xref: /netbsd-src/sys/dev/pci/if_nfe.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: if_nfe.c,v 1.48 2010/01/08 19:56:52 dyoung Exp $	*/
2 /*	$OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.48 2010/01/08 19:56:52 dyoung Exp $");
25 
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/mutex.h>
37 #include <sys/queue.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/callout.h>
41 #include <sys/socket.h>
42 
43 #include <sys/bus.h>
44 
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49 #include <net/if_arp.h>
50 
51 #ifdef INET
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 #include <netinet/if_inarp.h>
57 #endif
58 
59 #if NVLAN > 0
60 #include <net/if_types.h>
61 #endif
62 
63 #if NBPFILTER > 0
64 #include <net/bpf.h>
65 #endif
66 
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73 
74 #include <dev/pci/if_nfereg.h>
75 #include <dev/pci/if_nfevar.h>
76 
77 static int nfe_ifflags_cb(struct ethercom *);
78 
79 int	nfe_match(device_t, cfdata_t, void *);
80 void	nfe_attach(device_t, device_t, void *);
81 void	nfe_power(int, void *);
82 void	nfe_miibus_statchg(device_t);
83 int	nfe_miibus_readreg(device_t, int, int);
84 void	nfe_miibus_writereg(device_t, int, int, int);
85 int	nfe_intr(void *);
86 int	nfe_ioctl(struct ifnet *, u_long, void *);
87 void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
88 void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
89 void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
90 void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
91 void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
92 void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
93 void	nfe_rxeof(struct nfe_softc *);
94 void	nfe_txeof(struct nfe_softc *);
95 int	nfe_encap(struct nfe_softc *, struct mbuf *);
96 void	nfe_start(struct ifnet *);
97 void	nfe_watchdog(struct ifnet *);
98 int	nfe_init(struct ifnet *);
99 void	nfe_stop(struct ifnet *, int);
100 struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
101 void	nfe_jfree(struct mbuf *, void *, size_t, void *);
102 int	nfe_jpool_alloc(struct nfe_softc *);
103 void	nfe_jpool_free(struct nfe_softc *);
104 int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
106 void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
107 int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
109 void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
110 void	nfe_setmulti(struct nfe_softc *);
111 void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
112 void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
113 void	nfe_tick(void *);
114 void	nfe_poweron(device_t);
115 bool	nfe_resume(device_t, pmf_qual_t);
116 
117 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
118     NULL, NULL);
119 
120 /* #define NFE_NO_JUMBO */
121 
122 #ifdef NFE_DEBUG
123 int nfedebug = 0;
124 #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
125 #define DPRINTFN(n,x)	do { if (nfedebug >= (n)) printf x; } while (0)
126 #else
127 #define DPRINTF(x)
128 #define DPRINTFN(n,x)
129 #endif
130 
131 /* deal with naming differences */
132 
133 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
134 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
135 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
136 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
137 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
138 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
139 
140 #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
141 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
142 #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
143 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
144 
145 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
146 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
147 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
148 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
149 
150 #ifdef	_LP64
151 #define	__LP64__ 1
152 #endif
153 
154 const struct nfe_product {
155 	pci_vendor_id_t		vendor;
156 	pci_product_id_t	product;
157 } nfe_devices[] = {
158 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
159 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
160 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
161 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
162 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
163 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
164 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
165 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
166 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
167 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
168 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
169 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
170 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
171 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
172 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
173 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
174 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
175 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
176 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
177 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
178 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
179 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
180 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
181 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
182 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
183 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
184 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
185 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
186 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
187 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
188 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
189 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
190 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
191 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
192 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
193 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
194 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
195 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
196 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
197 };
198 
199 int
200 nfe_match(device_t dev, cfdata_t match, void *aux)
201 {
202 	struct pci_attach_args *pa = aux;
203 	const struct nfe_product *np;
204 	int i;
205 
206 	for (i = 0; i < __arraycount(nfe_devices); i++) {
207 		np = &nfe_devices[i];
208 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
209 		    PCI_PRODUCT(pa->pa_id) == np->product)
210 			return 1;
211 	}
212 	return 0;
213 }
214 
215 void
216 nfe_attach(device_t parent, device_t self, void *aux)
217 {
218 	struct nfe_softc *sc = device_private(self);
219 	struct pci_attach_args *pa = aux;
220 	pci_chipset_tag_t pc = pa->pa_pc;
221 	pci_intr_handle_t ih;
222 	const char *intrstr;
223 	struct ifnet *ifp;
224 	bus_size_t memsize;
225 	pcireg_t memtype;
226 	char devinfo[256];
227 	int mii_flags = 0;
228 
229 	sc->sc_dev = self;
230 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
231 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
232 
233 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
234 	switch (memtype) {
235 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
236 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
237 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
238 		    &sc->sc_memh, NULL, &memsize) == 0)
239 			break;
240 		/* FALLTHROUGH */
241 	default:
242 		aprint_error_dev(self, "could not map mem space\n");
243 		return;
244 	}
245 
246 	if (pci_intr_map(pa, &ih) != 0) {
247 		aprint_error_dev(self, "could not map interrupt\n");
248 		goto fail;
249 	}
250 
251 	intrstr = pci_intr_string(pc, ih);
252 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
253 	if (sc->sc_ih == NULL) {
254 		aprint_error_dev(self, "could not establish interrupt");
255 		if (intrstr != NULL)
256 			aprint_error(" at %s", intrstr);
257 		aprint_error("\n");
258 		goto fail;
259 	}
260 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
261 
262 	sc->sc_dmat = pa->pa_dmat;
263 
264 	sc->sc_flags = 0;
265 
266 	switch (PCI_PRODUCT(pa->pa_id)) {
267 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
268 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
269 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
270 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
271 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
272 		break;
273 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
274 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
275 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
276 		break;
277 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
278 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
279 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
280 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
281 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
282 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
283 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
284 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
285 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
286 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
287 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
288 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
289 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
290 		    NFE_PWR_MGMT;
291 		break;
292 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
293 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
294 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
295 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
296 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
297 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
298 		break;
299 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
300 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
301 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
302 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
303 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
304 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
305 		break;
306 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
307 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
308 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
309 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
310 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
311 		break;
312 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
313 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
314 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
315 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
316 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
317 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
318 		mii_flags = MIIF_DOPAUSE;
319 		break;
320 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
321 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
322 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
323 		    NFE_HW_VLAN | NFE_PWR_MGMT;
324 		break;
325 	}
326 
327 	nfe_poweron(self);
328 
329 #ifndef NFE_NO_JUMBO
330 	/* enable jumbo frames for adapters that support it */
331 	if (sc->sc_flags & NFE_JUMBO_SUP)
332 		sc->sc_flags |= NFE_USE_JUMBO;
333 #endif
334 
335 	/* Check for reversed ethernet address */
336 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
337 		sc->sc_flags |= NFE_CORRECT_MACADDR;
338 
339 	nfe_get_macaddr(sc, sc->sc_enaddr);
340 	aprint_normal_dev(self, "Ethernet address %s\n",
341 	    ether_sprintf(sc->sc_enaddr));
342 
343 	/*
344 	 * Allocate Tx and Rx rings.
