xref: /netbsd-src/sys/dev/pci/if_nfe.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: if_nfe.c,v 1.21 2007/11/07 00:23:19 ad Exp $	*/
2 /*	$OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.21 2007/11/07 00:23:19 ad Exp $");
25 
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41 
42 #include <sys/bus.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49 
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57 
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61 
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72 
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75 
76 int	nfe_match(struct device *, struct cfdata *, void *);
77 void	nfe_attach(struct device *, struct device *, void *);
78 void	nfe_power(int, void *);
79 void	nfe_miibus_statchg(struct device *);
80 int	nfe_miibus_readreg(struct device *, int, int);
81 void	nfe_miibus_writereg(struct device *, int, int, int);
82 int	nfe_intr(void *);
83 int	nfe_ioctl(struct ifnet *, u_long, void *);
84 void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void	nfe_rxeof(struct nfe_softc *);
91 void	nfe_txeof(struct nfe_softc *);
92 int	nfe_encap(struct nfe_softc *, struct mbuf *);
93 void	nfe_start(struct ifnet *);
94 void	nfe_watchdog(struct ifnet *);
95 int	nfe_init(struct ifnet *);
96 void	nfe_stop(struct ifnet *, int);
97 struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void	nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int	nfe_jpool_alloc(struct nfe_softc *);
100 void	nfe_jpool_free(struct nfe_softc *);
101 int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int	nfe_ifmedia_upd(struct ifnet *);
108 void	nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void	nfe_setmulti(struct nfe_softc *);
110 void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void	nfe_tick(void *);
113 
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115 
116 /*#define NFE_NO_JUMBO*/
117 
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x)	do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126 
127 /* deal with naming differences */
128 
129 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135 
136 #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140 
141 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145 
146 #ifdef	_LP64
147 #define	__LP64__ 1
148 #endif
149 
150 const struct nfe_product {
151 	pci_vendor_id_t		vendor;
152 	pci_product_id_t	product;
153 } nfe_devices[] = {
154 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }
177 };
178 
179 int
180 nfe_match(struct device *dev, struct cfdata *match, void *aux)
181 {
182 	struct pci_attach_args *pa = aux;
183 	const struct nfe_product *np;
184 	int i;
185 
186 	for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
187 		np = &nfe_devices[i];
188 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
189 		    PCI_PRODUCT(pa->pa_id) == np->product)
190 			return 1;
191 	}
192 	return 0;
193 }
194 
195 void
196 nfe_attach(struct device *parent, struct device *self, void *aux)
197 {
198 	struct nfe_softc *sc = (struct nfe_softc *)self;
199 	struct pci_attach_args *pa = aux;
200 	pci_chipset_tag_t pc = pa->pa_pc;
201 	pci_intr_handle_t ih;
202 	const char *intrstr;
203 	struct ifnet *ifp;
204 	bus_size_t memsize;
205 	pcireg_t memtype;
206 	char devinfo[256];
207 
208 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
209 	aprint_normal(": %s (rev. 0x%02x)\n",
210 	    devinfo, PCI_REVISION(pa->pa_class));
211 
212 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
213 	switch (memtype) {
214 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
215 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
216 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
217 		    &sc->sc_memh, NULL, &memsize) == 0)
218 			break;
219 		/* FALLTHROUGH */
220 	default:
221 		printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
222 		return;
223 	}
224 
225 	if (pci_intr_map(pa, &ih) != 0) {
226 		printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
227 		return;
228 	}
229 
230 	intrstr = pci_intr_string(pc, ih);
231 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
232 	if (sc->sc_ih == NULL) {
233 		printf("%s: could not establish interrupt",
234 		    sc->sc_dev.dv_xname);
235 		if (intrstr != NULL)
236 			printf(" at %s", intrstr);
237 		printf("\n");
238 		return;
239 	}
240 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
241 
242 	sc->sc_dmat = pa->pa_dmat;
243 
244 	nfe_get_macaddr(sc, sc->sc_enaddr);
245 	printf("%s: Ethernet address %s\n",
246 	    sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
247 
248 	sc->sc_flags = 0;
249 
250 	switch (PCI_PRODUCT(pa->pa_id)) {
251 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
252 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
253 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
254 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
255 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
256 		break;
257 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
258 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
259 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
260 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
261 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
262 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
263 		sc->sc_flags |= NFE_40BIT_ADDR;
264 		break;
265 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
266 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
267 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
268 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
269 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
270 		break;
271 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
272 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
273 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
274 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
275 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
276 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
277 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
278 		    NFE_HW_VLAN;
279 		break;
280 	}
281 
282 #ifndef NFE_NO_JUMBO
283 	/* enable jumbo frames for adapters that support it */
284 	if (sc->sc_flags & NFE_JUMBO_SUP)
285 		sc->sc_flags |= NFE_USE_JUMBO;
286 #endif
287 
288 	/*
289 	 * Allocate Tx and Rx rings.
