xref: /netbsd-src/sys/dev/pci/if_nfe.c (revision 2980e352a13e8f0b545a366830c411e7a542ada8)
1 /*	$NetBSD: if_nfe.c,v 1.36 2008/06/17 12:59:32 cube Exp $	*/
2 /*	$OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.36 2008/06/17 12:59:32 cube Exp $");
25 
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29 
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/mutex.h>
37 #include <sys/queue.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/callout.h>
41 #include <sys/socket.h>
42 
43 #include <sys/bus.h>
44 
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49 #include <net/if_arp.h>
50 
51 #ifdef INET
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 #include <netinet/if_inarp.h>
57 #endif
58 
59 #if NVLAN > 0
60 #include <net/if_types.h>
61 #endif
62 
63 #if NBPFILTER > 0
64 #include <net/bpf.h>
65 #endif
66 
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73 
74 #include <dev/pci/if_nfereg.h>
75 #include <dev/pci/if_nfevar.h>
76 
77 int	nfe_match(device_t, cfdata_t, void *);
78 void	nfe_attach(device_t, device_t, void *);
79 void	nfe_power(int, void *);
80 void	nfe_miibus_statchg(device_t);
81 int	nfe_miibus_readreg(device_t, int, int);
82 void	nfe_miibus_writereg(device_t, int, int, int);
83 int	nfe_intr(void *);
84 int	nfe_ioctl(struct ifnet *, u_long, void *);
85 void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
86 void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
87 void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
88 void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
89 void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
90 void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
91 void	nfe_rxeof(struct nfe_softc *);
92 void	nfe_txeof(struct nfe_softc *);
93 int	nfe_encap(struct nfe_softc *, struct mbuf *);
94 void	nfe_start(struct ifnet *);
95 void	nfe_watchdog(struct ifnet *);
96 int	nfe_init(struct ifnet *);
97 void	nfe_stop(struct ifnet *, int);
98 struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
99 void	nfe_jfree(struct mbuf *, void *, size_t, void *);
100 int	nfe_jpool_alloc(struct nfe_softc *);
101 void	nfe_jpool_free(struct nfe_softc *);
102 int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void	nfe_setmulti(struct nfe_softc *);
109 void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
110 void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
111 void	nfe_tick(void *);
112 void	nfe_poweron(device_t);
113 bool	nfe_resume(device_t PMF_FN_PROTO);
114 
115 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
116     NULL, NULL);
117 
118 /* #define NFE_NO_JUMBO */
119 
120 #ifdef NFE_DEBUG
121 int nfedebug = 0;
122 #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
123 #define DPRINTFN(n,x)	do { if (nfedebug >= (n)) printf x; } while (0)
124 #else
125 #define DPRINTF(x)
126 #define DPRINTFN(n,x)
127 #endif
128 
129 /* deal with naming differences */
130 
131 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
132 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
133 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
134 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
135 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
136 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
137 
138 #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
139 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
140 #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
141 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
142 
143 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
144 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
145 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
146 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
147 
148 #ifdef	_LP64
149 #define	__LP64__ 1
150 #endif
151 
152 const struct nfe_product {
153 	pci_vendor_id_t		vendor;
154 	pci_product_id_t	product;
155 } nfe_devices[] = {
156 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
157 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
158 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
159 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
160 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
161 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
162 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
163 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
164 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
165 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
166 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
167 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
168 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
169 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
170 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
171 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
172 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
173 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
174 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
175 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
176 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
177 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
178 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
179 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
180 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
181 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
182 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
183 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
184 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
185 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
186 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
187 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
188 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
189 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
190 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
191 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
192 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
193 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
194 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
195 };
196 
197 int
198 nfe_match(device_t dev, cfdata_t match, void *aux)
199 {
200 	struct pci_attach_args *pa = aux;
201 	const struct nfe_product *np;
202 	int i;
203 
204 	for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
205 		np = &nfe_devices[i];
206 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
207 		    PCI_PRODUCT(pa->pa_id) == np->product)
208 			return 1;
209 	}
210 	return 0;
211 }
212 
213 void
214 nfe_attach(device_t parent, device_t self, void *aux)
215 {
216 	struct nfe_softc *sc = device_private(self);
217 	struct pci_attach_args *pa = aux;
218 	pci_chipset_tag_t pc = pa->pa_pc;
219 	pci_intr_handle_t ih;
220 	const char *intrstr;
221 	struct ifnet *ifp;
222 	bus_size_t memsize;
223 	pcireg_t memtype;
224 	char devinfo[256];
225 
226 	sc->sc_dev = self;
227 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
228 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
229 
230 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
231 	switch (memtype) {
232 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
233 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
234 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
235 		    &sc->sc_memh, NULL, &memsize) == 0)
236 			break;
237 		/* FALLTHROUGH */
238 	default:
239 		aprint_error_dev(self, "could not map mem space\n");
240 		return;
241 	}
242 
243 	if (pci_intr_map(pa, &ih) != 0) {
244 		aprint_error_dev(self, "could not map interrupt\n");
245 		return;
246 	}
247 
248 	intrstr = pci_intr_string(pc, ih);
249 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
250 	if (sc->sc_ih == NULL) {
251 		aprint_error_dev(self, "could not establish interrupt");
252 		if (intrstr != NULL)
253 			aprint_normal(" at %s", intrstr);
254 		aprint_normal("\n");
255 		return;
256 	}
257 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
258 
259 	sc->sc_dmat = pa->pa_dmat;
260 
261 	sc->sc_flags = 0;
262 
263 	switch (PCI_PRODUCT(pa->pa_id)) {
264 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
265 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
266 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
267 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
268 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
269 		break;
270 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
271 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
272 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
273 		break;
274 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
275 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
276 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
277 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
278 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
279 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
280 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
281 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
282 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
283 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
284 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
285 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
286 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
287 		    NFE_PWR_MGMT;
288 		break;
289 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
290 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
291 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
292 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
293 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
294 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
295 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
296 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
297 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
298 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
299 		break;
300 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
301 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
302 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
303 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
304 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
305 		break;
306 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
307 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
308 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
309 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
310 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
311 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
312 		break;
313 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
314 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
315 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
316 		    NFE_HW_VLAN | NFE_PWR_MGMT;
317 		break;
318 	}
319 
320 	nfe_poweron(self);
321 
322 #ifndef NFE_NO_JUMBO
323 	/* enable jumbo frames for adapters that support it */
324 	if (sc->sc_flags & NFE_JUMBO_SUP)
325 		sc->sc_flags |= NFE_USE_JUMBO;
326 #endif
327 
328 	/* Check for reversed ethernet address */
329 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
330 		sc->sc_flags |= NFE_CORRECT_MACADDR;
331 
332 	nfe_get_macaddr(sc, sc->sc_enaddr);
333 	aprint_normal_dev(self, "Ethernet address %s\n",
334 	    ether_sprintf(sc->sc_enaddr));
335 
336 	/*
337 	 * Allocate Tx and Rx rings.