345 	 */
346 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
347 		aprint_error_dev(self, "could not allocate Tx ring\n");
348 		goto fail;
349 	}
350 
351 	mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
352 
353 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
354 		aprint_error_dev(self, "could not allocate Rx ring\n");
355 		nfe_free_tx_ring(sc, &sc->txq);
356 		goto fail;
357 	}
358 
359 	ifp = &sc->sc_ethercom.ec_if;
360 	ifp->if_softc = sc;
361 	ifp->if_mtu = ETHERMTU;
362 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
363 	ifp->if_ioctl = nfe_ioctl;
364 	ifp->if_start = nfe_start;
365 	ifp->if_stop = nfe_stop;
366 	ifp->if_watchdog = nfe_watchdog;
367 	ifp->if_init = nfe_init;
368 	ifp->if_baudrate = IF_Gbps(1);
369 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
370 	IFQ_SET_READY(&ifp->if_snd);
371 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
372 
373 	if (sc->sc_flags & NFE_USE_JUMBO)
374 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
375 
376 #if NVLAN > 0
377 	if (sc->sc_flags & NFE_HW_VLAN)
378 		sc->sc_ethercom.ec_capabilities |=
379 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
380 #endif
381 	if (sc->sc_flags & NFE_HW_CSUM) {
382 		ifp->if_capabilities |=
383 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
384 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
385 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
386 	}
387 
388 	sc->sc_mii.mii_ifp = ifp;
389 	sc->sc_mii.mii_readreg = nfe_miibus_readreg;
390 	sc->sc_mii.mii_writereg = nfe_miibus_writereg;
391 	sc->sc_mii.mii_statchg = nfe_miibus_statchg;
392 
393 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
394 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
395 	    ether_mediastatus);
396 
397 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
398 	    MII_OFFSET_ANY, mii_flags);
399 
400 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
401 		aprint_error_dev(self, "no PHY found!\n");
402 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
403 		    0, NULL);
404 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
405 	} else
406 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
407 
408 	if_attach(ifp);
409 	ether_ifattach(ifp, sc->sc_enaddr);
410 	ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
411 
412 	callout_init(&sc->sc_tick_ch, 0);
413 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
414 
415 	if (pmf_device_register(self, NULL, nfe_resume))
416 		pmf_class_network_register(self, ifp);
417 	else
418 		aprint_error_dev(self, "couldn't establish power handler\n");
419 
420 	return;
421 
422 fail:
423 	if (sc->sc_ih != NULL) {
424 		pci_intr_disestablish(pc, sc->sc_ih);
425 		sc->sc_ih = NULL;
426 	}
427 	if (memsize)
428 		bus_space_unmap(sc->sc_memt, sc->sc_memh, memsize);
429 }
430 
431 void
432 nfe_miibus_statchg(device_t dev)
433 {
434 	struct nfe_softc *sc = device_private(dev);
435 	struct mii_data *mii = &sc->sc_mii;
436 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
437 
438 	phy = NFE_READ(sc, NFE_PHY_IFACE);
439 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
440 
441 	seed = NFE_READ(sc, NFE_RNDSEED);
442 	seed &= ~NFE_SEED_MASK;
443 
444 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
445 		phy  |= NFE_PHY_HDX;	/* half-duplex */
446 		misc |= NFE_MISC1_HDX;
447 	}
448 
449 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
450 	case IFM_1000_T:	/* full-duplex only */
451 		link |= NFE_MEDIA_1000T;
452 		seed |= NFE_SEED_1000T;
453 		phy  |= NFE_PHY_1000T;
454 		break;
455 	case IFM_100_TX:
456 		link |= NFE_MEDIA_100TX;
457 		seed |= NFE_SEED_100TX;
458 		phy  |= NFE_PHY_100TX;
459 		break;
460 	case IFM_10_T:
461 		link |= NFE_MEDIA_10T;
462 		seed |= NFE_SEED_10T;
463 		break;
464 	}
465 
466 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
467 
468 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
469 	NFE_WRITE(sc, NFE_MISC1, misc);
470 	NFE_WRITE(sc, NFE_LINKSPEED, link);
471 }
472 
473 int
474 nfe_miibus_readreg(device_t dev, int phy, int reg)
475 {
476 	struct nfe_softc *sc = device_private(dev);
477 	uint32_t val;
478 	int ntries;
479 
480 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
481 
482 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
483 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
484 		DELAY(100);
485 	}
486 
487 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
488 
489 	for (ntries = 0; ntries < 1000; ntries++) {
490 		DELAY(100);
491 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
492 			break;
493 	}
494 	if (ntries == 1000) {
495 		DPRINTFN(2, ("%s: timeout waiting for PHY\n",
496 		    device_xname(sc->sc_dev)));
497 		return 0;
498 	}
499 
500 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
501 		DPRINTFN(2, ("%s: could not read PHY\n",
502 		    device_xname(sc->sc_dev)));
503 		return 0;
504 	}
505 
506 	val = NFE_READ(sc, NFE_PHY_DATA);
507 	if (val != 0xffffffff && val != 0)
508 		sc->mii_phyaddr = phy;
509 
510 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
511 	    device_xname(sc->sc_dev), phy, reg, val));
512 
513 	return val;
514 }
515 
516 void
517 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
518 {
519 	struct nfe_softc *sc = device_private(dev);
520 	uint32_t ctl;
521 	int ntries;
522 
523 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
524 
525 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
526 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
527 		DELAY(100);
528 	}
529 
530 	NFE_WRITE(sc, NFE_PHY_DATA, val);
531 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
532 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
533 
534 	for (ntries = 0; ntries < 1000; ntries++) {
535 		DELAY(100);
536 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
537 			break;
538 	}
539 #ifdef NFE_DEBUG
540 	if (nfedebug >= 2 && ntries == 1000)
541 		printf("could not write to PHY\n");
542 #endif
543 }
544 
545 int
546 nfe_intr(void *arg)
547 {
548 	struct nfe_softc *sc = arg;
549 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
550 	uint32_t r;
551 	int handled;
552 
553 	if ((ifp->if_flags & IFF_UP) == 0)
554 		return 0;
555 
556 	handled = 0;
557 
558 	for (;;) {
559 		r = NFE_READ(sc, NFE_IRQ_STATUS);
560 		if ((r & NFE_IRQ_WANTED) == 0)
561 			break;
562 
563 		NFE_WRITE(sc, NFE_IRQ_STATUS, r);
564 		handled = 1;
565 		DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
566 
567 		if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
568 			/* check Rx ring */
569 			nfe_rxeof(sc);
570 		}
571 		if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
572 			/* check Tx ring */
573 			nfe_txeof(sc);
574 		}
575 		if ((r & NFE_IRQ_LINK) != 0) {
576 			NFE_READ(sc, NFE_PHY_STATUS);
577 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
578 			DPRINTF(("%s: link state changed\n",
579 			    device_xname(sc->sc_dev)));
580 		}
581 	}
582 
583 	if (handled && !IF_IS_EMPTY(&ifp->if_snd))
584 		nfe_start(ifp);
585 
586 	return handled;
587 }
588 
589 static int
590 nfe_ifflags_cb(struct ethercom *ec)
591 {
592 	struct ifnet *ifp = &ec->ec_if;
593 	struct nfe_softc *sc = ifp->if_softc;
594 	int change = ifp->if_flags ^ sc->sc_if_flags;
595 
596 	/*
597 	 * If only the PROMISC flag changes, then
598 	 * don't do a full re-init of the chip, just update
599 	 * the Rx filter.
