xref: /netbsd-src/sys/dev/pci/if_nfe.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: if_nfe.c,v 1.24 2007/12/09 20:28:09 jmcneill Exp $	*/
2 /*	$OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.24 2007/12/09 20:28:09 jmcneill Exp $");
25 
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41 
42 #include <sys/bus.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49 
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57 
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61 
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72 
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75 
76 int	nfe_match(struct device *, struct cfdata *, void *);
77 void	nfe_attach(struct device *, struct device *, void *);
78 void	nfe_power(int, void *);
79 void	nfe_miibus_statchg(struct device *);
80 int	nfe_miibus_readreg(struct device *, int, int);
81 void	nfe_miibus_writereg(struct device *, int, int, int);
82 int	nfe_intr(void *);
83 int	nfe_ioctl(struct ifnet *, u_long, void *);
84 void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void	nfe_rxeof(struct nfe_softc *);
91 void	nfe_txeof(struct nfe_softc *);
92 int	nfe_encap(struct nfe_softc *, struct mbuf *);
93 void	nfe_start(struct ifnet *);
94 void	nfe_watchdog(struct ifnet *);
95 int	nfe_init(struct ifnet *);
96 void	nfe_stop(struct ifnet *, int);
97 struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void	nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int	nfe_jpool_alloc(struct nfe_softc *);
100 void	nfe_jpool_free(struct nfe_softc *);
101 int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int	nfe_ifmedia_upd(struct ifnet *);
108 void	nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void	nfe_setmulti(struct nfe_softc *);
110 void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void	nfe_tick(void *);
113 
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115 
116 /*#define NFE_NO_JUMBO*/
117 
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x)	do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126 
127 /* deal with naming differences */
128 
129 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135 
136 #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140 
141 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145 
146 #ifdef	_LP64
147 #define	__LP64__ 1
148 #endif
149 
150 const struct nfe_product {
151 	pci_vendor_id_t		vendor;
152 	pci_product_id_t	product;
153 } nfe_devices[] = {
154 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
177 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
178 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
179 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
180 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
181 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
182 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
183 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
184 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }
185 };
186 
187 int
188 nfe_match(struct device *dev, struct cfdata *match, void *aux)
189 {
190 	struct pci_attach_args *pa = aux;
191 	const struct nfe_product *np;
192 	int i;
193 
194 	for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
195 		np = &nfe_devices[i];
196 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
197 		    PCI_PRODUCT(pa->pa_id) == np->product)
198 			return 1;
199 	}
200 	return 0;
201 }
202 
203 void
204 nfe_attach(struct device *parent, struct device *self, void *aux)
205 {
206 	struct nfe_softc *sc = (struct nfe_softc *)self;
207 	struct pci_attach_args *pa = aux;
208 	pci_chipset_tag_t pc = pa->pa_pc;
209 	pci_intr_handle_t ih;
210 	const char *intrstr;
211 	struct ifnet *ifp;
212 	bus_size_t memsize;
213 	pcireg_t memtype;
214 	char devinfo[256];
215 
216 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
217 	aprint_normal(": %s (rev. 0x%02x)\n",
218 	    devinfo, PCI_REVISION(pa->pa_class));
219 
220 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
221 	switch (memtype) {
222 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
223 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
224 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
225 		    &sc->sc_memh, NULL, &memsize) == 0)
226 			break;
227 		/* FALLTHROUGH */
228 	default:
229 		printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
230 		return;
231 	}
232 
233 	if (pci_intr_map(pa, &ih) != 0) {
234 		printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
235 		return;
236 	}
237 
238 	intrstr = pci_intr_string(pc, ih);
239 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
240 	if (sc->sc_ih == NULL) {
241 		printf("%s: could not establish interrupt",
242 		    sc->sc_dev.dv_xname);
243 		if (intrstr != NULL)
244 			printf(" at %s", intrstr);
245 		printf("\n");
246 		return;
247 	}
248 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
249 
250 	sc->sc_dmat = pa->pa_dmat;
251 
252 	nfe_get_macaddr(sc, sc->sc_enaddr);
253 	printf("%s: Ethernet address %s\n",
254 	    sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
255 
256 	sc->sc_flags = 0;
257 
258 	switch (PCI_PRODUCT(pa->pa_id)) {
259 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
260 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
261 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
262 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
263 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
264 		break;
265 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
266 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
267 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
268 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
269 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
270 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
271 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
272 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
273 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
274 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
275 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
276 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
277 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
278 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
279 		sc->sc_flags |= NFE_40BIT_ADDR;
280 		break;
281 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
282 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
283 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
284 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
285 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
286 		break;
287 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
288 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
289 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
290 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
291 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
292 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
293 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
294 		    NFE_HW_VLAN;
295 		break;
296 	}
297 
298 #ifndef NFE_NO_JUMBO
299 	/* enable jumbo frames for adapters that support it */
300 	if (sc->sc_flags & NFE_JUMBO_SUP)
301 		sc->sc_flags |= NFE_USE_JUMBO;
302 #endif
303 
304 	/*
305 	 * Allocate Tx and Rx rings.
