xref: /netbsd-src/sys/dev/pci/if_nfe.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: if_nfe.c,v 1.38 2008/12/16 22:35:33 christos Exp $	*/
2 /*	$OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.38 2008/12/16 22:35:33 christos Exp $");
25 
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/mutex.h>
37 #include <sys/queue.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/callout.h>
41 #include <sys/socket.h>
42 
43 #include <sys/bus.h>
44 
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49 #include <net/if_arp.h>
50 
51 #ifdef INET
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 #include <netinet/if_inarp.h>
57 #endif
58 
59 #if NVLAN > 0
60 #include <net/if_types.h>
61 #endif
62 
63 #if NBPFILTER > 0
64 #include <net/bpf.h>
65 #endif
66 
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73 
74 #include <dev/pci/if_nfereg.h>
75 #include <dev/pci/if_nfevar.h>
76 
77 static int nfe_ifflags_cb(struct ethercom *);
78 
79 int	nfe_match(device_t, cfdata_t, void *);
80 void	nfe_attach(device_t, device_t, void *);
81 void	nfe_power(int, void *);
82 void	nfe_miibus_statchg(device_t);
83 int	nfe_miibus_readreg(device_t, int, int);
84 void	nfe_miibus_writereg(device_t, int, int, int);
85 int	nfe_intr(void *);
86 int	nfe_ioctl(struct ifnet *, u_long, void *);
87 void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
88 void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
89 void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
90 void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
91 void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
92 void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
93 void	nfe_rxeof(struct nfe_softc *);
94 void	nfe_txeof(struct nfe_softc *);
95 int	nfe_encap(struct nfe_softc *, struct mbuf *);
96 void	nfe_start(struct ifnet *);
97 void	nfe_watchdog(struct ifnet *);
98 int	nfe_init(struct ifnet *);
99 void	nfe_stop(struct ifnet *, int);
100 struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
101 void	nfe_jfree(struct mbuf *, void *, size_t, void *);
102 int	nfe_jpool_alloc(struct nfe_softc *);
103 void	nfe_jpool_free(struct nfe_softc *);
104 int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
106 void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
107 int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
109 void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
110 void	nfe_setmulti(struct nfe_softc *);
111 void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
112 void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
113 void	nfe_tick(void *);
114 void	nfe_poweron(device_t);
115 bool	nfe_resume(device_t PMF_FN_PROTO);
116 
117 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
118     NULL, NULL);
119 
120 /* #define NFE_NO_JUMBO */
121 
122 #ifdef NFE_DEBUG
123 int nfedebug = 0;
124 #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
125 #define DPRINTFN(n,x)	do { if (nfedebug >= (n)) printf x; } while (0)
126 #else
127 #define DPRINTF(x)
128 #define DPRINTFN(n,x)
129 #endif
130 
131 /* deal with naming differences */
132 
133 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
134 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
135 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
136 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
137 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
138 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
139 
140 #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
141 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
142 #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
143 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
144 
145 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
146 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
147 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
148 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
149 
150 #ifdef	_LP64
151 #define	__LP64__ 1
152 #endif
153 
154 const struct nfe_product {
155 	pci_vendor_id_t		vendor;
156 	pci_product_id_t	product;
157 } nfe_devices[] = {
158 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
159 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
160 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
161 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
162 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
163 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
164 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
165 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
166 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
167 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
168 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
169 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
170 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
171 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
172 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
173 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
174 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
175 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
176 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
177 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
178 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
179 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
180 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
181 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
182 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
183 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
184 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
185 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
186 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
187 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
188 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
189 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
190 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
191 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
192 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
193 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
194 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
195 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
196 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
197 };
198 
199 int
200 nfe_match(device_t dev, cfdata_t match, void *aux)
201 {
202 	struct pci_attach_args *pa = aux;
203 	const struct nfe_product *np;
204 	int i;
205 
206 	for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
207 		np = &nfe_devices[i];
208 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
209 		    PCI_PRODUCT(pa->pa_id) == np->product)
210 			return 1;
211 	}
212 	return 0;
213 }
214 
215 void
216 nfe_attach(device_t parent, device_t self, void *aux)
217 {
218 	struct nfe_softc *sc = device_private(self);
219 	struct pci_attach_args *pa = aux;
220 	pci_chipset_tag_t pc = pa->pa_pc;
221 	pci_intr_handle_t ih;
222 	const char *intrstr;
223 	struct ifnet *ifp;
224 	bus_size_t memsize;
225 	pcireg_t memtype;
226 	char devinfo[256];
227 
228 	sc->sc_dev = self;
229 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
230 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
231 
232 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
233 	switch (memtype) {
234 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
235 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
236 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
237 		    &sc->sc_memh, NULL, &memsize) == 0)
238 			break;
239 		/* FALLTHROUGH */
240 	default:
241 		aprint_error_dev(self, "could not map mem space\n");
242 		return;
243 	}
244 
245 	if (pci_intr_map(pa, &ih) != 0) {
246 		aprint_error_dev(self, "could not map interrupt\n");
247 		return;
248 	}
249 
250 	intrstr = pci_intr_string(pc, ih);
251 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
252 	if (sc->sc_ih == NULL) {
253 		aprint_error_dev(self, "could not establish interrupt");
254 		if (intrstr != NULL)
255 			aprint_normal(" at %s", intrstr);
256 		aprint_normal("\n");
257 		return;
258 	}
259 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
260 
261 	sc->sc_dmat = pa->pa_dmat;
262 
263 	sc->sc_flags = 0;
264 
265 	switch (PCI_PRODUCT(pa->pa_id)) {
266 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
267 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
268 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
269 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
270 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
271 		break;
272 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
273 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
274 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
275 		break;
276 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
277 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
278 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
279 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
280 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
281 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
282 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
283 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
284 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
285 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
286 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
287 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
288 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
289 		    NFE_PWR_MGMT;
290 		break;
291 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
292 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
293 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
294 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
295 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
296 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
297 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
298 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
299 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
300 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
301 		break;
302 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
303 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
304 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
305 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
306 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
307 		break;
308 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
309 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
310 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
311 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
312 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
313 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
314 		break;
315 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
316 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
317 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
318 		    NFE_HW_VLAN | NFE_PWR_MGMT;
319 		break;
320 	}
321 
322 	nfe_poweron(self);
323 
324 #ifndef NFE_NO_JUMBO
325 	/* enable jumbo frames for adapters that support it */
326 	if (sc->sc_flags & NFE_JUMBO_SUP)
327 		sc->sc_flags |= NFE_USE_JUMBO;
328 #endif
329 
330 	/* Check for reversed ethernet address */
331 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
332 		sc->sc_flags |= NFE_CORRECT_MACADDR;
333 
334 	nfe_get_macaddr(sc, sc->sc_enaddr);
335 	aprint_normal_dev(self, "Ethernet address %s\n",
336 	    ether_sprintf(sc->sc_enaddr));
337 
338 	/*
339 	 * Allocate Tx and Rx rings.