290 	 */
291 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
292 		printf("%s: could not allocate Tx ring\n",
293 		    sc->sc_dev.dv_xname);
294 		return;
295 	}
296 
297 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
298 		printf("%s: could not allocate Rx ring\n",
299 		    sc->sc_dev.dv_xname);
300 		nfe_free_tx_ring(sc, &sc->txq);
301 		return;
302 	}
303 
304 	ifp = &sc->sc_ethercom.ec_if;
305 	ifp->if_softc = sc;
306 	ifp->if_mtu = ETHERMTU;
307 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
308 	ifp->if_ioctl = nfe_ioctl;
309 	ifp->if_start = nfe_start;
310 	ifp->if_watchdog = nfe_watchdog;
311 	ifp->if_init = nfe_init;
312 	ifp->if_baudrate = IF_Gbps(1);
313 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
314 	IFQ_SET_READY(&ifp->if_snd);
315 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
316 
317 #if NVLAN > 0
318 	if (sc->sc_flags & NFE_HW_VLAN)
319 		sc->sc_ethercom.ec_capabilities |=
320 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
321 #endif
322 	if (sc->sc_flags & NFE_HW_CSUM) {
323 		ifp->if_capabilities |=
324 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
325 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
326 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
327 	}
328 
329 	sc->sc_mii.mii_ifp = ifp;
330 	sc->sc_mii.mii_readreg = nfe_miibus_readreg;
331 	sc->sc_mii.mii_writereg = nfe_miibus_writereg;
332 	sc->sc_mii.mii_statchg = nfe_miibus_statchg;
333 
334 	ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
335 	    nfe_ifmedia_sts);
336 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
337 	    MII_OFFSET_ANY, 0);
338 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
339 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
340 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
341 		    0, NULL);
342 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
343 	} else
344 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
345 
346 	if_attach(ifp);
347 	ether_ifattach(ifp, sc->sc_enaddr);
348 
349 	callout_init(&sc->sc_tick_ch, 0);
350 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
351 
352 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
353 	    nfe_power, sc);
354 }
355 
356 void
357 nfe_power(int why, void *arg)
358 {
359 	struct nfe_softc *sc = arg;
360 	struct ifnet *ifp;
361 
362 	if (why == PWR_RESUME) {
363 		ifp = &sc->sc_ethercom.ec_if;
364 		if (ifp->if_flags & IFF_UP) {
365 			ifp->if_flags &= ~IFF_RUNNING;
366 			nfe_init(ifp);
367 			if (ifp->if_flags & IFF_RUNNING)
368 				nfe_start(ifp);
369 		}
370 	}
371 }
372 
373 void
374 nfe_miibus_statchg(struct device *dev)
375 {
376 	struct nfe_softc *sc = (struct nfe_softc *)dev;
377 	struct mii_data *mii = &sc->sc_mii;
378 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
379 
380 	phy = NFE_READ(sc, NFE_PHY_IFACE);
381 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
382 
383 	seed = NFE_READ(sc, NFE_RNDSEED);
384 	seed &= ~NFE_SEED_MASK;
385 
386 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
387 		phy  |= NFE_PHY_HDX;	/* half-duplex */
388 		misc |= NFE_MISC1_HDX;
389 	}
390 
391 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
392 	case IFM_1000_T:	/* full-duplex only */
393 		link |= NFE_MEDIA_1000T;
394 		seed |= NFE_SEED_1000T;
395 		phy  |= NFE_PHY_1000T;
396 		break;
397 	case IFM_100_TX:
398 		link |= NFE_MEDIA_100TX;
399 		seed |= NFE_SEED_100TX;
400 		phy  |= NFE_PHY_100TX;
401 		break;
402 	case IFM_10_T:
403 		link |= NFE_MEDIA_10T;
404 		seed |= NFE_SEED_10T;
405 		break;
406 	}
407 
408 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
409 
410 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
411 	NFE_WRITE(sc, NFE_MISC1, misc);
412 	NFE_WRITE(sc, NFE_LINKSPEED, link);
413 }
414 
415 int
416 nfe_miibus_readreg(struct device *dev, int phy, int reg)
417 {
418 	struct nfe_softc *sc = (struct nfe_softc *)dev;
419 	uint32_t val;
420 	int ntries;
421 
422 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
423 
424 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
425 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
426 		DELAY(100);
427 	}
428 
429 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
430 
431 	for (ntries = 0; ntries < 1000; ntries++) {
432 		DELAY(100);
433 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
434 			break;
435 	}
436 	if (ntries == 1000) {
437 		DPRINTFN(2, ("%s: timeout waiting for PHY\n",
438 		    sc->sc_dev.dv_xname));
439 		return 0;
440 	}
441 
442 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
443 		DPRINTFN(2, ("%s: could not read PHY\n",
444 		    sc->sc_dev.dv_xname));
445 		return 0;
446 	}
447 
448 	val = NFE_READ(sc, NFE_PHY_DATA);
449 	if (val != 0xffffffff && val != 0)
450 		sc->mii_phyaddr = phy;
451 
452 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
453 	    sc->sc_dev.dv_xname, phy, reg, val));
454 
455 	return val;
456 }
457 
458 void
459 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
460 {
461 	struct nfe_softc *sc = (struct nfe_softc *)dev;
462 	uint32_t ctl;
463 	int ntries;
464 
465 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
466 
467 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
468 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
469 		DELAY(100);
470 	}
471 
472 	NFE_WRITE(sc, NFE_PHY_DATA, val);
473 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
474 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
475 
476 	for (ntries = 0; ntries < 1000; ntries++) {
477 		DELAY(100);
478 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
479 			break;
480 	}
481 #ifdef NFE_DEBUG
482 	if (nfedebug >= 2 && ntries == 1000)
483 		printf("could not write to PHY\n");
484 #endif
485 }
486 
487 int
488 nfe_intr(void *arg)
489 {
490 	struct nfe_softc *sc = arg;
491 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
492 	uint32_t r;
493 	int handled;
494 
495 	if ((ifp->if_flags & IFF_UP) == 0)
496 		return 0;
497 
498 	handled = 0;
499 
500 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
501 
502 	for (;;) {
503 		r = NFE_READ(sc, NFE_IRQ_STATUS);
504 		if ((r & NFE_IRQ_WANTED) == 0)
505 			break;
506 
507 		NFE_WRITE(sc, NFE_IRQ_STATUS, r);
508 		handled = 1;
509 		DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
510 
511 		if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
512 		    != 0) {
513 			/* check Rx ring */
514 			nfe_rxeof(sc);
515 		}
516 
517 		if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
518 		    != 0) {
519 			/* check Tx ring */
520 			nfe_txeof(sc);
521 		}
522 
523 		if ((r & NFE_IRQ_LINK) != 0) {
524 			NFE_READ(sc, NFE_PHY_STATUS);
525 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
526 			DPRINTF(("%s: link state changed\n",
527 			    sc->sc_dev.dv_xname));
528 		}
529 	}
530 
531 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
532 
533 	if (handled && !IF_IS_EMPTY(&ifp->if_snd))
534 		nfe_start(ifp);
535 
536 	return handled;
537 }
538 
539 int
540 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
541 {
542 	struct nfe_softc *sc = ifp->if_softc;
543 	struct ifreq *ifr = (struct ifreq *)data;
544 	struct ifaddr *ifa = (struct ifaddr *)data;
545 	int s, error = 0;
546 
547 	s = splnet();
548 
549 	switch (cmd) {
550 	case SIOCSIFADDR:
551 		ifp->if_flags |= IFF_UP;
552 		nfe_init(ifp);
553 		switch (ifa->ifa_addr->sa_family) {
554 #ifdef INET
555 		case AF_INET:
556 			arp_ifinit(ifp, ifa);
557 			break;
558 #endif
559 		default:
560 			break;
561 		}
562 		break;
563 	case SIOCSIFMTU:
564 		if (ifr->ifr_mtu < ETHERMIN ||
565 		    ((sc->sc_flags & NFE_USE_JUMBO) &&
566 		    ifr->ifr_mtu > ETHERMTU_JUMBO) ||
567 		    (!(sc->sc_flags & NFE_USE_JUMBO) &&
568 		    ifr->ifr_mtu > ETHERMTU))
569 			error = EINVAL;
570 		else if (ifp->if_mtu != ifr->ifr_mtu)
571 			ifp->if_mtu = ifr->ifr_mtu;
572 		break;
573 	case SIOCSIFFLAGS:
574 		if (ifp->if_flags & IFF_UP) {
575 			/*
576 			 * If only the PROMISC or ALLMULTI flag changes, then
577 			 * don't do a full re-init of the chip, just update
578 			 * the Rx filter.