338 	 */
339 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
340 		aprint_error_dev(self, "could not allocate Tx ring\n");
341 		return;
342 	}
343 
344 	mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
345 
346 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
347 		aprint_error_dev(self, "could not allocate Rx ring\n");
348 		nfe_free_tx_ring(sc, &sc->txq);
349 		return;
350 	}
351 
352 	ifp = &sc->sc_ethercom.ec_if;
353 	ifp->if_softc = sc;
354 	ifp->if_mtu = ETHERMTU;
355 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
356 	ifp->if_ioctl = nfe_ioctl;
357 	ifp->if_start = nfe_start;
358 	ifp->if_stop = nfe_stop;
359 	ifp->if_watchdog = nfe_watchdog;
360 	ifp->if_init = nfe_init;
361 	ifp->if_baudrate = IF_Gbps(1);
362 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
363 	IFQ_SET_READY(&ifp->if_snd);
364 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
365 
366 #ifdef notyet
367 	if (sc->sc_flags & NFE_USE_JUMBO)
368 		ifp->if_hardmtu = NFE_JUMBO_MTU;
369 #endif
370 
371 #if NVLAN > 0
372 	if (sc->sc_flags & NFE_HW_VLAN)
373 		sc->sc_ethercom.ec_capabilities |=
374 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
375 #endif
376 	if (sc->sc_flags & NFE_HW_CSUM) {
377 		ifp->if_capabilities |=
378 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
379 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
380 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
381 	}
382 
383 	sc->sc_mii.mii_ifp = ifp;
384 	sc->sc_mii.mii_readreg = nfe_miibus_readreg;
385 	sc->sc_mii.mii_writereg = nfe_miibus_writereg;
386 	sc->sc_mii.mii_statchg = nfe_miibus_statchg;
387 
388 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
389 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
390 	    ether_mediastatus);
391 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
392 	    MII_OFFSET_ANY, 0);
393 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
394 		aprint_error_dev(self, "no PHY found!\n");
395 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
396 		    0, NULL);
397 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
398 	} else
399 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
400 
401 	if_attach(ifp);
402 	ether_ifattach(ifp, sc->sc_enaddr);
403 
404 	callout_init(&sc->sc_tick_ch, 0);
405 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
406 
407 	if (!pmf_device_register(self, NULL, nfe_resume))
408 		aprint_error_dev(self, "couldn't establish power handler\n");
409 	else
410 		pmf_class_network_register(self, ifp);
411 }
412 
413 void
414 nfe_miibus_statchg(device_t dev)
415 {
416 	struct nfe_softc *sc = device_private(dev);
417 	struct mii_data *mii = &sc->sc_mii;
418 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
419 
420 	phy = NFE_READ(sc, NFE_PHY_IFACE);
421 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
422 
423 	seed = NFE_READ(sc, NFE_RNDSEED);
424 	seed &= ~NFE_SEED_MASK;
425 
426 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
427 		phy  |= NFE_PHY_HDX;	/* half-duplex */
428 		misc |= NFE_MISC1_HDX;
429 	}
430 
431 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
432 	case IFM_1000_T:	/* full-duplex only */
433 		link |= NFE_MEDIA_1000T;
434 		seed |= NFE_SEED_1000T;
435 		phy  |= NFE_PHY_1000T;
436 		break;
437 	case IFM_100_TX:
438 		link |= NFE_MEDIA_100TX;
439 		seed |= NFE_SEED_100TX;
440 		phy  |= NFE_PHY_100TX;
441 		break;
442 	case IFM_10_T:
443 		link |= NFE_MEDIA_10T;
444 		seed |= NFE_SEED_10T;
445 		break;
446 	}
447 
448 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
449 
450 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
451 	NFE_WRITE(sc, NFE_MISC1, misc);
452 	NFE_WRITE(sc, NFE_LINKSPEED, link);
453 }
454 
455 int
456 nfe_miibus_readreg(device_t dev, int phy, int reg)
457 {
458 	struct nfe_softc *sc = device_private(dev);
459 	uint32_t val;
460 	int ntries;
461 
462 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
463 
464 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
465 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
466 		DELAY(100);
467 	}
468 
469 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
470 
471 	for (ntries = 0; ntries < 1000; ntries++) {
472 		DELAY(100);
473 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
474 			break;
475 	}
476 	if (ntries == 1000) {
477 		DPRINTFN(2, ("%s: timeout waiting for PHY\n",
478 		    device_xname(sc->sc_dev)));
479 		return 0;
480 	}
481 
482 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
483 		DPRINTFN(2, ("%s: could not read PHY\n",
484 		    device_xname(sc->sc_dev)));
485 		return 0;
486 	}
487 
488 	val = NFE_READ(sc, NFE_PHY_DATA);
489 	if (val != 0xffffffff && val != 0)
490 		sc->mii_phyaddr = phy;
491 
492 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
493 	    device_xname(sc->sc_dev), phy, reg, val));
494 
495 	return val;
496 }
497 
498 void
499 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
500 {
501 	struct nfe_softc *sc = device_private(dev);
502 	uint32_t ctl;
503 	int ntries;
504 
505 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
506 
507 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
508 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
509 		DELAY(100);
510 	}
511 
512 	NFE_WRITE(sc, NFE_PHY_DATA, val);
513 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
514 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
515 
516 	for (ntries = 0; ntries < 1000; ntries++) {
517 		DELAY(100);
518 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
519 			break;
520 	}
521 #ifdef NFE_DEBUG
522 	if (nfedebug >= 2 && ntries == 1000)
523 		printf("could not write to PHY\n");
524 #endif
525 }
526 
527 int
528 nfe_intr(void *arg)
529 {
530 	struct nfe_softc *sc = arg;
531 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
532 	uint32_t r;
533 	int handled;
534 
535 	if ((ifp->if_flags & IFF_UP) == 0)
536 		return 0;
537 
538 	handled = 0;
539 
540 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
541 
542 	for (;;) {
543 		r = NFE_READ(sc, NFE_IRQ_STATUS);
544 		if ((r & NFE_IRQ_WANTED) == 0)
545 			break;
546 
547 		NFE_WRITE(sc, NFE_IRQ_STATUS, r);
548 		handled = 1;
549 		DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
550 
551 		if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
552 			/* check Rx ring */
553 			nfe_rxeof(sc);
554 		}
555 		if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
556 			/* check Tx ring */
557 			nfe_txeof(sc);
558 		}
559 		if ((r & NFE_IRQ_LINK) != 0) {
560 			NFE_READ(sc, NFE_PHY_STATUS);
561 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
562 			DPRINTF(("%s: link state changed\n",
563 			    device_xname(sc->sc_dev)));
564 		}
565 	}
566 
567 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
568 
569 	if (handled && !IF_IS_EMPTY(&ifp->if_snd))
570 		nfe_start(ifp);
571 
572 	return handled;
573 }
574 
575 int
576 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
577 {
578 	struct nfe_softc *sc = ifp->if_softc;
579 	struct ifreq *ifr = (struct ifreq *)data;
580 	struct ifaddr *ifa = (struct ifaddr *)data;
581 	int s, error = 0;
582 
583 	s = splnet();
584 
585 	switch (cmd) {
586 	case SIOCSIFADDR:
587 		ifp->if_flags |= IFF_UP;
588 		nfe_init(ifp);
589 		switch (ifa->ifa_addr->sa_family) {
590 #ifdef INET
591 		case AF_INET:
592 			arp_ifinit(ifp, ifa);
593 			break;
594 #endif
595 		default:
596 			break;
597 		}
598 		break;
599 	case SIOCSIFMTU:
600 		if (ifr->ifr_mtu < ETHERMIN ||
601 		    ((sc->sc_flags & NFE_USE_JUMBO) &&
602 		    ifr->ifr_mtu > ETHERMTU_JUMBO) ||
603 		    (!(sc->sc_flags & NFE_USE_JUMBO) &&
604 		    ifr->ifr_mtu > ETHERMTU))
605 			error = EINVAL;
606 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
607 			error = 0;
608 		break;
609 	case SIOCSIFFLAGS:
610 		if (ifp->if_flags & IFF_UP) {
611 			/*
612 			 * If only the PROMISC or ALLMULTI flag changes, then
613 			 * don't do a full re-init of the chip, just update
614 			 * the Rx filter.
