1 /* $NetBSD: if_nfe.c,v 1.49 2010/01/19 22:07:01 pooka Exp $ */ 2 /* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */ 3 4 /*- 5 * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */ 22 23 #include <sys/cdefs.h> 24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.49 2010/01/19 22:07:01 pooka Exp $"); 25 26 #include "opt_inet.h" 27 #include "vlan.h" 28 29 #include <sys/param.h> 30 #include <sys/endian.h> 31 #include <sys/systm.h> 32 #include <sys/types.h> 33 #include <sys/sockio.h> 34 #include <sys/mbuf.h> 35 #include <sys/mutex.h> 36 #include <sys/queue.h> 37 #include <sys/kernel.h> 38 #include <sys/device.h> 39 #include <sys/callout.h> 40 #include <sys/socket.h> 41 42 #include <sys/bus.h> 43 44 #include <net/if.h> 45 #include <net/if_dl.h> 46 #include <net/if_media.h> 47 #include <net/if_ether.h> 48 #include <net/if_arp.h> 49 50 #ifdef INET 51 #include <netinet/in.h> 52 #include <netinet/in_systm.h> 53 #include <netinet/in_var.h> 54 #include <netinet/ip.h> 55 #include <netinet/if_inarp.h> 56 #endif 57 58 #if NVLAN > 0 59 #include <net/if_types.h> 60 #endif 61 62 #include <net/bpf.h> 63 64 #include <dev/mii/mii.h> 65 #include <dev/mii/miivar.h> 66 67 #include <dev/pci/pcireg.h> 68 #include <dev/pci/pcivar.h> 69 #include <dev/pci/pcidevs.h> 70 71 #include <dev/pci/if_nfereg.h> 72 #include <dev/pci/if_nfevar.h> 73 74 static int nfe_ifflags_cb(struct ethercom *); 75 76 int nfe_match(device_t, cfdata_t, void *); 77 void nfe_attach(device_t, device_t, void *); 78 void nfe_power(int, void *); 79 void nfe_miibus_statchg(device_t); 80 int nfe_miibus_readreg(device_t, int, int); 81 void nfe_miibus_writereg(device_t, int, int, int); 82 int nfe_intr(void *); 83 int nfe_ioctl(struct ifnet *, u_long, void *); 84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); 85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); 86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int); 87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int); 88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); 89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); 90 void nfe_rxeof(struct nfe_softc *); 91 void nfe_txeof(struct nfe_softc *); 92 int nfe_encap(struct nfe_softc *, struct mbuf *); 93 void nfe_start(struct ifnet *); 94 void nfe_watchdog(struct ifnet *); 95 int nfe_init(struct ifnet *); 96 void nfe_stop(struct ifnet *, int); 97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int); 98 void nfe_jfree(struct mbuf *, void *, size_t, void *); 99 int nfe_jpool_alloc(struct nfe_softc *); 100 void nfe_jpool_free(struct nfe_softc *); 101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 107 void nfe_setmulti(struct nfe_softc *); 108 void nfe_get_macaddr(struct nfe_softc *, uint8_t *); 109 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *); 110 void nfe_tick(void *); 111 void nfe_poweron(device_t); 112 bool nfe_resume(device_t, pmf_qual_t); 113 114 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, 115 NULL, NULL); 116 117 /* #define NFE_NO_JUMBO */ 118 119 #ifdef NFE_DEBUG 120 int nfedebug = 0; 121 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0) 122 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0) 123 #else 124 #define DPRINTF(x) 125 #define DPRINTFN(n,x) 126 #endif 127 128 /* deal with naming differences */ 129 130 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \ 131 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1 132 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \ 133 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2 134 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \ 135 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN 136 137 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \ 138 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1 139 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \ 140 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2 141 142 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \ 143 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 144 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \ 145 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2 146 147 #ifdef _LP64 148 #define __LP64__ 1 149 #endif 150 151 const struct nfe_product { 152 pci_vendor_id_t vendor; 153 pci_product_id_t product; 154 } nfe_devices[] = { 155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN }, 156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN }, 157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 }, 158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 }, 159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 }, 160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 }, 161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 }, 162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 }, 163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 }, 164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 }, 165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 }, 166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 }, 167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 }, 168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 }, 169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }, 170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 }, 171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 }, 172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 }, 173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 }, 174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 }, 175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 }, 176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 }, 177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }, 178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 }, 179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 }, 180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 }, 181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 }, 182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 }, 183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 }, 184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 }, 185 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }, 186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 }, 187 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 }, 188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 }, 189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 }, 190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 }, 191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 }, 192 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 }, 193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 } 194 }; 195 196 int 197 nfe_match(device_t dev, cfdata_t match, void *aux) 198 { 199 struct pci_attach_args *pa = aux; 200 const struct nfe_product *np; 201 int i; 202 203 for (i = 0; i < __arraycount(nfe_devices); i++) { 204 np = &nfe_devices[i]; 205 if (PCI_VENDOR(pa->pa_id) == np->vendor && 206 PCI_PRODUCT(pa->pa_id) == np->product) 