600 	 */
601 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
602 		return ENETRESET;
603 	else if ((change & IFF_PROMISC) != 0)
604 		nfe_setmulti(sc);
605 
606 	return 0;
607 }
608 
609 int
610 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
611 {
612 	struct nfe_softc *sc = ifp->if_softc;
613 	struct ifaddr *ifa = (struct ifaddr *)data;
614 	int s, error = 0;
615 
616 	s = splnet();
617 
618 	switch (cmd) {
619 	case SIOCINITIFADDR:
620 		ifp->if_flags |= IFF_UP;
621 		nfe_init(ifp);
622 		switch (ifa->ifa_addr->sa_family) {
623 #ifdef INET
624 		case AF_INET:
625 			arp_ifinit(ifp, ifa);
626 			break;
627 #endif
628 		default:
629 			break;
630 		}
631 		break;
632 	default:
633 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
634 			break;
635 
636 		error = 0;
637 
638 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
639 			;
640 		else if (ifp->if_flags & IFF_RUNNING)
641 			nfe_setmulti(sc);
642 		break;
643 	}
644 	sc->sc_if_flags = ifp->if_flags;
645 
646 	splx(s);
647 
648 	return error;
649 }
650 
651 void
652 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
653 {
654 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
655 	    (char *)desc32 - (char *)sc->txq.desc32,
656 	    sizeof (struct nfe_desc32), ops);
657 }
658 
659 void
660 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
661 {
662 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
663 	    (char *)desc64 - (char *)sc->txq.desc64,
664 	    sizeof (struct nfe_desc64), ops);
665 }
666 
667 void
668 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
669 {
670 	if (end > start) {
671 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
672 		    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
673 		    (char *)&sc->txq.desc32[end] -
674 		    (char *)&sc->txq.desc32[start], ops);
675 		return;
676 	}
677 	/* sync from 'start' to end of ring */
678 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
679 	    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
680 	    (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
681 	    (char *)&sc->txq.desc32[start], ops);
682 
683 	/* sync from start of ring to 'end' */
684 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
685 	    (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
686 }
687 
688 void
689 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
690 {
691 	if (end > start) {
692 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
693 		    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
694 		    (char *)&sc->txq.desc64[end] -
695 		    (char *)&sc->txq.desc64[start], ops);
696 		return;
697 	}
698 	/* sync from 'start' to end of ring */
699 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
700 	    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
701 	    (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
702 	    (char *)&sc->txq.desc64[start], ops);
703 
704 	/* sync from start of ring to 'end' */
705 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
706 	    (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
707 }
708 
709 void
710 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
711 {
712 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
713 	    (char *)desc32 - (char *)sc->rxq.desc32,
714 	    sizeof (struct nfe_desc32), ops);
715 }
716 
717 void
718 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
719 {
720 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
721 	    (char *)desc64 - (char *)sc->rxq.desc64,
722 	    sizeof (struct nfe_desc64), ops);
723 }
724 
725 void
726 nfe_rxeof(struct nfe_softc *sc)
727 {
728 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
729 	struct nfe_desc32 *desc32;
730 	struct nfe_desc64 *desc64;
731 	struct nfe_rx_data *data;
732 	struct nfe_jbuf *jbuf;
733 	struct mbuf *m, *mnew;
734 	bus_addr_t physaddr;
735 	uint16_t flags;
736 	int error, len, i;
737 
738 	desc32 = NULL;
739 	desc64 = NULL;
740 	for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
741 		data = &sc->rxq.data[i];
742 
743 		if (sc->sc_flags & NFE_40BIT_ADDR) {
744 			desc64 = &sc->rxq.desc64[i];
745 			nfe_rxdesc64_sync(sc, desc64,
746 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
747 
748 			flags = le16toh(desc64->flags);
749 			len = le16toh(desc64->length) & 0x3fff;
750 		} else {
751 			desc32 = &sc->rxq.desc32[i];
752 			nfe_rxdesc32_sync(sc, desc32,
753 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
754 
755 			flags = le16toh(desc32->flags);
756 			len = le16toh(desc32->length) & 0x3fff;
757 		}
758 
759 		if ((flags & NFE_RX_READY) != 0)
760 			break;
761 
762 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
763 			if ((flags & NFE_RX_VALID_V1) == 0)
764 				goto skip;
765 
766 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
767 				flags &= ~NFE_RX_ERROR;
768 				len--;	/* fix buffer length */
769 			}
770 		} else {
771 			if ((flags & NFE_RX_VALID_V2) == 0)
772 				goto skip;
773 
774 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
775 				flags &= ~NFE_RX_ERROR;
776 				len--;	/* fix buffer length */
777 			}
778 		}
779 
780 		if (flags & NFE_RX_ERROR) {
781 			ifp->if_ierrors++;
782 			goto skip;
783 		}
784 
785 		/*
786 		 * Try to allocate a new mbuf for this ring element and load
787 		 * it before processing the current mbuf. If the ring element
788 		 * cannot be loaded, drop the received packet and reuse the
789 		 * old mbuf. In the unlikely case that the old mbuf can't be
790 		 * reloaded either, explicitly panic.