615 			 */
616 			if ((ifp->if_flags & IFF_RUNNING) &&
617 			    ((ifp->if_flags ^ sc->sc_if_flags) &
618 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
619 				nfe_setmulti(sc);
620 			} else
621 				nfe_init(ifp);
622 		} else {
623 			if (ifp->if_flags & IFF_RUNNING)
624 				nfe_stop(ifp, 1);
625 		}
626 		sc->sc_if_flags = ifp->if_flags;
627 		break;
628 	default:
629 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
630 			break;
631 
632 		error = 0;
633 
634 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
635 			;
636 		else if (ifp->if_flags & IFF_RUNNING)
637 			nfe_setmulti(sc);
638 		break;
639 	}
640 
641 	splx(s);
642 
643 	return error;
644 }
645 
646 void
647 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
648 {
649 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
650 	    (char *)desc32 - (char *)sc->txq.desc32,
651 	    sizeof (struct nfe_desc32), ops);
652 }
653 
654 void
655 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
656 {
657 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
658 	    (char *)desc64 - (char *)sc->txq.desc64,
659 	    sizeof (struct nfe_desc64), ops);
660 }
661 
662 void
663 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
664 {
665 	if (end > start) {
666 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
667 		    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
668 		    (char *)&sc->txq.desc32[end] -
669 		    (char *)&sc->txq.desc32[start], ops);
670 		return;
671 	}
672 	/* sync from 'start' to end of ring */
673 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
674 	    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
675 	    (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
676 	    (char *)&sc->txq.desc32[start], ops);
677 
678 	/* sync from start of ring to 'end' */
679 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
680 	    (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
681 }
682 
683 void
684 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
685 {
686 	if (end > start) {
687 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
688 		    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
689 		    (char *)&sc->txq.desc64[end] -
690 		    (char *)&sc->txq.desc64[start], ops);
691 		return;
692 	}
693 	/* sync from 'start' to end of ring */
694 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
695 	    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
696 	    (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
697 	    (char *)&sc->txq.desc64[start], ops);
698 
699 	/* sync from start of ring to 'end' */
700 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
701 	    (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
702 }
703 
704 void
705 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
706 {
707 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
708 	    (char *)desc32 - (char *)sc->rxq.desc32,
709 	    sizeof (struct nfe_desc32), ops);
710 }
711 
712 void
713 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
714 {
715 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
716 	    (char *)desc64 - (char *)sc->rxq.desc64,
717 	    sizeof (struct nfe_desc64), ops);
718 }
719 
720 void
721 nfe_rxeof(struct nfe_softc *sc)
722 {
723 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
724 	struct nfe_desc32 *desc32;
725 	struct nfe_desc64 *desc64;
726 	struct nfe_rx_data *data;
727 	struct nfe_jbuf *jbuf;
728 	struct mbuf *m, *mnew;
729 	bus_addr_t physaddr;
730 	uint16_t flags;
731 	int error, len, i;
732 
733 	desc32 = NULL;
734 	desc64 = NULL;
735 	for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
736 		data = &sc->rxq.data[i];
737 
738 		if (sc->sc_flags & NFE_40BIT_ADDR) {
739 			desc64 = &sc->rxq.desc64[i];
740 			nfe_rxdesc64_sync(sc, desc64,
741 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
742 
743 			flags = le16toh(desc64->flags);
744 			len = le16toh(desc64->length) & 0x3fff;
745 		} else {
746 			desc32 = &sc->rxq.desc32[i];
747 			nfe_rxdesc32_sync(sc, desc32,
748 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
749 
750 			flags = le16toh(desc32->flags);
751 			len = le16toh(desc32->length) & 0x3fff;
752 		}
753 
754 		if ((flags & NFE_RX_READY) != 0)
755 			break;
756 
757 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
758 			if ((flags & NFE_RX_VALID_V1) == 0)
759 				goto skip;
760 
761 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
762 				flags &= ~NFE_RX_ERROR;
763 				len--;	/* fix buffer length */
764 			}
765 		} else {
766 			if ((flags & NFE_RX_VALID_V2) == 0)
767 				goto skip;
768 
769 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
770 				flags &= ~NFE_RX_ERROR;
771 				len--;	/* fix buffer length */
772 			}
773 		}
774 
775 		if (flags & NFE_RX_ERROR) {
776 			ifp->if_ierrors++;
777 			goto skip;
778 		}
779 
780 		/*
781 		 * Try to allocate a new mbuf for this ring element and load
782 		 * it before processing the current mbuf. If the ring element
783 		 * cannot be loaded, drop the received packet and reuse the
784 		 * old mbuf. In the unlikely case that the old mbuf can't be
785 		 * reloaded either, explicitly panic.