306 	 */
307 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
308 		printf("%s: could not allocate Tx ring\n",
309 		    sc->sc_dev.dv_xname);
310 		return;
311 	}
312 
313 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
314 		printf("%s: could not allocate Rx ring\n",
315 		    sc->sc_dev.dv_xname);
316 		nfe_free_tx_ring(sc, &sc->txq);
317 		return;
318 	}
319 
320 	ifp = &sc->sc_ethercom.ec_if;
321 	ifp->if_softc = sc;
322 	ifp->if_mtu = ETHERMTU;
323 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
324 	ifp->if_ioctl = nfe_ioctl;
325 	ifp->if_start = nfe_start;
326 	ifp->if_stop = nfe_stop;
327 	ifp->if_watchdog = nfe_watchdog;
328 	ifp->if_init = nfe_init;
329 	ifp->if_baudrate = IF_Gbps(1);
330 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
331 	IFQ_SET_READY(&ifp->if_snd);
332 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
333 
334 #if NVLAN > 0
335 	if (sc->sc_flags & NFE_HW_VLAN)
336 		sc->sc_ethercom.ec_capabilities |=
337 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
338 #endif
339 	if (sc->sc_flags & NFE_HW_CSUM) {
340 		ifp->if_capabilities |=
341 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
342 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
343 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
344 	}
345 
346 	sc->sc_mii.mii_ifp = ifp;
347 	sc->sc_mii.mii_readreg = nfe_miibus_readreg;
348 	sc->sc_mii.mii_writereg = nfe_miibus_writereg;
349 	sc->sc_mii.mii_statchg = nfe_miibus_statchg;
350 
351 	ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
352 	    nfe_ifmedia_sts);
353 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
354 	    MII_OFFSET_ANY, 0);
355 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
356 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
357 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
358 		    0, NULL);
359 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
360 	} else
361 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
362 
363 	if_attach(ifp);
364 	ether_ifattach(ifp, sc->sc_enaddr);
365 
366 	callout_init(&sc->sc_tick_ch, 0);
367 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
368 
369 	if (!pmf_device_register(self, NULL, NULL))
370 		aprint_error_dev(self, "couldn't establish power handler\n");
371 	else
372 		pmf_class_network_register(self, ifp);
373 }
374 
375 void
376 nfe_miibus_statchg(struct device *dev)
377 {
378 	struct nfe_softc *sc = (struct nfe_softc *)dev;
379 	struct mii_data *mii = &sc->sc_mii;
380 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
381 
382 	phy = NFE_READ(sc, NFE_PHY_IFACE);
383 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
384 
385 	seed = NFE_READ(sc, NFE_RNDSEED);
386 	seed &= ~NFE_SEED_MASK;
387 
388 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
389 		phy  |= NFE_PHY_HDX;	/* half-duplex */
390 		misc |= NFE_MISC1_HDX;
391 	}
392 
393 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
394 	case IFM_1000_T:	/* full-duplex only */
395 		link |= NFE_MEDIA_1000T;
396 		seed |= NFE_SEED_1000T;
397 		phy  |= NFE_PHY_1000T;
398 		break;
399 	case IFM_100_TX:
400 		link |= NFE_MEDIA_100TX;
401 		seed |= NFE_SEED_100TX;
402 		phy  |= NFE_PHY_100TX;
403 		break;
404 	case IFM_10_T:
405 		link |= NFE_MEDIA_10T;
406 		seed |= NFE_SEED_10T;
407 		break;
408 	}
409 
410 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
411 
412 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
413 	NFE_WRITE(sc, NFE_MISC1, misc);
414 	NFE_WRITE(sc, NFE_LINKSPEED, link);
415 }
416 
417 int
418 nfe_miibus_readreg(struct device *dev, int phy, int reg)
419 {
420 	struct nfe_softc *sc = (struct nfe_softc *)dev;
421 	uint32_t val;
422 	int ntries;
423 
424 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
425 
426 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
427 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
428 		DELAY(100);
429 	}
430 
431 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
432 
433 	for (ntries = 0; ntries < 1000; ntries++) {
434 		DELAY(100);
435 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
436 			break;
437 	}
438 	if (ntries == 1000) {
439 		DPRINTFN(2, ("%s: timeout waiting for PHY\n",
440 		    sc->sc_dev.dv_xname));
441 		return 0;
442 	}
443 
444 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
445 		DPRINTFN(2, ("%s: could not read PHY\n",
446 		    sc->sc_dev.dv_xname));
447 		return 0;
448 	}
449 
450 	val = NFE_READ(sc, NFE_PHY_DATA);
451 	if (val != 0xffffffff && val != 0)
452 		sc->mii_phyaddr = phy;
453 
454 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
455 	    sc->sc_dev.dv_xname, phy, reg, val));
456 
457 	return val;
458 }
459 
460 void
461 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
462 {
463 	struct nfe_softc *sc = (struct nfe_softc *)dev;
464 	uint32_t ctl;
465 	int ntries;
466 
467 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
468 
469 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
470 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
471 		DELAY(100);
472 	}
473 
474 	NFE_WRITE(sc, NFE_PHY_DATA, val);
475 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
476 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
477 
478 	for (ntries = 0; ntries < 1000; ntries++) {
479 		DELAY(100);
480 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
481 			break;
482 	}
483 #ifdef NFE_DEBUG
484 	if (nfedebug >= 2 && ntries == 1000)
485 		printf("could not write to PHY\n");
486 #endif
487 }
488 
489 int
490 nfe_intr(void *arg)
491 {
492 	struct nfe_softc *sc = arg;
493 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
494 	uint32_t r;
495 	int handled;
496 
497 	if ((ifp->if_flags & IFF_UP) == 0)
498 		return 0;
499 
500 	handled = 0;
501 
502 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
503 
504 	for (;;) {
505 		r = NFE_READ(sc, NFE_IRQ_STATUS);
506 		if ((r & NFE_IRQ_WANTED) == 0)
507 			break;
508 
509 		NFE_WRITE(sc, NFE_IRQ_STATUS, r);
510 		handled = 1;
511 		DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
512 
513 		if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
514 		    != 0) {
515 			/* check Rx ring */
516 			nfe_rxeof(sc);
517 		}
518 
519 		if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
520 		    != 0) {
521 			/* check Tx ring */
522 			nfe_txeof(sc);
523 		}
524 
525 		if ((r & NFE_IRQ_LINK) != 0) {
526 			NFE_READ(sc, NFE_PHY_STATUS);
527 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
528 			DPRINTF(("%s: link state changed\n",
529 			    sc->sc_dev.dv_xname));
530 		}
531 	}
532 
533 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
534 
535 	if (handled && !IF_IS_EMPTY(&ifp->if_snd))
536 		nfe_start(ifp);
537 
538 	return handled;
539 }
540 
541 int
542 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
543 {
544 	struct nfe_softc *sc = ifp->if_softc;
545 	struct ifreq *ifr = (struct ifreq *)data;
546 	struct ifaddr *ifa = (struct ifaddr *)data;
547 	int s, error = 0;
548 
549 	s = splnet();
550 
551 	switch (cmd) {
552 	case SIOCSIFADDR:
553 		ifp->if_flags |= IFF_UP;
554 		nfe_init(ifp);
555 		switch (ifa->ifa_addr->sa_family) {
556 #ifdef INET
557 		case AF_INET:
558 			arp_ifinit(ifp, ifa);
559 			break;
560 #endif
561 		default:
562 			break;
563 		}
564 		break;
565 	case SIOCSIFMTU:
566 		if (ifr->ifr_mtu < ETHERMIN ||
567 		    ((sc->sc_flags & NFE_USE_JUMBO) &&
568 		    ifr->ifr_mtu > ETHERMTU_JUMBO) ||
569 		    (!(sc->sc_flags & NFE_USE_JUMBO) &&
570 		    ifr->ifr_mtu > ETHERMTU))
571 			error = EINVAL;
572 		else if (ifp->if_mtu != ifr->ifr_mtu)
573 			ifp->if_mtu = ifr->ifr_mtu;
574 		break;
575 	case SIOCSIFFLAGS:
576 		if (ifp->if_flags & IFF_UP) {
577 			/*
578 			 * If only the PROMISC or ALLMULTI flag changes, then
579 			 * don't do a full re-init of the chip, just update
580 			 * the Rx filter.