791 		 */
792 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
793 		if (mnew == NULL) {
794 			ifp->if_ierrors++;
795 			goto skip;
796 		}
797 
798 		if (sc->sc_flags & NFE_USE_JUMBO) {
799 			physaddr =
800 			    sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
801 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
802 				if (len > MCLBYTES) {
803 					m_freem(mnew);
804 					ifp->if_ierrors++;
805 					goto skip1;
806 				}
807 				MCLGET(mnew, M_DONTWAIT);
808 				if ((mnew->m_flags & M_EXT) == 0) {
809 					m_freem(mnew);
810 					ifp->if_ierrors++;
811 					goto skip1;
812 				}
813 
814 				(void)memcpy(mtod(mnew, void *),
815 				    mtod(data->m, const void *), len);
816 				m = mnew;
817 				goto mbufcopied;
818 			} else {
819 				MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
820 				bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
821 				    mtod(data->m, char *) - (char *)sc->rxq.jpool,
822 				    NFE_JBYTES, BUS_DMASYNC_POSTREAD);
823 
824 				physaddr = jbuf->physaddr;
825 			}
826 		} else {
827 			MCLGET(mnew, M_DONTWAIT);
828 			if ((mnew->m_flags & M_EXT) == 0) {
829 				m_freem(mnew);
830 				ifp->if_ierrors++;
831 				goto skip;
832 			}
833 
834 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
835 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
836 			bus_dmamap_unload(sc->sc_dmat, data->map);
837 
838 			error = bus_dmamap_load(sc->sc_dmat, data->map,
839 			    mtod(mnew, void *), MCLBYTES, NULL,
840 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
841 			if (error != 0) {
842 				m_freem(mnew);
843 
844 				/* try to reload the old mbuf */
845 				error = bus_dmamap_load(sc->sc_dmat, data->map,
846 				    mtod(data->m, void *), MCLBYTES, NULL,
847 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
848 				if (error != 0) {
849 					/* very unlikely that it will fail.. */
850 					panic("%s: could not load old rx mbuf",
851 					    device_xname(sc->sc_dev));
852 				}
853 				ifp->if_ierrors++;
854 				goto skip;
855 			}
856 			physaddr = data->map->dm_segs[0].ds_addr;
857 		}
858 
859 		/*
860 		 * New mbuf successfully loaded, update Rx ring and continue
861 		 * processing.
862 		 */
863 		m = data->m;
864 		data->m = mnew;
865 
866 mbufcopied:
867 		/* finalize mbuf */
868 		m->m_pkthdr.len = m->m_len = len;
869 		m->m_pkthdr.rcvif = ifp;
870 
871 		if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
872 			/*
873 			 * XXX
874 			 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
875 			 */
876 			if (flags & NFE_RX_IP_CSUMOK) {
877 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
878 				DPRINTFN(3, ("%s: ip4csum-rx ok\n",
879 				    device_xname(sc->sc_dev)));
880 			}
881 			/*
882 			 * XXX
883 			 * no way to check M_CSUM_TCP_UDP_BAD or
884 			 * other protocols?
885 			 */
886 			if (flags & NFE_RX_UDP_CSUMOK) {
887 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
888 				DPRINTFN(3, ("%s: udp4csum-rx ok\n",
889 				    device_xname(sc->sc_dev)));
890 			} else if (flags & NFE_RX_TCP_CSUMOK) {
891 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
892 				DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
893 				    device_xname(sc->sc_dev)));
894 			}
895 		}
896 #if NBPFILTER > 0
897 		if (ifp->if_bpf)
898 			bpf_mtap(ifp->if_bpf, m);
899 #endif
900 		ifp->if_ipackets++;
901 		(*ifp->if_input)(ifp, m);
902 
903 skip1:
904 		/* update mapping address in h/w descriptor */
905 		if (sc->sc_flags & NFE_40BIT_ADDR) {
906 #if defined(__LP64__)
907 			desc64->physaddr[0] = htole32(physaddr >> 32);
908 #endif
909 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
910 		} else {
911 			desc32->physaddr = htole32(physaddr);
912 		}
913 
914 skip:
915 		if (sc->sc_flags & NFE_40BIT_ADDR) {
916 			desc64->length = htole16(sc->rxq.bufsz);
917 			desc64->flags = htole16(NFE_RX_READY);
918 
919 			nfe_rxdesc64_sync(sc, desc64,
920 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
921 		} else {
922 			desc32->length = htole16(sc->rxq.bufsz);
923 			desc32->flags = htole16(NFE_RX_READY);
924 
925 			nfe_rxdesc32_sync(sc, desc32,
926 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
927 		}
928 	}
929 	/* update current RX pointer */
930 	sc->rxq.cur = i;
931 }
932 
933 void
934 nfe_txeof(struct nfe_softc *sc)
935 {
936 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
937 	struct nfe_desc32 *desc32;
938 	struct nfe_desc64 *desc64;
939 	struct nfe_tx_data *data = NULL;
940 	int i;
941 	uint16_t flags;
942 	char buf[128];
943 
944 	for (i = sc->txq.next;
945 	    sc->txq.queued > 0;
946 	    i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
947 		if (sc->sc_flags & NFE_40BIT_ADDR) {
948 			desc64 = &sc->txq.desc64[i];
949 			nfe_txdesc64_sync(sc, desc64,
950 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
951 
952 			flags = le16toh(desc64->flags);
953 		} else {
954 			desc32 = &sc->txq.desc32[i];
955 			nfe_txdesc32_sync(sc, desc32,
956 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
957 
958 			flags = le16toh(desc32->flags);
959 		}
960 
961 		if ((flags & NFE_TX_VALID) != 0)
962 			break;
963 
964 		data = &sc->txq.data[i];
965 
966 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
967 			if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
968 			    data->m == NULL)
969 				continue;
970 
971 			if ((flags & NFE_TX_ERROR_V1) != 0) {
972 				snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
973 				aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
974 				    buf);
975 				ifp->if_oerrors++;
976 			} else
977 				ifp->if_opackets++;
978 		} else {
979 			if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
980 			    data->m == NULL)
981 				continue;
982 
983 			if ((flags & NFE_TX_ERROR_V2) != 0) {
984 				snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
985 				aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
986 				    buf);
987 				ifp->if_oerrors++;
988 			} else
989 				ifp->if_opackets++;
990 		}
991 
992 		if (data->m == NULL) {	/* should not get there */
993 			aprint_error_dev(sc->sc_dev,
994 			    "last fragment bit w/o associated mbuf!\n");
995 			continue;
996 		}
997 
998 		/* last fragment of the mbuf chain transmitted */
999 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1000 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1001 		bus_dmamap_unload(sc->sc_dmat, data->active);