786 		 */
787 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
788 		if (mnew == NULL) {
789 			ifp->if_ierrors++;
790 			goto skip;
791 		}
792 
793 		if (sc->sc_flags & NFE_USE_JUMBO) {
794 			physaddr =
795 			    sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
796 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
797 				if (len > MCLBYTES) {
798 					m_freem(mnew);
799 					ifp->if_ierrors++;
800 					goto skip1;
801 				}
802 				MCLGET(mnew, M_DONTWAIT);
803 				if ((mnew->m_flags & M_EXT) == 0) {
804 					m_freem(mnew);
805 					ifp->if_ierrors++;
806 					goto skip1;
807 				}
808 
809 				(void)memcpy(mtod(mnew, void *),
810 				    mtod(data->m, const void *), len);
811 				m = mnew;
812 				goto mbufcopied;
813 			} else {
814 				MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
815 				bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
816 				    mtod(data->m, char *) - (char *)sc->rxq.jpool,
817 				    NFE_JBYTES, BUS_DMASYNC_POSTREAD);
818 
819 				physaddr = jbuf->physaddr;
820 			}
821 		} else {
822 			MCLGET(mnew, M_DONTWAIT);
823 			if ((mnew->m_flags & M_EXT) == 0) {
824 				m_freem(mnew);
825 				ifp->if_ierrors++;
826 				goto skip;
827 			}
828 
829 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
830 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
831 			bus_dmamap_unload(sc->sc_dmat, data->map);
832 
833 			error = bus_dmamap_load(sc->sc_dmat, data->map,
834 			    mtod(mnew, void *), MCLBYTES, NULL,
835 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
836 			if (error != 0) {
837 				m_freem(mnew);
838 
839 				/* try to reload the old mbuf */
840 				error = bus_dmamap_load(sc->sc_dmat, data->map,
841 				    mtod(data->m, void *), MCLBYTES, NULL,
842 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
843 				if (error != 0) {
844 					/* very unlikely that it will fail.. */
845 					panic("%s: could not load old rx mbuf",
846 					    device_xname(sc->sc_dev));
847 				}
848 				ifp->if_ierrors++;
849 				goto skip;
850 			}
851 			physaddr = data->map->dm_segs[0].ds_addr;
852 		}
853 
854 		/*
855 		 * New mbuf successfully loaded, update Rx ring and continue
856 		 * processing.
857 		 */
858 		m = data->m;
859 		data->m = mnew;
860 
861 mbufcopied:
862 		/* finalize mbuf */
863 		m->m_pkthdr.len = m->m_len = len;
864 		m->m_pkthdr.rcvif = ifp;
865 
866 		if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
867 			/*
868 			 * XXX
869 			 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
870 			 */
871 			if (flags & NFE_RX_IP_CSUMOK) {
872 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
873 				DPRINTFN(3, ("%s: ip4csum-rx ok\n",
874 				    device_xname(sc->sc_dev)));
875 			}
876 			/*
877 			 * XXX
878 			 * no way to check M_CSUM_TCP_UDP_BAD or
879 			 * other protocols?
880 			 */
881 			if (flags & NFE_RX_UDP_CSUMOK) {
882 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
883 				DPRINTFN(3, ("%s: udp4csum-rx ok\n",
884 				    device_xname(sc->sc_dev)));
885 			} else if (flags & NFE_RX_TCP_CSUMOK) {
886 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
887 				DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
888 				    device_xname(sc->sc_dev)));
889 			}
890 		}
891 #if NBPFILTER > 0
892 		if (ifp->if_bpf)
893 			bpf_mtap(ifp->if_bpf, m);
894 #endif
895 		ifp->if_ipackets++;
896 		(*ifp->if_input)(ifp, m);
897 
898 skip1:
899 		/* update mapping address in h/w descriptor */
900 		if (sc->sc_flags & NFE_40BIT_ADDR) {
901 #if defined(__LP64__)
902 			desc64->physaddr[0] = htole32(physaddr >> 32);
903 #endif
904 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
905 		} else {
906 			desc32->physaddr = htole32(physaddr);
907 		}
908 
909 skip:
910 		if (sc->sc_flags & NFE_40BIT_ADDR) {
911 			desc64->length = htole16(sc->rxq.bufsz);
912 			desc64->flags = htole16(NFE_RX_READY);
913 
914 			nfe_rxdesc64_sync(sc, desc64,
915 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
916 		} else {
917 			desc32->length = htole16(sc->rxq.bufsz);
918 			desc32->flags = htole16(NFE_RX_READY);
919 
920 			nfe_rxdesc32_sync(sc, desc32,
921 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
922 		}
923 	}
924 	/* update current RX pointer */
925 	sc->rxq.cur = i;
926 }
927 
928 void
929 nfe_txeof(struct nfe_softc *sc)
930 {
931 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
932 	struct nfe_desc32 *desc32;
933 	struct nfe_desc64 *desc64;
934 	struct nfe_tx_data *data = NULL;
935 	int i;
936 	uint16_t flags;
937 	char buf[128];
938 
939 	for (i = sc->txq.next;
940 	    sc->txq.queued > 0;
941 	    i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
942 		if (sc->sc_flags & NFE_40BIT_ADDR) {
943 			desc64 = &sc->txq.desc64[i];
944 			nfe_txdesc64_sync(sc, desc64,
945 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
946 
947 			flags = le16toh(desc64->flags);
948 		} else {
949 			desc32 = &sc->txq.desc32[i];
950 			nfe_txdesc32_sync(sc, desc32,
951 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
952 
953 			flags = le16toh(desc32->flags);
954 		}
955 
956 		if ((flags & NFE_TX_VALID) != 0)
957 			break;
958 
959 		data = &sc->txq.data[i];
960 
961 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
962 			if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
963 			    data->m == NULL)
964 				continue;
965 
966 			if ((flags & NFE_TX_ERROR_V1) != 0) {
967 				aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
968 				    bitmask_snprintf(flags, NFE_V1_TXERR,
969 				    buf, sizeof(buf)));
970 				ifp->if_oerrors++;
971 			} else
972 				ifp->if_opackets++;
973 		} else {
974 			if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
975 			    data->m == NULL)
976 				continue;
977 
978 			if ((flags & NFE_TX_ERROR_V2) != 0) {
979 				aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
980 				    bitmask_snprintf(flags, NFE_V2_TXERR,
981 				    buf, sizeof(buf)));
982 				ifp->if_oerrors++;
983 			} else
984 				ifp->if_opackets++;
985 		}
986 
987 		if (data->m == NULL) {	/* should not get there */
988 			aprint_error_dev(sc->sc_dev,
989 			    "last fragment bit w/o associated mbuf!\n");
990 			continue;
991 		}
992 
993 		/* last fragment of the mbuf chain transmitted */
994 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
995 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
