xref: /netbsd-src/sys/dev/pci/if_msk.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /* $NetBSD: if_msk.c,v 1.98 2020/02/04 05:44:14 thorpej Exp $ */
2 /*	$OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $	*/
3 
4 /*
5  * Copyright (c) 1997, 1998, 1999, 2000
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.98 2020/02/04 05:44:14 thorpej Exp $");
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71  #define letoh16 htole16
72  #define letoh32 htole32
73 #endif
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78 
79 #include <net/if_media.h>
80 
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87 
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91 
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94 
95 static int mskc_probe(device_t, cfdata_t, void *);
96 static void mskc_attach(device_t, device_t, void *);
97 static int mskc_detach(device_t, int);
98 static void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 static int msk_probe(device_t, cfdata_t, void *);
102 static void msk_attach(device_t, device_t, void *);
103 static int msk_detach(device_t, int);
104 static void msk_reset(struct sk_if_softc *);
105 static int mskcprint(void *, const char *);
106 static int msk_intr(void *);
107 static void msk_intr_yukon(struct sk_if_softc *);
108 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
109 static void msk_txeof(struct sk_if_softc *);
110 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
111 static void msk_start(struct ifnet *);
112 static int msk_ioctl(struct ifnet *, u_long, void *);
113 static int msk_init(struct ifnet *);
114 static void msk_init_yukon(struct sk_if_softc *);
115 static void msk_stop(struct ifnet *, int);
116 static void msk_watchdog(struct ifnet *);
117 static int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 static void *msk_jalloc(struct sk_if_softc *);
120 static void msk_jfree(struct mbuf *, void *, size_t, void *);
121 static int msk_init_rx_ring(struct sk_if_softc *);
122 static int msk_init_tx_ring(struct sk_if_softc *);
123 static void msk_fill_rx_ring(struct sk_if_softc *);
124 
125 static void msk_update_int_mod(struct sk_softc *, int);
126 
127 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
128 static int msk_miibus_writereg(device_t, int, int, uint16_t);
129 static void msk_miibus_statchg(struct ifnet *);
130 
131 static void msk_setmulti(struct sk_if_softc *);
132 static void msk_setpromisc(struct sk_if_softc *);
133 static void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135 
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x)	if (mskdebug) printf x
139 #define DPRINTFN(n, x)	if (mskdebug >= (n)) printf x
140 int	mskdebug = MSK_DEBUG;
141 
142 static void msk_dump_txdesc(struct msk_tx_desc *, int);
143 static void msk_dump_mbuf(struct mbuf *);
144 static void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n, x)
148 #endif
149 
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152 
153 #define MSK_ADDR_LO(x)	((uint64_t) (x) & 0xffffffffUL)
154 #define MSK_ADDR_HI(x)	((uint64_t) (x) >> 32)
155 
156 /* supported device vendors */
157 static const struct msk_product {
158 	pci_vendor_id_t		msk_vendor;
159 	pci_product_id_t	msk_product;
160 } msk_products[] = {
161 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
162 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550T_B1 },
163 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
164 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
165 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021CU },
166 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021X },
167 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022X },
169 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
170 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
171 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
172 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
173 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040 },
174 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040T },
175 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8042 },
176 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8048 },
177 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
178 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
179 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
180 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
181 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055_2 },
182 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
183 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8057 },
184 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8058 },
185 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8059 },
186 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061CU },
187 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061X },
188 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062CU },
189 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062X },
190 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8070 },
191 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8071 },
192 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8072 },
193 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8075 },
194 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8079 },
195 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
196 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
197 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
198 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
199 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
200 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
201 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
202 	{ 0,				0 }
203 };
204 
205 static inline uint32_t
206 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
207 {
208 	return CSR_READ_4(sc, reg);
209 }
210 
211 static inline uint16_t
212 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
213 {
214 	return CSR_READ_2(sc, reg);
215 }
216 
217 static inline uint8_t
218 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
219 {
220 	return CSR_READ_1(sc, reg);
221 }
222 
223 static inline void
224 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
225 {
226 	CSR_WRITE_4(sc, reg, x);
227 }
228 
229 static inline void
230 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
231 {
232 	CSR_WRITE_2(sc, reg, x);
233 }
234 
235 static inline void
236 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
237 {
238 	CSR_WRITE_1(sc, reg, x);
239 }
240 
241 static int
242 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
243 {
244 	struct sk_if_softc *sc_if = device_private(dev);
245 	uint16_t data;
246 	int i;
247 
248 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
249 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
250 
251 	for (i = 0; i < SK_TIMEOUT; i++) {
252 		DELAY(1);
253 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
254 		if (data & YU_SMICR_READ_VALID)
255 			break;
256 	}
257 
258 	if (i == SK_TIMEOUT) {
259 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
260 		return ETIMEDOUT;
261 	}
262 
263 	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
264 
265 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
266 
267 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
268 		phy, reg, *val));
269 
270 	return 0;
271 }
272 
273 static int
274 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
275 {
276 	struct sk_if_softc *sc_if = device_private(dev);
277 	int i;
278 
279 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
280 		     phy, reg, val));
281 
282 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
283 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
284 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
285 
286 	for (i = 0; i < SK_TIMEOUT; i++) {
287 		DELAY(1);
288 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
289 			break;
290 	}
291 
292 	if (i == SK_TIMEOUT) {
293 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
294 		return ETIMEDOUT;
295 	}
296 
297 	return 0;
298 }
299 
300 static void
301 msk_miibus_statchg(struct ifnet *ifp)
302 {
303 	struct sk_if_softc *sc_if = ifp->if_softc;
304 	struct mii_data *mii = &sc_if->sk_mii;
305 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
306 	int gpcr;
307 
308 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
309 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
310 
311 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
312 	    sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
313 		/* Set speed. */
314 		gpcr |= YU_GPCR_SPEED_DIS;
315 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 		case IFM_1000_SX:
317 		case IFM_1000_LX:
318 		case IFM_1000_CX:
319 		case IFM_1000_T:
320 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
321 			break;
322 		case IFM_100_TX:
323 			gpcr |= YU_GPCR_SPEED;
324 			break;
325 		}
326 
327 		/* Set duplex. */
328 		gpcr |= YU_GPCR_DPLX_DIS;
329 		if ((mii->mii_media_active & IFM_FDX) != 0)
330 			gpcr |= YU_GPCR_DUPLEX;
331 
332 		/* Disable flow control. */
333 		gpcr |= YU_GPCR_FCTL_DIS;
334 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
335 	}
336 
337 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
338 
339 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
340 		     SK_YU_READ_2(sc_if, YUKON_GPCR)));
341 }
342 
343 static void
344 msk_setmulti(struct sk_if_softc *sc_if)
345 {
346 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
347 	uint32_t hashes[2] = { 0, 0 };
348 	int h;
349 	struct ethercom *ec = &sc_if->sk_ethercom;
350 	struct ether_multi *enm;
351 	struct ether_multistep step;
352 	uint16_t reg;
353 
354 	/* First, zot all the existing filters. */
355 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
356 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
357 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
358 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
359 
360 
361 	/* Now program new ones. */
362 	reg = SK_YU_READ_2(sc_if, YUKON_RCR);
363 	reg |= YU_RCR_UFLEN;
364 allmulti:
365 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
366 		if ((ifp->if_flags & IFF_PROMISC) != 0)
367 			reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
368 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
369 			hashes[0] = 0xFFFFFFFF;
370 			hashes[1] = 0xFFFFFFFF;
371 		}
372 	} else {
373 		/* First find the tail of the list. */
374 		ETHER_LOCK(ec);