581 			 */
582 			if ((ifp->if_flags & IFF_RUNNING) &&
583 			    ((ifp->if_flags ^ sc->sc_if_flags) &
584 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
585 				nfe_setmulti(sc);
586 			else
587 				nfe_init(ifp);
588 		} else {
589 			if (ifp->if_flags & IFF_RUNNING)
590 				nfe_stop(ifp, 1);
591 		}
592 		sc->sc_if_flags = ifp->if_flags;
593 		break;
594 	case SIOCADDMULTI:
595 	case SIOCDELMULTI:
596 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
597 			if (ifp->if_flags & IFF_RUNNING)
598 				nfe_setmulti(sc);
599 			error = 0;
600 		}
601 		break;
602 	case SIOCSIFMEDIA:
603 	case SIOCGIFMEDIA:
604 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
605 		break;
606 	default:
607 		error = ether_ioctl(ifp, cmd, data);
608 		if (error == ENETRESET) {
609 			if (ifp->if_flags & IFF_RUNNING)
610 				nfe_setmulti(sc);
611 			error = 0;
612 		}
613 		break;
614 
615 	}
616 
617 	splx(s);
618 
619 	return error;
620 }
621 
622 void
623 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
624 {
625 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
626 	    (char *)desc32 - (char *)sc->txq.desc32,
627 	    sizeof (struct nfe_desc32), ops);
628 }
629 
630 void
631 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
632 {
633 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
634 	    (char *)desc64 - (char *)sc->txq.desc64,
635 	    sizeof (struct nfe_desc64), ops);
636 }
637 
638 void
639 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
640 {
641 	if (end > start) {
642 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
643 		    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
644 		    (char *)&sc->txq.desc32[end] -
645 		    (char *)&sc->txq.desc32[start], ops);
646 		return;
647 	}
648 	/* sync from 'start' to end of ring */
649 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
650 	    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
651 	    (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
652 	    (char *)&sc->txq.desc32[start], ops);
653 
654 	/* sync from start of ring to 'end' */
655 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
656 	    (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
657 }
658 
659 void
660 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
661 {
662 	if (end > start) {
663 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
664 		    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
665 		    (char *)&sc->txq.desc64[end] -
666 		    (char *)&sc->txq.desc64[start], ops);
667 		return;
668 	}
669 	/* sync from 'start' to end of ring */
670 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
671 	    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
672 	    (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
673 	    (char *)&sc->txq.desc64[start], ops);
674 
675 	/* sync from start of ring to 'end' */
676 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
677 	    (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
678 }
679 
680 void
681 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
682 {
683 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
684 	    (char *)desc32 - (char *)sc->rxq.desc32,
685 	    sizeof (struct nfe_desc32), ops);
686 }
687 
688 void
689 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
690 {
691 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
692 	    (char *)desc64 - (char *)sc->rxq.desc64,
693 	    sizeof (struct nfe_desc64), ops);
694 }
695 
696 void
697 nfe_rxeof(struct nfe_softc *sc)
698 {
699 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
700 	struct nfe_desc32 *desc32;
701 	struct nfe_desc64 *desc64;
702 	struct nfe_rx_data *data;
703 	struct nfe_jbuf *jbuf;
704 	struct mbuf *m, *mnew;
705 	bus_addr_t physaddr;
706 	uint16_t flags;
707 	int error, len, i;
708 
709 	desc32 = NULL;
710 	desc64 = NULL;
711 	for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
712 		data = &sc->rxq.data[i];
713 
714 		if (sc->sc_flags & NFE_40BIT_ADDR) {
715 			desc64 = &sc->rxq.desc64[i];
716 			nfe_rxdesc64_sync(sc, desc64,
717 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
718 
719 			flags = le16toh(desc64->flags);
720 			len = le16toh(desc64->length) & 0x3fff;
721 		} else {
722 			desc32 = &sc->rxq.desc32[i];
723 			nfe_rxdesc32_sync(sc, desc32,
724 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
725 
726 			flags = le16toh(desc32->flags);
727 			len = le16toh(desc32->length) & 0x3fff;
728 		}
729 
730 		if ((flags & NFE_RX_READY) != 0)
731 			break;
732 
733 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
734 			if ((flags & NFE_RX_VALID_V1) == 0)
735 				goto skip;
736 
737 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
738 				flags &= ~NFE_RX_ERROR;
739 				len--;	/* fix buffer length */
740 			}
741 		} else {
742 			if ((flags & NFE_RX_VALID_V2) == 0)
743 				goto skip;
744 
745 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
746 				flags &= ~NFE_RX_ERROR;
747 				len--;	/* fix buffer length */
748 			}
749 		}
750 
751 		if (flags & NFE_RX_ERROR) {
752 			ifp->if_ierrors++;
753 			goto skip;
754 		}
755 
756 		/*
757 		 * Try to allocate a new mbuf for this ring element and load
758 		 * it before processing the current mbuf. If the ring element
759 		 * cannot be loaded, drop the received packet and reuse the
760 		 * old mbuf. In the unlikely case that the old mbuf can't be
761 		 * reloaded either, explicitly panic.
762 		 */
763 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
764 		if (mnew == NULL) {
765 			ifp->if_ierrors++;
766 			goto skip;
767 		}
768 
769 		if (sc->sc_flags & NFE_USE_JUMBO) {
770 			physaddr =
771 			    sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
772 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
773 				if (len > MCLBYTES) {
774 					m_freem(mnew);
775 					ifp->if_ierrors++;
776 					goto skip1;
777 				}
778 				MCLGET(mnew, M_DONTWAIT);
779 				if ((mnew->m_flags & M_EXT) == 0) {
780 					m_freem(mnew);
781 					ifp->if_ierrors++;
782 					goto skip1;
783 				}
784 
785 				memcpy(mtod(mnew, void *),
786 				    mtod(data->m, const void *), len);
787 				m = mnew;
788 				goto mbufcopied;
789 			} else {
790 				MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
791 
792 				bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
793 				    mtod(data->m, char *) - (char *)sc->rxq.jpool,
794 				    NFE_JBYTES, BUS_DMASYNC_POSTREAD);
795 
796 				physaddr = jbuf->physaddr;
797 			}
798 		} else {
799 			MCLGET(mnew, M_DONTWAIT);
800 			if ((mnew->m_flags & M_EXT) == 0) {
801 				m_freem(mnew);
802 				ifp->if_ierrors++;
803 				goto skip;
804 			}
805 
806 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
807 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
808 			bus_dmamap_unload(sc->sc_dmat, data->map);
809 
810 			error = bus_dmamap_load(sc->sc_dmat, data->map,
811 			    mtod(mnew, void *), MCLBYTES, NULL,
812 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
813 			if (error != 0) {
814 				m_freem(mnew);
815 
816 				/* try to reload the old mbuf */
817 				error = bus_dmamap_load(sc->sc_dmat, data->map,
818 				    mtod(data->m, void *), MCLBYTES, NULL,
819 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
820 				if (error != 0) {
821 					/* very unlikely that it will fail.. */
822 					panic("%s: could not load old rx mbuf",
823 					    sc->sc_dev.dv_xname);
824 				}
825 				ifp->if_ierrors++;
826 				goto skip;
827 			}
828 			physaddr = data->map->dm_segs[0].ds_addr;
829 		}
830 
831 		/*
832 		 * New mbuf successfully loaded, update Rx ring and continue
833 		 * processing.