996 		bus_dmamap_unload(sc->sc_dmat, data->active);
997 		m_freem(data->m);
998 		data->m = NULL;
999 	}
1000 
1001 	sc->txq.next = i;
1002 
1003 	if (sc->txq.queued < NFE_TX_RING_COUNT) {
1004 		/* at least one slot freed */
1005 		ifp->if_flags &= ~IFF_OACTIVE;
1006 	}
1007 
1008 	if (sc->txq.queued == 0) {
1009 		/* all queued packets are sent */
1010 		ifp->if_timer = 0;
1011 	}
1012 }
1013 
1014 int
1015 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1016 {
1017 	struct nfe_desc32 *desc32;
1018 	struct nfe_desc64 *desc64;
1019 	struct nfe_tx_data *data;
1020 	bus_dmamap_t map;
1021 	uint16_t flags, csumflags;
1022 #if NVLAN > 0
1023 	struct m_tag *mtag;
1024 	uint32_t vtag = 0;
1025 #endif
1026 	int error, i, first;
1027 
1028 	desc32 = NULL;
1029 	desc64 = NULL;
1030 	data = NULL;
1031 
1032 	flags = 0;
1033 	csumflags = 0;
1034 	first = sc->txq.cur;
1035 
1036 	map = sc->txq.data[first].map;
1037 
1038 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1039 	if (error != 0) {
1040 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1041 		    error);
1042 		return error;
1043 	}
1044 
1045 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1046 		bus_dmamap_unload(sc->sc_dmat, map);
1047 		return ENOBUFS;
1048 	}
1049 
1050 #if NVLAN > 0
1051 	/* setup h/w VLAN tagging */
1052 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1053 		vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1054 #endif
1055 	if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1056 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1057 			csumflags |= NFE_TX_IP_CSUM;
1058 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1059 			csumflags |= NFE_TX_TCP_UDP_CSUM;
1060 	}
1061 
1062 	for (i = 0; i < map->dm_nsegs; i++) {
1063 		data = &sc->txq.data[sc->txq.cur];
1064 
1065 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1066 			desc64 = &sc->txq.desc64[sc->txq.cur];
1067 #if defined(__LP64__)
1068 			desc64->physaddr[0] =
1069 			    htole32(map->dm_segs[i].ds_addr >> 32);
1070 #endif
1071 			desc64->physaddr[1] =
1072 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1073 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1074 			desc64->flags = htole16(flags);
1075 			desc64->vtag = 0;
1076 		} else {
1077 			desc32 = &sc->txq.desc32[sc->txq.cur];
1078 
1079 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1080 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1081 			desc32->flags = htole16(flags);
1082 		}
1083 
1084 		/*
1085 		 * Setting of the valid bit in the first descriptor is
1086 		 * deferred until the whole chain is fully setup.
1087 		 */
1088 		flags |= NFE_TX_VALID;
1089 
1090 		sc->txq.queued++;
1091 		sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1092 	}
1093 
1094 	/* the whole mbuf chain has been setup */
1095 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1096 		/* fix last descriptor */
1097 		flags |= NFE_TX_LASTFRAG_V2;
1098 		desc64->flags = htole16(flags);
1099 
1100 		/* Checksum flags and vtag belong to the first fragment only. */
1101 #if NVLAN > 0
1102 		sc->txq.desc64[first].vtag = htole32(vtag);
1103 #endif
1104 		sc->txq.desc64[first].flags |= htole16(csumflags);
1105 
1106 		/* finally, set the valid bit in the first descriptor */
1107 		sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1108 	} else {
1109 		/* fix last descriptor */
1110 		if (sc->sc_flags & NFE_JUMBO_SUP)
1111 			flags |= NFE_TX_LASTFRAG_V2;
1112 		else
1113 			flags |= NFE_TX_LASTFRAG_V1;
1114 		desc32->flags = htole16(flags);
1115 
1116 		/* Checksum flags belong to the first fragment only. */
1117 		sc->txq.desc32[first].flags |= htole16(csumflags);
1118 
1119 		/* finally, set the valid bit in the first descriptor */
1120 		sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1121 	}
1122 
1123 	data->m = m0;
1124 	data->active = map;
1125 
1126 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1127 	    BUS_DMASYNC_PREWRITE);
1128 
1129 	return 0;
1130 }
1131 
1132 void
1133 nfe_start(struct ifnet *ifp)
1134 {
1135 	struct nfe_softc *sc = ifp->if_softc;
1136 	int old = sc->txq.queued;
1137 	struct mbuf *m0;
1138 
1139 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1140 		return;
1141 
1142 	for (;;) {
1143 		IFQ_POLL(&ifp->if_snd, m0);
1144 		if (m0 == NULL)
1145 			break;
1146 
1147 		if (nfe_encap(sc, m0) != 0) {
1148 			ifp->if_flags |= IFF_OACTIVE;
1149 			break;
1150 		}
1151 
1152 		/* packet put in h/w queue, remove from s/w queue */
1153 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1154 
1155 #if NBPFILTER > 0
1156 		if (ifp->if_bpf != NULL)
1157 			bpf_mtap(ifp->if_bpf, m0);
1158 #endif
1159 	}
1160 
1161 	if (sc->txq.queued != old) {
1162 		/* packets are queued */
1163 		if (sc->sc_flags & NFE_40BIT_ADDR)
1164 			nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1165 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1166 		else
1167 			nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1168 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1169 		/* kick Tx */
1170 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1171 
1172 		/*
1173 		 * Set a timeout in case the chip goes out to lunch.
1174 		 */
1175 		ifp->if_timer = 5;
1176 	}
1177 }
1178 
1179 void
1180 nfe_watchdog(struct ifnet *ifp)
1181 {
1182 	struct nfe_softc *sc = ifp->if_softc;
1183 
1184 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1185 
1186 	ifp->if_flags &= ~IFF_RUNNING;
1187 	nfe_init(ifp);
1188 
1189 	ifp->if_oerrors++;
1190 }
1191 
1192 int
1193 nfe_init(struct ifnet *ifp)
1194 {
1195 	struct nfe_softc *sc = ifp->if_softc;
1196 	uint32_t tmp;
1197 	int rc = 0, s;
1198 
1199 	if (ifp->if_flags & IFF_RUNNING)
1200 		return 0;
1201 
1202 	nfe_stop(ifp, 0);
1203 
1204 	NFE_WRITE(sc, NFE_TX_UNK, 0);
1205 	NFE_WRITE(sc, NFE_STATUS, 0);
1206 
1207 	sc->rxtxctl = NFE_RXTX_BIT2;
1208 	if (sc->sc_flags & NFE_40BIT_ADDR)
1209 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1210 	else if (sc->sc_flags & NFE_JUMBO_SUP)
1211 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1212 	if (sc->sc_flags & NFE_HW_CSUM)
1213 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1214 #if NVLAN > 0
1215 	/*
1216 	 * Although the adapter is capable of stripping VLAN tags from received
1217 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1218 	 * purpose.  This will be done in software by our network stack.