579 			 */
580 			if ((ifp->if_flags & IFF_RUNNING) &&
581 			    ((ifp->if_flags ^ sc->sc_if_flags) &
582 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0)
583 				nfe_setmulti(sc);
584 			else
585 				nfe_init(ifp);
586 		} else {
587 			if (ifp->if_flags & IFF_RUNNING)
588 				nfe_stop(ifp, 1);
589 		}
590 		sc->sc_if_flags = ifp->if_flags;
591 		break;
592 	case SIOCADDMULTI:
593 	case SIOCDELMULTI:
594 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
595 			if (ifp->if_flags & IFF_RUNNING)
596 				nfe_setmulti(sc);
597 			error = 0;
598 		}
599 		break;
600 	case SIOCSIFMEDIA:
601 	case SIOCGIFMEDIA:
602 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
603 		break;
604 	default:
605 		error = ether_ioctl(ifp, cmd, data);
606 		if (error == ENETRESET) {
607 			if (ifp->if_flags & IFF_RUNNING)
608 				nfe_setmulti(sc);
609 			error = 0;
610 		}
611 		break;
612 
613 	}
614 
615 	splx(s);
616 
617 	return error;
618 }
619 
620 void
621 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
622 {
623 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
624 	    (char *)desc32 - (char *)sc->txq.desc32,
625 	    sizeof (struct nfe_desc32), ops);
626 }
627 
628 void
629 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
630 {
631 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
632 	    (char *)desc64 - (char *)sc->txq.desc64,
633 	    sizeof (struct nfe_desc64), ops);
634 }
635 
636 void
637 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
638 {
639 	if (end > start) {
640 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
641 		    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
642 		    (char *)&sc->txq.desc32[end] -
643 		    (char *)&sc->txq.desc32[start], ops);
644 		return;
645 	}
646 	/* sync from 'start' to end of ring */
647 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
648 	    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
649 	    (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
650 	    (char *)&sc->txq.desc32[start], ops);
651 
652 	/* sync from start of ring to 'end' */
653 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
654 	    (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
655 }
656 
657 void
658 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
659 {
660 	if (end > start) {
661 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
662 		    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
663 		    (char *)&sc->txq.desc64[end] -
664 		    (char *)&sc->txq.desc64[start], ops);
665 		return;
666 	}
667 	/* sync from 'start' to end of ring */
668 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
669 	    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
670 	    (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
671 	    (char *)&sc->txq.desc64[start], ops);
672 
673 	/* sync from start of ring to 'end' */
674 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
675 	    (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
676 }
677 
678 void
679 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
680 {
681 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
682 	    (char *)desc32 - (char *)sc->rxq.desc32,
683 	    sizeof (struct nfe_desc32), ops);
684 }
685 
686 void
687 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
688 {
689 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
690 	    (char *)desc64 - (char *)sc->rxq.desc64,
691 	    sizeof (struct nfe_desc64), ops);
692 }
693 
694 void
695 nfe_rxeof(struct nfe_softc *sc)
696 {
697 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
698 	struct nfe_desc32 *desc32;
699 	struct nfe_desc64 *desc64;
700 	struct nfe_rx_data *data;
701 	struct nfe_jbuf *jbuf;
702 	struct mbuf *m, *mnew;
703 	bus_addr_t physaddr;
704 	uint16_t flags;
705 	int error, len, i;
706 
707 	desc32 = NULL;
708 	desc64 = NULL;
709 	for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
710 		data = &sc->rxq.data[i];
711 
712 		if (sc->sc_flags & NFE_40BIT_ADDR) {
713 			desc64 = &sc->rxq.desc64[i];
714 			nfe_rxdesc64_sync(sc, desc64,
715 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
716 
717 			flags = le16toh(desc64->flags);
718 			len = le16toh(desc64->length) & 0x3fff;
719 		} else {
720 			desc32 = &sc->rxq.desc32[i];
721 			nfe_rxdesc32_sync(sc, desc32,
722 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
723 
724 			flags = le16toh(desc32->flags);
725 			len = le16toh(desc32->length) & 0x3fff;
726 		}
727 
728 		if ((flags & NFE_RX_READY) != 0)
729 			break;
730 
731 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
732 			if ((flags & NFE_RX_VALID_V1) == 0)
733 				goto skip;
734 
735 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
736 				flags &= ~NFE_RX_ERROR;
737 				len--;	/* fix buffer length */
738 			}
739 		} else {
740 			if ((flags & NFE_RX_VALID_V2) == 0)
741 				goto skip;
742 
743 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
744 				flags &= ~NFE_RX_ERROR;
745 				len--;	/* fix buffer length */
746 			}
747 		}
748 
749 		if (flags & NFE_RX_ERROR) {
750 			ifp->if_ierrors++;
751 			goto skip;
752 		}
753 
754 		/*
755 		 * Try to allocate a new mbuf for this ring element and load
756 		 * it before processing the current mbuf. If the ring element
757 		 * cannot be loaded, drop the received packet and reuse the
758 		 * old mbuf. In the unlikely case that the old mbuf can't be
759 		 * reloaded either, explicitly panic.