375 		ETHER_FIRST_MULTI(step, ec, enm);
376 		while (enm != NULL) {
377 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
378 				 ETHER_ADDR_LEN)) {
379 				ifp->if_flags |= IFF_ALLMULTI;
380 				ETHER_UNLOCK(ec);
381 				goto allmulti;
382 			}
383 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
384 			    ((1 << SK_HASH_BITS) - 1);
385 			if (h < 32)
386 				hashes[0] |= (1 << h);
387 			else
388 				hashes[1] |= (1 << (h - 32));
389 
390 			ETHER_NEXT_MULTI(step, enm);
391 		}
392 		ETHER_UNLOCK(ec);
393 		reg |= YU_RCR_MUFLEN;
394 	}
395 
396 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
397 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
398 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
399 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
400 	SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
401 }
402 
403 static void
404 msk_setpromisc(struct sk_if_softc *sc_if)
405 {
406 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
407 
408 	if (ifp->if_flags & IFF_PROMISC)
409 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
410 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
411 	else
412 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
413 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
414 }
415 
416 static int
417 msk_init_rx_ring(struct sk_if_softc *sc_if)
418 {
419 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
420 	struct msk_ring_data	*rd = sc_if->sk_rdata;
421 	struct msk_rx_desc	*r;
422 	int			i, nexti;
423 
424 	memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
425 
426 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
427 		cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
428 		if (i == (MSK_RX_RING_CNT - 1))
429 			nexti = 0;
430 		else
431 			nexti = i + 1;
432 		cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
433 	}
434 
435 	sc_if->sk_cdata.sk_rx_prod = 0;
436 	sc_if->sk_cdata.sk_rx_cons = 0;
437 	sc_if->sk_cdata.sk_rx_cnt = 0;
438 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
439 
440 	/* Mark the first ring element to initialize the high address. */
441 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
442 	r = &rd->sk_rx_ring[cd->sk_rx_prod];
443 	r->sk_addr = htole32(cd->sk_rx_hiaddr);
444 	r->sk_len = 0;
445 	r->sk_ctl = 0;
446 	r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
447 	MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
448 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
449 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
450 	sc_if->sk_cdata.sk_rx_cnt++;
451 
452 	msk_fill_rx_ring(sc_if);
453 	return 0;
454 }
455 
456 static int
457 msk_init_tx_ring(struct sk_if_softc *sc_if)
458 {
459 	struct sk_softc		*sc = sc_if->sk_softc;
460 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
461 	struct msk_ring_data	*rd = sc_if->sk_rdata;
462 	struct msk_tx_desc	*t;
463 	bus_dmamap_t		dmamap;
464 	struct sk_txmap_entry	*entry;
465 	int			i, nexti;
466 
467 	memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
468 
469 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
470 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
471 		cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
472 		if (i == (MSK_TX_RING_CNT - 1))
473 			nexti = 0;
474 		else
475 			nexti = i + 1;
476 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
477 
478 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
479 		   SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
480 			return ENOBUFS;
481 
482 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
483 		if (!entry) {
484 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
485 			return ENOBUFS;
486 		}
487 		entry->dmamap = dmamap;
488 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
489 	}
490 
491 	sc_if->sk_cdata.sk_tx_prod = 0;
492 	sc_if->sk_cdata.sk_tx_cons = 0;
493 	sc_if->sk_cdata.sk_tx_cnt = 0;
494 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
495 
496 	/* Mark the first ring element to initialize the high address. */
497 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
498 	t = &rd->sk_tx_ring[cd->sk_tx_prod];
499 	t->sk_addr = htole32(cd->sk_tx_hiaddr);
500 	t->sk_len = 0;
501 	t->sk_ctl = 0;
502 	t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
503 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
504 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
505 	SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
506 	sc_if->sk_cdata.sk_tx_cnt++;
507 
508 	return 0;
509 }
510 
511 static int
512 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
513 {
514 	struct mbuf		*m_new = NULL;
515 	struct sk_chain		*c;
516 	struct msk_rx_desc	*r;
517 	void			*buf = NULL;
518 	bus_addr_t		addr;
519 
520 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
521 	if (m_new == NULL)
522 		return ENOBUFS;
523 
524 	/* Allocate the jumbo buffer */
525 	buf = msk_jalloc(sc_if);
526 	if (buf == NULL) {
527 		m_freem(m_new);
528 		DPRINTFN(1, ("%s jumbo allocation failed -- packet "
529 		    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
530 		return ENOBUFS;
531 	}
532 
533 	/* Attach the buffer to the mbuf */
534 	m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
535 	MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
536 
537 	m_adj(m_new, ETHER_ALIGN);
538 
539 	addr = dmamap->dm_segs[0].ds_addr +
540 		  ((vaddr_t)m_new->m_data -
541 		   (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
542 
543 	if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
544 		c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
545 		r = c->sk_le;
546 		c->sk_mbuf = NULL;
547 		r->sk_addr = htole32(MSK_ADDR_HI(addr));
548 		r->sk_len = 0;
549 		r->sk_ctl = 0;
550 		r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
551 		sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
552 
553 		MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
554 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
555 
556 		SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
557 		sc_if->sk_cdata.sk_rx_cnt++;
558 
559 		DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
560 		    sc_if->sk_ethercom.ec_if.if_xname,
561 			(unsigned)MSK_ADDR_HI(addr)));
562 	}
563 
564 	c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
565 	r = c->sk_le;
566 	c->sk_mbuf = m_new;
567 	r->sk_addr = htole32(MSK_ADDR_LO(addr));
568 	r->sk_len = htole16(SK_JLEN);
569 	r->sk_ctl = 0;
570 	r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
571 
572 	MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
573 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
574 
575 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
576 	sc_if->sk_cdata.sk_rx_cnt++;
577 
578 	return 0;
579 }
580 
581 /*
582  * Memory management for jumbo frames.
583  */
584 
585 static int
586 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
587 {
588 	struct sk_softc		*sc = sc_if->sk_softc;
589 	char *ptr, *kva;
590 	int		i, state, error;
591 	struct sk_jpool_entry	*entry;
592 
593 	state = error = 0;
594 
595 	/* Grab a big chunk o' storage. */
596 	if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
597 	     &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
598 	     BUS_DMA_NOWAIT)) {
599 		aprint_error(": can't alloc rx buffers");
600 		return ENOBUFS;
601 	}
602 
603 	state = 1;
604 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
605 	    sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
606 	    BUS_DMA_NOWAIT)) {
607 		aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
608 		error = ENOBUFS;
609 		goto out;
610 	}
611 
612 	state = 2;
613 	if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
614 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
615 		aprint_error(": can't create dma map");
616 		error = ENOBUFS;
617 		goto out;
618 	}
619 
620 	state = 3;
621 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
622 			    kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
623 		aprint_error(": can't load dma map");
624 		error = ENOBUFS;
625 		goto out;
626 	}
627 
628 	state = 4;
629 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
630 	DPRINTFN(1,("msk_jumbo_buf = %p\n",
631 		(void *)sc_if->sk_cdata.sk_jumbo_buf));
632 
633 	LIST_INIT(&sc_if->sk_jfree_listhead);
634 	LIST_INIT(&sc_if->sk_jinuse_listhead);
635 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
636 
637 	/*
638 	 * Now divide it up into 9K pieces and save the addresses
639 	 * in an array.
640 	 */
641 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
642 	for (i = 0; i < MSK_JSLOTS; i++) {
643 		sc_if->sk_cdata.sk_jslots[i] = ptr;
644 		ptr += SK_JLEN;
645 		entry = malloc(sizeof(struct sk_jpool_entry),
646 		    M_DEVBUF, M_WAITOK);
647 		entry->slot = i;
648 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
649 				 entry, jpool_entries);
650 	}
651 out:
652 	if (error != 0) {
653 		switch (state) {
654 		case 4:
655 			bus_dmamap_unload(sc->sc_dmatag,
656 			    sc_if->sk_cdata.sk_rx_jumbo_map);
657 			/* FALLTHROUGH */
658 		case 3:
659 			bus_dmamap_destroy(sc->sc_dmatag,
660 			    sc_if->sk_cdata.sk_rx_jumbo_map);
661 			/* FALLTHROUGH */
662 		case 2:
663 			bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
664 			/* FALLTHROUGH */
665 		case 1:
666 			bus_dmamem_free(sc->sc_dmatag,
667 			    &sc_if->sk_cdata.sk_jumbo_seg,
668 			    sc_if->sk_cdata.sk_jumbo_nseg);
669 			break;
670 		default:
671 			break;
672 		}
673 	}
674 
675 	return error;
676 }
677 
678 static void
679 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
680 {
681 	struct sk_softc		*sc = sc_if->sk_softc;
682 
683 	bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
684 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
685 	bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
686 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
687 	    sc_if->sk_cdata.sk_jumbo_nseg);
688 }
689 
690 /*
691  * Allocate a jumbo buffer.
692  */
693 static void *
694 msk_jalloc(struct sk_if_softc *sc_if)
695 {
696 	struct sk_jpool_entry	*entry;
697 
698 	mutex_enter(&sc_if->sk_jpool_mtx);
699 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
700 
701 	if (entry == NULL) {
702 		mutex_exit(&sc_if->sk_jpool_mtx);
703 		return NULL;
704 	}
705 
706 	LIST_REMOVE(entry, jpool_entries);
707 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
708 	mutex_exit(&sc_if->sk_jpool_mtx);
709 	return sc_if->sk_cdata.sk_jslots[entry->slot];
710 }
711 
712 /*
713  * Release a jumbo buffer.