207 return 1; 208 } 209 return 0; 210 } 211 212 void 213 nfe_attach(device_t parent, device_t self, void *aux) 214 { 215 struct nfe_softc *sc = device_private(self); 216 struct pci_attach_args *pa = aux; 217 pci_chipset_tag_t pc = pa->pa_pc; 218 pci_intr_handle_t ih; 219 const char *intrstr; 220 struct ifnet *ifp; 221 bus_size_t memsize; 222 pcireg_t memtype; 223 char devinfo[256]; 224 int mii_flags = 0; 225 226 sc->sc_dev = self; 227 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo)); 228 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class)); 229 230 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA); 231 switch (memtype) { 232 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 233 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 234 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt, 235 &sc->sc_memh, NULL, &memsize) == 0) 236 break; 237 /* FALLTHROUGH */ 238 default: 239 aprint_error_dev(self, "could not map mem space\n"); 240 return; 241 } 242 243 if (pci_intr_map(pa, &ih) != 0) { 244 aprint_error_dev(self, "could not map interrupt\n"); 245 goto fail; 246 } 247 248 intrstr = pci_intr_string(pc, ih); 249 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc); 250 if (sc->sc_ih == NULL) { 251 aprint_error_dev(self, "could not establish interrupt"); 252 if (intrstr != NULL) 253 aprint_error(" at %s", intrstr); 254 aprint_error("\n"); 255 goto fail; 256 } 257 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 258 259 sc->sc_dmat = pa->pa_dmat; 260 261 sc->sc_flags = 0; 262 263 switch (PCI_PRODUCT(pa->pa_id)) { 264 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: 265 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: 266 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: 267 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: 268 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM; 269 break; 270 case PCI_PRODUCT_NVIDIA_MCP51_LAN1: 271 case PCI_PRODUCT_NVIDIA_MCP51_LAN2: 272 sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT; 273 break; 274 case PCI_PRODUCT_NVIDIA_MCP61_LAN1: 275 case PCI_PRODUCT_NVIDIA_MCP61_LAN2: 276 case PCI_PRODUCT_NVIDIA_MCP61_LAN3: 277 case PCI_PRODUCT_NVIDIA_MCP61_LAN4: 278 case PCI_PRODUCT_NVIDIA_MCP67_LAN1: 279 case PCI_PRODUCT_NVIDIA_MCP67_LAN2: 280 case PCI_PRODUCT_NVIDIA_MCP67_LAN3: 281 case PCI_PRODUCT_NVIDIA_MCP67_LAN4: 282 case PCI_PRODUCT_NVIDIA_MCP73_LAN1: 283 case PCI_PRODUCT_NVIDIA_MCP73_LAN2: 284 case PCI_PRODUCT_NVIDIA_MCP73_LAN3: 285 case PCI_PRODUCT_NVIDIA_MCP73_LAN4: 286 sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR | 287 NFE_PWR_MGMT; 288 break; 289 case PCI_PRODUCT_NVIDIA_MCP77_LAN1: 290 case PCI_PRODUCT_NVIDIA_MCP77_LAN2: 291 case PCI_PRODUCT_NVIDIA_MCP77_LAN3: 292 case PCI_PRODUCT_NVIDIA_MCP77_LAN4: 293 sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | 294 NFE_CORRECT_MACADDR | NFE_PWR_MGMT; 295 break; 296 case PCI_PRODUCT_NVIDIA_MCP79_LAN1: 297 case PCI_PRODUCT_NVIDIA_MCP79_LAN2: 298 case PCI_PRODUCT_NVIDIA_MCP79_LAN3: 299 case PCI_PRODUCT_NVIDIA_MCP79_LAN4: 300 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 301 NFE_CORRECT_MACADDR | NFE_PWR_MGMT; 302 break; 303 case PCI_PRODUCT_NVIDIA_CK804_LAN1: 304 case PCI_PRODUCT_NVIDIA_CK804_LAN2: 305 case PCI_PRODUCT_NVIDIA_MCP04_LAN1: 306 case PCI_PRODUCT_NVIDIA_MCP04_LAN2: 307 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM; 308 break; 309 case PCI_PRODUCT_NVIDIA_MCP65_LAN1: 310 case PCI_PRODUCT_NVIDIA_MCP65_LAN2: 311 case PCI_PRODUCT_NVIDIA_MCP65_LAN3: 312 case PCI_PRODUCT_NVIDIA_MCP65_LAN4: 313 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | 314 NFE_CORRECT_MACADDR | NFE_PWR_MGMT; 315 mii_flags = MIIF_DOPAUSE; 316 break; 317 case PCI_PRODUCT_NVIDIA_MCP55_LAN1: 318 case PCI_PRODUCT_NVIDIA_MCP55_LAN2: 319 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 320 NFE_HW_VLAN | NFE_PWR_MGMT; 321 break; 322 } 323 324 nfe_poweron(self); 325 326 #ifndef NFE_NO_JUMBO 327 /* enable jumbo frames for adapters that support it */ 328 if (sc->sc_flags & NFE_JUMBO_SUP) 329 sc->sc_flags |= NFE_USE_JUMBO; 330 #endif 331 332 /* Check for reversed ethernet address */ 333 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0) 334 sc->sc_flags |= NFE_CORRECT_MACADDR; 335 336 nfe_get_macaddr(sc, sc->sc_enaddr); 337 aprint_normal_dev(self, "Ethernet address %s\n", 338 ether_sprintf(sc->sc_enaddr)); 339 340 /* 341 * Allocate Tx and Rx rings. 342 */ 343 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) { 344 aprint_error_dev(self, "could not allocate Tx ring\n"); 345 goto fail; 346 } 347 348 mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET); 349 350 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) { 351 aprint_error_dev(self, "could not allocate Rx ring\n"); 352 nfe_free_tx_ring(sc, &sc->txq); 353 goto fail; 354 } 355 356 ifp = &sc->sc_ethercom.ec_if; 357 ifp->if_softc = sc; 358 ifp->if_mtu = ETHERMTU; 359 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 360 ifp->if_ioctl = nfe_ioctl; 361 ifp->if_start = nfe_start; 362 ifp->if_stop = nfe_stop; 363 ifp->if_watchdog = nfe_watchdog; 364 ifp->if_init = nfe_init; 365 ifp->if_baudrate = IF_Gbps(1); 366 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN); 367 IFQ_SET_READY(&ifp->if_snd); 368 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 369 370 if (sc->sc_flags & NFE_USE_JUMBO) 371 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 372 373 #if NVLAN > 0 374 if (sc->sc_flags & NFE_HW_VLAN) 375 sc->sc_ethercom.ec_capabilities |= 376 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU; 377 #endif 378 if (sc->sc_flags & NFE_HW_CSUM) { 379 ifp->if_capabilities |= 380 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 381 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 382 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 383 } 384 385 sc->sc_mii.mii_ifp = ifp; 386 sc->sc_mii.mii_readreg = nfe_miibus_readreg; 387 sc->sc_mii.mii_writereg = nfe_miibus_writereg; 388 sc->sc_mii.mii_statchg = nfe_miibus_statchg; 389 390 sc->sc_ethercom.ec_mii = &sc->sc_mii; 391 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange, 392 ether_mediastatus); 393 394 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 395 MII_OFFSET_ANY, mii_flags); 396 397 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 398 aprint_error_dev(self, "no PHY found!