340 	 */
341 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
342 		aprint_error_dev(self, "could not allocate Tx ring\n");
343 		return;
344 	}
345 
346 	mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
347 
348 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
349 		aprint_error_dev(self, "could not allocate Rx ring\n");
350 		nfe_free_tx_ring(sc, &sc->txq);
351 		return;
352 	}
353 
354 	ifp = &sc->sc_ethercom.ec_if;
355 	ifp->if_softc = sc;
356 	ifp->if_mtu = ETHERMTU;
357 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
358 	ifp->if_ioctl = nfe_ioctl;
359 	ifp->if_start = nfe_start;
360 	ifp->if_stop = nfe_stop;
361 	ifp->if_watchdog = nfe_watchdog;
362 	ifp->if_init = nfe_init;
363 	ifp->if_baudrate = IF_Gbps(1);
364 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
365 	IFQ_SET_READY(&ifp->if_snd);
366 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
367 
368 	if (sc->sc_flags & NFE_USE_JUMBO)
369 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
370 
371 #if NVLAN > 0
372 	if (sc->sc_flags & NFE_HW_VLAN)
373 		sc->sc_ethercom.ec_capabilities |=
374 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
375 #endif
376 	if (sc->sc_flags & NFE_HW_CSUM) {
377 		ifp->if_capabilities |=
378 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
379 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
380 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
381 	}
382 
383 	sc->sc_mii.mii_ifp = ifp;
384 	sc->sc_mii.mii_readreg = nfe_miibus_readreg;
385 	sc->sc_mii.mii_writereg = nfe_miibus_writereg;
386 	sc->sc_mii.mii_statchg = nfe_miibus_statchg;
387 
388 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
389 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
390 	    ether_mediastatus);
391 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
392 	    MII_OFFSET_ANY, 0);
393 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
394 		aprint_error_dev(self, "no PHY found!\n");
395 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
396 		    0, NULL);
397 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
398 	} else
399 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
400 
401 	if_attach(ifp);
402 	ether_ifattach(ifp, sc->sc_enaddr);
403 	ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
404 
405 	callout_init(&sc->sc_tick_ch, 0);
406 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
407 
408 	if (!pmf_device_register(self, NULL, nfe_resume))
409 		aprint_error_dev(self, "couldn't establish power handler\n");
410 	else
411 		pmf_class_network_register(self, ifp);
412 }
413 
414 void
415 nfe_miibus_statchg(device_t dev)
416 {
417 	struct nfe_softc *sc = device_private(dev);
418 	struct mii_data *mii = &sc->sc_mii;
419 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
420 
421 	phy = NFE_READ(sc, NFE_PHY_IFACE);
422 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
423 
424 	seed = NFE_READ(sc, NFE_RNDSEED);
425 	seed &= ~NFE_SEED_MASK;
426 
427 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
428 		phy  |= NFE_PHY_HDX;	/* half-duplex */
429 		misc |= NFE_MISC1_HDX;
430 	}
431 
432 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
433 	case IFM_1000_T:	/* full-duplex only */
434 		link |= NFE_MEDIA_1000T;
435 		seed |= NFE_SEED_1000T;
436 		phy  |= NFE_PHY_1000T;
437 		break;
438 	case IFM_100_TX:
439 		link |= NFE_MEDIA_100TX;
440 		seed |= NFE_SEED_100TX;
441 		phy  |= NFE_PHY_100TX;
442 		break;
443 	case IFM_10_T:
444 		link |= NFE_MEDIA_10T;
445 		seed |= NFE_SEED_10T;
446 		break;
447 	}
448 
449 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
450 
451 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
452 	NFE_WRITE(sc, NFE_MISC1, misc);
453 	NFE_WRITE(sc, NFE_LINKSPEED, link);
454 }
455 
456 int
457 nfe_miibus_readreg(device_t dev, int phy, int reg)
458 {
459 	struct nfe_softc *sc = device_private(dev);
460 	uint32_t val;
461 	int ntries;
462 
463 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
464 
465 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
466 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
467 		DELAY(100);
468 	}
469 
470 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
471 
472 	for (ntries = 0; ntries < 1000; ntries++) {
473 		DELAY(100);
474 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
475 			break;
476 	}
477 	if (ntries == 1000) {
478 		DPRINTFN(2, ("%s: timeout waiting for PHY\n",
479 		    device_xname(sc->sc_dev)));
480 		return 0;
481 	}
482 
483 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
484 		DPRINTFN(2, ("%s: could not read PHY\n",
485 		    device_xname(sc->sc_dev)));
486 		return 0;
487 	}
488 
489 	val = NFE_READ(sc, NFE_PHY_DATA);
490 	if (val != 0xffffffff && val != 0)
491 		sc->mii_phyaddr = phy;
492 
493 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
494 	    device_xname(sc->sc_dev), phy, reg, val));
495 
496 	return val;
497 }
498 
499 void
500 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
501 {
502 	struct nfe_softc *sc = device_private(dev);
503 	uint32_t ctl;
504 	int ntries;
505 
506 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
507 
508 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
509 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
510 		DELAY(100);
511 	}
512 
513 	NFE_WRITE(sc, NFE_PHY_DATA, val);
514 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
515 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
516 
517 	for (ntries = 0; ntries < 1000; ntries++) {
518 		DELAY(100);
519 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
520 			break;
521 	}
522 #ifdef NFE_DEBUG
523 	if (nfedebug >= 2 && ntries == 1000)
524 		printf("could not write to PHY\n");
525 #endif
526 }
527 
528 int
529 nfe_intr(void *arg)
530 {
531 	struct nfe_softc *sc = arg;
532 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
533 	uint32_t r;
534 	int handled;
535 
536 	if ((ifp->if_flags & IFF_UP) == 0)
537 		return 0;
538 
539 	handled = 0;
540 
541 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
542 
543 	for (;;) {
544 		r = NFE_READ(sc, NFE_IRQ_STATUS);
545 		if ((r & NFE_IRQ_WANTED) == 0)
546 			break;
547 
548 		NFE_WRITE(sc, NFE_IRQ_STATUS, r);
549 		handled = 1;
550 		DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
551 
552 		if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
553 			/* check Rx ring */
554 			nfe_rxeof(sc);
555 		}
556 		if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
557 			/* check Tx ring */
558 			nfe_txeof(sc);
559 		}
560 		if ((r & NFE_IRQ_LINK) != 0) {
561 			NFE_READ(sc, NFE_PHY_STATUS);
562 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
563 			DPRINTF(("%s: link state changed\n",
564 			    device_xname(sc->sc_dev)));
565 		}
566 	}
567 
568 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
569 
570 	if (handled && !IF_IS_EMPTY(&ifp->if_snd))
571 		nfe_start(ifp);
572 
573 	return handled;
574 }
575 
576 static int
577 nfe_ifflags_cb(struct ethercom *ec)
578 {
579 	struct ifnet *ifp = &ec->ec_if;
580 	struct nfe_softc *sc = ifp->if_softc;
581 	int change = ifp->if_flags ^ sc->sc_if_flags;
582 
583 	/*
584 	 * If only the PROMISC flag changes, then
585 	 * don't do a full re-init of the chip, just update
586 	 * the Rx filter.