714  */
715 static void
716 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
717 {
718 	struct sk_jpool_entry *entry;
719 	struct sk_if_softc *sc;
720 	int i;
721 
722 	/* Extract the softc struct pointer. */
723 	sc = (struct sk_if_softc *)arg;
724 
725 	if (sc == NULL)
726 		panic("msk_jfree: can't find softc pointer!");
727 
728 	/* calculate the slot this buffer belongs to */
729 	i = ((vaddr_t)buf
730 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
731 
732 	if ((i < 0) || (i >= MSK_JSLOTS))
733 		panic("msk_jfree: asked to free buffer that we don't manage!");
734 
735 	mutex_enter(&sc->sk_jpool_mtx);
736 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
737 	if (entry == NULL)
738 		panic("msk_jfree: buffer not in use!");
739 	entry->slot = i;
740 	LIST_REMOVE(entry, jpool_entries);
741 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
742 	mutex_exit(&sc->sk_jpool_mtx);
743 
744 	if (__predict_true(m != NULL))
745 		pool_cache_put(mb_cache, m);
746 
747 	/* Now that we know we have a free RX buffer, refill if running out */
748 	if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
749 	    && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
750 		callout_schedule(&sc->sk_tick_rx, 0);
751 }
752 
753 static int
754 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
755 {
756 	struct sk_if_softc *sc = ifp->if_softc;
757 	int s, error;
758 
759 	s = splnet();
760 
761 	DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
762 	switch (cmd) {
763 	case SIOCSIFFLAGS:
764 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
765 			break;
766 
767 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
768 		case IFF_RUNNING:
769 			msk_stop(ifp, 1);
770 			break;
771 		case IFF_UP:
772 			msk_init(ifp);
773 			break;
774 		case IFF_UP | IFF_RUNNING:
775 			if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
776 				msk_setpromisc(sc);
777 				msk_setmulti(sc);
778 			} else
779 				msk_init(ifp);
780 			break;
781 		}
782 		sc->sk_if_flags = ifp->if_flags;
783 		break;
784 	default:
785 		error = ether_ioctl(ifp, cmd, data);
786 		if (error == ENETRESET) {
787 			error = 0;
788 			if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
789 				;
790 			else if (ifp->if_flags & IFF_RUNNING) {
791 				/*
792 				 * Multicast list has changed; set the hardware
793 				 * filter accordingly.
794 				 */
795 				msk_setmulti(sc);
796 			}
797 		}
798 		break;
799 	}
800 
801 	splx(s);
802 	return error;
803 }
804 
805 static void
806 msk_update_int_mod(struct sk_softc *sc, int verbose)
807 {
808 	uint32_t imtimer_ticks;
809 
810 	/*
811  	 * Configure interrupt moderation. The moderation timer
812 	 * defers interrupts specified in the interrupt moderation
813 	 * timer mask based on the timeout specified in the interrupt
814 	 * moderation timer init register. Each bit in the timer
815 	 * register represents one tick, so to specify a timeout in
816 	 * microseconds, we have to multiply by the correct number of
817 	 * ticks-per-microsecond.
818 	 */
819 	switch (sc->sk_type) {
820 	case SK_YUKON_EC:
821 	case SK_YUKON_EC_U:
822 	case SK_YUKON_EX:
823 	case SK_YUKON_SUPR:
824 	case SK_YUKON_ULTRA2:
825 	case SK_YUKON_OPTIMA:
826 	case SK_YUKON_PRM:
827 	case SK_YUKON_OPTIMA2:
828 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
829 		break;
830 	case SK_YUKON_FE:
831 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
832 		break;
833 	case SK_YUKON_FE_P:
834 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
835 		break;
836 	case SK_YUKON_XL:
837 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
838 		break;
839 	default:
840 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
841 	}
842 	if (verbose)
843 		aprint_verbose_dev(sc->sk_dev,
844 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
845 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
846 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
847 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
848 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
849 	sc->sk_int_mod_pending = 0;
850 }
851 
852 static int
853 msk_lookup(const struct pci_attach_args *pa)
854 {
855 	const struct msk_product *pmsk;
856 
857 	for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
858 		if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
859 		    PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
860 			return 1;
861 	}
862 	return 0;
863 }
864 
865 /*
866  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
867  * IDs against our list and return a device name if we find a match.
868  */
869 static int
870 mskc_probe(device_t parent, cfdata_t match, void *aux)
871 {
872 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
873 
874 	return msk_lookup(pa);
875 }
876 
877 /*
878  * Force the GEnesis into reset, then bring it out of reset.
879  */
880 static void
881 mskc_reset(struct sk_softc *sc)
882 {
883 	uint32_t imtimer_ticks, reg1;
884 	uint16_t status;
885 	int reg;
886 
887 	DPRINTFN(2, ("mskc_reset\n"));
888 
889 	/* Disable ASF */
890 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
891 		CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
892 		status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
893 		/* Clear AHB bridge & microcontroller reset. */
894 		status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
895 		    SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
896 		/* Clear ASF microcontroller state. */
897 		status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
898 		status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
899 		CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
900 		CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
901 	} else
902 		CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
903 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
904 
905 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
906 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
907 
908 	DELAY(1000);
909 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
910 	DELAY(2);
911 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
912 	sk_win_write_1(sc, SK_TESTCTL1, 2);
913 
914 	if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
915 	    sc->sk_type >= SK_YUKON_FE_P) {
916 		uint32_t our;
917 
918 		CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
919 
920 		/* enable all clocks. */
921 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
922 		our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
923 		our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
924 			SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
925 			SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
926 			SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
927 		/* Set all bits to 0 except bits 15..12 */
928 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
929 		/* Set to default value */
930 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
931 
932 		/*
933 		 * Disable status race, workaround for Yukon EC Ultra &
934 		 * Yukon EX.
935 		 */
936 		reg1 = sk_win_read_4(sc, SK_GPIO);
937 		reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
938 		sk_win_write_4(sc, SK_GPIO, reg1);
939 		sk_win_read_4(sc, SK_GPIO);
940 	}
941 
942 	/* release PHY from PowerDown/Coma mode. */
943 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
944 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
945 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
946 	else
947 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
948 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
949 
950 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
951 		sk_win_write_1(sc, SK_Y2_CLKGATE,
952 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
953 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
954 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
955 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
956 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
957 	else
958 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
959 
960 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
961 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
962 	DELAY(1000);
963 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
964 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
965 
966 	if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
967 		CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
968 		    SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
969 	}
970 
971 	sk_win_write_1(sc, SK_TESTCTL1, 1);
972 
973 	DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
974 	DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
975 		     CSR_READ_2(sc, SK_LINK_CTRL)));
976 
977 	/* Clear I2C IRQ noise */
978 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
979 
980 	/* Disable hardware timer */
981 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
982 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
983 
984 	/* Disable descriptor polling */
985 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
986 
987 	/* Disable time stamps */
988 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
989 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
990 
991 	/* Enable RAM interface */
992 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
993 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
994 		sk_win_write_1(sc, reg, 36);
995 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
996 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
997 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
998 
999 	/*
1000 	 * Configure interrupt moderation. The moderation timer
1001 	 * defers interrupts specified in the interrupt moderation
1002 	 * timer mask based on the timeout specified in the interrupt
1003 	 * moderation timer init register. Each bit in the timer
1004 	 * register represents one tick, so to specify a timeout in
1005 	 * microseconds, we have to multiply by the correct number of
1006 	 * ticks-per-microsecond.