1219 	 */
1220 	if (sc->sc_flags & NFE_HW_VLAN)
1221 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1222 #endif
1223 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1224 	DELAY(10);
1225 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1226 
1227 #if NVLAN
1228 	if (sc->sc_flags & NFE_HW_VLAN)
1229 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1230 #endif
1231 
1232 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1233 
1234 	/* set MAC address */
1235 	nfe_set_macaddr(sc, sc->sc_enaddr);
1236 
1237 	/* tell MAC where rings are in memory */
1238 #ifdef __LP64__
1239 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1240 #endif
1241 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1242 #ifdef __LP64__
1243 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1244 #endif
1245 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1246 
1247 	NFE_WRITE(sc, NFE_RING_SIZE,
1248 	    (NFE_RX_RING_COUNT - 1) << 16 |
1249 	    (NFE_TX_RING_COUNT - 1));
1250 
1251 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1252 
1253 	/* force MAC to wakeup */
1254 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1255 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1256 	DELAY(10);
1257 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1258 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1259 
1260 	s = splnet();
1261 	nfe_intr(sc); /* XXX clear IRQ status registers */
1262 	splx(s);
1263 
1264 #if 1
1265 	/* configure interrupts coalescing/mitigation */
1266 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1267 #else
1268 	/* no interrupt mitigation: one interrupt per packet */
1269 	NFE_WRITE(sc, NFE_IMTIMER, 970);
1270 #endif
1271 
1272 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1273 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1274 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1275 
1276 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1277 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1278 
1279 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1280 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1281 
1282 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1283 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1284 	DELAY(10);
1285 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1286 
1287 	/* set Rx filter */
1288 	nfe_setmulti(sc);
1289 
1290 	if ((rc = ether_mediachange(ifp)) != 0)
1291 		goto out;
1292 
1293 	nfe_tick(sc);
1294 
1295 	/* enable Rx */
1296 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1297 
1298 	/* enable Tx */
1299 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1300 
1301 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1302 
1303 	/* enable interrupts */
1304 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1305 
1306 	callout_schedule(&sc->sc_tick_ch, hz);
1307 
1308 	ifp->if_flags |= IFF_RUNNING;
1309 	ifp->if_flags &= ~IFF_OACTIVE;
1310 
1311 out:
1312 	return rc;
1313 }
1314 
1315 void
1316 nfe_stop(struct ifnet *ifp, int disable)
1317 {
1318 	struct nfe_softc *sc = ifp->if_softc;
1319 
1320 	callout_stop(&sc->sc_tick_ch);
1321 
1322 	ifp->if_timer = 0;
1323 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1324 
1325 	mii_down(&sc->sc_mii);
1326 
1327 	/* abort Tx */
1328 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1329 
1330 	/* disable Rx */
1331 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1332 
1333 	/* disable interrupts */
1334 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1335 
1336 	/* reset Tx and Rx rings */
1337 	nfe_reset_tx_ring(sc, &sc->txq);
1338 	nfe_reset_rx_ring(sc, &sc->rxq);
1339 }
1340 
1341 int
1342 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1343 {
1344 	struct nfe_desc32 *desc32;
1345 	struct nfe_desc64 *desc64;
1346 	struct nfe_rx_data *data;
1347 	struct nfe_jbuf *jbuf;
1348 	void **desc;
1349 	bus_addr_t physaddr;
1350 	int i, nsegs, error, descsize;
1351 
1352 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1353 		desc = (void **)&ring->desc64;
1354 		descsize = sizeof (struct nfe_desc64);
1355 	} else {
1356 		desc = (void **)&ring->desc32;
1357 		descsize = sizeof (struct nfe_desc32);
1358 	}
1359 
1360 	ring->cur = ring->next = 0;
1361 	ring->bufsz = MCLBYTES;
1362 
1363 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1364 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1365 	if (error != 0) {
1366 		aprint_error_dev(sc->sc_dev,
1367 		    "could not create desc DMA map\n");
1368 		goto fail;
1369 	}
1370 
1371 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1372 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1373 	if (error != 0) {
1374 		aprint_error_dev(sc->sc_dev,
1375 		    "could not allocate DMA memory\n");
1376 		goto fail;
1377 	}
1378 
1379 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1380 	    NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1381 	if (error != 0) {
1382 		aprint_error_dev(sc->sc_dev,
1383 		    "could not map desc DMA memory\n");
1384 		goto fail;
1385 	}
1386 
1387 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1388 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1389 	if (error != 0) {
1390 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1391 		goto fail;
1392 	}
1393 
1394 	bzero(*desc, NFE_RX_RING_COUNT * descsize);
1395 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1396 
1397 	if (sc->sc_flags & NFE_USE_JUMBO) {
1398 		ring->bufsz = NFE_JBYTES;
1399 		if ((error = nfe_jpool_alloc(sc)) != 0) {
1400 			aprint_error_dev(sc->sc_dev,
1401 			    "could not allocate jumbo frames\n");
1402 			goto fail;
1403 		}
1404 	}
1405 
1406 	/*
1407 	 * Pre-allocate Rx buffers and populate Rx ring.