760 		 */
761 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
762 		if (mnew == NULL) {
763 			ifp->if_ierrors++;
764 			goto skip;
765 		}
766 
767 		if (sc->sc_flags & NFE_USE_JUMBO) {
768 			physaddr =
769 			    sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
770 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
771 				if (len > MCLBYTES) {
772 					m_freem(mnew);
773 					ifp->if_ierrors++;
774 					goto skip1;
775 				}
776 				MCLGET(mnew, M_DONTWAIT);
777 				if ((mnew->m_flags & M_EXT) == 0) {
778 					m_freem(mnew);
779 					ifp->if_ierrors++;
780 					goto skip1;
781 				}
782 
783 				memcpy(mtod(mnew, void *),
784 				    mtod(data->m, const void *), len);
785 				m = mnew;
786 				goto mbufcopied;
787 			} else {
788 				MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
789 
790 				bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
791 				    mtod(data->m, char *) - (char *)sc->rxq.jpool,
792 				    NFE_JBYTES, BUS_DMASYNC_POSTREAD);
793 
794 				physaddr = jbuf->physaddr;
795 			}
796 		} else {
797 			MCLGET(mnew, M_DONTWAIT);
798 			if ((mnew->m_flags & M_EXT) == 0) {
799 				m_freem(mnew);
800 				ifp->if_ierrors++;
801 				goto skip;
802 			}
803 
804 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
805 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
806 			bus_dmamap_unload(sc->sc_dmat, data->map);
807 
808 			error = bus_dmamap_load(sc->sc_dmat, data->map,
809 			    mtod(mnew, void *), MCLBYTES, NULL,
810 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
811 			if (error != 0) {
812 				m_freem(mnew);
813 
814 				/* try to reload the old mbuf */
815 				error = bus_dmamap_load(sc->sc_dmat, data->map,
816 				    mtod(data->m, void *), MCLBYTES, NULL,
817 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
818 				if (error != 0) {
819 					/* very unlikely that it will fail.. */
820 					panic("%s: could not load old rx mbuf",
821 					    sc->sc_dev.dv_xname);
822 				}
823 				ifp->if_ierrors++;
824 				goto skip;
825 			}
826 			physaddr = data->map->dm_segs[0].ds_addr;
827 		}
828 
829 		/*
830 		 * New mbuf successfully loaded, update Rx ring and continue
831 		 * processing.
832 		 */
833 		m = data->m;
834 		data->m = mnew;
835 
836 mbufcopied:
837 		/* finalize mbuf */
838 		m->m_pkthdr.len = m->m_len = len;
839 		m->m_pkthdr.rcvif = ifp;
840 
841 		if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
842 			/*
843 			 * XXX
844 			 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
845 			 */
846 			if (flags & NFE_RX_IP_CSUMOK) {
847 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
848 				DPRINTFN(3, ("%s: ip4csum-rx ok\n",
849 				    sc->sc_dev.dv_xname));
850 			}
851 			/*
852 			 * XXX
853 			 * no way to check M_CSUM_TCP_UDP_BAD or
854 			 * other protocols?
855 			 */
856 			if (flags & NFE_RX_UDP_CSUMOK) {
857 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
858 				DPRINTFN(3, ("%s: udp4csum-rx ok\n",
859 				    sc->sc_dev.dv_xname));
860 			} else if (flags & NFE_RX_TCP_CSUMOK) {
861 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
862 				DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
863 				    sc->sc_dev.dv_xname));
864 			}
865 		}
866 
867 #if NBPFILTER > 0
868 		if (ifp->if_bpf)
869 			bpf_mtap(ifp->if_bpf, m);
870 #endif
871 		ifp->if_ipackets++;
872 		(*ifp->if_input)(ifp, m);
873 
874 skip1:
875 		/* update mapping address in h/w descriptor */
876 		if (sc->sc_flags & NFE_40BIT_ADDR) {
877 #if defined(__LP64__)
878 			desc64->physaddr[0] = htole32(physaddr >> 32);
879 #endif
880 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
881 		} else {
882 			desc32->physaddr = htole32(physaddr);
883 		}
884 
885  skip:
886 		if (sc->sc_flags & NFE_40BIT_ADDR) {
887 			desc64->length = htole16(sc->rxq.bufsz);
888 			desc64->flags = htole16(NFE_RX_READY);
889 
890 			nfe_rxdesc64_sync(sc, desc64,
891 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
892 		} else {
893 			desc32->length = htole16(sc->rxq.bufsz);
894 			desc32->flags = htole16(NFE_RX_READY);
895 
896 			nfe_rxdesc32_sync(sc, desc32,
897 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
898 		}
899 	}
900 	/* update current RX pointer */
901 	sc->rxq.cur = i;
902 }
903 
904 void
905 nfe_txeof(struct nfe_softc *sc)
906 {
907 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
908 	struct nfe_desc32 *desc32;
909 	struct nfe_desc64 *desc64;
910 	struct nfe_tx_data *data = NULL;
911 	int i;
912 	uint16_t flags;
913 
914 	for (i = sc->txq.next;
915 	    sc->txq.queued > 0;
916 	    i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
917 		if (sc->sc_flags & NFE_40BIT_ADDR) {
918 			desc64 = &sc->txq.desc64[i];
919 			nfe_txdesc64_sync(sc, desc64,
920 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
921 
922 			flags = le16toh(desc64->flags);
923 		} else {
924 			desc32 = &sc->txq.desc32[i];
925 			nfe_txdesc32_sync(sc, desc32,
926 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
927 
928 			flags = le16toh(desc32->flags);
929 		}
930 
931 		if ((flags & NFE_TX_VALID) != 0)
932 			break;
933 
934 		data = &sc->txq.data[i];
935 
936 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
937 			if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
938 			    data->m == NULL)
939 				continue;
940 
941 			if ((flags & NFE_TX_ERROR_V1) != 0) {
942 				printf("%s: tx v1 error 0x%04x\n",
943 				    sc->sc_dev.dv_xname, flags);
944 				ifp->if_oerrors++;
945 			} else
946 				ifp->if_opackets++;
947 		} else {
948 			if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
949 			    data->m == NULL)
950 				continue;
951 
952 			if ((flags & NFE_TX_ERROR_V2) != 0) {
953 				printf("%s: tx v2 error 0x%04x\n",
954 				    sc->sc_dev.dv_xname, flags);
955 				ifp->if_oerrors++;
956 			} else
957 				ifp->if_opackets++;
958 		}
959 
960 		if (data->m == NULL) {	/* should not get there */
961 			printf("%s: last fragment bit w/o associated mbuf!\n",
962 			    sc->sc_dev.dv_xname);
963 			continue;
964 		}
965 
966 		/* last fragment of the mbuf chain transmitted */
967 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
968 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
969 		bus_dmamap_unload(sc->sc_dmat, data->active);
970 		m_freem(data->m);
971 		data->m = NULL;
972 	}
973 
974 	sc->txq.next = i;
975 
976 	if (sc->txq.queued < NFE_TX_RING_COUNT) {
977 		/* at least one slot freed */
978 		ifp->if_flags &= ~IFF_OACTIVE;
979 	}
980 
981 	if (sc->txq.queued == 0) {
982 		/* all queued packets are sent */
983 		ifp->if_timer = 0;
984 	}
985 }
986 
987 int
988 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
989 {
990 	struct nfe_desc32 *desc32;
991 	struct nfe_desc64 *desc64;
992 	struct nfe_tx_data *data;
993 	bus_dmamap_t map;
994 	uint16_t flags, csumflags;
995 #if NVLAN > 0
996 	struct m_tag *mtag;
997 	uint32_t vtag = 0;
998 #endif
999 	int error, i, first;
1000 
1001 	desc32 = NULL;
1002 	desc64 = NULL;
1003 	data = NULL;
1004 
1005 	flags = 0;
1006 	csumflags = 0;
1007 	first = sc->txq.cur;
1008 
1009 	map = sc->txq.data[first].map;
1010 
1011 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1012 	if (error != 0) {
1013 		printf("%s: could not map mbuf (error %d)\n",
1014 		    sc->sc_dev.dv_xname, error);
1015 		return error;
1016 	}
1017 
1018 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1019 		bus_dmamap_unload(sc->sc_dmat, map);
1020 		return ENOBUFS;
1021 	}
1022 
1023 #if NVLAN > 0
1024 	/* setup h/w VLAN tagging */
1025 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1026 		vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1027 #endif
1028 	if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1029 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1030 			csumflags |= NFE_TX_IP_CSUM;
1031 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1032 			csumflags |= NFE_TX_TCP_UDP_CSUM;
1033 	}
1034 
1035 	for (i = 0; i < map->dm_nsegs; i++) {
1036 		data = &sc->txq.data[sc->txq.cur];
1037 
1038 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1039 			desc64 = &sc->txq.desc64[sc->txq.cur];
1040 #if defined(__LP64__)
1041 			desc64->physaddr[0] =
1042 			    htole32(map->dm_segs[i].ds_addr >> 32);
1043 #endif
1044 			desc64->physaddr[1] =
1045 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1046 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1047 			desc64->flags = htole16(flags);
1048 			desc64->vtag = 0;
1049 		} else {
1050 			desc32 = &sc->txq.desc32[sc->txq.cur];
1051 
1052 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1053 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1054 			desc32->flags = htole16(flags);
1055 		}
1056 
1057 		/*
1058 		 * Setting of the valid bit in the first descriptor is
1059 		 * deferred until the whole chain is fully setup.