834 		 */
835 		m = data->m;
836 		data->m = mnew;
837 
838 mbufcopied:
839 		/* finalize mbuf */
840 		m->m_pkthdr.len = m->m_len = len;
841 		m->m_pkthdr.rcvif = ifp;
842 
843 		if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
844 			/*
845 			 * XXX
846 			 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
847 			 */
848 			if (flags & NFE_RX_IP_CSUMOK) {
849 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
850 				DPRINTFN(3, ("%s: ip4csum-rx ok\n",
851 				    sc->sc_dev.dv_xname));
852 			}
853 			/*
854 			 * XXX
855 			 * no way to check M_CSUM_TCP_UDP_BAD or
856 			 * other protocols?
857 			 */
858 			if (flags & NFE_RX_UDP_CSUMOK) {
859 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
860 				DPRINTFN(3, ("%s: udp4csum-rx ok\n",
861 				    sc->sc_dev.dv_xname));
862 			} else if (flags & NFE_RX_TCP_CSUMOK) {
863 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
864 				DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
865 				    sc->sc_dev.dv_xname));
866 			}
867 		}
868 
869 #if NBPFILTER > 0
870 		if (ifp->if_bpf)
871 			bpf_mtap(ifp->if_bpf, m);
872 #endif
873 		ifp->if_ipackets++;
874 		(*ifp->if_input)(ifp, m);
875 
876 skip1:
877 		/* update mapping address in h/w descriptor */
878 		if (sc->sc_flags & NFE_40BIT_ADDR) {
879 #if defined(__LP64__)
880 			desc64->physaddr[0] = htole32(physaddr >> 32);
881 #endif
882 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
883 		} else {
884 			desc32->physaddr = htole32(physaddr);
885 		}
886 
887  skip:
888 		if (sc->sc_flags & NFE_40BIT_ADDR) {
889 			desc64->length = htole16(sc->rxq.bufsz);
890 			desc64->flags = htole16(NFE_RX_READY);
891 
892 			nfe_rxdesc64_sync(sc, desc64,
893 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
894 		} else {
895 			desc32->length = htole16(sc->rxq.bufsz);
896 			desc32->flags = htole16(NFE_RX_READY);
897 
898 			nfe_rxdesc32_sync(sc, desc32,
899 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
900 		}
901 	}
902 	/* update current RX pointer */
903 	sc->rxq.cur = i;
904 }
905 
906 void
907 nfe_txeof(struct nfe_softc *sc)
908 {
909 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
910 	struct nfe_desc32 *desc32;
911 	struct nfe_desc64 *desc64;
912 	struct nfe_tx_data *data = NULL;
913 	int i;
914 	uint16_t flags;
915 
916 	for (i = sc->txq.next;
917 	    sc->txq.queued > 0;
918 	    i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
919 		if (sc->sc_flags & NFE_40BIT_ADDR) {
920 			desc64 = &sc->txq.desc64[i];
921 			nfe_txdesc64_sync(sc, desc64,
922 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
923 
924 			flags = le16toh(desc64->flags);
925 		} else {
926 			desc32 = &sc->txq.desc32[i];
927 			nfe_txdesc32_sync(sc, desc32,
928 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
929 
930 			flags = le16toh(desc32->flags);
931 		}
932 
933 		if ((flags & NFE_TX_VALID) != 0)
934 			break;
935 
936 		data = &sc->txq.data[i];
937 
938 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
939 			if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
940 			    data->m == NULL)
941 				continue;
942 
943 			if ((flags & NFE_TX_ERROR_V1) != 0) {
944 				printf("%s: tx v1 error 0x%04x\n",
945 				    sc->sc_dev.dv_xname, flags);
946 				ifp->if_oerrors++;
947 			} else
948 				ifp->if_opackets++;
949 		} else {
950 			if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
951 			    data->m == NULL)
952 				continue;
953 
954 			if ((flags & NFE_TX_ERROR_V2) != 0) {
955 				printf("%s: tx v2 error 0x%04x\n",
956 				    sc->sc_dev.dv_xname, flags);
957 				ifp->if_oerrors++;
958 			} else
959 				ifp->if_opackets++;
960 		}
961 
962 		if (data->m == NULL) {	/* should not get there */
963 			printf("%s: last fragment bit w/o associated mbuf!\n",
964 			    sc->sc_dev.dv_xname);
965 			continue;
966 		}
967 
968 		/* last fragment of the mbuf chain transmitted */
969 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
970 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
971 		bus_dmamap_unload(sc->sc_dmat, data->active);
972 		m_freem(data->m);
973 		data->m = NULL;
974 	}
975 
976 	sc->txq.next = i;
977 
978 	if (sc->txq.queued < NFE_TX_RING_COUNT) {
979 		/* at least one slot freed */
980 		ifp->if_flags &= ~IFF_OACTIVE;
981 	}
982 
983 	if (sc->txq.queued == 0) {
984 		/* all queued packets are sent */
985 		ifp->if_timer = 0;
986 	}
987 }
988 
989 int
990 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
991 {
992 	struct nfe_desc32 *desc32;
993 	struct nfe_desc64 *desc64;
994 	struct nfe_tx_data *data;
995 	bus_dmamap_t map;
996 	uint16_t flags, csumflags;
997 #if NVLAN > 0
998 	struct m_tag *mtag;
999 	uint32_t vtag = 0;
1000 #endif
1001 	int error, i, first;
1002 
1003 	desc32 = NULL;
1004 	desc64 = NULL;
1005 	data = NULL;
1006 
1007 	flags = 0;
1008 	csumflags = 0;
1009 	first = sc->txq.cur;
1010 
1011 	map = sc->txq.data[first].map;
1012 
1013 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1014 	if (error != 0) {
1015 		printf("%s: could not map mbuf (error %d)\n",
1016 		    sc->sc_dev.dv_xname, error);
1017 		return error;
1018 	}
1019 
1020 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1021 		bus_dmamap_unload(sc->sc_dmat, map);
1022 		return ENOBUFS;
1023 	}
1024 
1025 #if NVLAN > 0
1026 	/* setup h/w VLAN tagging */
1027 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1028 		vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1029 #endif
1030 	if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1031 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1032 			csumflags |= NFE_TX_IP_CSUM;
1033 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1034 			csumflags |= NFE_TX_TCP_UDP_CSUM;
1035 	}
1036 
1037 	for (i = 0; i < map->dm_nsegs; i++) {
1038 		data = &sc->txq.data[sc->txq.cur];
1039 
1040 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1041 			desc64 = &sc->txq.desc64[sc->txq.cur];
1042 #if defined(__LP64__)
1043 			desc64->physaddr[0] =
1044 			    htole32(map->dm_segs[i].ds_addr >> 32);
1045 #endif
1046 			desc64->physaddr[1] =
1047 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1048 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1049 			desc64->flags = htole16(flags);
1050 			desc64->vtag = 0;
1051 		} else {
1052 			desc32 = &sc->txq.desc32[sc->txq.cur];
1053 
1054 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1055 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1056 			desc32->flags = htole16(flags);
1057 		}
1058 
1059 		/*
1060 		 * Setting of the valid bit in the first descriptor is
1061 		 * deferred until the whole chain is fully setup.