\n"); 399 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL, 400 0, NULL); 401 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL); 402 } else 403 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO); 404 405 if_attach(ifp); 406 ether_ifattach(ifp, sc->sc_enaddr); 407 ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb); 408 409 callout_init(&sc->sc_tick_ch, 0); 410 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc); 411 412 if (pmf_device_register(self, NULL, nfe_resume)) 413 pmf_class_network_register(self, ifp); 414 else 415 aprint_error_dev(self, "couldn't establish power handler\n"); 416 417 return; 418 419 fail: 420 if (sc->sc_ih != NULL) { 421 pci_intr_disestablish(pc, sc->sc_ih); 422 sc->sc_ih = NULL; 423 } 424 if (memsize) 425 bus_space_unmap(sc->sc_memt, sc->sc_memh, memsize); 426 } 427 428 void 429 nfe_miibus_statchg(device_t dev) 430 { 431 struct nfe_softc *sc = device_private(dev); 432 struct mii_data *mii = &sc->sc_mii; 433 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET; 434 435 phy = NFE_READ(sc, NFE_PHY_IFACE); 436 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T); 437 438 seed = NFE_READ(sc, NFE_RNDSEED); 439 seed &= ~NFE_SEED_MASK; 440 441 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 442 phy |= NFE_PHY_HDX; /* half-duplex */ 443 misc |= NFE_MISC1_HDX; 444 } 445 446 switch (IFM_SUBTYPE(mii->mii_media_active)) { 447 case IFM_1000_T: /* full-duplex only */ 448 link |= NFE_MEDIA_1000T; 449 seed |= NFE_SEED_1000T; 450 phy |= NFE_PHY_1000T; 451 break; 452 case IFM_100_TX: 453 link |= NFE_MEDIA_100TX; 454 seed |= NFE_SEED_100TX; 455 phy |= NFE_PHY_100TX; 456 break; 457 case IFM_10_T: 458 link |= NFE_MEDIA_10T; 459 seed |= NFE_SEED_10T; 460 break; 461 } 462 463 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */ 464 465 NFE_WRITE(sc, NFE_PHY_IFACE, phy); 466 NFE_WRITE(sc, NFE_MISC1, misc); 467 NFE_WRITE(sc, NFE_LINKSPEED, link); 468 } 469 470 int 471 nfe_miibus_readreg(device_t dev, int phy, int reg) 472 { 473 struct nfe_softc *sc = device_private(dev); 474 uint32_t val; 475 int ntries; 476 477 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 478 479 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 480 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 481 DELAY(100); 482 } 483 484 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg); 485 486 for (ntries = 0; ntries < 1000; ntries++) { 487 DELAY(100); 488 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 489 break; 490 } 491 if (ntries == 1000) { 492 DPRINTFN(2, ("%s: timeout waiting for PHY\n", 493 device_xname(sc->sc_dev))); 494 return 0; 495 } 496 497 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) { 498 DPRINTFN(2, ("%s: could not read PHY\n", 499 device_xname(sc->sc_dev))); 500 return 0; 501 } 502 503 val = NFE_READ(sc, NFE_PHY_DATA); 504 if (val != 0xffffffff && val != 0) 505 sc->mii_phyaddr = phy; 506 507 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n", 508 device_xname(sc->sc_dev), phy, reg, val)); 509 510 return val; 511 } 512 513 void 514 nfe_miibus_writereg(device_t dev, int phy, int reg, int val) 515 { 516 struct nfe_softc *sc = device_private(dev); 517 uint32_t ctl; 518 int ntries; 519 520 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 521 522 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 523 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 524 DELAY(100); 525 } 526 527 NFE_WRITE(sc, NFE_PHY_DATA, val); 528 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg; 529 NFE_WRITE(sc, NFE_PHY_CTL, ctl); 530 531 for (ntries = 0; ntries < 1000; ntries++) { 532 DELAY(100); 533 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 534 break; 535 } 536 #ifdef NFE_DEBUG 537 if (nfedebug >= 2 && ntries == 1000) 538 printf("could not write to PHY\n"); 539 #endif 540 } 541 542 int 543 nfe_intr(void *arg) 544 { 545 struct nfe_softc *sc = arg; 546 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 547 uint32_t r; 548 int handled; 549 550 if ((ifp->if_flags & IFF_UP) == 0) 551 return 0; 552 553 handled = 0; 554 555 for (;;) { 556 r = NFE_READ(sc, NFE_IRQ_STATUS); 557 if ((r & NFE_IRQ_WANTED) == 0) 558 break; 559 560 NFE_WRITE(sc, NFE_IRQ_STATUS, r); 561 handled = 1; 562 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r)); 563 564 if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) { 565 /* check Rx ring */ 566 nfe_rxeof(sc); 567 } 568 if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) { 569 /* check Tx ring */ 570 nfe_txeof(sc); 571 } 572 if ((r & NFE_IRQ_LINK) != 0) { 573 NFE_READ(sc, NFE_PHY_STATUS); 574 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 575 DPRINTF(("%s: link state changed\n", 576 device_xname(sc->sc_dev))); 577 } 578 } 579 580 if (handled && !IF_IS_EMPTY(&ifp->if_snd)) 581 nfe_start(ifp); 582 583 return handled; 584 } 585 586 static int 587 nfe_ifflags_cb(struct ethercom *ec) 588 { 589 struct ifnet *ifp = &ec->ec_if; 590 struct nfe_softc *sc = ifp->if_softc; 591 int change = ifp->if_flags ^ sc->sc_if_flags; 592 593 /* 594 * If only the PROMISC flag changes, then 595 * don't do a full re-init of the chip, just update 596 * the Rx filter. 597 */ 598 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) 599 return ENETRESET; 600 else if ((change & IFF_PROMISC) != 0) 601 nfe_setmulti(sc); 602 603 return 0; 604 } 605 606 int 607 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data) 608 { 609 struct nfe_softc *sc = ifp->if_softc; 610 struct ifaddr *ifa = (struct ifaddr *)data; 611 int s, error = 0; 612 613 s = splnet(); 614 615 switch (cmd) { 616 case SIOCINITIFADDR: 617 ifp->if_flags |= IFF_UP; 618 nfe_init(ifp); 619 switch (ifa->ifa_addr->sa_family) { 620 #ifdef INET 621 case AF_INET: 622 arp_ifinit(ifp, ifa); 623 break; 624 #endif 625 default: 626 break; 627 } 628 break; 629 default: 630 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 631 break; 632 633 error = 0; 634 635 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 636 ; 637 else if (ifp->if_flags & IFF_RUNNING) 638 nfe_setmulti(sc); 639 break; 640 } 641 sc->sc_if_flags = ifp->if_flags; 642 643 splx(s); 644 645 return error; 646 } 647 648 void 649 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) 650 { 651 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 652 (char *)desc32 - (char *)sc->txq.desc32, 653 sizeof (struct nfe_desc32), ops); 654 } 655 656 void 657 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) 658 { 659 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 660 (char *)desc64 - (char *)sc->txq.desc64, 661 sizeof (struct nfe_desc64), ops); 662 } 663 664 void 665 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops) 666 { 667 if (end > start) { 668 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 669 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32, 670 (char *)&sc->txq.desc32[end] - 671 (char *)&sc->txq.desc32[start], ops); 672 return; 673 } 674 /* sync from 'start' to end of ring */ 675 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 676 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32, 677 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] - 678 (char *)&sc->txq.desc32[start], ops); 679 680 /* sync from start of ring to 'end' */ 681 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, 682 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops); 683 } 684 685 void 686 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops) 687 { 688 if (end > start) { 689 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 690 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64, 691 (char *)&sc->txq.desc64[end] - 692 (char *)&sc->txq.desc64[start], ops); 693 return; 694 } 695 /* sync from 'start' to end of ring */ 696 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 697 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64, 698 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] - 699 (char *)&sc->txq.desc64[start], ops); 700 701 /* sync from start of ring to 'end' */ 702 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, 703 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops); 704 } 705 706 void 707 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) 708 { 709 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 710 (char *)desc32 - (char *)sc->rxq.desc32, 711 sizeof (struct nfe_desc32), ops); 712 } 713 714 void 715 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) 716 { 717 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 718 (char *)desc64 - (char *)sc->rxq.desc64, 719 sizeof (struct nfe_desc64), ops); 720 } 721 722 void 723 nfe_rxeof(struct nfe_softc *sc) 724 { 725 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 726 struct nfe_desc32 *desc32; 727 struct nfe_desc64 *desc64; 728 struct nfe_rx_data *data; 729 struct nfe_jbuf *jbuf; 730 struct mbuf *m, *mnew; 731 bus_addr_t physaddr; 732 uint16_t flags; 733 int error, len, i; 734 735 desc32 = NULL; 736 desc64 = NULL; 737 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) { 738 data = &sc->rxq.data[i]; 739 740 if (sc->sc_flags & NFE_40BIT_ADDR) { 741 desc64 = &sc->rxq.desc64[i]; 742 nfe_rxdesc64_sync(sc, desc64, 743 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 744 745 flags = le16toh(desc64->flags); 746 len = le16toh(desc64->length) & 0x3fff; 747 } else { 748 desc32 = &sc->rxq.desc32[i]; 749 nfe_rxdesc32_sync(sc, desc32, 750 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 751 752 flags = le16toh(desc32->flags); 753 len = le16toh(desc32->length) & 0x3fff; 754 } 755 756 if ((flags & NFE_RX_READY) != 0) 757 break; 758 759 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 760 if ((flags & NFE_RX_VALID_V1) == 0) 761 goto skip; 762 763 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { 764 flags &= ~NFE_RX_ERROR; 765 len--; /* fix buffer length */ 766 } 767 } else { 768 if ((flags & NFE_RX_VALID_V2) == 0) 769 goto skip; 770 771 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { 772 flags &= ~NFE_RX_ERROR; 773 len--; /* fix buffer length */ 774 } 775 } 776 777 if (flags & NFE_RX_ERROR) { 778 ifp->if_ierrors++; 779 goto skip; 780 } 781 782 /* 783 * Try to allocate a new mbuf for this ring element and load 784 * it before processing the current mbuf. If the ring element 785 * cannot be loaded, drop the received packet and reuse the 786 * old mbuf. In the unlikely case that the old mbuf can't be 787 * reloaded either, explicitly panic. 788 */ 789 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 790 if (mnew == NULL) { 791 ifp->if_ierrors++; 792 goto skip; 793 } 794 795 if (sc->sc_flags & NFE_USE_JUMBO) { 796 physaddr = 797 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr; 798 if ((jbuf = nfe_jalloc(sc, i)) == NULL) { 799 if (len > MCLBYTES) { 800 m_freem(mnew); 801 ifp->if_ierrors++; 802 goto skip1; 803 } 804 MCLGET(mnew, M_DONTWAIT); 805 if ((mnew->m_flags & M_EXT) == 0) { 806 m_freem(mnew); 807 ifp->if_ierrors++; 808 goto skip1; 809 } 810 811 (void)memcpy(mtod(mnew, void *), 812 mtod(data->m, const void *), len); 813 m = mnew; 814 goto mbufcopied; 815 } else { 816 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc); 817 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap, 818 mtod(data->m, char *) - (char *)sc->rxq.jpool, 819 NFE_JBYTES, BUS_DMASYNC_POSTREAD); 820 821 physaddr = jbuf->physaddr; 822 } 823 } else { 824 MCLGET(mnew, M_DONTWAIT); 825 if ((mnew->m_flags & M_EXT) == 0) { 826 m_freem(mnew); 827 ifp->if_ierrors++; 828 goto skip; 829 } 830 831 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 832 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 833 bus_dmamap_unload(sc->sc_dmat, data->map); 834 835 error = bus_dmamap_load(sc->sc_dmat, data->map, 836 mtod(mnew, void *), MCLBYTES, NULL, 837 BUS_DMA_READ | BUS_DMA_NOWAIT); 838 if (error != 0) { 839 m_freem(mnew); 840 841 /* try to reload the old mbuf */ 842 error = bus_dmamap_load(sc->sc_dmat, data->map, 843 mtod(data->m, void *), MCLBYTES, NULL, 844 BUS_DMA_READ | BUS_DMA_NOWAIT); 845 if (error != 0) { 846 /* very unlikely that it will fail.. */ 847 panic("%s: could not load old rx mbuf", 848 device_xname(sc->sc_dev)); 849 } 850 ifp->if_ierrors++; 851 goto skip; 852 } 853 physaddr = data->map->dm_segs[0].ds_addr; 854 } 855 856 /* 857 * New mbuf successfully loaded, update Rx ring and continue 858 * processing. 859 */ 860 m = data->m; 861 data->m = mnew; 862 863 mbufcopied: 864 /* finalize mbuf */ 865 m->m_pkthdr.len = m->m_len = len; 866 m->m_pkthdr.rcvif = ifp; 867 868 if ((sc->sc_flags & NFE_HW_CSUM) != 0) { 869 /* 870 * XXX 871 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets? 872 */ 873 if (flags & NFE_RX_IP_CSUMOK) { 874 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 875 DPRINTFN(3, ("%s: ip4csum-rx ok\n", 876 device_xname(sc->sc_dev))); 877 } 878 /* 879 * XXX 880 * no way to check M_CSUM_TCP_UDP_BAD or 881 * other protocols? 882 */ 883 if (flags & NFE_RX_UDP_CSUMOK) { 884 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 885 DPRINTFN(3, ("%s: udp4csum-rx ok\n", 886 device_xname(sc->sc_dev))); 887 } else if (flags & NFE_RX_TCP_CSUMOK) { 888 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 889 DPRINTFN(3, ("%s: tcp4csum-rx ok\n", 890 device_xname(sc->sc_dev))); 891 } 892 } 893 if (ifp->if_bpf) 894 bpf_ops->bpf_mtap(ifp->if_bpf, m); 895 ifp->if_ipackets++; 896 (*ifp->if_input)(ifp, m); 897 898 skip1: 899 /* update mapping address in h/w descriptor */ 900 if (sc->sc_flags & NFE_40BIT_ADDR) { 901 #if defined(__LP64__) 902 desc64->physaddr[0] = htole32(physaddr >> 32); 903 #endif 904 desc64->physaddr[1] = htole32(physaddr & 0xffffffff); 905 } else { 906 desc32->physaddr = htole32(physaddr); 907 } 908 909 skip: 910 if (sc->sc_flags & NFE_40BIT_ADDR) { 911 desc64->length = htole16(sc->rxq.bufsz); 912 desc64->flags = htole16(NFE_RX_READY); 913 914 nfe_rxdesc64_sync(sc, desc64, 915 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 916 } else { 917 desc32->length = htole16(sc->rxq.bufsz); 918 desc32->flags = htole16(NFE_RX_READY); 919 920 nfe_rxdesc32_sync(sc, desc32, 921 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 922 } 923 } 924 /* update current RX pointer */ 925 sc->rxq.cur = i; 926 } 927 928 void 929 nfe_txeof(struct nfe_softc *sc) 930 { 931 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 932 struct nfe_desc32 *desc32; 933 struct nfe_desc64 *desc64; 934 struct nfe_tx_data *data = NULL; 935 int i; 936 uint16_t flags; 937 char buf[128]; 938 939 for (i = sc->txq.next; 940 sc->txq.queued > 0; 941 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) { 942 if (sc->sc_flags & NFE_40BIT_ADDR) { 943 desc64 = &sc->txq.desc64[i]; 944 nfe_txdesc64_sync(sc, desc64, 945 