1007 	 */
1008 	switch (sc->sk_type) {
1009 	case SK_YUKON_EC:
1010 	case SK_YUKON_EC_U:
1011 	case SK_YUKON_EX:
1012 	case SK_YUKON_SUPR:
1013 	case SK_YUKON_ULTRA2:
1014 	case SK_YUKON_OPTIMA:
1015 	case SK_YUKON_PRM:
1016 	case SK_YUKON_OPTIMA2:
1017 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1018 		break;
1019 	case SK_YUKON_FE:
1020 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1021 		break;
1022 	case SK_YUKON_FE_P:
1023 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1024 		break;
1025 	case SK_YUKON_XL:
1026 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1027 		break;
1028 	default:
1029 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1030 		break;
1031 	}
1032 
1033 	/* Reset status ring. */
1034 	memset(sc->sk_status_ring, 0,
1035 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1036 	bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1037 	    sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1038 	sc->sk_status_idx = 0;
1039 
1040 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1041 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1042 
1043 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1044 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1045 	    MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1046 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1047 	    MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1048 	if (sc->sk_type == SK_YUKON_EC &&
1049 	    sc->sk_rev == SK_YUKON_EC_REV_A1) {
1050 		/* WA for dev. #4.3 */
1051 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1052 		    SK_STAT_BMU_TXTHIDX_MSK);
1053 		/* WA for dev. #4.18 */
1054 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1055 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1056 	} else {
1057 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1058 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1059 		if (sc->sk_type == SK_YUKON_XL)
1060 			sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1061 		else
1062 			sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1063 		sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1064 	}
1065 
1066 #if 0
1067 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1068 #endif
1069 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1070 
1071 	/* Enable status unit. */
1072 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1073 
1074 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1075 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1076 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1077 
1078 	msk_update_int_mod(sc, 0);
1079 }
1080 
1081 static int
1082 msk_probe(device_t parent, cfdata_t match, void *aux)
1083 {
1084 	struct skc_attach_args *sa = aux;
1085 
1086 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1087 		return 0;
1088 
1089 	switch (sa->skc_type) {
1090 	case SK_YUKON_XL:
1091 	case SK_YUKON_EC_U:
1092 	case SK_YUKON_EX:
1093 	case SK_YUKON_EC:
1094 	case SK_YUKON_FE:
1095 	case SK_YUKON_FE_P:
1096 	case SK_YUKON_SUPR:
1097 	case SK_YUKON_ULTRA2:
1098 	case SK_YUKON_OPTIMA:
1099 	case SK_YUKON_PRM:
1100 	case SK_YUKON_OPTIMA2:
1101 		return 1;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 static void
1108 msk_reset(struct sk_if_softc *sc_if)
1109 {
1110 	/* GMAC and GPHY Reset */
1111 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1112 	SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1113 	DELAY(1000);
1114 	SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1115 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1116 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1117 }
1118 
1119 static bool
1120 msk_resume(device_t dv, const pmf_qual_t *qual)
1121 {
1122 	struct sk_if_softc *sc_if = device_private(dv);
1123 
1124 	msk_init_yukon(sc_if);
1125 	return true;
1126 }
1127 
1128 /*
1129  * Each XMAC chip is attached as a separate logical IP interface.
1130  * Single port cards will have only one logical interface of course.
1131  */
1132 static void
1133 msk_attach(device_t parent, device_t self, void *aux)
1134 {
1135 	struct sk_if_softc *sc_if = device_private(self);
1136 	struct sk_softc *sc = device_private(parent);
1137 	struct skc_attach_args *sa = aux;
1138 	struct ifnet *ifp;
1139 	struct mii_data * const mii = &sc_if->sk_mii;
1140 	void *kva;
1141 	int i;
1142 	uint32_t chunk;
1143 	int mii_flags;
1144 
1145 	sc_if->sk_dev = self;
1146 	sc_if->sk_port = sa->skc_port;
1147 	sc_if->sk_softc = sc;
1148 	sc->sk_if[sa->skc_port] = sc_if;
1149 
1150 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1151 
1152 	/*
1153 	 * Get station address for this interface. Note that
1154 	 * dual port cards actually come with three station
1155 	 * addresses: one for each port, plus an extra. The
1156 	 * extra one is used by the SysKonnect driver software
1157 	 * as a 'virtual' station address for when both ports
1158 	 * are operating in failover mode. Currently we don't
1159 	 * use this extra address.
1160 	 */
1161 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1162 		sc_if->sk_enaddr[i] =
1163 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1164 
1165 	aprint_normal(": Ethernet address %s\n",
1166 	    ether_sprintf(sc_if->sk_enaddr));
1167 
1168 	/*
1169 	 * Set up RAM buffer addresses. The Yukon2 has a small amount
1170 	 * of SRAM on it, somewhere between 4K and 48K.  We need to
1171 	 * divide this up between the transmitter and receiver.  We
1172 	 * give the receiver 2/3 of the memory (rounded down), and the
1173 	 * transmitter whatever remains.
1174 	 */
1175 	if (sc->sk_ramsize) {
1176 		chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1177 		sc_if->sk_rx_ramstart = 0;
1178 		sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1179 		chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1180 		sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1181 		sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1182 
1183 		DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1184 			     "           tx_ramstart=%#x tx_ramend=%#x\n",
1185 			     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1186 			     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1187 	}
1188 
1189 	/* Allocate the descriptor queues. */
1190 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1191 	    PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1192 	    BUS_DMA_NOWAIT)) {
1193 		aprint_error(": can't alloc rx buffers\n");
1194 		goto fail;
1195 	}
1196 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1197 	    sc_if->sk_ring_nseg,
1198 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1199 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1200 		       sizeof(struct msk_ring_data));
1201 		goto fail_1;
1202 	}
1203 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1204 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1205 	    &sc_if->sk_ring_map)) {
1206 		aprint_error(": can't create dma map\n");
1207 		goto fail_2;
1208 	}
1209 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1210 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1211 		aprint_error(": can't load dma map\n");
1212 		goto fail_3;
1213 	}
1214 	sc_if->sk_rdata = (struct msk_ring_data *)kva;
1215 	memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1216 
1217 	if (sc->sk_type != SK_YUKON_FE &&
1218 	    sc->sk_type != SK_YUKON_FE_P)
1219 		sc_if->sk_pktlen = SK_JLEN;
1220 	else
1221 		sc_if->sk_pktlen = MCLBYTES;
1222 
1223 	/* Try to allocate memory for jumbo buffers. */
1224 	if (msk_alloc_jumbo_mem(sc_if)) {
1225 		aprint_error(": jumbo buffer allocation failed\n");
1226 		goto fail_3;
1227 	}
1228 
1229 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1230 	if (sc->sk_type != SK_YUKON_FE &&
1231 	    sc->sk_type != SK_YUKON_FE_P)
1232 		sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1233 
1234 	ifp = &sc_if->sk_ethercom.ec_if;
1235 	ifp->if_softc = sc_if;
1236 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1237 	ifp->if_ioctl = msk_ioctl;
1238 	ifp->if_start = msk_start;
1239 	ifp->if_stop = msk_stop;
1240 	ifp->if_init = msk_init;
1241 	ifp->if_watchdog = msk_watchdog;
1242 	ifp->if_baudrate = 1000000000;
1243 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1244 	IFQ_SET_READY(&ifp->if_snd);
1245 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1246 
1247 	msk_reset(sc_if);
1248 
1249 	/*
1250 	 * Do miibus setup.
1251 	 */
1252 	DPRINTFN(2, ("msk_attach: 1\n"));
1253 
1254 	mii->mii_ifp = ifp;
1255 	mii->mii_readreg = msk_miibus_readreg;
1256 	mii->mii_writereg = msk_miibus_writereg;
1257 	mii->mii_statchg = msk_miibus_statchg;
1258 
1259 	sc_if->sk_ethercom.ec_mii = mii;
1260 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1261 	mii_flags = MIIF_DOPAUSE;
1262 	if (sc->sk_fibertype)
1263 		mii_flags |= MIIF_HAVEFIBER;
1264 	mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1265 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
1266 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1267 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1268 			    0, NULL);
1269 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1270 	} else
1271 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1272 
1273 	callout_init(&sc_if->sk_tick_ch, 0);
1274 	callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1275 	callout_schedule(&sc_if->sk_tick_ch, hz);
1276 
1277 	callout_init(&sc_if->sk_tick_rx, 0);
1278 	callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1279 
1280 	/*
1281 	 * Call MI attach routines.
1282 	 */
1283 	if_attach(ifp);
1284 	if_deferred_start_init(ifp, NULL);
1285 	ether_ifattach(ifp, sc_if->sk_enaddr);
1286 
1287 	if (pmf_device_register(self, NULL, msk_resume))
1288 		pmf_class_network_register(self, ifp);
1289 	else
1290 		aprint_error_dev(self, "couldn't establish power handler\n");
1291 
1292 	if (sc->rnd_attached++ == 0) {
1293 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1294 			RND_TYPE_NET, RND_FLAG_DEFAULT);
1295 	}
1296 
1297 	DPRINTFN(2, ("msk_attach: end\n"));
1298 	return;
1299 
1300 fail_3:
1301 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1302 fail_2:
1303 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1304 fail_1:
1305 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1306 fail:
1307 	sc->sk_if[sa->skc_port] = NULL;
1308 }
1309 
1310 static int
1311 msk_detach(device_t self, int flags)
1312 {
1313 	struct sk_if_softc *sc_if = device_private(self);
1314 	struct sk_softc *sc = sc_if->sk_softc;
1315 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1316 
1317 	if (sc->sk_if[sc_if->sk_port] == NULL)
1318 		return 0;
1319 
1320 	msk_stop(ifp, 1);
1321 
1322 	if (--sc->rnd_attached == 0)
1323 		rnd_detach_source(&sc->rnd_source);
1324 
1325 	callout_halt(&sc_if->sk_tick_ch, NULL);
1326 	callout_destroy(&sc_if->sk_tick_ch);
1327 
1328 	callout_halt(&sc_if->sk_tick_rx, NULL);
1329 	callout_destroy(&sc_if->sk_tick_rx);
1330 
1331 	/* Detach any PHYs we might have. */
1332 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1333 		mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1334 
1335 	pmf_device_deregister(self);
1336 
1337 	ether_ifdetach(ifp);
1338 	if_detach(ifp);
1339 
1340 	/* Delete any remaining media. */
1341 	ifmedia_fini(&sc_if->sk_mii.mii_media);
1342 
1343 	msk_free_jumbo_mem(sc_if);
1344 
1345 	bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1346 	    sizeof(struct msk_ring_data));
1347 	bus_dmamem_free(sc->sc_dmatag,
1348 	    &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1349 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1350 	sc->sk_if[sc_if->sk_port] = NULL;
1351 
1352 	return 0;
1353 }
1354 
1355 static int
1356 mskcprint(void *aux, const char *pnp)
1357 {
1358 	struct skc_attach_args *sa = aux;
1359 
1360 	if (pnp)
1361 		aprint_normal("msk port %c at %s",
1362 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1363 	else
1364 		aprint_normal(" port %c",
1365 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1366 	return UNCONF;
1367 }
1368 
1369 /*
1370  * Attach the interface. Allocate softc structures, do ifmedia
1371  * setup and ethernet/BPF attach.