1062 		 */
1063 		flags |= NFE_TX_VALID;
1064 
1065 		sc->txq.queued++;
1066 		sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1067 	}
1068 
1069 	/* the whole mbuf chain has been setup */
1070 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1071 		/* fix last descriptor */
1072 		flags |= NFE_TX_LASTFRAG_V2;
1073 		desc64->flags = htole16(flags);
1074 
1075 		/* Checksum flags and vtag belong to the first fragment only. */
1076 #if NVLAN > 0
1077 		sc->txq.desc64[first].vtag = htole32(vtag);
1078 #endif
1079 		sc->txq.desc64[first].flags |= htole16(csumflags);
1080 
1081 		/* finally, set the valid bit in the first descriptor */
1082 		sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1083 	} else {
1084 		/* fix last descriptor */
1085 		if (sc->sc_flags & NFE_JUMBO_SUP)
1086 			flags |= NFE_TX_LASTFRAG_V2;
1087 		else
1088 			flags |= NFE_TX_LASTFRAG_V1;
1089 		desc32->flags = htole16(flags);
1090 
1091 		/* Checksum flags belong to the first fragment only. */
1092 		sc->txq.desc32[first].flags |= htole16(csumflags);
1093 
1094 		/* finally, set the valid bit in the first descriptor */
1095 		sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1096 	}
1097 
1098 	data->m = m0;
1099 	data->active = map;
1100 
1101 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1102 	    BUS_DMASYNC_PREWRITE);
1103 
1104 	return 0;
1105 }
1106 
1107 void
1108 nfe_start(struct ifnet *ifp)
1109 {
1110 	struct nfe_softc *sc = ifp->if_softc;
1111 	int old = sc->txq.queued;
1112 	struct mbuf *m0;
1113 
1114 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1115 		return;
1116 
1117 	for (;;) {
1118 		IFQ_POLL(&ifp->if_snd, m0);
1119 		if (m0 == NULL)
1120 			break;
1121 
1122 		if (nfe_encap(sc, m0) != 0) {
1123 			ifp->if_flags |= IFF_OACTIVE;
1124 			break;
1125 		}
1126 
1127 		/* packet put in h/w queue, remove from s/w queue */
1128 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1129 
1130 #if NBPFILTER > 0
1131 		if (ifp->if_bpf != NULL)
1132 			bpf_mtap(ifp->if_bpf, m0);
1133 #endif
1134 	}
1135 
1136 	if (sc->txq.queued != old) {
1137 		/* packets are queued */
1138 		if (sc->sc_flags & NFE_40BIT_ADDR)
1139 			nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1140 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1141 		else
1142 			nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1143 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1144 		/* kick Tx */
1145 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1146 
1147 		/*
1148 		 * Set a timeout in case the chip goes out to lunch.
1149 		 */
1150 		ifp->if_timer = 5;
1151 	}
1152 }
1153 
1154 void
1155 nfe_watchdog(struct ifnet *ifp)
1156 {
1157 	struct nfe_softc *sc = ifp->if_softc;
1158 
1159 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1160 
1161 	ifp->if_flags &= ~IFF_RUNNING;
1162 	nfe_init(ifp);
1163 
1164 	ifp->if_oerrors++;
1165 }
1166 
1167 int
1168 nfe_init(struct ifnet *ifp)
1169 {
1170 	struct nfe_softc *sc = ifp->if_softc;
1171 	uint32_t tmp;
1172 	int s;
1173 
1174 	if (ifp->if_flags & IFF_RUNNING)
1175 		return 0;
1176 
1177 	nfe_stop(ifp, 0);
1178 
1179 	NFE_WRITE(sc, NFE_TX_UNK, 0);
1180 	NFE_WRITE(sc, NFE_STATUS, 0);
1181 
1182 	sc->rxtxctl = NFE_RXTX_BIT2;
1183 	if (sc->sc_flags & NFE_40BIT_ADDR)
1184 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1185 	else if (sc->sc_flags & NFE_JUMBO_SUP)
1186 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1187 	if (sc->sc_flags & NFE_HW_CSUM)
1188 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1189 #if NVLAN > 0
1190 	/*
1191 	 * Although the adapter is capable of stripping VLAN tags from received
1192 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1193 	 * purpose.  This will be done in software by our network stack.