587 	 */
588 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
589 		return ENETRESET;
590 	else if ((change & IFF_PROMISC) != 0)
591 		nfe_setmulti(sc);
592 
593 	return 0;
594 }
595 
596 int
597 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
598 {
599 	struct nfe_softc *sc = ifp->if_softc;
600 	struct ifaddr *ifa = (struct ifaddr *)data;
601 	int s, error = 0;
602 
603 	s = splnet();
604 
605 	switch (cmd) {
606 	case SIOCINITIFADDR:
607 		ifp->if_flags |= IFF_UP;
608 		nfe_init(ifp);
609 		switch (ifa->ifa_addr->sa_family) {
610 #ifdef INET
611 		case AF_INET:
612 			arp_ifinit(ifp, ifa);
613 			break;
614 #endif
615 		default:
616 			break;
617 		}
618 		break;
619 	default:
620 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
621 			break;
622 
623 		error = 0;
624 
625 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
626 			;
627 		else if (ifp->if_flags & IFF_RUNNING)
628 			nfe_setmulti(sc);
629 		break;
630 	}
631 	sc->sc_if_flags = ifp->if_flags;
632 
633 	splx(s);
634 
635 	return error;
636 }
637 
638 void
639 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
640 {
641 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
642 	    (char *)desc32 - (char *)sc->txq.desc32,
643 	    sizeof (struct nfe_desc32), ops);
644 }
645 
646 void
647 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
648 {
649 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
650 	    (char *)desc64 - (char *)sc->txq.desc64,
651 	    sizeof (struct nfe_desc64), ops);
652 }
653 
654 void
655 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
656 {
657 	if (end > start) {
658 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
659 		    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
660 		    (char *)&sc->txq.desc32[end] -
661 		    (char *)&sc->txq.desc32[start], ops);
662 		return;
663 	}
664 	/* sync from 'start' to end of ring */
665 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
666 	    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
667 	    (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
668 	    (char *)&sc->txq.desc32[start], ops);
669 
670 	/* sync from start of ring to 'end' */
671 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
672 	    (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
673 }
674 
675 void
676 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
677 {
678 	if (end > start) {
679 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
680 		    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
681 		    (char *)&sc->txq.desc64[end] -
682 		    (char *)&sc->txq.desc64[start], ops);
683 		return;
684 	}
685 	/* sync from 'start' to end of ring */
686 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
687 	    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
688 	    (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
689 	    (char *)&sc->txq.desc64[start], ops);
690 
691 	/* sync from start of ring to 'end' */
692 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
693 	    (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
694 }
695 
696 void
697 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
698 {
699 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
700 	    (char *)desc32 - (char *)sc->rxq.desc32,
701 	    sizeof (struct nfe_desc32), ops);
702 }
703 
704 void
705 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
706 {
707 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
708 	    (char *)desc64 - (char *)sc->rxq.desc64,
709 	    sizeof (struct nfe_desc64), ops);
710 }
711 
712 void
713 nfe_rxeof(struct nfe_softc *sc)
714 {
715 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
716 	struct nfe_desc32 *desc32;
717 	struct nfe_desc64 *desc64;
718 	struct nfe_rx_data *data;
719 	struct nfe_jbuf *jbuf;
720 	struct mbuf *m, *mnew;
721 	bus_addr_t physaddr;
722 	uint16_t flags;
723 	int error, len, i;
724 
725 	desc32 = NULL;
726 	desc64 = NULL;
727 	for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
728 		data = &sc->rxq.data[i];
729 
730 		if (sc->sc_flags & NFE_40BIT_ADDR) {
731 			desc64 = &sc->rxq.desc64[i];
732 			nfe_rxdesc64_sync(sc, desc64,
733 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
734 
735 			flags = le16toh(desc64->flags);
736 			len = le16toh(desc64->length) & 0x3fff;
737 		} else {
738 			desc32 = &sc->rxq.desc32[i];
739 			nfe_rxdesc32_sync(sc, desc32,
740 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
741 
742 			flags = le16toh(desc32->flags);
743 			len = le16toh(desc32->length) & 0x3fff;
744 		}
745 
746 		if ((flags & NFE_RX_READY) != 0)
747 			break;
748 
749 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
750 			if ((flags & NFE_RX_VALID_V1) == 0)
751 				goto skip;
752 
753 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
754 				flags &= ~NFE_RX_ERROR;
755 				len--;	/* fix buffer length */
756 			}
757 		} else {
758 			if ((flags & NFE_RX_VALID_V2) == 0)
759 				goto skip;
760 
761 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
762 				flags &= ~NFE_RX_ERROR;
763 				len--;	/* fix buffer length */
764 			}
765 		}
766 
767 		if (flags & NFE_RX_ERROR) {
768 			ifp->if_ierrors++;
769 			goto skip;
770 		}
771 
772 		/*
773 		 * Try to allocate a new mbuf for this ring element and load
774 		 * it before processing the current mbuf. If the ring element
775 		 * cannot be loaded, drop the received packet and reuse the
776 		 * old mbuf. In the unlikely case that the old mbuf can't be
777 		 * reloaded either, explicitly panic.