1372  */
1373 static void
1374 mskc_attach(device_t parent, device_t self, void *aux)
1375 {
1376 	struct sk_softc *sc = device_private(self);
1377 	struct pci_attach_args *pa = aux;
1378 	struct skc_attach_args skca;
1379 	pci_chipset_tag_t pc = pa->pa_pc;
1380 	pcireg_t command, memtype;
1381 	const char *intrstr = NULL;
1382 	int rc, sk_nodenum;
1383 	uint8_t hw, pmd;
1384 	const char *revstr = NULL;
1385 	const struct sysctlnode *node;
1386 	void *kva;
1387 	char intrbuf[PCI_INTRSTR_LEN];
1388 
1389 	DPRINTFN(2, ("begin mskc_attach\n"));
1390 
1391 	sc->sk_dev = self;
1392 	/*
1393 	 * Handle power management nonsense.
1394 	 */
1395 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1396 
1397 	if (command == 0x01) {
1398 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1399 		if (command & SK_PSTATE_MASK) {
1400 			uint32_t		iobase, membase, irq;
1401 
1402 			/* Save important PCI config data. */
1403 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1404 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1405 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1406 
1407 			/* Reset the power state. */
1408 			aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1409 			    "mode -- setting to D0\n",
1410 			    command & SK_PSTATE_MASK);
1411 			command &= 0xFFFFFFFC;
1412 			pci_conf_write(pc, pa->pa_tag,
1413 			    SK_PCI_PWRMGMTCTRL, command);
1414 
1415 			/* Restore PCI config data. */
1416 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1417 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1418 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * Map control/status registers.
1424 	 */
1425 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1426 	if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1427 	    &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1428 		aprint_error(": can't map mem space\n");
1429 		return;
1430 	}
1431 
1432 	if (pci_dma64_available(pa))
1433 		sc->sc_dmatag = pa->pa_dmat64;
1434 	else
1435 		sc->sc_dmatag = pa->pa_dmat;
1436 
1437 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1438 	command |= PCI_COMMAND_MASTER_ENABLE;
1439 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1440 
1441 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1442 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1443 
1444 	/* bail out here if chip is not recognized */
1445 	if (!(SK_IS_YUKON2(sc))) {
1446 		aprint_error(": unknown chip type: %d\n", sc->sk_type);
1447 		goto fail_1;
1448 	}
1449 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1450 
1451 	/* Allocate interrupt */
1452 	if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1453 		aprint_error(": couldn't map interrupt\n");
1454 		goto fail_1;
1455 	}
1456 
1457 	intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1458 	sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1459 	    msk_intr, sc, device_xname(sc->sk_dev));
1460 	if (sc->sk_intrhand == NULL) {
1461 		aprint_error(": couldn't establish interrupt");
1462 		if (intrstr != NULL)
1463 			aprint_error(" at %s", intrstr);
1464 		aprint_error("\n");
1465 		goto fail_1;
1466 	}
1467 	sc->sk_pc = pc;
1468 
1469 	if (bus_dmamem_alloc(sc->sc_dmatag,
1470 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1471 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1472 	    0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1473 		aprint_error(": can't alloc status buffers\n");
1474 		goto fail_2;
1475 	}
1476 
1477 	if (bus_dmamem_map(sc->sc_dmatag,
1478 	    &sc->sk_status_seg, sc->sk_status_nseg,
1479 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1480 	    &kva, BUS_DMA_NOWAIT)) {
1481 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1482 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1483 		goto fail_3;
1484 	}
1485 	if (bus_dmamap_create(sc->sc_dmatag,
1486 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1487 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1488 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1489 		aprint_error(": can't create dma map\n");
1490 		goto fail_4;
1491 	}
1492 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1493 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1494 	    NULL, BUS_DMA_NOWAIT)) {
1495 		aprint_error(": can't load dma map\n");
1496 		goto fail_5;
1497 	}
1498 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1499 
1500 	sc->sk_int_mod = SK_IM_DEFAULT;
1501 	sc->sk_int_mod_pending = 0;
1502 
1503 	/* Reset the adapter. */
1504 	mskc_reset(sc);
1505 
1506 	sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1507 	DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1508 
1509 	pmd = sk_win_read_1(sc, SK_PMDTYPE);
1510 	if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1511 		sc->sk_fibertype = 1;
1512 
1513 	switch (sc->sk_type) {
1514 	case SK_YUKON_XL:
1515 		sc->sk_name = "Yukon-2 XL";
1516 		break;
1517 	case SK_YUKON_EC_U:
1518 		sc->sk_name = "Yukon-2 EC Ultra";
1519 		break;
1520 	case SK_YUKON_EX:
1521 		sc->sk_name = "Yukon-2 Extreme";
1522 		break;
1523 	case SK_YUKON_EC:
1524 		sc->sk_name = "Yukon-2 EC";
1525 		break;
1526 	case SK_YUKON_FE:
1527 		sc->sk_name = "Yukon-2 FE";
1528 		break;
1529 	case SK_YUKON_FE_P:
1530 		sc->sk_name = "Yukon-2 FE+";
1531 		break;
1532 	case SK_YUKON_SUPR:
1533 		sc->sk_name = "Yukon-2 Supreme";
1534 		break;
1535 	case SK_YUKON_ULTRA2:
1536 		sc->sk_name = "Yukon-2 Ultra 2";
1537 		break;
1538 	case SK_YUKON_OPTIMA:
1539 		sc->sk_name = "Yukon-2 Optima";
1540 		break;
1541 	case SK_YUKON_PRM:
1542 		sc->sk_name = "Yukon-2 Optima Prime";
1543 		break;
1544 	case SK_YUKON_OPTIMA2:
1545 		sc->sk_name = "Yukon-2 Optima 2";
1546 		break;
1547 	default:
1548 		sc->sk_name = "Yukon (Unknown)";
1549 	}
1550 
1551 	if (sc->sk_type == SK_YUKON_XL) {
1552 		switch (sc->sk_rev) {
1553 		case SK_YUKON_XL_REV_A0:
1554 			revstr = "A0";
1555 			break;
1556 		case SK_YUKON_XL_REV_A1:
1557 			revstr = "A1";
1558 			break;
1559 		case SK_YUKON_XL_REV_A2:
1560 			revstr = "A2";
1561 			break;
1562 		case SK_YUKON_XL_REV_A3:
1563 			revstr = "A3";
1564 			break;
1565 		default:
1566 			break;
1567 		}
1568 	}
1569 
1570 	if (sc->sk_type == SK_YUKON_EC) {
1571 		switch (sc->sk_rev) {
1572 		case SK_YUKON_EC_REV_A1:
1573 			revstr = "A1";
1574 			break;
1575 		case SK_YUKON_EC_REV_A2:
1576 			revstr = "A2";
1577 			break;
1578 		case SK_YUKON_EC_REV_A3:
1579 			revstr = "A3";
1580 			break;
1581 		default:
1582 			break;
1583 		}
1584 	}
1585 
1586 	if (sc->sk_type == SK_YUKON_FE) {
1587 		switch (sc->sk_rev) {
1588 		case SK_YUKON_FE_REV_A1:
1589 			revstr = "A1";
1590 			break;
1591 		case SK_YUKON_FE_REV_A2:
1592 			revstr = "A2";
1593 			break;
1594 		default:
1595 			break;
1596 		}
1597 	}
1598 
1599 	if (sc->sk_type == SK_YUKON_EC_U) {
1600 		switch (sc->sk_rev) {
1601 		case SK_YUKON_EC_U_REV_A0:
1602 			revstr = "A0";
1603 			break;
1604 		case SK_YUKON_EC_U_REV_A1:
1605 			revstr = "A1";
1606 			break;
1607 		case SK_YUKON_EC_U_REV_B0:
1608 			revstr = "B0";
1609 			break;
1610 		case SK_YUKON_EC_U_REV_B1:
1611 			revstr = "B1";
1612 			break;
1613 		default:
1614 			break;
1615 		}
1616 	}
1617 
1618 	if (sc->sk_type == SK_YUKON_FE) {
1619 		switch (sc->sk_rev) {
1620 		case SK_YUKON_FE_REV_A1:
1621 			revstr = "A1";
1622 			break;
1623 		case SK_YUKON_FE_REV_A2:
1624 			revstr = "A2";
1625 			break;
1626 		default:
1627 			;
1628 		}
1629 	}
1630 
1631 	if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1632 		revstr = "A0";
1633 
1634 	if (sc->sk_type == SK_YUKON_EX) {
1635 		switch (sc->sk_rev) {
1636 		case SK_YUKON_EX_REV_A0:
1637 			revstr = "A0";
1638 			break;
1639 		case SK_YUKON_EX_REV_B0:
1640 			revstr = "B0";
1641 			break;
1642 		default:
1643 			;
1644 		}
1645 	}
1646 
1647 	if (sc->sk_type == SK_YUKON_SUPR) {
1648 		switch (sc->sk_rev) {
1649 		case SK_YUKON_SUPR_REV_A0:
1650 			revstr = "A0";
1651 			break;
1652 		case SK_YUKON_SUPR_REV_B0:
1653 			revstr = "B0";
1654 			break;
1655 		case SK_YUKON_SUPR_REV_B1:
1656 			revstr = "B1";
1657 			break;
1658 		default:
1659 			;
1660 		}
1661 	}
1662 
1663 	if (sc->sk_type == SK_YUKON_PRM) {
1664 		switch (sc->sk_rev) {
1665 		case SK_YUKON_PRM_REV_Z1:
1666 			revstr = "Z1";
1667 			break;
1668 		case SK_YUKON_PRM_REV_A0:
1669 			revstr = "A0";
1670 			break;
1671 		default:
1672 			;
1673 		}
1674 	}
1675 
1676 	/* Announce the product name. */
1677 	aprint_normal(", %s", sc->sk_name);
1678 	if (revstr != NULL)
1679 		aprint_normal(" rev. %s", revstr);