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 946 947 flags = le16toh(desc64->flags); 948 } else { 949 desc32 = &sc->txq.desc32[i]; 950 nfe_txdesc32_sync(sc, desc32, 951 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 952 953 flags = le16toh(desc32->flags); 954 } 955 956 if ((flags & NFE_TX_VALID) != 0) 957 break; 958 959 data = &sc->txq.data[i]; 960 961 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 962 if ((flags & NFE_TX_LASTFRAG_V1) == 0 && 963 data->m == NULL) 964 continue; 965 966 if ((flags & NFE_TX_ERROR_V1) != 0) { 967 snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags); 968 aprint_error_dev(sc->sc_dev, "tx v1 error %s\n", 969 buf); 970 ifp->if_oerrors++; 971 } else 972 ifp->if_opackets++; 973 } else { 974 if ((flags & NFE_TX_LASTFRAG_V2) == 0 && 975 data->m == NULL) 976 continue; 977 978 if ((flags & NFE_TX_ERROR_V2) != 0) { 979 snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags); 980 aprint_error_dev(sc->sc_dev, "tx v2 error %s\n", 981 buf); 982 ifp->if_oerrors++; 983 } else 984 ifp->if_opackets++; 985 } 986 987 if (data->m == NULL) { /* should not get there */ 988 aprint_error_dev(sc->sc_dev, 989 "last fragment bit w/o associated mbuf!\n"); 990 continue; 991 } 992 993 /* last fragment of the mbuf chain transmitted */ 994 bus_dmamap_sync(sc->sc_dmat, data->active, 0, 995 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); 996 bus_dmamap_unload(sc->sc_dmat, data->active); 997 m_freem(data->m); 998 data->m = NULL; 999 } 1000 1001 sc->txq.next = i; 1002 1003 if (sc->txq.queued < NFE_TX_RING_COUNT) { 1004 /* at least one slot freed */ 1005 ifp->if_flags &= ~IFF_OACTIVE; 1006 } 1007 1008 if (sc->txq.queued == 0) { 1009 /* all queued packets are sent */ 1010 ifp->if_timer = 0; 1011 } 1012 } 1013 1014 int 1015 nfe_encap(struct nfe_softc *sc, struct mbuf *m0) 1016 { 1017 struct nfe_desc32 *desc32; 1018 struct nfe_desc64 *desc64; 1019 struct nfe_tx_data *data; 1020 bus_dmamap_t map; 1021 uint16_t flags, csumflags; 1022 #if NVLAN > 0 1023 struct m_tag *mtag; 1024 uint32_t vtag = 0; 1025 #endif 1026 int error, i, first; 1027 1028 desc32 = NULL; 1029 desc64 = NULL; 1030 data = NULL; 1031 1032 flags = 0; 1033 csumflags = 0; 1034 first = sc->txq.cur; 1035 1036 map = sc->txq.data[first].map; 1037 1038 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT); 1039 if (error != 0) { 1040 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", 1041 error); 1042 return error; 1043 } 1044 1045 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) { 1046 bus_dmamap_unload(sc->sc_dmat, map); 1047 return ENOBUFS; 1048 } 1049 1050 #if NVLAN > 0 1051 /* setup h/w VLAN tagging */ 1052 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) 1053 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag); 1054 #endif 1055 if ((sc->sc_flags & NFE_HW_CSUM) != 0) { 1056 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) 1057 csumflags |= NFE_TX_IP_CSUM; 1058 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) 1059 csumflags |= NFE_TX_TCP_UDP_CSUM; 1060 } 1061 1062 for (i = 0; i < map->dm_nsegs; i++) { 1063 data = &sc->txq.data[sc->txq.cur]; 1064 1065 if (sc->sc_flags & NFE_40BIT_ADDR) { 1066 desc64 = &sc->txq.desc64[sc->txq.cur]; 1067 #if defined(__LP64__) 1068 desc64->physaddr[0] = 1069 htole32(map->dm_segs[i].ds_addr >> 32); 1070 #endif 1071 desc64->physaddr[1] = 1072 htole32(map->dm_segs[i].ds_addr & 0xffffffff); 1073 desc64->length = htole16(map->dm_segs[i].ds_len - 1); 1074 desc64->flags = htole16(flags); 1075 desc64->vtag = 0; 1076 } else { 1077 desc32 = &sc->txq.desc32[sc->txq.cur]; 1078 1079 desc32->physaddr = htole32(map->dm_segs[i].ds_addr); 1080 desc32->length = htole16(map->dm_segs[i].ds_len - 1); 1081 desc32->flags = htole16(flags); 1082 } 1083 1084 /* 1085 * Setting of the valid bit in the first descriptor is 1086 * deferred until the whole chain is fully setup. 1087 */ 1088 flags |= NFE_TX_VALID; 1089 1090 sc->txq.queued++; 1091 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur); 1092 } 1093 1094 /* the whole mbuf chain has been setup */ 1095 if (sc->sc_flags & NFE_40BIT_ADDR) { 1096 /* fix last descriptor */ 1097 flags |= NFE_TX_LASTFRAG_V2; 1098 desc64->flags = htole16(flags); 1099 1100 /* Checksum flags and vtag belong to the first fragment only. */ 1101 #if NVLAN > 0 1102 sc->txq.desc64[first].vtag = htole32(vtag); 1103 #endif 1104 sc->txq.desc64[first].flags |= htole16(csumflags); 1105 1106 /* finally, set the valid bit in the first descriptor */ 1107 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID); 1108 } else { 1109 /* fix last descriptor */ 1110 if (sc->sc_flags & NFE_JUMBO_SUP) 1111 flags |= NFE_TX_LASTFRAG_V2; 1112 else 1113 flags |= NFE_TX_LASTFRAG_V1; 1114 desc32->flags = htole16(flags); 1115 1116 /* Checksum flags belong to the first fragment only. */ 1117 sc->txq.desc32[first].flags |= htole16(csumflags); 1118 1119 /* finally, set the valid bit in the first descriptor */ 1120 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID); 1121 } 1122 1123 data->m = m0; 1124 data->active = map; 1125 1126 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1127 BUS_DMASYNC_PREWRITE); 1128 1129 return 0; 1130 } 1131 1132 void 1133 nfe_start(struct ifnet *ifp) 1134 { 1135 struct nfe_softc *sc = ifp->if_softc; 1136 int old = sc->txq.queued; 1137 struct mbuf *m0; 1138 1139 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1140 return; 1141 1142 for (;;) { 1143 IFQ_POLL(&ifp->if_snd, m0); 1144 if (m0 == NULL) 1145 break; 1146 1147 if (nfe_encap(sc, m0) != 0) { 1148 ifp->if_flags |= IFF_OACTIVE; 1149 break; 1150 } 1151 1152 /* packet put in h/w queue, remove from s/w queue */ 1153 IFQ_DEQUEUE(&ifp->if_snd, m0); 1154 1155 if (ifp->if_bpf != NULL) 1156 bpf_ops->bpf_mtap(ifp->if_bpf, m0); 1157 } 1158 1159 if (sc->txq.queued != old) { 1160 /* packets are queued */ 1161 if (sc->sc_flags & NFE_40BIT_ADDR) 1162 nfe_txdesc64_rsync(sc, old, sc->txq.cur, 1163 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1164 else 1165 nfe_txdesc32_rsync(sc, old, sc->txq.cur, 1166 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1167 /* kick Tx */ 1168 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); 1169 1170 /* 1171 * Set a timeout in case the chip goes out to lunch. 1172 */ 1173 ifp->if_timer = 5; 1174 } 1175 } 1176 1177 void 1178 nfe_watchdog(struct ifnet *ifp) 1179 { 1180 struct nfe_softc *sc = ifp->if_softc; 1181 1182 aprint_error_dev(sc->sc_dev, "watchdog timeout\n"); 1183 1184 ifp->if_flags &= ~IFF_RUNNING; 1185 nfe_init(ifp); 1186 1187 ifp->if_oerrors++; 1188 } 1189 1190 int 1191 nfe_init(struct ifnet *ifp) 1192 { 1193 struct nfe_softc *sc = ifp->if_softc; 1194 uint32_t tmp; 1195 int rc = 0, s; 1196 1197 if (ifp->if_flags & IFF_RUNNING) 1198 return 0; 1199 1200 nfe_stop(ifp, 0); 1201 1202 NFE_WRITE(sc, NFE_TX_UNK, 0); 1203 NFE_WRITE(sc, NFE_STATUS, 0); 1204 1205 sc->rxtxctl = NFE_RXTX_BIT2; 1206 if (sc->sc_flags & NFE_40BIT_ADDR) 1207 sc->rxtxctl |= NFE_RXTX_V3MAGIC; 1208 else if (sc->sc_flags & NFE_JUMBO_SUP) 1209 sc->rxtxctl |= NFE_RXTX_V2MAGIC; 1210 if (sc->sc_flags & NFE_HW_CSUM) 1211 sc->rxtxctl |= NFE_RXTX_RXCSUM; 1212 #if NVLAN > 0 1213 /* 1214 * Although the adapter is capable of stripping VLAN tags from received 1215 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on 1216 * purpose. This will be done in software by our network stack. 