1060 		 */
1061 		flags |= NFE_TX_VALID;
1062 
1063 		sc->txq.queued++;
1064 		sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1065 	}
1066 
1067 	/* the whole mbuf chain has been setup */
1068 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1069 		/* fix last descriptor */
1070 		flags |= NFE_TX_LASTFRAG_V2;
1071 		desc64->flags = htole16(flags);
1072 
1073 		/* Checksum flags and vtag belong to the first fragment only. */
1074 #if NVLAN > 0
1075 		sc->txq.desc64[first].vtag = htole32(vtag);
1076 #endif
1077 		sc->txq.desc64[first].flags |= htole16(csumflags);
1078 
1079 		/* finally, set the valid bit in the first descriptor */
1080 		sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1081 	} else {
1082 		/* fix last descriptor */
1083 		if (sc->sc_flags & NFE_JUMBO_SUP)
1084 			flags |= NFE_TX_LASTFRAG_V2;
1085 		else
1086 			flags |= NFE_TX_LASTFRAG_V1;
1087 		desc32->flags = htole16(flags);
1088 
1089 		/* Checksum flags belong to the first fragment only. */
1090 		sc->txq.desc32[first].flags |= htole16(csumflags);
1091 
1092 		/* finally, set the valid bit in the first descriptor */
1093 		sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1094 	}
1095 
1096 	data->m = m0;
1097 	data->active = map;
1098 
1099 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1100 	    BUS_DMASYNC_PREWRITE);
1101 
1102 	return 0;
1103 }
1104 
1105 void
1106 nfe_start(struct ifnet *ifp)
1107 {
1108 	struct nfe_softc *sc = ifp->if_softc;
1109 	int old = sc->txq.queued;
1110 	struct mbuf *m0;
1111 
1112 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1113 		return;
1114 
1115 	for (;;) {
1116 		IFQ_POLL(&ifp->if_snd, m0);
1117 		if (m0 == NULL)
1118 			break;
1119 
1120 		if (nfe_encap(sc, m0) != 0) {
1121 			ifp->if_flags |= IFF_OACTIVE;
1122 			break;
1123 		}
1124 
1125 		/* packet put in h/w queue, remove from s/w queue */
1126 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1127 
1128 #if NBPFILTER > 0
1129 		if (ifp->if_bpf != NULL)
1130 			bpf_mtap(ifp->if_bpf, m0);
1131 #endif
1132 	}
1133 
1134 	if (sc->txq.queued != old) {
1135 		/* packets are queued */
1136 		if (sc->sc_flags & NFE_40BIT_ADDR)
1137 			nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1138 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1139 		else
1140 			nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1141 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1142 		/* kick Tx */
1143 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1144 
1145 		/*
1146 		 * Set a timeout in case the chip goes out to lunch.
1147 		 */
1148 		ifp->if_timer = 5;
1149 	}
1150 }
1151 
1152 void
1153 nfe_watchdog(struct ifnet *ifp)
1154 {
1155 	struct nfe_softc *sc = ifp->if_softc;
1156 
1157 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1158 
1159 	ifp->if_flags &= ~IFF_RUNNING;
1160 	nfe_init(ifp);
1161 
1162 	ifp->if_oerrors++;
1163 }
1164 
1165 int
1166 nfe_init(struct ifnet *ifp)
1167 {
1168 	struct nfe_softc *sc = ifp->if_softc;
1169 	uint32_t tmp;
1170 	int s;
1171 
1172 	if (ifp->if_flags & IFF_RUNNING)
1173 		return 0;
1174 
1175 	nfe_stop(ifp, 0);
1176 
1177 	NFE_WRITE(sc, NFE_TX_UNK, 0);
1178 	NFE_WRITE(sc, NFE_STATUS, 0);
1179 
1180 	sc->rxtxctl = NFE_RXTX_BIT2;
1181 	if (sc->sc_flags & NFE_40BIT_ADDR)
1182 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1183 	else if (sc->sc_flags & NFE_JUMBO_SUP)
1184 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1185 	if (sc->sc_flags & NFE_HW_CSUM)
1186 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1187 #if NVLAN > 0
1188 	/*
1189 	 * Although the adapter is capable of stripping VLAN tags from received
1190 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1191 	 * purpose.  This will be done in software by our network stack.