778 		 */
779 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
780 		if (mnew == NULL) {
781 			ifp->if_ierrors++;
782 			goto skip;
783 		}
784 
785 		if (sc->sc_flags & NFE_USE_JUMBO) {
786 			physaddr =
787 			    sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
788 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
789 				if (len > MCLBYTES) {
790 					m_freem(mnew);
791 					ifp->if_ierrors++;
792 					goto skip1;
793 				}
794 				MCLGET(mnew, M_DONTWAIT);
795 				if ((mnew->m_flags & M_EXT) == 0) {
796 					m_freem(mnew);
797 					ifp->if_ierrors++;
798 					goto skip1;
799 				}
800 
801 				(void)memcpy(mtod(mnew, void *),
802 				    mtod(data->m, const void *), len);
803 				m = mnew;
804 				goto mbufcopied;
805 			} else {
806 				MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
807 				bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
808 				    mtod(data->m, char *) - (char *)sc->rxq.jpool,
809 				    NFE_JBYTES, BUS_DMASYNC_POSTREAD);
810 
811 				physaddr = jbuf->physaddr;
812 			}
813 		} else {
814 			MCLGET(mnew, M_DONTWAIT);
815 			if ((mnew->m_flags & M_EXT) == 0) {
816 				m_freem(mnew);
817 				ifp->if_ierrors++;
818 				goto skip;
819 			}
820 
821 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
822 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
823 			bus_dmamap_unload(sc->sc_dmat, data->map);
824 
825 			error = bus_dmamap_load(sc->sc_dmat, data->map,
826 			    mtod(mnew, void *), MCLBYTES, NULL,
827 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
828 			if (error != 0) {
829 				m_freem(mnew);
830 
831 				/* try to reload the old mbuf */
832 				error = bus_dmamap_load(sc->sc_dmat, data->map,
833 				    mtod(data->m, void *), MCLBYTES, NULL,
834 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
835 				if (error != 0) {
836 					/* very unlikely that it will fail.. */
837 					panic("%s: could not load old rx mbuf",
838 					    device_xname(sc->sc_dev));
839 				}
840 				ifp->if_ierrors++;
841 				goto skip;
842 			}
843 			physaddr = data->map->dm_segs[0].ds_addr;
844 		}
845 
846 		/*
847 		 * New mbuf successfully loaded, update Rx ring and continue
848 		 * processing.
849 		 */
850 		m = data->m;
851 		data->m = mnew;
852 
853 mbufcopied:
854 		/* finalize mbuf */
855 		m->m_pkthdr.len = m->m_len = len;
856 		m->m_pkthdr.rcvif = ifp;
857 
858 		if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
859 			/*
860 			 * XXX
861 			 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
862 			 */
863 			if (flags & NFE_RX_IP_CSUMOK) {
864 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
865 				DPRINTFN(3, ("%s: ip4csum-rx ok\n",
866 				    device_xname(sc->sc_dev)));
867 			}
868 			/*
869 			 * XXX
870 			 * no way to check M_CSUM_TCP_UDP_BAD or
871 			 * other protocols?
872 			 */
873 			if (flags & NFE_RX_UDP_CSUMOK) {
874 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
875 				DPRINTFN(3, ("%s: udp4csum-rx ok\n",
876 				    device_xname(sc->sc_dev)));
877 			} else if (flags & NFE_RX_TCP_CSUMOK) {
878 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
879 				DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
880 				    device_xname(sc->sc_dev)));
881 			}
882 		}
883 #if NBPFILTER > 0
884 		if (ifp->if_bpf)
885 			bpf_mtap(ifp->if_bpf, m);
886 #endif
887 		ifp->if_ipackets++;
888 		(*ifp->if_input)(ifp, m);
889 
890 skip1:
891 		/* update mapping address in h/w descriptor */
892 		if (sc->sc_flags & NFE_40BIT_ADDR) {
893 #if defined(__LP64__)
894 			desc64->physaddr[0] = htole32(physaddr >> 32);
895 #endif
896 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
897 		} else {
898 			desc32->physaddr = htole32(physaddr);
899 		}
900 
901 skip:
902 		if (sc->sc_flags & NFE_40BIT_ADDR) {
903 			desc64->length = htole16(sc->rxq.bufsz);
904 			desc64->flags = htole16(NFE_RX_READY);
905 
906 			nfe_rxdesc64_sync(sc, desc64,
907 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
908 		} else {
909 			desc32->length = htole16(sc->rxq.bufsz);
910 			desc32->flags = htole16(NFE_RX_READY);
911 
912 			nfe_rxdesc32_sync(sc, desc32,
913 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
914 		}
915 	}
916 	/* update current RX pointer */
917 	sc->rxq.cur = i;
918 }
919 
920 void
921 nfe_txeof(struct nfe_softc *sc)
922 {
923 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
924 	struct nfe_desc32 *desc32;
925 	struct nfe_desc64 *desc64;
926 	struct nfe_tx_data *data = NULL;
927 	int i;
928 	uint16_t flags;
929 	char buf[128];
930 
931 	for (i = sc->txq.next;
932 	    sc->txq.queued > 0;
933 	    i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
934 		if (sc->sc_flags & NFE_40BIT_ADDR) {
935 			desc64 = &sc->txq.desc64[i];
936 			nfe_txdesc64_sync(sc, desc64,
937 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
938 
939 			flags = le16toh(desc64->flags);
940 		} else {
941 			desc32 = &sc->txq.desc32[i];
942 			nfe_txdesc32_sync(sc, desc32,
943 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
944 
945 			flags = le16toh(desc32->flags);
946 		}
947 
948 		if ((flags & NFE_TX_VALID) != 0)
949 			break;
950 
951 		data = &sc->txq.data[i];
952 
953 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
954 			if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
955 			    data->m == NULL)
956 				continue;
957 
958 			if ((flags & NFE_TX_ERROR_V1) != 0) {
959 				snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
960 				aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
961 				    buf);
962 				ifp->if_oerrors++;
963 			} else
964 				ifp->if_opackets++;
965 		} else {
966 			if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
967 			    data->m == NULL)
968 				continue;
969 
970 			if ((flags & NFE_TX_ERROR_V2) != 0) {
971 				snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
972 				aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
973 				    buf);
974 				ifp->if_oerrors++;
975 			} else
976 				ifp->if_opackets++;
977 		}
978 
979 		if (data->m == NULL) {	/* should not get there */
980 			aprint_error_dev(sc->sc_dev,
981 			    "last fragment bit w/o associated mbuf!\n");
982 			continue;
983 		}
984 
985 		/* last fragment of the mbuf chain transmitted */
986 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
987 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
988 		bus_dmamap_unload(sc->sc_dmat, data->active);
989 		m_freem(data->m);
990 		data->m = NULL;
991 	}
992 
993 	sc->txq.next = i;
994 
995 	if (sc->txq.queued < NFE_TX_RING_COUNT) {
996 		/* at least one slot freed */
997 		ifp->if_flags &= ~IFF_OACTIVE;
998 	}
999 
1000 	if (sc->txq.queued == 0) {
1001 		/* all queued packets are sent */
1002 		ifp->if_timer = 0;
1003 	}
1004 }
1005 
1006 int
1007 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1008 {
1009 	struct nfe_desc32 *desc32;
1010 	struct nfe_desc64 *desc64;
1011 	struct nfe_tx_data *data;
1012 	bus_dmamap_t map;
1013 	uint16_t flags, csumflags;
1014 #if NVLAN > 0
1015 	struct m_tag *mtag;
1016 	uint32_t vtag = 0;
1017 #endif
1018 	int error, i, first;
1019 
1020 	desc32 = NULL;
1021 	desc64 = NULL;
1022 	data = NULL;
1023 
1024 	flags = 0;
1025 	csumflags = 0;
1026 	first = sc->txq.cur;
1027 
1028 	map = sc->txq.data[first].map;
1029 
1030 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1031 	if (error != 0) {
1032 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1033 		    error);
1034 		return error;
1035 	}
1036 
1037 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1038 		bus_dmamap_unload(sc->sc_dmat, map);
1039 		return ENOBUFS;
1040 	}
1041 
1042 #if NVLAN > 0
1043 	/* setup h/w VLAN tagging */
1044 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1045 		vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1046 #endif
1047 	if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1048 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1049 			csumflags |= NFE_TX_IP_CSUM;
1050 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1051 			csumflags |= NFE_TX_TCP_UDP_CSUM;
1052 	}
1053 
1054 	for (i = 0; i < map->dm_nsegs; i++) {
1055 		data = &sc->txq.data[sc->txq.cur];
1056 
1057 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1058 			desc64 = &sc->txq.desc64[sc->txq.cur];
1059 #if defined(__LP64__)
1060 			desc64->physaddr[0] =
1061 			    htole32(map->dm_segs[i].ds_addr >> 32);
1062 #endif
1063 			desc64->physaddr[1] =
1064 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1065 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1066 			desc64->flags = htole16(flags);
1067 			desc64->vtag = 0;
1068 		} else {
1069 			desc32 = &sc->txq.desc32[sc->txq.cur];
1070 
1071 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1072 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1073 			desc32->flags = htole16(flags);
1074 		}
1075 
1076 		/*
1077 		 * Setting of the valid bit in the first descriptor is
1078 		 * deferred until the whole chain is fully setup.