1680 	aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1681 
1682 	sc->sk_macs = 1;
1683 
1684 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1685 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1686 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1687 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1688 			sc->sk_macs++;
1689 	}
1690 
1691 	skca.skc_port = SK_PORT_A;
1692 	skca.skc_type = sc->sk_type;
1693 	skca.skc_rev = sc->sk_rev;
1694 	(void)config_found(sc->sk_dev, &skca, mskcprint);
1695 
1696 	if (sc->sk_macs > 1) {
1697 		skca.skc_port = SK_PORT_B;
1698 		skca.skc_type = sc->sk_type;
1699 		skca.skc_rev = sc->sk_rev;
1700 		(void)config_found(sc->sk_dev, &skca, mskcprint);
1701 	}
1702 
1703 	/* Turn on the 'driver is loaded' LED. */
1704 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1705 
1706 	/* skc sysctl setup */
1707 
1708 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1709 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1710 	    SYSCTL_DESCR("mskc per-controller controls"),
1711 	    NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1712 	    CTL_EOL)) != 0) {
1713 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1714 		goto fail_6;
1715 	}
1716 
1717 	sk_nodenum = node->sysctl_num;
1718 
1719 	/* interrupt moderation time in usecs */
1720 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1721 	    CTLFLAG_READWRITE,
1722 	    CTLTYPE_INT, "int_mod",
1723 	    SYSCTL_DESCR("msk interrupt moderation timer"),
1724 	    msk_sysctl_handler, 0, (void *)sc,
1725 	    0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1726 	    CTL_EOL)) != 0) {
1727 		aprint_normal_dev(sc->sk_dev,
1728 		    "couldn't create int_mod sysctl node\n");
1729 		goto fail_6;
1730 	}
1731 
1732 	if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1733 		aprint_error_dev(self, "couldn't establish power handler\n");
1734 
1735 	return;
1736 
1737 fail_6:
1738 	bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1739 fail_4:
1740 	bus_dmamem_unmap(sc->sc_dmatag, kva,
1741 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1742 fail_3:
1743 	bus_dmamem_free(sc->sc_dmatag,
1744 	    &sc->sk_status_seg, sc->sk_status_nseg);
1745 	sc->sk_status_nseg = 0;
1746 fail_5:
1747 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1748 fail_2:
1749 	pci_intr_disestablish(pc, sc->sk_intrhand);
1750 	sc->sk_intrhand = NULL;
1751 fail_1:
1752 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1753 	sc->sk_bsize = 0;
1754 }
1755 
1756 static int
1757 mskc_detach(device_t self, int flags)
1758 {
1759 	struct sk_softc *sc = device_private(self);
1760 	int rv;
1761 
1762 	if (sc->sk_intrhand) {
1763 		pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1764 		sc->sk_intrhand = NULL;
1765 	}
1766 
1767 	if (sc->sk_pihp != NULL) {
1768 		pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1769 		sc->sk_pihp = NULL;
1770 	}
1771 
1772 	rv = config_detach_children(self, flags);
1773 	if (rv != 0)
1774 		return rv;
1775 
1776 	if (sc->sk_status_nseg > 0) {
1777 		bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1778 		bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1779 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1780 		bus_dmamem_free(sc->sc_dmatag,
1781 		    &sc->sk_status_seg, sc->sk_status_nseg);
1782 	}
1783 
1784 	if (sc->sk_bsize > 0)
1785 		bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1786 
1787 	return 0;
1788 }
1789 
1790 static int
1791 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1792 {
1793 	struct sk_softc		*sc = sc_if->sk_softc;
1794 	struct msk_tx_desc		*f = NULL;
1795 	uint32_t		frag, cur, hiaddr, old_hiaddr, total;
1796 	uint32_t		entries = 0;
1797 	size_t			i;
1798 	struct sk_txmap_entry	*entry;
1799 	bus_dmamap_t		txmap;
1800 	bus_addr_t		addr;
1801 
1802 	DPRINTFN(2, ("msk_encap\n"));
1803 
1804 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1805 	if (entry == NULL) {
1806 		DPRINTFN(2, ("msk_encap: no txmap available\n"));
1807 		return ENOBUFS;
1808 	}
1809 	txmap = entry->dmamap;
1810 
1811 	cur = frag = *txidx;
1812 
1813 #ifdef MSK_DEBUG
1814 	if (mskdebug >= 2)
1815 		msk_dump_mbuf(m_head);
1816 #endif
1817 
1818 	/*
1819 	 * Start packing the mbufs in this chain into
1820 	 * the fragment pointers. Stop when we run out
1821 	 * of fragments or hit the end of the mbuf chain.
1822 	 */
1823 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1824 	    BUS_DMA_NOWAIT)) {
1825 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1826 		return ENOBUFS;
1827 	}
1828 
1829 	/* Count how many tx descriptors needed. */
1830 	hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1831 	for (total = i = 0; i < txmap->dm_nsegs; i++) {
1832 		if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1833 			hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1834 			total++;
1835 		}
1836 		total++;
1837 	}
1838 
1839 	if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1840 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1841 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1842 		return ENOBUFS;
1843 	}
1844 
1845 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1846 	    txmap->dm_nsegs, total));
1847 
1848 	/* Sync the DMA map. */
1849 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1850 	    BUS_DMASYNC_PREWRITE);
1851 
1852 	old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1853 	for (i = 0; i < txmap->dm_nsegs; i++) {
1854 		addr = txmap->dm_segs[i].ds_addr;
1855 		DPRINTFN(2, ("msk_encap: addr %llx\n",
1856 		    (unsigned long long)addr));
1857 		hiaddr = MSK_ADDR_HI(addr);
1858 
1859 		if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1860 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1861 			f->sk_addr = htole32(hiaddr);
1862 			f->sk_len = 0;
1863 			f->sk_ctl = 0;
1864 			if (i == 0)
1865 				f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1866 			else
1867 				f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1868 			sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1869 			SK_INC(frag, MSK_TX_RING_CNT);
1870 			entries++;
1871 			DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1872 			    sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1873 		}
1874 
1875 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1876 		f->sk_addr = htole32(MSK_ADDR_LO(addr));
1877 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1878 		f->sk_ctl = 0;
1879 		if (i == 0) {
1880 			if (hiaddr != old_hiaddr)
1881 				f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1882 			else
1883 				f->sk_opcode = SK_Y2_TXOPC_PACKET;
1884 		} else
1885 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1886 		cur = frag;
1887 		SK_INC(frag, MSK_TX_RING_CNT);
1888 		entries++;
1889 	}
1890 	KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1891 
1892 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1893 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1894 
1895 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1896 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1897 
1898 	/* Sync descriptors before handing to chip */
1899 	MSK_CDTXSYNC(sc_if, *txidx, entries,
1900 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1901 
1902 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1903 
1904 	/* Sync first descriptor to hand it off */
1905 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1906 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1907 
1908 	sc_if->sk_cdata.sk_tx_cnt += entries;
1909 
1910 #ifdef MSK_DEBUG
1911 	if (mskdebug >= 2) {
1912 		struct msk_tx_desc *le;
1913 		uint32_t idx;
1914 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1915 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1916 			msk_dump_txdesc(le, idx);
1917 		}
1918 	}
1919 #endif
1920 
1921 	*txidx = frag;
1922 
1923 	DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1924 
1925 	return 0;
1926 }
1927 
1928 static void
1929 msk_start(struct ifnet *ifp)
1930 {
1931 	struct sk_if_softc	*sc_if = ifp->if_softc;
1932 	struct mbuf		*m_head = NULL;
1933 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1934 	int			pkts = 0;
1935 
1936 	DPRINTFN(2, ("msk_start\n"));
1937 
1938 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1939 		IFQ_POLL(&ifp->if_snd, m_head);
1940 		if (m_head == NULL)
1941 			break;
1942 
1943 		/*
1944 		 * Pack the data into the transmit ring. If we
1945 		 * don't have room, set the OACTIVE flag and wait
1946 		 * for the NIC to drain the ring.