1217 */ 1218 if (sc->sc_flags & NFE_HW_VLAN) 1219 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT; 1220 #endif 1221 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl); 1222 DELAY(10); 1223 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 1224 1225 #if NVLAN 1226 if (sc->sc_flags & NFE_HW_VLAN) 1227 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE); 1228 #endif 1229 1230 NFE_WRITE(sc, NFE_SETUP_R6, 0); 1231 1232 /* set MAC address */ 1233 nfe_set_macaddr(sc, sc->sc_enaddr); 1234 1235 /* tell MAC where rings are in memory */ 1236 #ifdef __LP64__ 1237 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32); 1238 #endif 1239 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff); 1240 #ifdef __LP64__ 1241 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32); 1242 #endif 1243 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff); 1244 1245 NFE_WRITE(sc, NFE_RING_SIZE, 1246 (NFE_RX_RING_COUNT - 1) << 16 | 1247 (NFE_TX_RING_COUNT - 1)); 1248 1249 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz); 1250 1251 /* force MAC to wakeup */ 1252 tmp = NFE_READ(sc, NFE_PWR_STATE); 1253 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP); 1254 DELAY(10); 1255 tmp = NFE_READ(sc, NFE_PWR_STATE); 1256 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID); 1257 1258 s = splnet(); 1259 NFE_WRITE(sc, NFE_IRQ_MASK, 0); 1260 nfe_intr(sc); /* XXX clear IRQ status registers */ 1261 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); 1262 splx(s); 1263 1264 #if 1 1265 /* configure interrupts coalescing/mitigation */ 1266 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT); 1267 #else 1268 /* no interrupt mitigation: one interrupt per packet */ 1269 NFE_WRITE(sc, NFE_IMTIMER, 970); 1270 #endif 1271 1272 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC); 1273 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); 1274 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC); 1275 1276 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */ 1277 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC); 1278 1279 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC); 1280 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE); 1281 1282 sc->rxtxctl &= ~NFE_RXTX_BIT2; 1283 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 1284 DELAY(10); 1285 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl); 1286 1287 /* set Rx filter */ 1288 nfe_setmulti(sc); 1289 1290 if ((rc = ether_mediachange(ifp)) != 0) 1291 goto out; 1292 1293 nfe_tick(sc); 1294 1295 /* enable Rx */ 1296 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START); 1297 1298 /* enable Tx */ 1299 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START); 1300 1301 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1302 1303 /* enable interrupts */ 1304 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); 1305 1306 callout_schedule(&sc->sc_tick_ch, hz); 1307 1308 ifp->if_flags |= IFF_RUNNING; 1309 ifp->if_flags &= ~IFF_OACTIVE; 1310 1311 out: 1312 return rc; 1313 } 1314 1315 void 1316 nfe_stop(struct ifnet *ifp, int disable) 1317 { 1318 struct nfe_softc *sc = ifp->if_softc; 1319 1320 callout_stop(&sc->sc_tick_ch); 1321 1322 ifp->if_timer = 0; 1323 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1324 1325 mii_down(&sc->sc_mii); 1326 1327 /* abort Tx */ 1328 NFE_WRITE(sc, NFE_TX_CTL, 0); 1329 1330 /* disable Rx */ 1331 NFE_WRITE(sc, NFE_RX_CTL, 0); 1332 1333 /* disable interrupts */ 1334 NFE_WRITE(sc, NFE_IRQ_MASK, 0); 1335 1336 /* reset Tx and Rx rings */ 1337 nfe_reset_tx_ring(sc, &sc->txq); 1338 nfe_reset_rx_ring(sc, &sc->rxq); 1339 } 1340 1341 int 1342 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1343 { 1344 struct nfe_desc32 *desc32; 1345 struct nfe_desc64 *desc64; 1346 struct nfe_rx_data *data; 1347 struct nfe_jbuf *jbuf; 1348 void **desc; 1349 bus_addr_t physaddr; 1350 int i, nsegs, error, descsize; 1351 1352 if (sc->sc_flags & NFE_40BIT_ADDR) { 1353 desc = (void **)&ring->desc64; 1354 descsize = sizeof (struct nfe_desc64); 1355 } else { 1356 desc = (void **)&ring->desc32; 1357 descsize = sizeof (struct nfe_desc32); 1358 } 1359 1360 ring->cur = ring->next = 0; 1361 ring->bufsz = MCLBYTES; 1362 1363 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1, 1364 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); 1365 if (error != 0) { 1366 aprint_error_dev(sc->sc_dev, 1367 "could not create desc DMA map\n"); 1368 ring->map = NULL; 1369 goto fail; 1370 } 1371 1372 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1373 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 1374 if (error != 0) { 1375 aprint_error_dev(sc->sc_dev, 1376 "could not allocate DMA memory\n"); 1377 goto fail; 1378 } 1379 1380 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 1381 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT); 1382 if (error != 0) { 1383 aprint_error_dev(sc->sc_dev, 1384 "could not map desc DMA memory\n"); 1385 goto fail; 1386 } 1387 1388 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, 1389 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); 1390 if (error != 0) { 1391 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n"); 1392 goto fail; 1393 } 1394 1395 memset(*desc, 0, NFE_RX_RING_COUNT * descsize); 1396 ring->physaddr = ring->map->dm_segs[0].ds_addr; 1397 1398 if (sc->sc_flags & NFE_USE_JUMBO) { 1399 ring->bufsz = NFE_JBYTES; 1400 if ((error = nfe_jpool_alloc(sc)) != 0) { 1401 aprint_error_dev(sc->sc_dev, 1402 "could not allocate jumbo frames\n"); 1403 goto fail; 1404 } 1405 } 1406 1407 /* 1408 * Pre-allocate Rx buffers and populate Rx ring. 1409 */ 1410 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1411 data = &sc->rxq.data[i]; 1412 1413 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 1414 if (data->m == NULL) { 1415 aprint_error_dev(sc->sc_dev, 1416 "could not allocate rx mbuf\n"); 1417 error = ENOMEM; 1418 goto fail; 1419 } 1420 1421 if (sc->sc_flags & NFE_USE_JUMBO) { 1422 if ((jbuf = nfe_jalloc(sc, i)) == NULL) { 1423 aprint_error_dev(sc->sc_dev, 1424 "could not allocate jumbo buffer\n"); 1425 goto fail; 1426 } 1427 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, 1428 sc); 1429 1430 physaddr = jbuf->physaddr; 1431 } else { 1432 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1433 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); 1434 if (error != 0) { 1435 aprint_error_dev(sc->sc_dev, 1436 "could not create DMA map\n"); 1437 data->map = NULL; 1438 goto fail; 1439 } 1440 MCLGET(data->m, M_DONTWAIT); 1441 if (!