1079 		 */
1080 		flags |= NFE_TX_VALID;
1081 
1082 		sc->txq.queued++;
1083 		sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1084 	}
1085 
1086 	/* the whole mbuf chain has been setup */
1087 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1088 		/* fix last descriptor */
1089 		flags |= NFE_TX_LASTFRAG_V2;
1090 		desc64->flags = htole16(flags);
1091 
1092 		/* Checksum flags and vtag belong to the first fragment only. */
1093 #if NVLAN > 0
1094 		sc->txq.desc64[first].vtag = htole32(vtag);
1095 #endif
1096 		sc->txq.desc64[first].flags |= htole16(csumflags);
1097 
1098 		/* finally, set the valid bit in the first descriptor */
1099 		sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1100 	} else {
1101 		/* fix last descriptor */
1102 		if (sc->sc_flags & NFE_JUMBO_SUP)
1103 			flags |= NFE_TX_LASTFRAG_V2;
1104 		else
1105 			flags |= NFE_TX_LASTFRAG_V1;
1106 		desc32->flags = htole16(flags);
1107 
1108 		/* Checksum flags belong to the first fragment only. */
1109 		sc->txq.desc32[first].flags |= htole16(csumflags);
1110 
1111 		/* finally, set the valid bit in the first descriptor */
1112 		sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1113 	}
1114 
1115 	data->m = m0;
1116 	data->active = map;
1117 
1118 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1119 	    BUS_DMASYNC_PREWRITE);
1120 
1121 	return 0;
1122 }
1123 
1124 void
1125 nfe_start(struct ifnet *ifp)
1126 {
1127 	struct nfe_softc *sc = ifp->if_softc;
1128 	int old = sc->txq.queued;
1129 	struct mbuf *m0;
1130 
1131 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1132 		return;
1133 
1134 	for (;;) {
1135 		IFQ_POLL(&ifp->if_snd, m0);
1136 		if (m0 == NULL)
1137 			break;
1138 
1139 		if (nfe_encap(sc, m0) != 0) {
1140 			ifp->if_flags |= IFF_OACTIVE;
1141 			break;
1142 		}
1143 
1144 		/* packet put in h/w queue, remove from s/w queue */
1145 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1146 
1147 #if NBPFILTER > 0
1148 		if (ifp->if_bpf != NULL)
1149 			bpf_mtap(ifp->if_bpf, m0);
1150 #endif
1151 	}
1152 
1153 	if (sc->txq.queued != old) {
1154 		/* packets are queued */
1155 		if (sc->sc_flags & NFE_40BIT_ADDR)
1156 			nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1157 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1158 		else
1159 			nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1160 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1161 		/* kick Tx */
1162 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1163 
1164 		/*
1165 		 * Set a timeout in case the chip goes out to lunch.
1166 		 */
1167 		ifp->if_timer = 5;
1168 	}
1169 }
1170 
1171 void
1172 nfe_watchdog(struct ifnet *ifp)
1173 {
1174 	struct nfe_softc *sc = ifp->if_softc;
1175 
1176 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1177 
1178 	ifp->if_flags &= ~IFF_RUNNING;
1179 	nfe_init(ifp);
1180 
1181 	ifp->if_oerrors++;
1182 }
1183 
1184 int
1185 nfe_init(struct ifnet *ifp)
1186 {
1187 	struct nfe_softc *sc = ifp->if_softc;
1188 	uint32_t tmp;
1189 	int rc = 0, s;
1190 
1191 	if (ifp->if_flags & IFF_RUNNING)
1192 		return 0;
1193 
1194 	nfe_stop(ifp, 0);
1195 
1196 	NFE_WRITE(sc, NFE_TX_UNK, 0);
1197 	NFE_WRITE(sc, NFE_STATUS, 0);
1198 
1199 	sc->rxtxctl = NFE_RXTX_BIT2;
1200 	if (sc->sc_flags & NFE_40BIT_ADDR)
1201 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1202 	else if (sc->sc_flags & NFE_JUMBO_SUP)
1203 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1204 	if (sc->sc_flags & NFE_HW_CSUM)
1205 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1206 #if NVLAN > 0
1207 	/*
1208 	 * Although the adapter is capable of stripping VLAN tags from received
1209 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1210 	 * purpose.  This will be done in software by our network stack.