1002 		m_freem(data->m);
1003 		data->m = NULL;
1004 	}
1005 
1006 	sc->txq.next = i;
1007 
1008 	if (sc->txq.queued < NFE_TX_RING_COUNT) {
1009 		/* at least one slot freed */
1010 		ifp->if_flags &= ~IFF_OACTIVE;
1011 	}
1012 
1013 	if (sc->txq.queued == 0) {
1014 		/* all queued packets are sent */
1015 		ifp->if_timer = 0;
1016 	}
1017 }
1018 
1019 int
1020 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1021 {
1022 	struct nfe_desc32 *desc32;
1023 	struct nfe_desc64 *desc64;
1024 	struct nfe_tx_data *data;
1025 	bus_dmamap_t map;
1026 	uint16_t flags, csumflags;
1027 #if NVLAN > 0
1028 	struct m_tag *mtag;
1029 	uint32_t vtag = 0;
1030 #endif
1031 	int error, i, first;
1032 
1033 	desc32 = NULL;
1034 	desc64 = NULL;
1035 	data = NULL;
1036 
1037 	flags = 0;
1038 	csumflags = 0;
1039 	first = sc->txq.cur;
1040 
1041 	map = sc->txq.data[first].map;
1042 
1043 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1044 	if (error != 0) {
1045 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1046 		    error);
1047 		return error;
1048 	}
1049 
1050 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1051 		bus_dmamap_unload(sc->sc_dmat, map);
1052 		return ENOBUFS;
1053 	}
1054 
1055 #if NVLAN > 0
1056 	/* setup h/w VLAN tagging */
1057 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1058 		vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1059 #endif
1060 	if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1061 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1062 			csumflags |= NFE_TX_IP_CSUM;
1063 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1064 			csumflags |= NFE_TX_TCP_UDP_CSUM;
1065 	}
1066 
1067 	for (i = 0; i < map->dm_nsegs; i++) {
1068 		data = &sc->txq.data[sc->txq.cur];
1069 
1070 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1071 			desc64 = &sc->txq.desc64[sc->txq.cur];
1072 #if defined(__LP64__)
1073 			desc64->physaddr[0] =
1074 			    htole32(map->dm_segs[i].ds_addr >> 32);
1075 #endif
1076 			desc64->physaddr[1] =
1077 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1078 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1079 			desc64->flags = htole16(flags);
1080 			desc64->vtag = 0;
1081 		} else {
1082 			desc32 = &sc->txq.desc32[sc->txq.cur];
1083 
1084 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1085 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1086 			desc32->flags = htole16(flags);
1087 		}
1088 
1089 		/*
1090 		 * Setting of the valid bit in the first descriptor is
1091 		 * deferred until the whole chain is fully setup.
1092 		 */
1093 		flags |= NFE_TX_VALID;
1094 
1095 		sc->txq.queued++;
1096 		sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1097 	}
1098 
1099 	/* the whole mbuf chain has been setup */
1100 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1101 		/* fix last descriptor */
1102 		flags |= NFE_TX_LASTFRAG_V2;
1103 		desc64->flags = htole16(flags);
1104 
1105 		/* Checksum flags and vtag belong to the first fragment only. */
1106 #if NVLAN > 0
1107 		sc->txq.desc64[first].vtag = htole32(vtag);
1108 #endif
1109 		sc->txq.desc64[first].flags |= htole16(csumflags);
1110 
1111 		/* finally, set the valid bit in the first descriptor */
1112 		sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1113 	} else {
1114 		/* fix last descriptor */
1115 		if (sc->sc_flags & NFE_JUMBO_SUP)
1116 			flags |= NFE_TX_LASTFRAG_V2;
1117 		else
1118 			flags |= NFE_TX_LASTFRAG_V1;
1119 		desc32->flags = htole16(flags);
1120 
1121 		/* Checksum flags belong to the first fragment only. */
1122 		sc->txq.desc32[first].flags |= htole16(csumflags);
1123 
1124 		/* finally, set the valid bit in the first descriptor */
1125 		sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1126 	}
1127 
1128 	data->m = m0;
1129 	data->active = map;
1130 
1131 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1132 	    BUS_DMASYNC_PREWRITE);
1133 
1134 	return 0;
1135 }
1136 
1137 void
1138 nfe_start(struct ifnet *ifp)
1139 {
1140 	struct nfe_softc *sc = ifp->if_softc;
1141 	int old = sc->txq.queued;
1142 	struct mbuf *m0;
1143 
1144 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1145 		return;
1146 
1147 	for (;;) {
1148 		IFQ_POLL(&ifp->if_snd, m0);
1149 		if (m0 == NULL)
1150 			break;
1151 
1152 		if (nfe_encap(sc, m0) != 0) {
1153 			ifp->if_flags |= IFF_OACTIVE;
1154 			break;
1155 		}
1156 
1157 		/* packet put in h/w queue, remove from s/w queue */
1158 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1159 
1160 #if NBPFILTER > 0
1161 		if (ifp->if_bpf != NULL)
1162 			bpf_mtap(ifp->if_bpf, m0);
1163 #endif
1164 	}
1165 
1166 	if (sc->txq.queued != old) {
1167 		/* packets are queued */
1168 		if (sc->sc_flags & NFE_40BIT_ADDR)
1169 			nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1170 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1171 		else
1172 			nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1173 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1174 		/* kick Tx */
1175 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1176 
1177 		/*
1178 		 * Set a timeout in case the chip goes out to lunch.
1179 		 */
1180 		ifp->if_timer = 5;
1181 	}
1182 }
1183 
1184 void
1185 nfe_watchdog(struct ifnet *ifp)
1186 {
1187 	struct nfe_softc *sc = ifp->if_softc;
1188 
1189 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1190 
1191 	ifp->if_flags &= ~IFF_RUNNING;
1192 	nfe_init(ifp);
1193 
1194 	ifp->if_oerrors++;
1195 }
1196 
1197 int
1198 nfe_init(struct ifnet *ifp)
1199 {
1200 	struct nfe_softc *sc = ifp->if_softc;
1201 	uint32_t tmp;
1202 	int rc = 0, s;
1203 
1204 	if (ifp->if_flags & IFF_RUNNING)
1205 		return 0;
1206 
1207 	nfe_stop(ifp, 0);
1208 
1209 	NFE_WRITE(sc, NFE_TX_UNK, 0);
1210 	NFE_WRITE(sc, NFE_STATUS, 0);
1211 
1212 	sc->rxtxctl = NFE_RXTX_BIT2;
1213 	if (sc->sc_flags & NFE_40BIT_ADDR)
1214 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1215 	else if (sc->sc_flags & NFE_JUMBO_SUP)
1216 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1217 	if (sc->sc_flags & NFE_HW_CSUM)
1218 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1219 #if NVLAN > 0
1220 	/*
1221 	 * Although the adapter is capable of stripping VLAN tags from received
1222 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1223 	 * purpose.  This will be done in software by our network stack.