1408 	 */
1409 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1410 		data = &sc->rxq.data[i];
1411 
1412 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1413 		if (data->m == NULL) {
1414 			aprint_error_dev(sc->sc_dev,
1415 			    "could not allocate rx mbuf\n");
1416 			error = ENOMEM;
1417 			goto fail;
1418 		}
1419 
1420 		if (sc->sc_flags & NFE_USE_JUMBO) {
1421 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1422 				aprint_error_dev(sc->sc_dev,
1423 				    "could not allocate jumbo buffer\n");
1424 				goto fail;
1425 			}
1426 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1427 			    sc);
1428 
1429 			physaddr = jbuf->physaddr;
1430 		} else {
1431 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1432 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1433 			if (error != 0) {
1434 				aprint_error_dev(sc->sc_dev,
1435 				    "could not create DMA map\n");
1436 				goto fail;
1437 			}
1438 			MCLGET(data->m, M_DONTWAIT);
1439 			if (!(data->m->m_flags & M_EXT)) {
1440 				aprint_error_dev(sc->sc_dev,
1441 				    "could not allocate mbuf cluster\n");
1442 				error = ENOMEM;
1443 				goto fail;
1444 			}
1445 
1446 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1447 			    mtod(data->m, void *), MCLBYTES, NULL,
1448 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
1449 			if (error != 0) {
1450 				aprint_error_dev(sc->sc_dev,
1451 				    "could not load rx buf DMA map");
1452 				goto fail;
1453 			}
1454 			physaddr = data->map->dm_segs[0].ds_addr;
1455 		}
1456 
1457 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1458 			desc64 = &sc->rxq.desc64[i];
1459 #if defined(__LP64__)
1460 			desc64->physaddr[0] = htole32(physaddr >> 32);
1461 #endif
1462 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1463 			desc64->length = htole16(sc->rxq.bufsz);
1464 			desc64->flags = htole16(NFE_RX_READY);
1465 		} else {
1466 			desc32 = &sc->rxq.desc32[i];
1467 			desc32->physaddr = htole32(physaddr);
1468 			desc32->length = htole16(sc->rxq.bufsz);
1469 			desc32->flags = htole16(NFE_RX_READY);
1470 		}
1471 	}
1472 
1473 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1474 	    BUS_DMASYNC_PREWRITE);
1475 
1476 	return 0;
1477 
1478 fail:	nfe_free_rx_ring(sc, ring);
1479 	return error;
1480 }
1481 
1482 void
1483 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1484 {
1485 	int i;
1486 
1487 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1488 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1489 			ring->desc64[i].length = htole16(ring->bufsz);
1490 			ring->desc64[i].flags = htole16(NFE_RX_READY);
1491 		} else {
1492 			ring->desc32[i].length = htole16(ring->bufsz);
1493 			ring->desc32[i].flags = htole16(NFE_RX_READY);
1494 		}
1495 	}
1496 
1497 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1498 	    BUS_DMASYNC_PREWRITE);
1499 
1500 	ring->cur = ring->next = 0;
1501 }
1502 
1503 void
1504 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1505 {
1506 	struct nfe_rx_data *data;
1507 	void *desc;
1508 	int i, descsize;
1509 
1510 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1511 		desc = ring->desc64;
1512 		descsize = sizeof (struct nfe_desc64);
1513 	} else {
1514 		desc = ring->desc32;
1515 		descsize = sizeof (struct nfe_desc32);
1516 	}
1517 
1518 	if (desc != NULL) {
1519 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1520 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1521 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1522 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1523 		    NFE_RX_RING_COUNT * descsize);
1524 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1525 	}
1526 
1527 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1528 		data = &ring->data[i];
1529 
1530 		if (data->map != NULL) {
1531 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1532 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1533 			bus_dmamap_unload(sc->sc_dmat, data->map);
1534 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1535 		}
1536 		if (data->m != NULL)
1537 			m_freem(data->m);
1538 	}
1539 }
1540 
1541 struct nfe_jbuf *
1542 nfe_jalloc(struct nfe_softc *sc, int i)
1543 {
1544 	struct nfe_jbuf *jbuf;
1545 
1546 	mutex_enter(&sc->rxq.mtx);
1547 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1548 	if (jbuf != NULL)
1549 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1550 	mutex_exit(&sc->rxq.mtx);
1551 	if (jbuf == NULL)
1552 		return NULL;
1553 	sc->rxq.jbufmap[i] =
1554 	    ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1555 	return jbuf;
1556 }
1557 
1558 /*
1559  * This is called automatically by the network stack when the mbuf is freed.
1560  * Caution must be taken that the NIC might be reset by the time the mbuf is
1561  * freed.
1562  */
1563 void
1564 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1565 {
1566 	struct nfe_softc *sc = arg;
1567 	struct nfe_jbuf *jbuf;
1568 	int i;
1569 
1570 	/* find the jbuf from the base pointer */
1571 	i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1572 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
1573 		aprint_error_dev(sc->sc_dev,
1574 		    "request to free a buffer (%p) not managed by us\n", buf);
1575 		return;
1576 	}
1577 	jbuf = &sc->rxq.jbuf[i];
1578 
1579 	/* ..and put it back in the free list */
1580 	mutex_enter(&sc->rxq.mtx);
1581 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1582 	mutex_exit(&sc->rxq.mtx);
1583 
1584 	if (m != NULL)
1585 		pool_cache_put(mb_cache, m);
1586 }
1587 
1588 int
1589 nfe_jpool_alloc(struct nfe_softc *sc)
1590 {
1591 	struct nfe_rx_ring *ring = &sc->rxq;
1592 	struct nfe_jbuf *jbuf;
1593 	bus_addr_t physaddr;
1594 	char *buf;
1595 	int i, nsegs, error;
1596 
1597 	/*
1598 	 * Allocate a big chunk of DMA'able memory.
1599 	 */
1600 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1601 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1602 	if (error != 0) {
1603 		aprint_error_dev(sc->sc_dev,
1604 		    "could not create jumbo DMA map\n");
1605 		goto fail;
1606 	}
1607 
1608 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1609 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1610 	if (error != 0) {
1611 		aprint_error_dev(sc->sc_dev,
1612 		    "could not allocate jumbo DMA memory\n");
1613 		goto fail;
1614 	}
1615 
1616 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1617 	    &ring->jpool, BUS_DMA_NOWAIT);
1618 	if (error != 0) {
1619 		aprint_error_dev(sc->sc_dev,
1620 		    "could not map jumbo DMA memory\n");
1621 		goto fail;
1622 	}
1623 
1624 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1625 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1626 	if (error != 0) {
1627 		aprint_error_dev(sc->sc_dev,
1628 		    "could not load jumbo DMA map\n");
1629 		goto fail;
1630 	}
1631 
1632 	/* ..and split it into 9KB chunks */
1633 	SLIST_INIT(&ring->jfreelist);
1634 
1635 	buf = ring->jpool;
1636 	physaddr = ring->jmap->dm_segs[0].ds_addr;
1637 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1638 		jbuf = &ring->jbuf[i];
1639 
1640 		jbuf->buf = buf;
1641 		jbuf->physaddr = physaddr;
1642 
1643 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1644 
1645 		buf += NFE_JBYTES;
1646 		physaddr += NFE_JBYTES;
1647 	}
1648 
1649 	return 0;
1650 
1651 fail:	nfe_jpool_free(sc);
1652 	return error;
1653 }
1654 
1655 void
1656 nfe_jpool_free(struct nfe_softc *sc)
1657 {
1658 	struct nfe_rx_ring *ring = &sc->rxq;
1659 
1660 	if (ring->jmap != NULL) {
1661 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1662 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1663 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1664 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1665 	}
1666 	if (ring->jpool != NULL) {
1667 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1668 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1669 	}
1670 }
1671 
1672 int
1673 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1674 {