1947 		 */
1948 		if (msk_encap(sc_if, m_head, &idx)) {
1949 			ifp->if_flags |= IFF_OACTIVE;
1950 			break;
1951 		}
1952 
1953 		/* now we are committed to transmit the packet */
1954 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1955 		pkts++;
1956 
1957 		/*
1958 		 * If there's a BPF listener, bounce a copy of this frame
1959 		 * to him.
1960 		 */
1961 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1962 	}
1963 	if (pkts == 0)
1964 		return;
1965 
1966 	/* Transmit */
1967 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1968 		sc_if->sk_cdata.sk_tx_prod = idx;
1969 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1970 
1971 		/* Set a timeout in case the chip goes out to lunch. */
1972 		ifp->if_timer = 5;
1973 	}
1974 }
1975 
1976 static void
1977 msk_watchdog(struct ifnet *ifp)
1978 {
1979 	struct sk_if_softc *sc_if = ifp->if_softc;
1980 
1981 	/*
1982 	 * Reclaim first as there is a possibility of losing Tx completion
1983 	 * interrupts.
1984 	 */
1985 	msk_txeof(sc_if);
1986 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1987 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1988 
1989 		if_statinc(ifp, if_oerrors);
1990 
1991 		/* XXX Resets both ports; we shouldn't do that. */
1992 		mskc_reset(sc_if->sk_softc);
1993 		msk_reset(sc_if);
1994 		msk_init(ifp);
1995 	}
1996 }
1997 
1998 static bool
1999 mskc_suspend(device_t dv, const pmf_qual_t *qual)
2000 {
2001 	struct sk_softc *sc = device_private(dv);
2002 
2003 	DPRINTFN(2, ("mskc_suspend\n"));
2004 
2005 	/* Turn off the 'driver is loaded' LED. */
2006 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2007 
2008 	return true;
2009 }
2010 
2011 static bool
2012 mskc_resume(device_t dv, const pmf_qual_t *qual)
2013 {
2014 	struct sk_softc *sc = device_private(dv);
2015 
2016 	DPRINTFN(2, ("mskc_resume\n"));
2017 
2018 	mskc_reset(sc);
2019 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2020 
2021 	return true;
2022 }
2023 
2024 static __inline int
2025 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2026 {
2027 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2028 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2029 	    YU_RXSTAT_JABBER)) != 0 ||
2030 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2031 	    YU_RXSTAT_BYTES(stat) != len)
2032 		return 0;
2033 
2034 	return 1;
2035 }
2036 
2037 static void
2038 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2039 {
2040 	struct sk_softc		*sc = sc_if->sk_softc;
2041 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2042 	struct mbuf		*m;
2043 	unsigned		cur, prod, tail, total_len = len;
2044 	bus_dmamap_t		dmamap;
2045 
2046 	cur = sc_if->sk_cdata.sk_rx_cons;
2047 	prod = sc_if->sk_cdata.sk_rx_prod;
2048 
2049 	/* Sync the descriptor */
2050 	MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2051 
2052 	DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2053 		sc_if->sk_cdata.sk_rx_cnt));
2054 
2055 	while (prod != cur) {
2056 		tail = cur;
2057 		SK_INC(cur, MSK_RX_RING_CNT);
2058 
2059 		sc_if->sk_cdata.sk_rx_cnt--;
2060 		m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2061 		sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2062 		if (m != NULL)
2063 			break;	/* found it */
2064 	}
2065 	sc_if->sk_cdata.sk_rx_cons = cur;
2066 	DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2067 		sc_if->sk_cdata.sk_rx_cnt, m));
2068 
2069 	if (m == NULL)
2070 		return;
2071 
2072 	dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2073 
2074 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2075 	    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2076 
2077 	if (total_len < SK_MIN_FRAMELEN ||
2078 	    total_len > ETHER_MAX_LEN_JUMBO ||
2079 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
2080 		if_statinc(ifp, if_ierrors);
2081 		m_freem(m);
2082 		return;
2083 	}
2084 
2085 	m_set_rcvif(m, ifp);
2086 	m->m_pkthdr.len = m->m_len = total_len;
2087 
2088 	/* pass it on. */
2089 	if_percpuq_enqueue(ifp->if_percpuq, m);
2090 }
2091 
2092 static void
2093 msk_txeof(struct sk_if_softc *sc_if)
2094 {
2095 	struct sk_softc		*sc = sc_if->sk_softc;
2096 	struct msk_tx_desc	*cur_tx;
2097 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2098 	uint32_t		idx, reg, sk_ctl;
2099 	struct sk_txmap_entry	*entry;
2100 
2101 	DPRINTFN(2, ("msk_txeof\n"));
2102 
2103 	if (sc_if->sk_port == SK_PORT_A)
2104 		reg = SK_STAT_BMU_TXA1_RIDX;
2105 	else
2106 		reg = SK_STAT_BMU_TXA2_RIDX;
2107 
2108 	/*
2109 	 * Go through our tx ring and free mbufs for those
2110 	 * frames that have been sent.