1194 	 */
1195 	if (sc->sc_flags & NFE_HW_VLAN)
1196 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1197 #endif
1198 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1199 	DELAY(10);
1200 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1201 
1202 #if NVLAN
1203 	if (sc->sc_flags & NFE_HW_VLAN)
1204 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1205 #endif
1206 
1207 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1208 
1209 	/* set MAC address */
1210 	nfe_set_macaddr(sc, sc->sc_enaddr);
1211 
1212 	/* tell MAC where rings are in memory */
1213 #ifdef __LP64__
1214 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1215 #endif
1216 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1217 #ifdef __LP64__
1218 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1219 #endif
1220 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1221 
1222 	NFE_WRITE(sc, NFE_RING_SIZE,
1223 	    (NFE_RX_RING_COUNT - 1) << 16 |
1224 	    (NFE_TX_RING_COUNT - 1));
1225 
1226 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1227 
1228 	/* force MAC to wakeup */
1229 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1230 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1231 	DELAY(10);
1232 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1233 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1234 
1235 	s = splnet();
1236 	nfe_intr(sc); /* XXX clear IRQ status registers */
1237 	splx(s);
1238 
1239 #if 1
1240 	/* configure interrupts coalescing/mitigation */
1241 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1242 #else
1243 	/* no interrupt mitigation: one interrupt per packet */
1244 	NFE_WRITE(sc, NFE_IMTIMER, 970);
1245 #endif
1246 
1247 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1248 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1249 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1250 
1251 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1252 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1253 
1254 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1255 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1256 
1257 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1258 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1259 	DELAY(10);
1260 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1261 
1262 	/* set Rx filter */
1263 	nfe_setmulti(sc);
1264 
1265 	nfe_ifmedia_upd(ifp);
1266 
1267 	nfe_tick(sc);
1268 
1269 	/* enable Rx */
1270 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1271 
1272 	/* enable Tx */
1273 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1274 
1275 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1276 
1277 	/* enable interrupts */
1278 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1279 
1280 	callout_schedule(&sc->sc_tick_ch, hz);
1281 
1282 	ifp->if_flags |= IFF_RUNNING;
1283 	ifp->if_flags &= ~IFF_OACTIVE;
1284 
1285 	return 0;
1286 }
1287 
1288 void
1289 nfe_stop(struct ifnet *ifp, int disable)
1290 {
1291 	struct nfe_softc *sc = ifp->if_softc;
1292 
1293 	callout_stop(&sc->sc_tick_ch);
1294 
1295 	ifp->if_timer = 0;
1296 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1297 
1298 	mii_down(&sc->sc_mii);
1299 
1300 	/* abort Tx */
1301 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1302 
1303 	/* disable Rx */
1304 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1305 
1306 	/* disable interrupts */
1307 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1308 
1309 	/* reset Tx and Rx rings */
1310 	nfe_reset_tx_ring(sc, &sc->txq);
1311 	nfe_reset_rx_ring(sc, &sc->rxq);
1312 }
1313 
1314 int
1315 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1316 {
1317 	struct nfe_desc32 *desc32;
1318 	struct nfe_desc64 *desc64;
1319 	struct nfe_rx_data *data;
1320 	struct nfe_jbuf *jbuf;
1321 	void **desc;
1322 	bus_addr_t physaddr;
1323 	int i, nsegs, error, descsize;
1324 
1325 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1326 		desc = (void **)&ring->desc64;
1327 		descsize = sizeof (struct nfe_desc64);
1328 	} else {
1329 		desc = (void **)&ring->desc32;
1330 		descsize = sizeof (struct nfe_desc32);
1331 	}
1332 
1333 	ring->cur = ring->next = 0;
1334 	ring->bufsz = MCLBYTES;
1335 
1336 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1337 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1338 	if (error != 0) {
1339 		printf("%s: could not create desc DMA map\n",
1340 		    sc->sc_dev.dv_xname);
1341 		goto fail;
1342 	}
1343 
1344 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1345 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1346 	if (error != 0) {
1347 		printf("%s: could not allocate DMA memory\n",
1348 		    sc->sc_dev.dv_xname);
1349 		goto fail;
1350 	}
1351 
1352 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1353 	    NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1354 	if (error != 0) {
1355 		printf("%s: could not map desc DMA memory\n",
1356 		    sc->sc_dev.dv_xname);
1357 		goto fail;
1358 	}
1359 
1360 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1361 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1362 	if (error != 0) {
1363 		printf("%s: could not load desc DMA map\n",
1364 		    sc->sc_dev.dv_xname);
1365 		goto fail;
1366 	}
1367 
1368 	bzero(*desc, NFE_RX_RING_COUNT * descsize);
1369 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1370 
1371 	if (sc->sc_flags & NFE_USE_JUMBO) {
1372 		ring->bufsz = NFE_JBYTES;
1373 		if ((error = nfe_jpool_alloc(sc)) != 0) {
1374 			printf("%s: could not allocate jumbo frames\n",
1375 			    sc->sc_dev.dv_xname);
1376 			goto fail;
1377 		}
1378 	}
1379 
1380 	/*
1381 	 * Pre-allocate Rx buffers and populate Rx ring.
1382 	 */
1383 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1384 		data = &sc->rxq.data[i];
1385 
1386 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1387 		if (data->m == NULL) {
1388 			printf("%s: could not allocate rx mbuf\n",
1389 			    sc->sc_dev.dv_xname);
1390 			error = ENOMEM;
1391 			goto fail;
1392 		}
1393 
1394 		if (sc->sc_flags & NFE_USE_JUMBO) {
1395 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1396 				printf("%s: could not allocate jumbo buffer\n",
1397 				    sc->sc_dev.dv_xname);
1398 				goto fail;
1399 			}
1400 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1401 			    sc);
1402 
1403 			physaddr = jbuf->physaddr;
1404 		} else {
1405 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1406 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1407 			if (error != 0) {
1408 				printf("%s: could not create DMA map\n",
1409 				    sc->sc_dev.dv_xname);
1410 				goto fail;
1411 			}
1412 			MCLGET(data->m, M_DONTWAIT);
1413 			if (!(data->m->m_flags & M_EXT)) {
1414 				printf("%s: could not allocate mbuf cluster\n",
1415 				    sc->sc_dev.dv_xname);
1416 				error = ENOMEM;
1417 				goto fail;
1418 			}
1419 
1420 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1421 			    mtod(data->m, void *), MCLBYTES, NULL,
1422 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