1224 	 */
1225 	if (sc->sc_flags & NFE_HW_VLAN)
1226 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1227 #endif
1228 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1229 	DELAY(10);
1230 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1231 
1232 #if NVLAN
1233 	if (sc->sc_flags & NFE_HW_VLAN)
1234 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1235 #endif
1236 
1237 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1238 
1239 	/* set MAC address */
1240 	nfe_set_macaddr(sc, sc->sc_enaddr);
1241 
1242 	/* tell MAC where rings are in memory */
1243 #ifdef __LP64__
1244 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1245 #endif
1246 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1247 #ifdef __LP64__
1248 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1249 #endif
1250 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1251 
1252 	NFE_WRITE(sc, NFE_RING_SIZE,
1253 	    (NFE_RX_RING_COUNT - 1) << 16 |
1254 	    (NFE_TX_RING_COUNT - 1));
1255 
1256 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1257 
1258 	/* force MAC to wakeup */
1259 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1260 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1261 	DELAY(10);
1262 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1263 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1264 
1265 	s = splnet();
1266 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1267 	nfe_intr(sc); /* XXX clear IRQ status registers */
1268 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1269 	splx(s);
1270 
1271 #if 1
1272 	/* configure interrupts coalescing/mitigation */
1273 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1274 #else
1275 	/* no interrupt mitigation: one interrupt per packet */
1276 	NFE_WRITE(sc, NFE_IMTIMER, 970);
1277 #endif
1278 
1279 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1280 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1281 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1282 
1283 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1284 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1285 
1286 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1287 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1288 
1289 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1290 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1291 	DELAY(10);
1292 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1293 
1294 	/* set Rx filter */
1295 	nfe_setmulti(sc);
1296 
1297 	if ((rc = ether_mediachange(ifp)) != 0)
1298 		goto out;
1299 
1300 	nfe_tick(sc);
1301 
1302 	/* enable Rx */
1303 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1304 
1305 	/* enable Tx */
1306 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1307 
1308 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1309 
1310 	/* enable interrupts */
1311 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1312 
1313 	callout_schedule(&sc->sc_tick_ch, hz);
1314 
1315 	ifp->if_flags |= IFF_RUNNING;
1316 	ifp->if_flags &= ~IFF_OACTIVE;
1317 
1318 out:
1319 	return rc;
1320 }
1321 
1322 void
1323 nfe_stop(struct ifnet *ifp, int disable)
1324 {
1325 	struct nfe_softc *sc = ifp->if_softc;
1326 
1327 	callout_stop(&sc->sc_tick_ch);
1328 
1329 	ifp->if_timer = 0;
1330 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1331 
1332 	mii_down(&sc->sc_mii);
1333 
1334 	/* abort Tx */
1335 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1336 
1337 	/* disable Rx */
1338 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1339 
1340 	/* disable interrupts */
1341 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1342 
1343 	/* reset Tx and Rx rings */
1344 	nfe_reset_tx_ring(sc, &sc->txq);
1345 	nfe_reset_rx_ring(sc, &sc->rxq);
1346 }
1347 
1348 int
1349 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1350 {
1351 	struct nfe_desc32 *desc32;
1352 	struct nfe_desc64 *desc64;
1353 	struct nfe_rx_data *data;
1354 	struct nfe_jbuf *jbuf;
1355 	void **desc;
1356 	bus_addr_t physaddr;
1357 	int i, nsegs, error, descsize;
1358 
1359 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1360 		desc = (void **)&ring->desc64;
1361 		descsize = sizeof (struct nfe_desc64);
1362 	} else {
1363 		desc = (void **)&ring->desc32;
1364 		descsize = sizeof (struct nfe_desc32);
1365 	}
1366 
1367 	ring->cur = ring->next = 0;
1368 	ring->bufsz = MCLBYTES;
1369 
1370 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1371 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1372 	if (error != 0) {
1373 		aprint_error_dev(sc->sc_dev,
1374 		    "could not create desc DMA map\n");
1375 		ring->map = NULL;
1376 		goto fail;
1377 	}
1378 
1379 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1380 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1381 	if (error != 0) {
1382 		aprint_error_dev(sc->sc_dev,
1383 		    "could not allocate DMA memory\n");
1384 		goto fail;
1385 	}
1386 
1387 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1388 	    NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1389 	if (error != 0) {
1390 		aprint_error_dev(sc->sc_dev,
1391 		    "could not map desc DMA memory\n");
1392 		goto fail;
1393 	}
1394 
1395 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1396 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1397 	if (error != 0) {
1398 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1399 		goto fail;
1400 	}
1401 
1402 	memset(*desc, 0, NFE_RX_RING_COUNT * descsize);
1403 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1404 
1405 	if (sc->sc_flags & NFE_USE_JUMBO) {
1406 		ring->bufsz = NFE_JBYTES;
1407 		if ((error = nfe_jpool_alloc(sc)) != 0) {
1408 			aprint_error_dev(sc->sc_dev,
1409 			    "could not allocate jumbo frames\n");
1410 			goto fail;
1411 		}
1412 	}
1413 
1414 	/*
1415 	 * Pre-allocate Rx buffers and populate Rx ring.
1416 	 */
1417 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1418 		data = &sc->rxq.data[i];
1419 
1420 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1421 		if (data->m == NULL) {
1422 			aprint_error_dev(sc->sc_dev,
1423 			    "could not allocate rx mbuf\n");
1424 			error = ENOMEM;
1425 			goto fail;
1426 		}
1427 
1428 		if (sc->sc_flags & NFE_USE_JUMBO) {
1429 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1430 				aprint_error_dev(sc->sc_dev,
1431 				    "could not allocate jumbo buffer\n");
1432 				goto fail;
1433 			}
1434 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1435 			    sc);
1436 
1437 			physaddr = jbuf->physaddr;
1438 		} else {
1439 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1440 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1441 			if (error != 0) {
1442 				aprint_error_dev(sc->sc_dev,
1443 				    "could not create DMA map\n");
1444 				data->map = NULL;
1445 				goto fail;
1446 			}
1447 			MCLGET(data->m, M_DONTWAIT);
1448 			if (!(data->m->m_flags & M_EXT)) {
1449 				aprint_error_dev(sc->sc_dev,
1450 				    "could not allocate mbuf cluster\n");
1451 				error = ENOMEM;
1452 				goto fail;
1453 			}
1454 
1455 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1456 			    mtod(data->m, void *), MCLBYTES, NULL,
1457 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
1458 			if (error != 0) {
1459 				aprint_error_dev(sc->sc_dev,
1460 				    "could not load rx buf DMA map");