1192 	 */
1193 	if (sc->sc_flags & NFE_HW_VLAN)
1194 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1195 #endif
1196 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1197 	DELAY(10);
1198 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1199 
1200 #if NVLAN
1201 	if (sc->sc_flags & NFE_HW_VLAN)
1202 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1203 #endif
1204 
1205 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1206 
1207 	/* set MAC address */
1208 	nfe_set_macaddr(sc, sc->sc_enaddr);
1209 
1210 	/* tell MAC where rings are in memory */
1211 #ifdef __LP64__
1212 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1213 #endif
1214 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1215 #ifdef __LP64__
1216 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1217 #endif
1218 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1219 
1220 	NFE_WRITE(sc, NFE_RING_SIZE,
1221 	    (NFE_RX_RING_COUNT - 1) << 16 |
1222 	    (NFE_TX_RING_COUNT - 1));
1223 
1224 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1225 
1226 	/* force MAC to wakeup */
1227 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1228 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1229 	DELAY(10);
1230 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1231 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1232 
1233 	s = splnet();
1234 	nfe_intr(sc); /* XXX clear IRQ status registers */
1235 	splx(s);
1236 
1237 #if 1
1238 	/* configure interrupts coalescing/mitigation */
1239 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1240 #else
1241 	/* no interrupt mitigation: one interrupt per packet */
1242 	NFE_WRITE(sc, NFE_IMTIMER, 970);
1243 #endif
1244 
1245 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1246 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1247 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1248 
1249 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1250 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1251 
1252 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1253 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1254 
1255 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1256 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1257 	DELAY(10);
1258 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1259 
1260 	/* set Rx filter */
1261 	nfe_setmulti(sc);
1262 
1263 	nfe_ifmedia_upd(ifp);
1264 
1265 	nfe_tick(sc);
1266 
1267 	/* enable Rx */
1268 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1269 
1270 	/* enable Tx */
1271 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1272 
1273 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1274 
1275 	/* enable interrupts */
1276 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1277 
1278 	callout_schedule(&sc->sc_tick_ch, hz);
1279 
1280 	ifp->if_flags |= IFF_RUNNING;
1281 	ifp->if_flags &= ~IFF_OACTIVE;
1282 
1283 	return 0;
1284 }
1285 
1286 void
1287 nfe_stop(struct ifnet *ifp, int disable)
1288 {
1289 	struct nfe_softc *sc = ifp->if_softc;
1290 
1291 	callout_stop(&sc->sc_tick_ch);
1292 
1293 	ifp->if_timer = 0;
1294 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1295 
1296 	mii_down(&sc->sc_mii);
1297 
1298 	/* abort Tx */
1299 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1300 
1301 	/* disable Rx */
1302 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1303 
1304 	/* disable interrupts */
1305 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1306 
1307 	/* reset Tx and Rx rings */
1308 	nfe_reset_tx_ring(sc, &sc->txq);
1309 	nfe_reset_rx_ring(sc, &sc->rxq);
1310 }
1311 
1312 int
1313 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1314 {
1315 	struct nfe_desc32 *desc32;
1316 	struct nfe_desc64 *desc64;
1317 	struct nfe_rx_data *data;
1318 	struct nfe_jbuf *jbuf;
1319 	void **desc;
1320 	bus_addr_t physaddr;
1321 	int i, nsegs, error, descsize;
1322 
1323 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1324 		desc = (void **)&ring->desc64;
1325 		descsize = sizeof (struct nfe_desc64);
1326 	} else {
1327 		desc = (void **)&ring->desc32;
1328 		descsize = sizeof (struct nfe_desc32);
1329 	}
1330 
1331 	ring->cur = ring->next = 0;
1332 	ring->bufsz = MCLBYTES;
1333 
1334 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1335 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1336 	if (error != 0) {
1337 		printf("%s: could not create desc DMA map\n",
1338 		    sc->sc_dev.dv_xname);
1339 		goto fail;
1340 	}
1341 
1342 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1343 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1344 	if (error != 0) {
1345 		printf("%s: could not allocate DMA memory\n",
1346 		    sc->sc_dev.dv_xname);
1347 		goto fail;
1348 	}
1349 
1350 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1351 	    NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1352 	if (error != 0) {
1353 		printf("%s: could not map desc DMA memory\n",
1354 		    sc->sc_dev.dv_xname);
1355 		goto fail;
1356 	}
1357 
1358 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1359 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1360 	if (error != 0) {
1361 		printf("%s: could not load desc DMA map\n",
1362 		    sc->sc_dev.dv_xname);
1363 		goto fail;
1364 	}
1365 
1366 	bzero(*desc, NFE_RX_RING_COUNT * descsize);
1367 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1368 
1369 	if (sc->sc_flags & NFE_USE_JUMBO) {
1370 		ring->bufsz = NFE_JBYTES;
1371 		if ((error = nfe_jpool_alloc(sc)) != 0) {
1372 			printf("%s: could not allocate jumbo frames\n",
1373 			    sc->sc_dev.dv_xname);
1374 			goto fail;
1375 		}
1376 	}
1377 
1378 	/*
1379 	 * Pre-allocate Rx buffers and populate Rx ring.