1211 	 */
1212 	if (sc->sc_flags & NFE_HW_VLAN)
1213 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1214 #endif
1215 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1216 	DELAY(10);
1217 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1218 
1219 #if NVLAN
1220 	if (sc->sc_flags & NFE_HW_VLAN)
1221 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1222 #endif
1223 
1224 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1225 
1226 	/* set MAC address */
1227 	nfe_set_macaddr(sc, sc->sc_enaddr);
1228 
1229 	/* tell MAC where rings are in memory */
1230 #ifdef __LP64__
1231 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1232 #endif
1233 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1234 #ifdef __LP64__
1235 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1236 #endif
1237 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1238 
1239 	NFE_WRITE(sc, NFE_RING_SIZE,
1240 	    (NFE_RX_RING_COUNT - 1) << 16 |
1241 	    (NFE_TX_RING_COUNT - 1));
1242 
1243 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1244 
1245 	/* force MAC to wakeup */
1246 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1247 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1248 	DELAY(10);
1249 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1250 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1251 
1252 	s = splnet();
1253 	nfe_intr(sc); /* XXX clear IRQ status registers */
1254 	splx(s);
1255 
1256 #if 1
1257 	/* configure interrupts coalescing/mitigation */
1258 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1259 #else
1260 	/* no interrupt mitigation: one interrupt per packet */
1261 	NFE_WRITE(sc, NFE_IMTIMER, 970);
1262 #endif
1263 
1264 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1265 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1266 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1267 
1268 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1269 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1270 
1271 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1272 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1273 
1274 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1275 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1276 	DELAY(10);
1277 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1278 
1279 	/* set Rx filter */
1280 	nfe_setmulti(sc);
1281 
1282 	if ((rc = ether_mediachange(ifp)) != 0)
1283 		goto out;
1284 
1285 	nfe_tick(sc);
1286 
1287 	/* enable Rx */
1288 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1289 
1290 	/* enable Tx */
1291 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1292 
1293 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1294 
1295 	/* enable interrupts */
1296 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1297 
1298 	callout_schedule(&sc->sc_tick_ch, hz);
1299 
1300 	ifp->if_flags |= IFF_RUNNING;
1301 	ifp->if_flags &= ~IFF_OACTIVE;
1302 
1303 out:
1304 	return rc;
1305 }
1306 
1307 void
1308 nfe_stop(struct ifnet *ifp, int disable)
1309 {
1310 	struct nfe_softc *sc = ifp->if_softc;
1311 
1312 	callout_stop(&sc->sc_tick_ch);
1313 
1314 	ifp->if_timer = 0;
1315 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1316 
1317 	mii_down(&sc->sc_mii);
1318 
1319 	/* abort Tx */
1320 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1321 
1322 	/* disable Rx */
1323 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1324 
1325 	/* disable interrupts */
1326 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1327 
1328 	/* reset Tx and Rx rings */
1329 	nfe_reset_tx_ring(sc, &sc->txq);
1330 	nfe_reset_rx_ring(sc, &sc->rxq);
1331 }
1332 
1333 int
1334 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1335 {
1336 	struct nfe_desc32 *desc32;
1337 	struct nfe_desc64 *desc64;
1338 	struct nfe_rx_data *data;
1339 	struct nfe_jbuf *jbuf;
1340 	void **desc;
1341 	bus_addr_t physaddr;
1342 	int i, nsegs, error, descsize;
1343 
1344 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1345 		desc = (void **)&ring->desc64;
1346 		descsize = sizeof (struct nfe_desc64);
1347 	} else {
1348 		desc = (void **)&ring->desc32;
1349 		descsize = sizeof (struct nfe_desc32);
1350 	}
1351 
1352 	ring->cur = ring->next = 0;
1353 	ring->bufsz = MCLBYTES;
1354 
1355 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1356 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1357 	if (error != 0) {
1358 		aprint_error_dev(sc->sc_dev,
1359 		    "could not create desc DMA map\n");
1360 		goto fail;
1361 	}
1362 
1363 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1364 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1365 	if (error != 0) {
1366 		aprint_error_dev(sc->sc_dev,
1367 		    "could not allocate DMA memory\n");
1368 		goto fail;
1369 	}
1370 
1371 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1372 	    NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1373 	if (error != 0) {
1374 		aprint_error_dev(sc->sc_dev,
1375 		    "could not map desc DMA memory\n");
1376 		goto fail;
1377 	}
1378 
1379 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1380 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1381 	if (error != 0) {
1382 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1383 		goto fail;
1384 	}
1385 
1386 	bzero(*desc, NFE_RX_RING_COUNT * descsize);
1387 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1388 
1389 	if (sc->sc_flags & NFE_USE_JUMBO) {
1390 		ring->bufsz = NFE_JBYTES;
1391 		if ((error = nfe_jpool_alloc(sc)) != 0) {
1392 			aprint_error_dev(sc->sc_dev,
1393 			    "could not allocate jumbo frames\n");
1394 			goto fail;
1395 		}
1396 	}
1397 
1398 	/*
1399 	 * Pre-allocate Rx buffers and populate Rx ring.
1400 	 */
1401 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1402 		data = &sc->rxq.data[i];
1403 
1404 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1405 		if (data->m == NULL) {
1406 			aprint_error_dev(sc->sc_dev,
1407 			    "could not allocate rx mbuf\n");
1408 			error = ENOMEM;
1409 			goto fail;
1410 		}
1411 
1412 		if (sc->sc_flags & NFE_USE_JUMBO) {
1413 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1414 				aprint_error_dev(sc->sc_dev,
1415 				    "could not allocate jumbo buffer\n");
1416 				goto fail;
1417 			}
1418 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1419 			    sc);
1420 
1421 			physaddr = jbuf->physaddr;
1422 		} else {
1423 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1424 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1425 			if (error != 0) {
1426 				aprint_error_dev(sc->sc_dev,
1427 				    "could not create DMA map\n");
1428 				goto fail;
1429 			}
1430 			MCLGET(data->m, M_DONTWAIT);
1431 			if (!(data->m->m_flags & M_EXT)) {
1432 				aprint_error_dev(sc->sc_dev,
1433 				    "could not allocate mbuf cluster\n");
1434 				error = ENOMEM;
1435 				goto fail;
1436 			}
1437 
1438 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1439 			    mtod(data->m, void *), MCLBYTES, NULL,
1440 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
1441 			if (error != 0) {
1442 				aprint_error_dev(sc->sc_dev,
1443 				    "could not load rx buf DMA map");
1444 				goto fail;
1445 			}