1461 				goto fail;
1462 			}
1463 			physaddr = data->map->dm_segs[0].ds_addr;
1464 		}
1465 
1466 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1467 			desc64 = &sc->rxq.desc64[i];
1468 #if defined(__LP64__)
1469 			desc64->physaddr[0] = htole32(physaddr >> 32);
1470 #endif
1471 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1472 			desc64->length = htole16(sc->rxq.bufsz);
1473 			desc64->flags = htole16(NFE_RX_READY);
1474 		} else {
1475 			desc32 = &sc->rxq.desc32[i];
1476 			desc32->physaddr = htole32(physaddr);
1477 			desc32->length = htole16(sc->rxq.bufsz);
1478 			desc32->flags = htole16(NFE_RX_READY);
1479 		}
1480 	}
1481 
1482 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1483 	    BUS_DMASYNC_PREWRITE);
1484 
1485 	return 0;
1486 
1487 fail:	nfe_free_rx_ring(sc, ring);
1488 	return error;
1489 }
1490 
1491 void
1492 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1493 {
1494 	int i;
1495 
1496 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1497 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1498 			ring->desc64[i].length = htole16(ring->bufsz);
1499 			ring->desc64[i].flags = htole16(NFE_RX_READY);
1500 		} else {
1501 			ring->desc32[i].length = htole16(ring->bufsz);
1502 			ring->desc32[i].flags = htole16(NFE_RX_READY);
1503 		}
1504 	}
1505 
1506 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1507 	    BUS_DMASYNC_PREWRITE);
1508 
1509 	ring->cur = ring->next = 0;
1510 }
1511 
1512 void
1513 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1514 {
1515 	struct nfe_rx_data *data;
1516 	void *desc;
1517 	int i, descsize;
1518 
1519 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1520 		desc = ring->desc64;
1521 		descsize = sizeof (struct nfe_desc64);
1522 	} else {
1523 		desc = ring->desc32;
1524 		descsize = sizeof (struct nfe_desc32);
1525 	}
1526 
1527 	if (desc != NULL) {
1528 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1529 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1530 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1531 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1532 		    NFE_RX_RING_COUNT * descsize);
1533 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1534 	}
1535 
1536 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1537 		data = &ring->data[i];
1538 
1539 		if (data->map != NULL) {
1540 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1541 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1542 			bus_dmamap_unload(sc->sc_dmat, data->map);
1543 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1544 		}
1545 		if (data->m != NULL)
1546 			m_freem(data->m);
1547 	}
1548 }
1549 
1550 struct nfe_jbuf *
1551 nfe_jalloc(struct nfe_softc *sc, int i)
1552 {
1553 	struct nfe_jbuf *jbuf;
1554 
1555 	mutex_enter(&sc->rxq.mtx);
1556 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1557 	if (jbuf != NULL)
1558 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1559 	mutex_exit(&sc->rxq.mtx);
1560 	if (jbuf == NULL)
1561 		return NULL;
1562 	sc->rxq.jbufmap[i] =
1563 	    ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1564 	return jbuf;
1565 }
1566 
1567 /*
1568  * This is called automatically by the network stack when the mbuf is freed.
1569  * Caution must be taken that the NIC might be reset by the time the mbuf is
1570  * freed.
1571  */
1572 void
1573 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1574 {
1575 	struct nfe_softc *sc = arg;
1576 	struct nfe_jbuf *jbuf;
1577 	int i;
1578 
1579 	/* find the jbuf from the base pointer */
1580 	i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1581 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
1582 		aprint_error_dev(sc->sc_dev,
1583 		    "request to free a buffer (%p) not managed by us\n", buf);
1584 		return;
1585 	}
1586 	jbuf = &sc->rxq.jbuf[i];
1587 
1588 	/* ..and put it back in the free list */
1589 	mutex_enter(&sc->rxq.mtx);
1590 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1591 	mutex_exit(&sc->rxq.mtx);
1592 
1593 	if (m != NULL)
1594 		pool_cache_put(mb_cache, m);
1595 }
1596 
1597 int
1598 nfe_jpool_alloc(struct nfe_softc *sc)
1599 {
1600 	struct nfe_rx_ring *ring = &sc->rxq;
1601 	struct nfe_jbuf *jbuf;
1602 	bus_addr_t physaddr;
1603 	char *buf;
1604 	int i, nsegs, error;
1605 
1606 	/*
1607 	 * Allocate a big chunk of DMA'able memory.
1608 	 */
1609 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1610 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1611 	if (error != 0) {
1612 		aprint_error_dev(sc->sc_dev,
1613 		    "could not create jumbo DMA map\n");
1614 		ring->jmap = NULL;
1615 		goto fail;
1616 	}
1617 
1618 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1619 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1620 	if (error != 0) {
1621 		aprint_error_dev(sc->sc_dev,
1622 		    "could not allocate jumbo DMA memory\n");
1623 		goto fail;
1624 	}
1625 
1626 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1627 	    &ring->jpool, BUS_DMA_NOWAIT);
1628 	if (error != 0) {
1629 		aprint_error_dev(sc->sc_dev,
1630 		    "could not map jumbo DMA memory\n");
1631 		goto fail;
1632 	}
1633 
1634 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1635 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1636 	if (error != 0) {
1637 		aprint_error_dev(sc->sc_dev,
1638 		    "could not load jumbo DMA map\n");
1639 		goto fail;
1640 	}
1641 
1642 	/* ..and split it into 9KB chunks */
1643 	SLIST_INIT(&ring->jfreelist);
1644 
1645 	buf = ring->jpool;
1646 	physaddr = ring->jmap->dm_segs[0].ds_addr;
1647 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1648 		jbuf = &ring->jbuf[i];
1649 
1650 		jbuf->buf = buf;
1651 		jbuf->physaddr = physaddr;
1652 
1653 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1654 
1655 		buf += NFE_JBYTES;
1656 		physaddr += NFE_JBYTES;
1657 	}
1658 
1659 	return 0;
1660 
1661 fail:	nfe_jpool_free(sc);
1662 	return error;
1663 }
1664 
1665 void
1666 nfe_jpool_free(struct nfe_softc *sc)
1667 {
1668 	struct nfe_rx_ring *ring = &sc->rxq;
1669 
1670 	if (ring->jmap != NULL) {
1671 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1672 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1673 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1674 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1675 	}
1676 	if (ring->jpool != NULL) {
1677 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1678 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1679 	}
1680 }
1681 
1682 int
1683 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1684 {
1685 	int i, nsegs, error;
1686 	void **desc;
1687 	int descsize;
1688 
1689 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1690 		desc = (void **)&ring->desc64;
1691 		descsize = sizeof (struct nfe_desc64);
1692 	} else {
1693 		desc = (void **)&ring->desc32;
1694 		descsize = sizeof (struct nfe_desc32);
1695 	}
1696 
1697 	ring->queued = 0;
1698 	ring->cur = ring->next = 0;
1699 
1700 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1701 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1702 
1703 	if (error != 0) {
1704 		aprint_error_dev(sc->sc_dev,
1705 		    "could not create desc DMA map\n");
1706 		ring->map = NULL;
1707 		goto fail;
1708 	}
1709 
