe_desc64); 1741 } else { 1742 desc = (void **)&ring->desc32; 1743 descsize = sizeof (struct nfe_desc32); 1744 } 1745 1746 ring->queued = 0; 1747 ring->cur = ring->next = 0; 1748 1749 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1, 1750 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); 1751 1752 if (error != 0) { 1753 aprint_error_dev(sc->sc_dev, 1754 "could not create desc DMA map\n"); 1755 ring->map = NULL; 1756 goto fail; 1757 } 1758 1759 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1760 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 1761 if (error != 0) { 1762 aprint_error_dev(sc->sc_dev, 1763 "could not allocate DMA memory\n"); 1764 goto fail; 1765 } 1766 1767 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 1768 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT); 1769 if (error != 0) { 1770 aprint_error_dev(sc->sc_dev, 1771 "could not map desc DMA memory\n"); 1772 goto fail; 1773 } 1774 1775 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, 1776 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); 1777 if (error != 0) { 1778 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n"); 1779 goto fail; 1780 } 1781 1782 memset(*desc, 0, NFE_TX_RING_COUNT * descsize); 1783 ring->physaddr = ring->map->dm_segs[0].ds_addr; 1784 1785 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1786 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES, 1787 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT, 1788 &ring->data[i].map); 1789 if (error != 0) { 1790 aprint_error_dev(sc->sc_dev, 1791 "could not create DMA map\n"); 1792 ring->data[i].map = NULL; 1793 goto fail; 1794 } 1795 } 1796 1797 return 0; 1798 1799 fail: nfe_free_tx_ring(sc, ring); 1800 return error; 1801 } 1802 1803 void 1804 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1805 { 1806 struct nfe_tx_data *data; 1807 int i; 1808 1809 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1810 if (sc->sc_flags & NFE_40BIT_ADDR) 1811 ring->desc64[i].flags = 0; 1812 else 1813 ring->desc32[i].flags = 0; 1814 1815 data = &ring->data[i]; 1816 1817 if (data->m != NULL) { 1818 bus_dmamap_sync(sc->sc_dmat, data->active, 0, 1819 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1820 bus_dmamap_unload(sc->sc_dmat, data->active); 1821 m_freem(data->m); 1822 data->m = NULL; 1823 } 1824 } 1825 1826 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 1827 BUS_DMASYNC_PREWRITE); 1828 1829 ring->queued = 0; 1830 ring->cur = ring->next = 0; 1831 } 1832 1833 void 1834 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1835 { 1836 struct nfe_tx_data *data; 1837 void *desc; 1838 int i, descsize; 1839 1840 if (sc->sc_flags & NFE_40BIT_ADDR) { 1841 desc = ring->desc64; 1842 descsize = sizeof (struct nfe_desc64); 1843 } else { 1844 desc = ring->desc32; 1845 descsize = sizeof (struct nfe_desc32); 1846 } 1847 1848 if (desc != NULL) { 1849 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 1850 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1851 bus_dmamap_unload(sc->sc_dmat, ring->map); 1852 bus_dmamem_unmap(sc->sc_dmat, (void *)desc, 1853 NFE_TX_RING_COUNT * descsize); 1854 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 1855 } 1856 1857 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1858 data = &ring->data[i]; 1859 1860 if (data->m != NULL) { 1861 bus_dmamap_sync(sc->sc_dmat, data->active, 0, 1862 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1863 bus_dmamap_unload(sc->sc_dmat, data->active); 1864 m_freem(data->m); 1865 } 1866 } 1867 1868 /* ..and now actually destroy the DMA mappings */ 1869 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1870 data = &ring->data[i]; 1871 if (data->map == NULL) 1872 continue; 1873 bus_dmamap_destroy(sc->sc_dmat, data->map); 1874 } 1875 } 1876 1877 void 1878 nfe_setmulti(struct nfe_softc *sc) 1879 { 1880 struct ethercom *ec = &sc->sc_ethercom; 1881 struct ifnet *ifp = &ec->ec_if; 1882 struct ether_multi *enm; 1883 struct ether_multistep step; 1884 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN]; 1885 uint32_t filter = NFE_RXFILTER_MAGIC; 1886 int i; 1887 1888 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 1889 memset(addr, 0, ETHER_ADDR_LEN); 1890 memset(mask, 0, ETHER_ADDR_LEN); 1891 goto done; 1892 } 1893 1894 memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN); 1895 memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN); 1896 1897 ETHER_FIRST_MULTI(step, ec, enm); 1898 while (enm != NULL) { 1899 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1900 ifp->if_flags |= IFF_ALLMULTI; 1901 memset(addr, 0, ETHER_ADDR_LEN); 1902 memset(mask, 0, ETHER_ADDR_LEN); 1903 goto done; 1904 } 1905 for (i = 0; i < ETHER_ADDR_LEN; i++) { 1906 addr[i] &= enm->enm_addrlo[i]; 1907 mask[i] &= ~enm->enm_addrlo[i]; 1908 } 1909 ETHER_NEXT_MULTI(step, enm); 1910 } 1911 for (i = 0; i < ETHER_ADDR_LEN; i++) 1912 mask[i] |= addr[i]; 1913 1914 done: 1915 addr[0] |= 0x01; /* make sure multicast bit is set */ 1916 1917 NFE_WRITE(sc, NFE_MULTIADDR_HI, 1918 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); 1919 NFE_WRITE(sc, NFE_MULTIADDR_LO, 1920 addr[5] << 8 | addr[4]); 1921 NFE_WRITE(sc, NFE_MULTIMASK_HI, 1922 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]); 1923 NFE_WRITE(sc, NFE_MULTIMASK_LO, 1924 mask[5] << 8 | mask[4]); 1925 1926 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M; 1927 NFE_WRITE(sc, NFE_RXFILTER, filter); 1928 } 1929 1930 void 1931 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr) 1932 { 1933 uint32_t tmp; 1934 1935 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) { 1936 tmp = NFE_READ(sc, NFE_MACADDR_HI); 1937 addr[0] = (tmp & 0xff); 1938 addr[1] = (tmp >> 8) & 0xff; 1939 addr[2] = (tmp >> 16) & 0xff; 1940 addr[3] = (tmp >> 24) & 0xff; 1941 1942 tmp = NFE_READ(sc, NFE_MACADDR_LO); 1943 addr[4] = (tmp & 0xff); 1944 addr[5] = (tmp >> 8) & 0xff; 1945 1946 } else { 1947 tmp = NFE_READ(sc, NFE_MACADDR_LO); 1948 addr[0] = (tmp >> 8) & 0xff; 1949 addr[1] = (tmp & 0xff); 1950 1951 tmp = NFE_READ(sc, NFE_MACADDR_HI); 1952 addr[2] = (tmp >> 24) & 0xff; 1953 addr[3] = (tmp >> 16) & 0xff; 1954 addr[4] = (tmp >> 8) & 0xff; 1955 addr[5] = (tmp & 0xff); 1956 } 1957 } 1958 1959 void 1960 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr) 1961 { 1962 NFE_WRITE(sc, NFE_MACADDR_LO, 1963 addr[5] << 8 | addr[4]); 1964 NFE_WRITE(sc, NFE_MACADDR_HI, 1965 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); 1966 } 1967 1968 void 1969 nfe_tick(void *arg) 1970 { 1971 struct nfe_softc *sc = arg; 1972 int s; 1973 1974 s = splnet(); 1975 mii_tick(&sc->sc_mii); 1976 splx(s); 1977 1978 callout_schedule(&sc->sc_tick_ch, hz); 1979 } 1980 1981 void 1982 nfe_poweron(device_t self) 1983 { 1984 struct nfe_softc *sc = device_private(self); 1985 1986 if ((sc->sc_flags & NFE_PWR_MGMT) != 0) { 1987 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2); 1988 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC); 1989 DELAY(100); 1990 NFE_WRITE(sc, NFE_MAC_RESET, 0); 1991 DELAY(100); 1992 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2); 1993 NFE_WRITE(sc, NFE_PWR2_CTL, 1994 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK); 1995 } 1996 } 1997 1998 bool 1999 nfe_resume(device_t dv, const pmf_qual_t *qual) 2000 { 2001 nfe_poweron(dv); 2002 2003 return true; 2004 } 2005