1446 			physaddr = data->map->dm_segs[0].ds_addr;
1447 		}
1448 
1449 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1450 			desc64 = &sc->rxq.desc64[i];
1451 #if defined(__LP64__)
1452 			desc64->physaddr[0] = htole32(physaddr >> 32);
1453 #endif
1454 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1455 			desc64->length = htole16(sc->rxq.bufsz);
1456 			desc64->flags = htole16(NFE_RX_READY);
1457 		} else {
1458 			desc32 = &sc->rxq.desc32[i];
1459 			desc32->physaddr = htole32(physaddr);
1460 			desc32->length = htole16(sc->rxq.bufsz);
1461 			desc32->flags = htole16(NFE_RX_READY);
1462 		}
1463 	}
1464 
1465 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1466 	    BUS_DMASYNC_PREWRITE);
1467 
1468 	return 0;
1469 
1470 fail:	nfe_free_rx_ring(sc, ring);
1471 	return error;
1472 }
1473 
1474 void
1475 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1476 {
1477 	int i;
1478 
1479 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1480 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1481 			ring->desc64[i].length = htole16(ring->bufsz);
1482 			ring->desc64[i].flags = htole16(NFE_RX_READY);
1483 		} else {
1484 			ring->desc32[i].length = htole16(ring->bufsz);
1485 			ring->desc32[i].flags = htole16(NFE_RX_READY);
1486 		}
1487 	}
1488 
1489 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1490 	    BUS_DMASYNC_PREWRITE);
1491 
1492 	ring->cur = ring->next = 0;
1493 }
1494 
1495 void
1496 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1497 {
1498 	struct nfe_rx_data *data;
1499 	void *desc;
1500 	int i, descsize;
1501 
1502 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1503 		desc = ring->desc64;
1504 		descsize = sizeof (struct nfe_desc64);
1505 	} else {
1506 		desc = ring->desc32;
1507 		descsize = sizeof (struct nfe_desc32);
1508 	}
1509 
1510 	if (desc != NULL) {
1511 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1512 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1513 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1514 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1515 		    NFE_RX_RING_COUNT * descsize);
1516 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1517 	}
1518 
1519 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1520 		data = &ring->data[i];
1521 
1522 		if (data->map != NULL) {
1523 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1524 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1525 			bus_dmamap_unload(sc->sc_dmat, data->map);
1526 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1527 		}
1528 		if (data->m != NULL)
1529 			m_freem(data->m);
1530 	}
1531 }
1532 
1533 struct nfe_jbuf *
1534 nfe_jalloc(struct nfe_softc *sc, int i)
1535 {
1536 	struct nfe_jbuf *jbuf;
1537 
1538 	mutex_enter(&sc->rxq.mtx);
1539 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1540 	if (jbuf != NULL)
1541 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1542 	mutex_exit(&sc->rxq.mtx);
1543 	if (jbuf == NULL)
1544 		return NULL;
1545 	sc->rxq.jbufmap[i] =
1546 	    ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1547 	return jbuf;
1548 }
1549 
1550 /*
1551  * This is called automatically by the network stack when the mbuf is freed.
1552  * Caution must be taken that the NIC might be reset by the time the mbuf is
1553  * freed.
1554  */
1555 void
1556 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1557 {
1558 	struct nfe_softc *sc = arg;
1559 	struct nfe_jbuf *jbuf;
1560 	int i;
1561 
1562 	/* find the jbuf from the base pointer */
1563 	i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1564 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
1565 		aprint_error_dev(sc->sc_dev,
1566 		    "request to free a buffer (%p) not managed by us\n", buf);
1567 		return;
1568 	}
1569 	jbuf = &sc->rxq.jbuf[i];
1570 
1571 	/* ..and put it back in the free list */
1572 	mutex_enter(&sc->rxq.mtx);
1573 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1574 	mutex_exit(&sc->rxq.mtx);
1575 
1576 	if (m != NULL)
1577 		pool_cache_put(mb_cache, m);
1578 }
1579 
1580 int
1581 nfe_jpool_alloc(struct nfe_softc *sc)
1582 {
1583 	struct nfe_rx_ring *ring = &sc->rxq;
1584 	struct nfe_jbuf *jbuf;
1585 	bus_addr_t physaddr;
1586 	char *buf;
1587 	int i, nsegs, error;
1588 
1589 	/*
1590 	 * Allocate a big chunk of DMA'able memory.
1591 	 */
1592 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1593 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1594 	if (error != 0) {
1595 		aprint_error_dev(sc->sc_dev,
1596 		    "could not create jumbo DMA map\n");
1597 		goto fail;
1598 	}
1599 
1600 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1601 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1602 	if (error != 0) {
1603 		aprint_error_dev(sc->sc_dev,
1604 		    "could not allocate jumbo DMA memory\n");
1605 		goto fail;
1606 	}
1607 
1608 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1609 	    &ring->jpool, BUS_DMA_NOWAIT);
1610 	if (error != 0) {
1611 		aprint_error_dev(sc->sc_dev,
1612 		    "could not map jumbo DMA memory\n");
1613 		goto fail;
1614 	}
1615 
1616 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1617 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1618 	if (error != 0) {
1619 		aprint_error_dev(sc->sc_dev,
1620 		    "could not load jumbo DMA map\n");
1621 		goto fail;
1622 	}
1623 
1624 	/* ..and split it into 9KB chunks */
1625 	SLIST_INIT(&ring->jfreelist);
1626 
1627 	buf = ring->jpool;
1628 	physaddr = ring->jmap->dm_segs[0].ds_addr;
1629 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1630 		jbuf = &ring->jbuf[i];
1631 
1632 		jbuf->buf = buf;
1633 		jbuf->physaddr = physaddr;
1634 
1635 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1636 
1637 		buf += NFE_JBYTES;
1638 		physaddr += NFE_JBYTES;
1639 	}
1640 
1641 	return 0;
1642 
1643 fail:	nfe_jpool_free(sc);
1644 	return error;
1645 }
1646 
1647 void
1648 nfe_jpool_free(struct nfe_softc *sc)
1649 {
1650 	struct nfe_rx_ring *ring = &sc->rxq;
1651 
1652 	if (ring->jmap != NULL) {
1653 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1654 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1655 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1656 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1657 	}
1658 	if (ring->jpool != NULL) {
1659 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1660 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1661 	}
1662 }
1663 
1664 int
1665 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1666 {
1667 	int i, nsegs, error;
1668 	void **desc;
1669 	int descsize;
1670 
1671 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1672 		desc = (void **)&ring->desc64;
1673 		descsize = sizeof (struct nfe_desc64);
1674 	} else {
1675 		desc = (void **)&ring->desc32;
1676 		descsize = sizeof (struct nfe_desc32);
1677 	}
1678 
1679 	ring->queued = 0;
1680 	ring->cur = ring->next = 0;
1681 
1682 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1683 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1684 
1685 	if (error != 0) {
1686 		aprint_error_dev(sc->sc_dev,
1687 		    "could not create desc DMA map\n");
1688 		goto fail;
1689 	}
1690 