1380 	 */
1381 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1382 		data = &sc->rxq.data[i];
1383 
1384 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1385 		if (data->m == NULL) {
1386 			printf("%s: could not allocate rx mbuf\n",
1387 			    sc->sc_dev.dv_xname);
1388 			error = ENOMEM;
1389 			goto fail;
1390 		}
1391 
1392 		if (sc->sc_flags & NFE_USE_JUMBO) {
1393 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1394 				printf("%s: could not allocate jumbo buffer\n",
1395 				    sc->sc_dev.dv_xname);
1396 				goto fail;
1397 			}
1398 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1399 			    sc);
1400 
1401 			physaddr = jbuf->physaddr;
1402 		} else {
1403 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1404 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1405 			if (error != 0) {
1406 				printf("%s: could not create DMA map\n",
1407 				    sc->sc_dev.dv_xname);
1408 				goto fail;
1409 			}
1410 			MCLGET(data->m, M_DONTWAIT);
1411 			if (!(data->m->m_flags & M_EXT)) {
1412 				printf("%s: could not allocate mbuf cluster\n",
1413 				    sc->sc_dev.dv_xname);
1414 				error = ENOMEM;
1415 				goto fail;
1416 			}
1417 
1418 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1419 			    mtod(data->m, void *), MCLBYTES, NULL,
1420 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
1421 			if (error != 0) {
1422 				printf("%s: could not load rx buf DMA map",
1423 				    sc->sc_dev.dv_xname);
1424 				goto fail;
1425 			}
1426 			physaddr = data->map->dm_segs[0].ds_addr;
1427 		}
1428 
1429 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1430 			desc64 = &sc->rxq.desc64[i];
1431 #if defined(__LP64__)
1432 			desc64->physaddr[0] = htole32(physaddr >> 32);
1433 #endif
1434 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1435 			desc64->length = htole16(sc->rxq.bufsz);
1436 			desc64->flags = htole16(NFE_RX_READY);
1437 		} else {
1438 			desc32 = &sc->rxq.desc32[i];
1439 			desc32->physaddr = htole32(physaddr);
1440 			desc32->length = htole16(sc->rxq.bufsz);
1441 			desc32->flags = htole16(NFE_RX_READY);
1442 		}
1443 	}
1444 
1445 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1446 	    BUS_DMASYNC_PREWRITE);
1447 
1448 	return 0;
1449 
1450 fail:	nfe_free_rx_ring(sc, ring);
1451 	return error;
1452 }
1453 
1454 void
1455 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1456 {
1457 	int i;
1458 
1459 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1460 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1461 			ring->desc64[i].length = htole16(ring->bufsz);
1462 			ring->desc64[i].flags = htole16(NFE_RX_READY);
1463 		} else {
1464 			ring->desc32[i].length = htole16(ring->bufsz);
1465 			ring->desc32[i].flags = htole16(NFE_RX_READY);
1466 		}
1467 	}
1468 
1469 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1470 	    BUS_DMASYNC_PREWRITE);
1471 
1472 	ring->cur = ring->next = 0;
1473 }
1474 
1475 void
1476 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1477 {
1478 	struct nfe_rx_data *data;
1479 	void *desc;
1480 	int i, descsize;
1481 
1482 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1483 		desc = ring->desc64;
1484 		descsize = sizeof (struct nfe_desc64);
1485 	} else {
1486 		desc = ring->desc32;
1487 		descsize = sizeof (struct nfe_desc32);
1488 	}
1489 
1490 	if (desc != NULL) {
1491 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1492 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1493 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1494 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1495 		    NFE_RX_RING_COUNT * descsize);
1496 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1497 	}
1498 
1499 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1500 		data = &ring->data[i];
1501 
1502 		if (data->map != NULL) {
1503 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1504 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1505 			bus_dmamap_unload(sc->sc_dmat, data->map);
1506 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1507 		}
1508 		if (data->m != NULL)
1509 			m_freem(data->m);
1510 	}
1511 }
1512 
1513 struct nfe_jbuf *
1514 nfe_jalloc(struct nfe_softc *sc, int i)
1515 {
1516 	struct nfe_jbuf *jbuf;
1517 
1518 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1519 	if (jbuf == NULL)
1520 		return NULL;
1521 	sc->rxq.jbufmap[i] =
1522 	    ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1523 	SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1524 	return jbuf;
1525 }
1526 
1527 /*
1528  * This is called automatically by the network stack when the mbuf is freed.
1529  * Caution must be taken that the NIC might be reset by the time the mbuf is
1530  * freed.
1531  */
1532 void
1533 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1534 {
1535 	struct nfe_softc *sc = arg;
1536 	struct nfe_jbuf *jbuf;
1537 	int i;
1538 
1539 	/* find the jbuf from the base pointer */
1540 	i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1541 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
1542 		printf("%s: request to free a buffer (%p) not managed by us\n",
1543 		    sc->sc_dev.dv_xname, buf);
1544 		return;
1545 	}
1546 	jbuf = &sc->rxq.jbuf[i];
1547 
1548 	/* ..and put it back in the free list */
1549 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1550 
1551         if (m != NULL)
1552                 pool_cache_put(mb_cache, m);
1553 }
1554 
1555 int
1556 nfe_jpool_alloc(struct nfe_softc *sc)
1557 {
1558 	struct nfe_rx_ring *ring = &sc->rxq;
1559 	struct nfe_jbuf *jbuf;
1560 	bus_addr_t physaddr;
1561 	char *buf;
1562 	int i, nsegs, error;
1563 
1564 	/*
1565 	 * Allocate a big chunk of DMA'able memory.
1566 	 */
1567 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1568 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1569 	if (error != 0) {
1570 		printf("%s: could not create jumbo DMA map\n",
1571 		    sc->sc_dev.dv_xname);
1572 		goto fail;
1573 	}
1574 
1575 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1576 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1577 	if (error != 0) {
1578 		printf("%s could not allocate jumbo DMA memory\n",
1579 		    sc->sc_dev.dv_xname);
1580 		goto fail;
1581 	}
1582 
1583 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1584 	    &ring->jpool, BUS_DMA_NOWAIT);
1585 	if (error != 0) {
1586 		printf("%s: could not map jumbo DMA memory\n",
1587 		    sc->sc_dev.dv_xname);
1588 		goto fail;
1589 	}
1590 
1591 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1592 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1593 	if (error != 0) {
1594 		printf("%s: could not load jumbo DMA map\n",
1595 		    sc->sc_dev.dv_xname);
1596 		goto fail;
1597 	}
1598 
1599 	/* ..and split it into 9KB chunks */
1600 	SLIST_INIT(&ring->jfreelist);
1601 
1602 	buf = ring->jpool;
1603 	physaddr = ring->jmap->dm_segs[0].ds_addr;
1604 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1605 		jbuf = &ring->jbuf[i];
1606 
1607 		jbuf->buf = buf;
1608 		jbuf->physaddr = physaddr;
1609 
1610 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1611 
1612 		buf += NFE_JBYTES;
1613 		physaddr += NFE_JBYTES;
1614 	}
1615 
1616 	return 0;
1617 
1618 fail:	nfe_jpool_free(sc);
1619 	return error;
1620 }
1621 
1622 void
1623 nfe_jpool_free(struct nfe_softc *sc)
1624 {
1625 	struct nfe_rx_ring *ring = &sc->rxq;
1626 
1627 	if (ring->jmap != NULL) {
1628 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1629 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1630 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1631 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1632 	}
1633 	if (ring->jpool != NULL) {