1423 			if (error != 0) {
1424 				printf("%s: could not load rx buf DMA map",
1425 				    sc->sc_dev.dv_xname);
1426 				goto fail;
1427 			}
1428 			physaddr = data->map->dm_segs[0].ds_addr;
1429 		}
1430 
1431 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1432 			desc64 = &sc->rxq.desc64[i];
1433 #if defined(__LP64__)
1434 			desc64->physaddr[0] = htole32(physaddr >> 32);
1435 #endif
1436 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1437 			desc64->length = htole16(sc->rxq.bufsz);
1438 			desc64->flags = htole16(NFE_RX_READY);
1439 		} else {
1440 			desc32 = &sc->rxq.desc32[i];
1441 			desc32->physaddr = htole32(physaddr);
1442 			desc32->length = htole16(sc->rxq.bufsz);
1443 			desc32->flags = htole16(NFE_RX_READY);
1444 		}
1445 	}
1446 
1447 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1448 	    BUS_DMASYNC_PREWRITE);
1449 
1450 	return 0;
1451 
1452 fail:	nfe_free_rx_ring(sc, ring);
1453 	return error;
1454 }
1455 
1456 void
1457 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1458 {
1459 	int i;
1460 
1461 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1462 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1463 			ring->desc64[i].length = htole16(ring->bufsz);
1464 			ring->desc64[i].flags = htole16(NFE_RX_READY);
1465 		} else {
1466 			ring->desc32[i].length = htole16(ring->bufsz);
1467 			ring->desc32[i].flags = htole16(NFE_RX_READY);
1468 		}
1469 	}
1470 
1471 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1472 	    BUS_DMASYNC_PREWRITE);
1473 
1474 	ring->cur = ring->next = 0;
1475 }
1476 
1477 void
1478 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1479 {
1480 	struct nfe_rx_data *data;
1481 	void *desc;
1482 	int i, descsize;
1483 
1484 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1485 		desc = ring->desc64;
1486 		descsize = sizeof (struct nfe_desc64);
1487 	} else {
1488 		desc = ring->desc32;
1489 		descsize = sizeof (struct nfe_desc32);
1490 	}
1491 
1492 	if (desc != NULL) {
1493 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1494 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1495 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1496 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1497 		    NFE_RX_RING_COUNT * descsize);
1498 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1499 	}
1500 
1501 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1502 		data = &ring->data[i];
1503 
1504 		if (data->map != NULL) {
1505 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1506 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1507 			bus_dmamap_unload(sc->sc_dmat, data->map);
1508 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1509 		}
1510 		if (data->m != NULL)
1511 			m_freem(data->m);
1512 	}
1513 }
1514 
1515 struct nfe_jbuf *
1516 nfe_jalloc(struct nfe_softc *sc, int i)
1517 {
1518 	struct nfe_jbuf *jbuf;
1519 
1520 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1521 	if (jbuf == NULL)
1522 		return NULL;
1523 	sc->rxq.jbufmap[i] =
1524 	    ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1525 	SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1526 	return jbuf;
1527 }
1528 
1529 /*
1530  * This is called automatically by the network stack when the mbuf is freed.
1531  * Caution must be taken that the NIC might be reset by the time the mbuf is
1532  * freed.
1533  */
1534 void
1535 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1536 {
1537 	struct nfe_softc *sc = arg;
1538 	struct nfe_jbuf *jbuf;
1539 	int i;
1540 
1541 	/* find the jbuf from the base pointer */
1542 	i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1543 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
1544 		printf("%s: request to free a buffer (%p) not managed by us\n",
1545 		    sc->sc_dev.dv_xname, buf);
1546 		return;
1547 	}
1548 	jbuf = &sc->rxq.jbuf[i];
1549 
1550 	/* ..and put it back in the free list */
1551 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1552 
1553         if (m != NULL)
1554                 pool_cache_put(mb_cache, m);
1555 }
1556 
1557 int
1558 nfe_jpool_alloc(struct nfe_softc *sc)
1559 {
1560 	struct nfe_rx_ring *ring = &sc->rxq;
1561 	struct nfe_jbuf *jbuf;
1562 	bus_addr_t physaddr;
1563 	char *buf;
1564 	int i, nsegs, error;
1565 
1566 	/*
1567 	 * Allocate a big chunk of DMA'able memory.
1568 	 */
1569 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1570 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1571 	if (error != 0) {
1572 		printf("%s: could not create jumbo DMA map\n",
1573 		    sc->sc_dev.dv_xname);
1574 		goto fail;
1575 	}
1576 
1577 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1578 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1579 	if (error != 0) {
1580 		printf("%s could not allocate jumbo DMA memory\n",
1581 		    sc->sc_dev.dv_xname);
1582 		goto fail;
1583 	}
1584 
1585 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1586 	    &ring->jpool, BUS_DMA_NOWAIT);
1587 	if (error != 0) {
1588 		printf("%s: could not map jumbo DMA memory\n",
1589 		    sc->sc_dev.dv_xname);
1590 		goto fail;
1591 	}
1592 
1593 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1594 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1595 	if (error != 0) {
1596 		printf("%s: could not load jumbo DMA map\n",
1597 		    sc->sc_dev.dv_xname);
1598 		goto fail;
1599 	}
1600 
1601 	/* ..and split it into 9KB chunks */
1602 	SLIST_INIT(&ring->jfreelist);
1603 
1604 	buf = ring->jpool;
1605 	physaddr = ring->jmap->dm_segs[0].ds_addr;
1606 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1607 		jbuf = &ring->jbuf[i];
1608 
1609 		jbuf->buf = buf;
1610 		jbuf->physaddr = physaddr;
1611 
1612 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1613 
1614 		buf += NFE_JBYTES;
1615 		physaddr += NFE_JBYTES;
1616 	}
1617 
1618 	return 0;
1619 
1620 fail:	nfe_jpool_free(sc);
1621 	return error;
1622 }
1623 
1624 void
1625 nfe_jpool_free(struct nfe_softc *sc)
1626 {
1627 	struct nfe_rx_ring *ring = &sc->rxq;
1628 
1629 	if (ring->jmap != NULL) {
1630 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1631 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1632 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1633 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1634 	}
1635 	if (ring->jpool != NULL) {
1636 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1637 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1638 	}
1639 }
1640 
1641 int
1642 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1643 {
1644 	int i, nsegs, error;
1645 	void **desc;
1646 	int descsize;
1647 
1648 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1649 		desc = (void **)&ring->desc64;
1650 		descsize = sizeof (struct nfe_desc64);
1651 	} else {
1652 		desc = (void **)&ring->desc32;
1653 		descsize = sizeof (struct nfe_desc32);
1654 	}
1655 
1656 	ring->queued = 0;
1657 	ring->cur = ring->next = 0;
1658 
1659 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1660 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1661 