1691 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1692 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1693 	if (error != 0) {
1694 		aprint_error_dev(sc->sc_dev,
1695 		    "could not allocate DMA memory\n");
1696 		goto fail;
1697 	}
1698 
1699 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1700 	    NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1701 	if (error != 0) {
1702 		aprint_error_dev(sc->sc_dev,
1703 		    "could not map desc DMA memory\n");
1704 		goto fail;
1705 	}
1706 
1707 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1708 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1709 	if (error != 0) {
1710 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1711 		goto fail;
1712 	}
1713 
1714 	bzero(*desc, NFE_TX_RING_COUNT * descsize);
1715 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1716 
1717 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1718 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1719 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1720 		    &ring->data[i].map);
1721 		if (error != 0) {
1722 			aprint_error_dev(sc->sc_dev,
1723 			    "could not create DMA map\n");
1724 			goto fail;
1725 		}
1726 	}
1727 
1728 	return 0;
1729 
1730 fail:	nfe_free_tx_ring(sc, ring);
1731 	return error;
1732 }
1733 
1734 void
1735 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1736 {
1737 	struct nfe_tx_data *data;
1738 	int i;
1739 
1740 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1741 		if (sc->sc_flags & NFE_40BIT_ADDR)
1742 			ring->desc64[i].flags = 0;
1743 		else
1744 			ring->desc32[i].flags = 0;
1745 
1746 		data = &ring->data[i];
1747 
1748 		if (data->m != NULL) {
1749 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1750 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1751 			bus_dmamap_unload(sc->sc_dmat, data->active);
1752 			m_freem(data->m);
1753 			data->m = NULL;
1754 		}
1755 	}
1756 
1757 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1758 	    BUS_DMASYNC_PREWRITE);
1759 
1760 	ring->queued = 0;
1761 	ring->cur = ring->next = 0;
1762 }
1763 
1764 void
1765 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1766 {
1767 	struct nfe_tx_data *data;
1768 	void *desc;
1769 	int i, descsize;
1770 
1771 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1772 		desc = ring->desc64;
1773 		descsize = sizeof (struct nfe_desc64);
1774 	} else {
1775 		desc = ring->desc32;
1776 		descsize = sizeof (struct nfe_desc32);
1777 	}
1778 
1779 	if (desc != NULL) {
1780 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1781 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1782 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1783 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1784 		    NFE_TX_RING_COUNT * descsize);
1785 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1786 	}
1787 
1788 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1789 		data = &ring->data[i];
1790 
1791 		if (data->m != NULL) {
1792 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1793 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1794 			bus_dmamap_unload(sc->sc_dmat, data->active);
1795 			m_freem(data->m);
1796 		}
1797 	}
1798 
1799 	/* ..and now actually destroy the DMA mappings */
1800 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1801 		data = &ring->data[i];
1802 		if (data->map == NULL)
1803 			continue;
1804 		bus_dmamap_destroy(sc->sc_dmat, data->map);
1805 	}
1806 }
1807 
1808 void
1809 nfe_setmulti(struct nfe_softc *sc)
1810 {
1811 	struct ethercom *ec = &sc->sc_ethercom;
1812 	struct ifnet *ifp = &ec->ec_if;
1813 	struct ether_multi *enm;
1814 	struct ether_multistep step;
1815 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1816 	uint32_t filter = NFE_RXFILTER_MAGIC;
1817 	int i;
1818 
1819 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1820 		bzero(addr, ETHER_ADDR_LEN);
1821 		bzero(mask, ETHER_ADDR_LEN);
1822 		goto done;
1823 	}
1824 
1825 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1826 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1827 
1828 	ETHER_FIRST_MULTI(step, ec, enm);
1829 	while (enm != NULL) {
1830 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1831 			ifp->if_flags |= IFF_ALLMULTI;
1832 			bzero(addr, ETHER_ADDR_LEN);
1833 			bzero(mask, ETHER_ADDR_LEN);
1834 			goto done;
1835 		}
1836 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1837 			addr[i] &=  enm->enm_addrlo[i];
1838 			mask[i] &= ~enm->enm_addrlo[i];
1839 		}
1840 		ETHER_NEXT_MULTI(step, enm);
1841 	}
1842 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1843 		mask[i] |= addr[i];
1844 
1845 done:
1846 	addr[0] |= 0x01;	/* make sure multicast bit is set */
1847 
1848 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
1849 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1850 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
1851 	    addr[5] <<  8 | addr[4]);
1852 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
1853 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1854 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
1855 	    mask[5] <<  8 | mask[4]);
1856 
1857 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1858 	NFE_WRITE(sc, NFE_RXFILTER, filter);
1859 }
1860 
1861 void
1862 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1863 {
1864 	uint32_t tmp;
1865 
1866 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1867 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
1868 		addr[0] = (tmp & 0xff);
1869 		addr[1] = (tmp >>  8) & 0xff;
1870 		addr[2] = (tmp >> 16) & 0xff;
1871 		addr[3] = (tmp >> 24) & 0xff;
1872 
1873 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
1874 		addr[4] = (tmp & 0xff);
1875 		addr[5] = (tmp >> 8) & 0xff;
1876 
1877 	} else {
1878 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
1879 		addr[0] = (tmp >> 8) & 0xff;
1880 		addr[1] = (tmp & 0xff);
1881 
1882 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
1883 		addr[2] = (tmp >> 24) & 0xff;
1884 		addr[3] = (tmp >> 16) & 0xff;
1885 		addr[4] = (tmp >>  8) & 0xff;
1886 		addr[5] = (tmp & 0xff);
1887 	}
1888 }
1889 
1890 void
1891 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1892 {
1893 	NFE_WRITE(sc, NFE_MACADDR_LO,
1894 	    addr[5] <<  8 | addr[4]);
1895 	NFE_WRITE(sc, NFE_MACADDR_HI,
1896 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1897 }
1898 
1899 void
1900 nfe_tick(void *arg)
1901 {
1902 	struct nfe_softc *sc = arg;
1903 	int s;
1904 
1905 	s = splnet();
1906 	mii_tick(&sc->sc_mii);
1907 	splx(s);
1908 
1909 	callout_schedule(&sc->sc_tick_ch, hz);
1910 }
1911 
1912 void
1913 nfe_poweron(device_t self)
1914 {
1915 	struct nfe_softc *sc = device_private(self);
1916 
1917 	if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
1918 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
1919 		NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
1920 		DELAY(100);
1921 		NFE_WRITE(sc, NFE_MAC_RESET, 0);
1922 		DELAY(100);
1923 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
1924 		NFE_WRITE(sc, NFE_PWR2_CTL,
1925 		    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
1926 	}
1927 }
1928 
1929 bool
1930 nfe_resume(device_t dv PMF_FN_ARGS)
1931 {
1932 	nfe_poweron(dv);
1933 
1934 	return true;
1935 }
1936