1634 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1635 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1636 	}
1637 }
1638 
1639 int
1640 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1641 {
1642 	int i, nsegs, error;
1643 	void **desc;
1644 	int descsize;
1645 
1646 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1647 		desc = (void **)&ring->desc64;
1648 		descsize = sizeof (struct nfe_desc64);
1649 	} else {
1650 		desc = (void **)&ring->desc32;
1651 		descsize = sizeof (struct nfe_desc32);
1652 	}
1653 
1654 	ring->queued = 0;
1655 	ring->cur = ring->next = 0;
1656 
1657 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1658 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1659 
1660 	if (error != 0) {
1661 		printf("%s: could not create desc DMA map\n",
1662 		    sc->sc_dev.dv_xname);
1663 		goto fail;
1664 	}
1665 
1666 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1667 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1668 	if (error != 0) {
1669 		printf("%s: could not allocate DMA memory\n",
1670 		    sc->sc_dev.dv_xname);
1671 		goto fail;
1672 	}
1673 
1674 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1675 	    NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1676 	if (error != 0) {
1677 		printf("%s: could not map desc DMA memory\n",
1678 		    sc->sc_dev.dv_xname);
1679 		goto fail;
1680 	}
1681 
1682 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1683 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1684 	if (error != 0) {
1685 		printf("%s: could not load desc DMA map\n",
1686 		    sc->sc_dev.dv_xname);
1687 		goto fail;
1688 	}
1689 
1690 	bzero(*desc, NFE_TX_RING_COUNT * descsize);
1691 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1692 
1693 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1694 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1695 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1696 		    &ring->data[i].map);
1697 		if (error != 0) {
1698 			printf("%s: could not create DMA map\n",
1699 			    sc->sc_dev.dv_xname);
1700 			goto fail;
1701 		}
1702 	}
1703 
1704 	return 0;
1705 
1706 fail:	nfe_free_tx_ring(sc, ring);
1707 	return error;
1708 }
1709 
1710 void
1711 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1712 {
1713 	struct nfe_tx_data *data;
1714 	int i;
1715 
1716 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1717 		if (sc->sc_flags & NFE_40BIT_ADDR)
1718 			ring->desc64[i].flags = 0;
1719 		else
1720 			ring->desc32[i].flags = 0;
1721 
1722 		data = &ring->data[i];
1723 
1724 		if (data->m != NULL) {
1725 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1726 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1727 			bus_dmamap_unload(sc->sc_dmat, data->active);
1728 			m_freem(data->m);
1729 			data->m = NULL;
1730 		}
1731 	}
1732 
1733 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1734 	    BUS_DMASYNC_PREWRITE);
1735 
1736 	ring->queued = 0;
1737 	ring->cur = ring->next = 0;
1738 }
1739 
1740 void
1741 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1742 {
1743 	struct nfe_tx_data *data;
1744 	void *desc;
1745 	int i, descsize;
1746 
1747 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1748 		desc = ring->desc64;
1749 		descsize = sizeof (struct nfe_desc64);
1750 	} else {
1751 		desc = ring->desc32;
1752 		descsize = sizeof (struct nfe_desc32);
1753 	}
1754 
1755 	if (desc != NULL) {
1756 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1757 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1758 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1759 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1760 		    NFE_TX_RING_COUNT * descsize);
1761 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1762 	}
1763 
1764 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1765 		data = &ring->data[i];
1766 
1767 		if (data->m != NULL) {
1768 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1769 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1770 			bus_dmamap_unload(sc->sc_dmat, data->active);
1771 			m_freem(data->m);
1772 		}
1773 	}
1774 
1775 	/* ..and now actually destroy the DMA mappings */
1776 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1777 		data = &ring->data[i];
1778 		if (data->map == NULL)
1779 			continue;
1780 		bus_dmamap_destroy(sc->sc_dmat, data->map);
1781 	}
1782 }
1783 
1784 int
1785 nfe_ifmedia_upd(struct ifnet *ifp)
1786 {
1787 	struct nfe_softc *sc = ifp->if_softc;
1788 	struct mii_data *mii = &sc->sc_mii;
1789 	struct mii_softc *miisc;
1790 
1791 	if (mii->mii_instance != 0) {
1792 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1793 			mii_phy_reset(miisc);
1794 	}
1795 	return mii_mediachg(mii);
1796 }
1797 
1798 void
1799 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1800 {
1801 	struct nfe_softc *sc = ifp->if_softc;
1802 	struct mii_data *mii = &sc->sc_mii;
1803 
1804 	mii_pollstat(mii);
1805 	ifmr->ifm_status = mii->mii_media_status;
1806 	ifmr->ifm_active = mii->mii_media_active;
1807 }
1808 
1809 void
1810 nfe_setmulti(struct nfe_softc *sc)
1811 {
1812 	struct ethercom *ec = &sc->sc_ethercom;
1813 	struct ifnet *ifp = &ec->ec_if;
1814 	struct ether_multi *enm;
1815 	struct ether_multistep step;
1816 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1817 	uint32_t filter = NFE_RXFILTER_MAGIC;
1818 	int i;
1819 
1820 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1821 		bzero(addr, ETHER_ADDR_LEN);
1822 		bzero(mask, ETHER_ADDR_LEN);
1823 		goto done;
1824 	}
1825 
1826 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1827 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1828 
1829 	ETHER_FIRST_MULTI(step, ec, enm);
1830 	while (enm != NULL) {
1831 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1832 			ifp->if_flags |= IFF_ALLMULTI;
1833 			bzero(addr, ETHER_ADDR_LEN);
1834 			bzero(mask, ETHER_ADDR_LEN);
1835 			goto done;
1836 		}
1837 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1838 			addr[i] &=  enm->enm_addrlo[i];
1839 			mask[i] &= ~enm->enm_addrlo[i];
1840 		}
1841 		ETHER_NEXT_MULTI(step, enm);
1842 	}
1843 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1844 		mask[i] |= addr[i];
1845 
1846 done:
1847 	addr[0] |= 0x01;	/* make sure multicast bit is set */
1848 
1849 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
1850 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1851 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
1852 	    addr[5] <<  8 | addr[4]);
1853 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
1854 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1855 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
1856 	    mask[5] <<  8 | mask[4]);
1857 
1858 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1859 	NFE_WRITE(sc, NFE_RXFILTER, filter);
1860 }
1861 
1862 void
1863 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1864 {
1865 	uint32_t tmp;
1866 
1867 	tmp = NFE_READ(sc, NFE_MACADDR_LO);
1868 	addr[0] = (tmp >> 8) & 0xff;
1869 	addr[1] = (tmp & 0xff);
1870 
1871 	tmp = NFE_READ(sc, NFE_MACADDR_HI);
1872 	addr[2] = (tmp >> 24) & 0xff;
1873 	addr[3] = (tmp >> 16) & 0xff;
1874 	addr[4] = (tmp >>  8) & 0xff;
1875 	addr[5] = (tmp & 0xff);
1876 }
1877 
1878 void
1879 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1880 {
1881 	NFE_WRITE(sc, NFE_MACADDR_LO,
1882 	    addr[5] <<  8 | addr[4]);
1883 	NFE_WRITE(sc, NFE_MACADDR_HI,
1884 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1885 }
1886 
1887 void
1888 nfe_tick(void *arg)
1889 {
1890 	struct nfe_softc *sc = arg;
1891 	int s;
1892 
1893 	s = splnet();
1894 	mii_tick(&sc->sc_mii);
1895 	splx(s);
1896 
1897 	callout_schedule(&sc->sc_tick_ch, hz);
1898 }
1899