1662 	if (error != 0) {
1663 		printf("%s: could not create desc DMA map\n",
1664 		    sc->sc_dev.dv_xname);
1665 		goto fail;
1666 	}
1667 
1668 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1669 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1670 	if (error != 0) {
1671 		printf("%s: could not allocate DMA memory\n",
1672 		    sc->sc_dev.dv_xname);
1673 		goto fail;
1674 	}
1675 
1676 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1677 	    NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1678 	if (error != 0) {
1679 		printf("%s: could not map desc DMA memory\n",
1680 		    sc->sc_dev.dv_xname);
1681 		goto fail;
1682 	}
1683 
1684 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1685 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1686 	if (error != 0) {
1687 		printf("%s: could not load desc DMA map\n",
1688 		    sc->sc_dev.dv_xname);
1689 		goto fail;
1690 	}
1691 
1692 	bzero(*desc, NFE_TX_RING_COUNT * descsize);
1693 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1694 
1695 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1696 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1697 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1698 		    &ring->data[i].map);
1699 		if (error != 0) {
1700 			printf("%s: could not create DMA map\n",
1701 			    sc->sc_dev.dv_xname);
1702 			goto fail;
1703 		}
1704 	}
1705 
1706 	return 0;
1707 
1708 fail:	nfe_free_tx_ring(sc, ring);
1709 	return error;
1710 }
1711 
1712 void
1713 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1714 {
1715 	struct nfe_tx_data *data;
1716 	int i;
1717 
1718 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1719 		if (sc->sc_flags & NFE_40BIT_ADDR)
1720 			ring->desc64[i].flags = 0;
1721 		else
1722 			ring->desc32[i].flags = 0;
1723 
1724 		data = &ring->data[i];
1725 
1726 		if (data->m != NULL) {
1727 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1728 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1729 			bus_dmamap_unload(sc->sc_dmat, data->active);
1730 			m_freem(data->m);
1731 			data->m = NULL;
1732 		}
1733 	}
1734 
1735 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1736 	    BUS_DMASYNC_PREWRITE);
1737 
1738 	ring->queued = 0;
1739 	ring->cur = ring->next = 0;
1740 }
1741 
1742 void
1743 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1744 {
1745 	struct nfe_tx_data *data;
1746 	void *desc;
1747 	int i, descsize;
1748 
1749 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1750 		desc = ring->desc64;
1751 		descsize = sizeof (struct nfe_desc64);
1752 	} else {
1753 		desc = ring->desc32;
1754 		descsize = sizeof (struct nfe_desc32);
1755 	}
1756 
1757 	if (desc != NULL) {
1758 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1759 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1760 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1761 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1762 		    NFE_TX_RING_COUNT * descsize);
1763 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1764 	}
1765 
1766 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1767 		data = &ring->data[i];
1768 
1769 		if (data->m != NULL) {
1770 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1771 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1772 			bus_dmamap_unload(sc->sc_dmat, data->active);
1773 			m_freem(data->m);
1774 		}
1775 	}
1776 
1777 	/* ..and now actually destroy the DMA mappings */
1778 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1779 		data = &ring->data[i];
1780 		if (data->map == NULL)
1781 			continue;
1782 		bus_dmamap_destroy(sc->sc_dmat, data->map);
1783 	}
1784 }
1785 
1786 int
1787 nfe_ifmedia_upd(struct ifnet *ifp)
1788 {
1789 	struct nfe_softc *sc = ifp->if_softc;
1790 	struct mii_data *mii = &sc->sc_mii;
1791 	struct mii_softc *miisc;
1792 
1793 	if (mii->mii_instance != 0) {
1794 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1795 			mii_phy_reset(miisc);
1796 	}
1797 	return mii_mediachg(mii);
1798 }
1799 
1800 void
1801 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1802 {
1803 	struct nfe_softc *sc = ifp->if_softc;
1804 	struct mii_data *mii = &sc->sc_mii;
1805 
1806 	mii_pollstat(mii);
1807 	ifmr->ifm_status = mii->mii_media_status;
1808 	ifmr->ifm_active = mii->mii_media_active;
1809 }
1810 
1811 void
1812 nfe_setmulti(struct nfe_softc *sc)
1813 {
1814 	struct ethercom *ec = &sc->sc_ethercom;
1815 	struct ifnet *ifp = &ec->ec_if;
1816 	struct ether_multi *enm;
1817 	struct ether_multistep step;
1818 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1819 	uint32_t filter = NFE_RXFILTER_MAGIC;
1820 	int i;
1821 
1822 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1823 		bzero(addr, ETHER_ADDR_LEN);
1824 		bzero(mask, ETHER_ADDR_LEN);
1825 		goto done;
1826 	}
1827 
1828 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1829 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1830 
1831 	ETHER_FIRST_MULTI(step, ec, enm);
1832 	while (enm != NULL) {
1833 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1834 			ifp->if_flags |= IFF_ALLMULTI;
1835 			bzero(addr, ETHER_ADDR_LEN);
1836 			bzero(mask, ETHER_ADDR_LEN);
1837 			goto done;
1838 		}
1839 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1840 			addr[i] &=  enm->enm_addrlo[i];
1841 			mask[i] &= ~enm->enm_addrlo[i];
1842 		}
1843 		ETHER_NEXT_MULTI(step, enm);
1844 	}
1845 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1846 		mask[i] |= addr[i];
1847 
1848 done:
1849 	addr[0] |= 0x01;	/* make sure multicast bit is set */
1850 
1851 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
1852 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1853 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
1854 	    addr[5] <<  8 | addr[4]);
1855 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
1856 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1857 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
1858 	    mask[5] <<  8 | mask[4]);
1859 
1860 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1861 	NFE_WRITE(sc, NFE_RXFILTER, filter);
1862 }
1863 
1864 void
1865 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1866 {
1867 	uint32_t tmp;
1868 
1869 	tmp = NFE_READ(sc, NFE_MACADDR_LO);
1870 	addr[0] = (tmp >> 8) & 0xff;
1871 	addr[1] = (tmp & 0xff);
1872 
1873 	tmp = NFE_READ(sc, NFE_MACADDR_HI);
1874 	addr[2] = (tmp >> 24) & 0xff;
1875 	addr[3] = (tmp >> 16) & 0xff;
1876 	addr[4] = (tmp >>  8) & 0xff;
1877 	addr[5] = (tmp & 0xff);
1878 }
1879 
1880 void
1881 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1882 {
1883 	NFE_WRITE(sc, NFE_MACADDR_LO,
1884 	    addr[5] <<  8 | addr[4]);
1885 	NFE_WRITE(sc, NFE_MACADDR_HI,
1886 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1887 }
1888 
1889 void
1890 nfe_tick(void *arg)
1891 {
1892 	struct nfe_softc *sc = arg;
1893 	int s;
1894 
1895 	s = splnet();
1896 	mii_tick(&sc->sc_mii);
1897 	splx(s);
1898 
1899 	callout_schedule(&sc->sc_tick_ch, hz);
1900 }
1901