1675 	int i, nsegs, error;
1676 	void **desc;
1677 	int descsize;
1678 
1679 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1680 		desc = (void **)&ring->desc64;
1681 		descsize = sizeof (struct nfe_desc64);
1682 	} else {
1683 		desc = (void **)&ring->desc32;
1684 		descsize = sizeof (struct nfe_desc32);
1685 	}
1686 
1687 	ring->queued = 0;
1688 	ring->cur = ring->next = 0;
1689 
1690 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1691 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1692 
1693 	if (error != 0) {
1694 		aprint_error_dev(sc->sc_dev,
1695 		    "could not create desc DMA map\n");
1696 		goto fail;
1697 	}
1698 
1699 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1700 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1701 	if (error != 0) {
1702 		aprint_error_dev(sc->sc_dev,
1703 		    "could not allocate DMA memory\n");
1704 		goto fail;
1705 	}
1706 
1707 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1708 	    NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1709 	if (error != 0) {
1710 		aprint_error_dev(sc->sc_dev,
1711 		    "could not map desc DMA memory\n");
1712 		goto fail;
1713 	}
1714 
1715 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1716 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1717 	if (error != 0) {
1718 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1719 		goto fail;
1720 	}
1721 
1722 	bzero(*desc, NFE_TX_RING_COUNT * descsize);
1723 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1724 
1725 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1726 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1727 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1728 		    &ring->data[i].map);
1729 		if (error != 0) {
1730 			aprint_error_dev(sc->sc_dev,
1731 			    "could not create DMA map\n");
1732 			goto fail;
1733 		}
1734 	}
1735 
1736 	return 0;
1737 
1738 fail:	nfe_free_tx_ring(sc, ring);
1739 	return error;
1740 }
1741 
1742 void
1743 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1744 {
1745 	struct nfe_tx_data *data;
1746 	int i;
1747 
1748 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1749 		if (sc->sc_flags & NFE_40BIT_ADDR)
1750 			ring->desc64[i].flags = 0;
1751 		else
1752 			ring->desc32[i].flags = 0;
1753 
1754 		data = &ring->data[i];
1755 
1756 		if (data->m != NULL) {
1757 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1758 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1759 			bus_dmamap_unload(sc->sc_dmat, data->active);
1760 			m_freem(data->m);
1761 			data->m = NULL;
1762 		}
1763 	}
1764 
1765 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1766 	    BUS_DMASYNC_PREWRITE);
1767 
1768 	ring->queued = 0;
1769 	ring->cur = ring->next = 0;
1770 }
1771 
1772 void
1773 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1774 {
1775 	struct nfe_tx_data *data;
1776 	void *desc;
1777 	int i, descsize;
1778 
1779 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1780 		desc = ring->desc64;
1781 		descsize = sizeof (struct nfe_desc64);
1782 	} else {
1783 		desc = ring->desc32;
1784 		descsize = sizeof (struct nfe_desc32);
1785 	}
1786 
1787 	if (desc != NULL) {
1788 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1789 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1790 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1791 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1792 		    NFE_TX_RING_COUNT * descsize);
1793 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1794 	}
1795 
1796 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1797 		data = &ring->data[i];
1798 
1799 		if (data->m != NULL) {
1800 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1801 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1802 			bus_dmamap_unload(sc->sc_dmat, data->active);
1803 			m_freem(data->m);
1804 		}
1805 	}
1806 
1807 	/* ..and now actually destroy the DMA mappings */
1808 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1809 		data = &ring->data[i];
1810 		if (data->map == NULL)
1811 			continue;
1812 		bus_dmamap_destroy(sc->sc_dmat, data->map);
1813 	}
1814 }
1815 
1816 void
1817 nfe_setmulti(struct nfe_softc *sc)
1818 {
1819 	struct ethercom *ec = &sc->sc_ethercom;
1820 	struct ifnet *ifp = &ec->ec_if;
1821 	struct ether_multi *enm;
1822 	struct ether_multistep step;
1823 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1824 	uint32_t filter = NFE_RXFILTER_MAGIC;
1825 	int i;
1826 
1827 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1828 		bzero(addr, ETHER_ADDR_LEN);
1829 		bzero(mask, ETHER_ADDR_LEN);
1830 		goto done;
1831 	}
1832 
1833 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1834 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1835 
1836 	ETHER_FIRST_MULTI(step, ec, enm);
1837 	while (enm != NULL) {
1838 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1839 			ifp->if_flags |= IFF_ALLMULTI;
1840 			bzero(addr, ETHER_ADDR_LEN);
1841 			bzero(mask, ETHER_ADDR_LEN);
1842 			goto done;
1843 		}
1844 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1845 			addr[i] &=  enm->enm_addrlo[i];
1846 			mask[i] &= ~enm->enm_addrlo[i];
1847 		}
1848 		ETHER_NEXT_MULTI(step, enm);
1849 	}
1850 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1851 		mask[i] |= addr[i];
1852 
1853 done:
1854 	addr[0] |= 0x01;	/* make sure multicast bit is set */
1855 
1856 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
1857 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1858 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
1859 	    addr[5] <<  8 | addr[4]);
1860 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
1861 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1862 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
1863 	    mask[5] <<  8 | mask[4]);
1864 
1865 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1866 	NFE_WRITE(sc, NFE_RXFILTER, filter);
1867 }
1868 
1869 void
1870 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1871 {
1872 	uint32_t tmp;
1873 
1874 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1875 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
1876 		addr[0] = (tmp & 0xff);
1877 		addr[1] = (tmp >>  8) & 0xff;
1878 		addr[2] = (tmp >> 16) & 0xff;
1879 		addr[3] = (tmp >> 24) & 0xff;
1880 
1881 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
1882 		addr[4] = (tmp & 0xff);
1883 		addr[5] = (tmp >> 8) & 0xff;
1884 
1885 	} else {
1886 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
1887 		addr[0] = (tmp >> 8) & 0xff;
1888 		addr[1] = (tmp & 0xff);
1889 
1890 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
1891 		addr[2] = (tmp >> 24) & 0xff;
1892 		addr[3] = (tmp >> 16) & 0xff;
1893 		addr[4] = (tmp >>  8) & 0xff;
1894 		addr[5] = (tmp & 0xff);
1895 	}
1896 }
1897 
1898 void
1899 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1900 {
1901 	NFE_WRITE(sc, NFE_MACADDR_LO,
1902 	    addr[5] <<  8 | addr[4]);
1903 	NFE_WRITE(sc, NFE_MACADDR_HI,
1904 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1905 }
1906 
1907 void
1908 nfe_tick(void *arg)
1909 {
1910 	struct nfe_softc *sc = arg;
1911 	int s;
1912 
1913 	s = splnet();
1914 	mii_tick(&sc->sc_mii);
1915 	splx(s);
1916 
1917 	callout_schedule(&sc->sc_tick_ch, hz);
1918 }
1919 
1920 void
1921 nfe_poweron(device_t self)
1922 {
1923 	struct nfe_softc *sc = device_private(self);
1924 
1925 	if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
1926 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
1927 		NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
1928 		DELAY(100);
1929 		NFE_WRITE(sc, NFE_MAC_RESET, 0);
1930 		DELAY(100);
1931 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
1932 		NFE_WRITE(sc, NFE_PWR2_CTL,
1933 		    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
1934 	}
1935 }
1936 
1937 bool
1938 nfe_resume(device_t dv PMF_FN_ARGS)
1939 {
1940 	nfe_poweron(dv);
1941 
1942 	return true;
1943 }
1944