(data->m->m_flags & M_EXT)) { 1442 aprint_error_dev(sc->sc_dev, 1443 "could not allocate mbuf cluster\n"); 1444 error = ENOMEM; 1445 goto fail; 1446 } 1447 1448 error = bus_dmamap_load(sc->sc_dmat, data->map, 1449 mtod(data->m, void *), MCLBYTES, NULL, 1450 BUS_DMA_READ | BUS_DMA_NOWAIT); 1451 if (error != 0) { 1452 aprint_error_dev(sc->sc_dev, 1453 "could not load rx buf DMA map"); 1454 goto fail; 1455 } 1456 physaddr = data->map->dm_segs[0].ds_addr; 1457 } 1458 1459 if (sc->sc_flags & NFE_40BIT_ADDR) { 1460 desc64 = &sc->rxq.desc64[i]; 1461 #if defined(__LP64__) 1462 desc64->physaddr[0] = htole32(physaddr >> 32); 1463 #endif 1464 desc64->physaddr[1] = htole32(physaddr & 0xffffffff); 1465 desc64->length = htole16(sc->rxq.bufsz); 1466 desc64->flags = htole16(NFE_RX_READY); 1467 } else { 1468 desc32 = &sc->rxq.desc32[i]; 1469 desc32->physaddr = htole32(physaddr); 1470 desc32->length = htole16(sc->rxq.bufsz); 1471 desc32->flags = htole16(NFE_RX_READY); 1472 } 1473 } 1474 1475 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 1476 BUS_DMASYNC_PREWRITE); 1477 1478 return 0; 1479 1480 fail: nfe_free_rx_ring(sc, ring); 1481 return error; 1482 } 1483 1484 void 1485 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1486 { 1487 int i; 1488 1489 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1490 if (sc->sc_flags & NFE_40BIT_ADDR) { 1491 ring->desc64[i].length = htole16(ring->bufsz); 1492 ring->desc64[i].flags = htole16(NFE_RX_READY); 1493 } else { 1494 ring->desc32[i].length = htole16(ring->bufsz); 1495 ring->desc32[i].flags = htole16(NFE_RX_READY); 1496 } 1497 } 1498 1499 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 1500 BUS_DMASYNC_PREWRITE); 1501 1502 ring->cur = ring->next = 0; 1503 } 1504 1505 void 1506 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1507 { 1508 struct nfe_rx_data *data; 1509 void *desc; 1510 int i, descsize; 1511 1512 if (sc->sc_flags & NFE_40BIT_ADDR) { 1513 desc = ring->desc64; 1514 descsize = sizeof (struct nfe_desc64); 1515 } else { 1516 desc = ring->desc32; 1517 descsize = sizeof (struct nfe_desc32); 1518 } 1519 1520 if (desc != NULL) { 1521 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 1522 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1523 bus_dmamap_unload(sc->sc_dmat, ring->map); 1524 bus_dmamem_unmap(sc->sc_dmat, (void *)desc, 1525 NFE_RX_RING_COUNT * descsize); 1526 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 1527 } 1528 1529 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1530 data = &ring->data[i]; 1531 1532 if (data->map != NULL) { 1533 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1534 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1535 bus_dmamap_unload(sc->sc_dmat, data->map); 1536 bus_dmamap_destroy(sc->sc_dmat, data->map); 1537 } 1538 if (data->m != NULL) 1539 m_freem(data->m); 1540 } 1541 } 1542 1543 struct nfe_jbuf * 1544 nfe_jalloc(struct nfe_softc *sc, int i) 1545 { 1546 struct nfe_jbuf *jbuf; 1547 1548 mutex_enter(&sc->rxq.mtx); 1549 jbuf = SLIST_FIRST(&sc->rxq.jfreelist); 1550 if (jbuf != NULL) 1551 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext); 1552 mutex_exit(&sc->rxq.mtx); 1553 if (jbuf == NULL) 1554 return NULL; 1555 sc->rxq.jbufmap[i] = 1556 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES; 1557 return jbuf; 1558 } 1559 1560 /* 1561 * This is called automatically by the network stack when the mbuf is freed. 1562 * Caution must be taken that the NIC might be reset by the time the mbuf is 1563 * freed. 1564 */ 1565 void 1566 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg) 1567 { 1568 struct nfe_softc *sc = arg; 1569 struct nfe_jbuf *jbuf; 1570 int i; 1571 1572 /* find the jbuf from the base pointer */ 1573 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES; 1574 if (i < 0 || i >= NFE_JPOOL_COUNT) { 1575 aprint_error_dev(sc->sc_dev, 1576 "request to free a buffer (%p) not managed by us\n", buf); 1577 return; 1578 } 1579 jbuf = &sc->rxq.jbuf[i]; 1580 1581 /* ..and put it back in the free list */ 1582 mutex_enter(&sc->rxq.mtx); 1583 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext); 1584 mutex_exit(&sc->rxq.mtx); 1585 1586 if (m != NULL) 1587 pool_cache_put(mb_cache, m); 1588 } 1589 1590 int 1591 nfe_jpool_alloc(struct nfe_softc *sc) 1592 { 1593 struct nfe_rx_ring *ring = &sc->rxq; 1594 struct nfe_jbuf *jbuf; 1595 bus_addr_t physaddr; 1596 char *buf; 1597 int i, nsegs, error; 1598 1599 /* 1600 * Allocate a big chunk of DMA'able memory. 1601 */ 1602 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1, 1603 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap); 1604 if (error != 0) { 1605 aprint_error_dev(sc->sc_dev, 1606 "could not create jumbo DMA map\n"); 1607 ring->jmap = NULL; 1608 goto fail; 1609 } 1610 1611 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0, 1612 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT); 1613 if (error != 0) { 1614 aprint_error_dev(sc->sc_dev, 1615 "could not allocate jumbo DMA memory\n"); 1616 goto fail; 1617 } 1618 1619 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE, 1620 &ring->jpool, BUS_DMA_NOWAIT); 1621 if (error != 0) { 1622 aprint_error_dev(sc->sc_dev, 1623 "could not map jumbo DMA memory\n"); 1624 goto fail; 1625 } 1626 1627 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool, 1628 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); 1629 if (error != 0) { 1630 aprint_error_dev(sc->sc_dev, 1631 "could not load jumbo DMA map\n"); 1632 goto fail; 1633 } 1634 1635 /* ..and split it into 9KB chunks */ 1636 SLIST_INIT(&ring->jfreelist); 1637 1638 buf = ring->jpool; 1639 physaddr = ring->jmap->dm_segs[0].ds_addr; 1640 for (i = 0; i < NFE_JPOOL_COUNT; i++) { 1641 jbuf = &ring->jbuf[i]; 1642 1643 jbuf->buf = buf; 1644 jbuf->physaddr = physaddr; 1645 1646 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext); 1647 1648 buf += NFE_JBYTES; 1649 physaddr += NFE_JBYTES; 1650 } 1651 1652 return 0; 1653 1654 fail: nfe_jpool_free(sc); 1655 return error; 1656 } 1657 1658 void 1659 nfe_jpool_free(struct nfe_softc *sc) 1660 { 1661 struct nfe_rx_ring *ring = &sc->rxq; 1662 1663 if (ring->jmap != NULL) { 1664 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0, 1665 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1666 bus_dmamap_unload(sc->sc_dmat, ring->jmap); 1667 bus_dmamap_destroy(sc->sc_dmat, ring->jmap); 1668 } 1669 if (ring->jpool != NULL) { 1670 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE); 1671 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1); 1672 } 1673 } 1674 1675 int 1676 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1677 { 1678 int i, nsegs, error; 1679 void **desc; 1680 int descsize; 1681 1682 if (sc->sc_flags & NFE_40BIT_ADDR) { 1683 desc = (void **)&ring->desc64; 1684 descsize = sizeof (struct nfe_desc64); 1685 } else { 1686 desc = (void **)&ring->desc32; 1687 descsize = sizeof (struct nfe_desc32); 1688 } 1689 1690 ring->queued = 0; 1691 ring->cur = ring->next = 0; 1692 1693 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1, 1694 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); 1695 1696 if (error != 0) { 1697 aprint_error_dev(sc->sc_dev, 1698 "could not create desc DMA map\n"); 1699 ring->map = NULL; 1700 goto fail; 1701 } 1702 1703 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1704 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); 1705 if (error != 0) { 1706 aprint_error_dev(sc->sc_dev, 1707 "could not allocate DMA memory\n"); 1708 goto fail; 1709 } 1710 1711 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, 1712 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT); 1713 if (error != 0) { 1714 aprint_error_dev(sc->sc_dev, 1715 "could not map desc DMA memory\n"); 1716 goto fail; 1717 } 1718 1719 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, 1720 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); 1721 if (error != 0) { 1722 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n"); 1723 goto fail; 1724 } 1725 1726 memset(*desc, 0, NFE_TX_RING_COUNT * descsize); 1727 ring->physaddr = ring->map->dm_segs[0].ds_addr; 1728 1729 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1730 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES, 1731 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT, 1732 &ring->data[i].map); 1733 if (error != 0) { 1734 aprint_error_dev(sc->sc_dev, 1735 "could not create DMA map\n"); 1736 ring->data[i].map = NULL; 1737 goto fail; 1738 } 1739 } 1740 1741 return 0; 1742 1743 fail: nfe_free_tx_ring(sc, ring); 1744 return error; 1745 } 1746 1747 void 1748 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1749 { 1750 struct nfe_tx_data *data; 1751 int i; 1752 1753 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1754 if (sc->sc_flags & NFE_40BIT_ADDR) 1755 ring->desc64[i].flags = 0; 1756 else 1757 ring->desc32[i].flags = 0; 1758 1759 data = &ring->data[i]; 1760 1761 if (data->m != NULL) { 1762 bus_dmamap_sync(sc->sc_dmat, data->active, 0, 1763 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1764 bus_dmamap_unload(sc->sc_dmat, data->active); 1765 m_freem(data->m); 1766 data->m = NULL; 1767 } 1768 } 1769 1770 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, 1771 BUS_DMASYNC_PREWRITE); 1772 1773 ring->queued = 0; 1774 ring->cur = ring->next = 0; 1775 } 1776 1777 void 1778 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1779 { 1780 struct nfe_tx_data *data; 1781 void *desc; 1782 int i, descsize; 1783 1784 if (sc->sc_flags & NFE_40BIT_ADDR) { 1785 desc = ring->desc64; 1786 descsize = sizeof (struct nfe_desc64); 1787 } else { 1788 desc = ring->desc32; 1789 descsize = sizeof (struct nfe_desc32); 1790 } 1791 1792 if (desc != NULL) { 1793 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, 1794 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1795 bus_dmamap_unload(sc->sc_dmat, ring->map); 1796 bus_dmamem_unmap(sc->sc_dmat, (void *)desc, 1797 NFE_TX_RING_COUNT * descsize); 1798 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); 1799 } 1800 1801 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1802 data = &ring->data[i]; 1803 1804 if (data->m != NULL) { 1805 bus_dmamap_sync(sc->sc_dmat, data->active, 0, 1806 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1807 bus_dmamap_unload(sc->sc_dmat, data->active); 1808 m_freem(data->m); 1809 } 1810 } 1811 1812 /* ..and now actually destroy the DMA mappings */ 1813 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1814 data = &ring->data[i]; 1815 if (data->map == NULL) 1816 continue; 1817 bus_dmamap_destroy(sc->sc_dmat, data->map); 1818 } 1819 } 1820 1821 void 1822 nfe_setmulti(struct nfe_softc *sc) 1823 { 1824 struct ethercom *ec = &sc->sc_ethercom; 1825 struct ifnet *ifp = &ec->ec_if; 1826 struct ether_multi *enm; 1827 struct ether_multistep step; 1828 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN]; 1829 uint32_t filter = NFE_RXFILTER_MAGIC; 1830 int i; 1831 1832 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 1833 memset(addr, 0, ETHER_ADDR_LEN); 1834 memset(mask, 0, ETHER_ADDR_LEN); 1835 goto done; 1836 } 1837 1838 memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN); 1839 memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN); 1840 1841 ETHER_FIRST_MULTI(step, ec, enm); 1842 while (enm != NULL) { 1843 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1844 ifp->if_flags |= IFF_ALLMULTI; 1845 memset(addr, 0, ETHER_ADDR_LEN); 1846 memset(mask, 0, ETHER_ADDR_LEN); 1847 goto done; 1848 } 1849 for (i = 0; i < ETHER_ADDR_LEN; i++) { 1850 addr[i] &= enm->enm_addrlo[i]; 1851 mask[i] &= ~enm->enm_addrlo[i]; 1852 } 1853 ETHER_NEXT_MULTI(step, enm); 1854 } 1855 for (i = 0; i < ETHER_ADDR_LEN; i++) 1856 mask[i] |= addr[i]; 1857 1858 done: 1859 addr[0] |= 0x01; /* make sure multicast bit is set */ 1860 1861 NFE_WRITE(sc, NFE_MULTIADDR_HI, 1862 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); 1863 NFE_WRITE(sc, NFE_MULTIADDR_LO, 1864 addr[5] << 8 | addr[4]); 1865 NFE_WRITE(sc, NFE_MULTIMASK_HI, 1866 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]); 1867 NFE_WRITE(sc, NFE_MULTIMASK_LO, 1868 mask[5] << 8 | mask[4]); 1869 1870 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M; 1871 NFE_WRITE(sc, NFE_RXFILTER, filter); 1872 } 1873 1874 void 1875 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr) 1876 { 1877 uint32_t tmp; 1878 1879 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) { 1880 tmp = NFE_READ(sc, NFE_MACADDR_HI); 1881 addr[0] = (tmp & 0xff); 1882 addr[1] = (tmp >> 8) & 0xff; 1883 addr[2] = (tmp >> 16) & 0xff; 1884 addr[3] = (tmp >> 24) & 0xff; 1885 1886 tmp = NFE_READ(sc, NFE_MACADDR_LO); 1887 addr[4] = (tmp & 0xff); 1888 addr[5] = (tmp >> 8) & 0xff; 1889 1890 } else { 1891 tmp = NFE_READ(sc, NFE_MACADDR_LO); 1892 addr[0] = (tmp >> 8) & 0xff; 1893 addr[1] = (tmp & 0xff); 1894 1895 tmp = NFE_READ(sc, NFE_MACADDR_HI); 1896 addr[2] = (tmp >> 24) & 0xff; 1897 addr[3] = (tmp >> 16) & 0xff; 1898 addr[4] = (tmp >> 8) & 0xff; 1899 addr[5] = (tmp & 0xff); 1900 } 1901 } 1902 1903 void 1904 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr) 1905 { 1906 NFE_WRITE(sc, NFE_MACADDR_LO, 1907 addr[5] << 8 | addr[4]); 1908 NFE_WRITE(sc, NFE_MACADDR_HI, 1909 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); 1910 } 1911 1912 void 1913 nfe_tick(void *arg) 1914 { 1915 struct nfe_softc *sc = arg; 1916 int s; 1917 1918 s = splnet(); 1919 mii_tick(&sc->sc_mii); 1920 splx(s); 1921 1922 callout_schedule(&sc->sc_tick_ch, hz); 1923 } 1924 1925 void 1926 nfe_poweron(device_t self) 1927 { 1928 struct nfe_softc *sc = device_private(self); 1929 1930 if ((sc->sc_flags & NFE_PWR_MGMT) != 0) { 1931 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2); 1932 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC); 1933 DELAY(100); 1934 NFE_WRITE(sc, NFE_MAC_RESET, 0); 1935 DELAY(100); 1936 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2); 1937 NFE_WRITE(sc, NFE_PWR2_CTL, 1938 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK); 1939 } 1940 } 1941 1942 bool 1943 nfe_resume(device_t dv, pmf_qual_t qual) 1944 { 1945 nfe_poweron(dv); 1946 1947 return true; 1948 } 1949