1710 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1711 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1712 	if (error != 0) {
1713 		aprint_error_dev(sc->sc_dev,
1714 		    "could not allocate DMA memory\n");
1715 		goto fail;
1716 	}
1717 
1718 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1719 	    NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1720 	if (error != 0) {
1721 		aprint_error_dev(sc->sc_dev,
1722 		    "could not map desc DMA memory\n");
1723 		goto fail;
1724 	}
1725 
1726 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1727 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1728 	if (error != 0) {
1729 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1730 		goto fail;
1731 	}
1732 
1733 	memset(*desc, 0, NFE_TX_RING_COUNT * descsize);
1734 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1735 
1736 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1737 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1738 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1739 		    &ring->data[i].map);
1740 		if (error != 0) {
1741 			aprint_error_dev(sc->sc_dev,
1742 			    "could not create DMA map\n");
1743 			ring->data[i].map = NULL;
1744 			goto fail;
1745 		}
1746 	}
1747 
1748 	return 0;
1749 
1750 fail:	nfe_free_tx_ring(sc, ring);
1751 	return error;
1752 }
1753 
1754 void
1755 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1756 {
1757 	struct nfe_tx_data *data;
1758 	int i;
1759 
1760 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1761 		if (sc->sc_flags & NFE_40BIT_ADDR)
1762 			ring->desc64[i].flags = 0;
1763 		else
1764 			ring->desc32[i].flags = 0;
1765 
1766 		data = &ring->data[i];
1767 
1768 		if (data->m != NULL) {
1769 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1770 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1771 			bus_dmamap_unload(sc->sc_dmat, data->active);
1772 			m_freem(data->m);
1773 			data->m = NULL;
1774 		}
1775 	}
1776 
1777 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1778 	    BUS_DMASYNC_PREWRITE);
1779 
1780 	ring->queued = 0;
1781 	ring->cur = ring->next = 0;
1782 }
1783 
1784 void
1785 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1786 {
1787 	struct nfe_tx_data *data;
1788 	void *desc;
1789 	int i, descsize;
1790 
1791 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1792 		desc = ring->desc64;
1793 		descsize = sizeof (struct nfe_desc64);
1794 	} else {
1795 		desc = ring->desc32;
1796 		descsize = sizeof (struct nfe_desc32);
1797 	}
1798 
1799 	if (desc != NULL) {
1800 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1801 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1802 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1803 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1804 		    NFE_TX_RING_COUNT * descsize);
1805 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1806 	}
1807 
1808 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1809 		data = &ring->data[i];
1810 
1811 		if (data->m != NULL) {
1812 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1813 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1814 			bus_dmamap_unload(sc->sc_dmat, data->active);
1815 			m_freem(data->m);
1816 		}
1817 	}
1818 
1819 	/* ..and now actually destroy the DMA mappings */
1820 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1821 		data = &ring->data[i];
1822 		if (data->map == NULL)
1823 			continue;
1824 		bus_dmamap_destroy(sc->sc_dmat, data->map);
1825 	}
1826 }
1827 
1828 void
1829 nfe_setmulti(struct nfe_softc *sc)
1830 {
1831 	struct ethercom *ec = &sc->sc_ethercom;
1832 	struct ifnet *ifp = &ec->ec_if;
1833 	struct ether_multi *enm;
1834 	struct ether_multistep step;
1835 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1836 	uint32_t filter = NFE_RXFILTER_MAGIC;
1837 	int i;
1838 
1839 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1840 		memset(addr, 0, ETHER_ADDR_LEN);
1841 		memset(mask, 0, ETHER_ADDR_LEN);
1842 		goto done;
1843 	}
1844 
1845 	memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN);
1846 	memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN);
1847 
1848 	ETHER_FIRST_MULTI(step, ec, enm);
1849 	while (enm != NULL) {
1850 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1851 			ifp->if_flags |= IFF_ALLMULTI;
1852 			memset(addr, 0, ETHER_ADDR_LEN);
1853 			memset(mask, 0, ETHER_ADDR_LEN);
1854 			goto done;
1855 		}
1856 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1857 			addr[i] &=  enm->enm_addrlo[i];
1858 			mask[i] &= ~enm->enm_addrlo[i];
1859 		}
1860 		ETHER_NEXT_MULTI(step, enm);
1861 	}
1862 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1863 		mask[i] |= addr[i];
1864 
1865 done:
1866 	addr[0] |= 0x01;	/* make sure multicast bit is set */
1867 
1868 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
1869 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1870 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
1871 	    addr[5] <<  8 | addr[4]);
1872 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
1873 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1874 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
1875 	    mask[5] <<  8 | mask[4]);
1876 
1877 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1878 	NFE_WRITE(sc, NFE_RXFILTER, filter);
1879 }
1880 
1881 void
1882 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1883 {
1884 	uint32_t tmp;
1885 
1886 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1887 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
1888 		addr[0] = (tmp & 0xff);
1889 		addr[1] = (tmp >>  8) & 0xff;
1890 		addr[2] = (tmp >> 16) & 0xff;
1891 		addr[3] = (tmp >> 24) & 0xff;
1892 
1893 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
1894 		addr[4] = (tmp & 0xff);
1895 		addr[5] = (tmp >> 8) & 0xff;
1896 
1897 	} else {
1898 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
1899 		addr[0] = (tmp >> 8) & 0xff;
1900 		addr[1] = (tmp & 0xff);
1901 
1902 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
1903 		addr[2] = (tmp >> 24) & 0xff;
1904 		addr[3] = (tmp >> 16) & 0xff;
1905 		addr[4] = (tmp >>  8) & 0xff;
1906 		addr[5] = (tmp & 0xff);
1907 	}
1908 }
1909 
1910 void
1911 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1912 {
1913 	NFE_WRITE(sc, NFE_MACADDR_LO,
1914 	    addr[5] <<  8 | addr[4]);
1915 	NFE_WRITE(sc, NFE_MACADDR_HI,
1916 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1917 }
1918 
1919 void
1920 nfe_tick(void *arg)
1921 {
1922 	struct nfe_softc *sc = arg;
1923 	int s;
1924 
1925 	s = splnet();
1926 	mii_tick(&sc->sc_mii);
1927 	splx(s);
1928 
1929 	callout_schedule(&sc->sc_tick_ch, hz);
1930 }
1931 
1932 void
1933 nfe_poweron(device_t self)
1934 {
1935 	struct nfe_softc *sc = device_private(self);
1936 
1937 	if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
1938 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
1939 		NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
1940 		DELAY(100);
1941 		NFE_WRITE(sc, NFE_MAC_RESET, 0);
1942 		DELAY(100);
1943 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
1944 		NFE_WRITE(sc, NFE_PWR2_CTL,
1945 		    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
1946 	}
1947 }
1948 
1949 bool
1950 nfe_resume(device_t dv, pmf_qual_t qual)
1951 {
1952 	nfe_poweron(dv);
1953 
1954 	return true;
1955 }
1956