2111 	 */
2112 	idx = sc_if->sk_cdata.sk_tx_cons;
2113 	while (idx != sk_win_read_2(sc, reg)) {
2114 		MSK_CDTXSYNC(sc_if, idx, 1,
2115 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2116 
2117 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2118 		sk_ctl = cur_tx->sk_ctl;
2119 #ifdef MSK_DEBUG
2120 		if (mskdebug >= 2)
2121 			msk_dump_txdesc(cur_tx, idx);
2122 #endif
2123 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2124 			if_statinc(ifp, if_opackets);
2125 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2126 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2127 
2128 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2129 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2130 
2131 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2132 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2133 					  link);
2134 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2135 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2136 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2137 		}
2138 		sc_if->sk_cdata.sk_tx_cnt--;
2139 		SK_INC(idx, MSK_TX_RING_CNT);
2140 	}
2141 	if (idx == sc_if->sk_cdata.sk_tx_cons)
2142 		return;
2143 
2144 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2145 
2146 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2147 		ifp->if_flags &= ~IFF_OACTIVE;
2148 
2149 	sc_if->sk_cdata.sk_tx_cons = idx;
2150 }
2151 
2152 static void
2153 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2154 {
2155 	/* Make sure to not completely wrap around */
2156 	while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2157 		if (msk_newbuf(sc_if,
2158 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2159 			goto schedretry;
2160 		}
2161 	}
2162 
2163 	return;
2164 
2165 schedretry:
2166 	/* Try later */
2167 	callout_schedule(&sc_if->sk_tick_rx, hz/2);
2168 }
2169 
2170 static void
2171 msk_fill_rx_tick(void *xsc_if)
2172 {
2173 	struct sk_if_softc *sc_if = xsc_if;
2174 	int s, rx_prod;
2175 
2176 	KASSERT(KERNEL_LOCKED_P());	/* XXXSMP */
2177 
2178 	s = splnet();
2179 	rx_prod = sc_if->sk_cdata.sk_rx_prod;
2180 	msk_fill_rx_ring(sc_if);
2181 	if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2182 		SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2183 		    sc_if->sk_cdata.sk_rx_prod);
2184 	}
2185 	splx(s);
2186 }
2187 
2188 static void
2189 msk_tick(void *xsc_if)
2190 {
2191 	struct sk_if_softc *sc_if = xsc_if;
2192 	struct mii_data *mii = &sc_if->sk_mii;
2193 	int s;
2194 
2195 	s = splnet();
2196 	mii_tick(mii);
2197 	splx(s);
2198 
2199 	callout_schedule(&sc_if->sk_tick_ch, hz);
2200 }
2201 
2202 static void
2203 msk_intr_yukon(struct sk_if_softc *sc_if)
2204 {
2205 	uint8_t status;
2206 
2207 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2208 	/* RX overrun */
2209 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2210 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2211 		    SK_RFCTL_RX_FIFO_OVER);
2212 	}
2213 	/* TX underrun */
2214 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2215 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2216 		    SK_TFCTL_TX_FIFO_UNDER);
2217 	}
2218 
2219 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2220 }
2221 
2222 static int
2223 msk_intr(void *xsc)
2224 {
2225 	struct sk_softc		*sc = xsc;
2226 	struct sk_if_softc	*sc_if;
2227 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2228 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2229 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2230 	int			claimed = 0;
2231 	uint32_t		status;
2232 	struct msk_status_desc	*cur_st;
2233 
2234 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
2235 	if (status == 0xffffffff)
2236 		return 0;
2237 	if (status == 0) {
2238 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2239 		return 0;
2240 	}
2241 
2242 	status = CSR_READ_4(sc, SK_ISR);
2243 
2244 	if (sc_if0 != NULL)
2245 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2246 	if (sc_if1 != NULL)
2247 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2248 
2249 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2250 	    (ifp0->if_flags & IFF_RUNNING)) {
2251 		msk_intr_yukon(sc_if0);
2252 	}
2253 
2254 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2255 	    (ifp1->if_flags & IFF_RUNNING)) {
2256 		msk_intr_yukon(sc_if1);
2257 	}
2258 
2259 	MSK_CDSTSYNC(sc, sc->sk_status_idx,
2260 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2261 	cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2262 
2263 	while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2264 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2265 		switch (cur_st->sk_opcode) {
2266 		case SK_Y2_STOPC_RXSTAT:
2267 			sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2268 			if (sc_if) {
2269 				msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2270 				    letoh32(cur_st->sk_status));
2271 				if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2272 					msk_fill_rx_tick(sc_if);
2273 			}
2274 			break;
2275 		case SK_Y2_STOPC_TXSTAT:
2276 			if (sc_if0)
2277 				msk_txeof(sc_if0);
2278 			if (sc_if1)
2279 				msk_txeof(sc_if1);
2280 			break;
2281 		default:
2282 			aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2283 			break;
2284 		}
2285 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2286 
2287 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
2288 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2289 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2290 	}
2291 
2292 	if (status & SK_Y2_IMR_BMU) {
2293 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2294 		claimed = 1;
2295 	}
2296 
2297 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2298 
2299 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2300 		if_schedule_deferred_start(ifp0);
2301 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2302 		if_schedule_deferred_start(ifp1);
2303 
2304 	KASSERT(sc->rnd_attached > 0);
2305 	rnd_add_uint32(&sc->rnd_source, status);
2306 
2307 	if (sc->sk_int_mod_pending)
2308 		msk_update_int_mod(sc, 1);
2309 
2310 	return claimed;
2311 }
2312 
2313 static void
2314 msk_init_yukon(struct sk_if_softc *sc_if)
2315 {
2316 	uint32_t		v;
2317 	uint16_t		reg;
2318 	struct sk_softc		*sc;
2319 	int			i;
2320 
2321 	sc = sc_if->sk_softc;
2322 
2323 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2324 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2325 
2326 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
2327 
2328 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2329 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2330 
2331 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
2332 
2333 	/* unused read of the interrupt source register */
2334 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
2335 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2336 
2337 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2338 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2339 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2340 
2341 	/* MIB Counter Clear Mode set */
2342 	reg |= YU_PAR_MIB_CLR;
2343 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2344 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2345 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2346 
2347 	/* MIB Counter Clear Mode clear */
2348 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
2349 	reg &= ~YU_PAR_MIB_CLR;
2350 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2351 
2352 	/* receive control reg */
2353 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
2354 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2355 
2356 	/* transmit control register */
2357 	SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2358 
2359 	/* transmit flow control register */
2360 	SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2361 
2362 	/* transmit parameter register */
2363 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
2364 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2365 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2366 
2367 	/* serial mode register */
2368 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
2369 	reg = YU_SMR_DATA_BLIND(0x1c) |
2370 	      YU_SMR_MFL_VLAN |
2371 	      YU_SMR_IPG_DATA(0x1e);
2372 
2373 	if (sc->sk_type != SK_YUKON_FE &&
2374 	    sc->sk_type != SK_YUKON_FE_P)
2375 		reg |= YU_SMR_MFL_JUMBO;
2376 
2377 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2378 
2379 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
2380 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2381 	/* msk_attach calls me before ether_ifattach so check null */
2382 	if (ifp != NULL && ifp->if_sadl != NULL)
2383 		memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2384 		    sizeof(sc_if->sk_enaddr));
2385 	/* Setup Yukon's address */
2386 	for (i = 0; i < 3; i++) {
2387 		/* Write Source Address 1 (unicast filter) */
2388 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2389 			      sc_if->sk_enaddr[i * 2] |
2390 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2391 	}
2392 
2393 	for (i = 0; i < 3; i++) {
2394 		reg = sk_win_read_2(sc_if->sk_softc,
2395 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2396 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2397 	}
2398 
2399 	/* Set promiscuous mode */
2400 	msk_setpromisc(sc_if);
2401 
2402 	/* Set multicast filter */
2403 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
2404 	msk_setmulti(sc_if);
2405 
2406 	/* enable interrupt mask for counter overflows */
2407 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
2408 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2409 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2410 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2411 
2412 	/* Configure RX MAC FIFO Flush Mask */
2413 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2414 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2415 	    YU_RXSTAT_JABBER;
2416 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2417 
2418 	/* Configure RX MAC FIFO */
2419 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2420 	v =  SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2421 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2422 		v |= SK_RFCTL_RX_OVER_ON;
2423 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2424 
2425 	if ((sc->sk_type == SK_YUKON_FE_P) &&
2426 	    (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2427 		v = 0x178; /* Magic value */
2428 	else {
2429 		/* Increase flush threshold to 64 bytes */
2430 		v = SK_RFCTL_FIFO_THRESHOLD + 1;
2431 	}
2432 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2433 
2434 	/* Configure TX MAC FIFO */
2435 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2436 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2437 
2438 	if ((sc->sk_type == SK_YUKON_FE_P) &&
2439 	    (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2440 		v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2441 		v &= ~SK_TXEND_WM_ON;
2442 		SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2443 	}
2444 
2445 #if 1
2446 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2447 #endif
2448 	DPRINTFN(6, ("msk_init_yukon: end\n"));
2449 }
2450 
2451 /*
2452  * Note that to properly initialize any part of the GEnesis chip,
2453  * you first have to take it out of reset mode.
2454  */
2455 static int
2456 msk_init(struct ifnet *ifp)
2457 {
2458 	struct sk_if_softc	*sc_if = ifp->if_softc;
2459 	struct sk_softc		*sc = sc_if->sk_softc;
2460 	int			rc = 0, s;
2461 	uint32_t		imr, imtimer_ticks;
2462 
2463 
2464 	DPRINTFN(2, ("msk_init\n"));
2465 
2466 	s = splnet();
2467 
2468 	/* Cancel pending I/O and free all RX/TX buffers. */
2469 	msk_stop(ifp, 1);
2470 
2471 	/* Configure I2C registers */
2472 
2473 	/* Configure XMAC(s) */
2474 	msk_init_yukon(sc_if);
2475 	if ((rc = ether_mediachange(ifp)) != 0)
2476 		goto out;
2477 
2478 	/* Configure transmit arbiter(s) */
2479 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2480 #if 0
2481 /*	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2482 #endif
2483 
2484 	if (sc->sk_ramsize) {
2485 		/* Configure RAMbuffers */
2486 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2487 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2488 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2489 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2490 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2491 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2492 
2493 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2494 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2495 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2496 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2497 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2498 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2499 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2500 	}
2501 
2502 	/* Configure BMUs */
2503 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2504 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2505 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2506 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600);	/* XXX ??? */
2507 
2508 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2509 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2510 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2511 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600);	/* XXX ??? */
2512 
2513 	/* Make sure the sync transmit queue is disabled. */
2514 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2515 
2516 	/* Init descriptors */
2517 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2518 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2519 		    "memory for rx buffers\n");
2520 		msk_stop(ifp, 1);
2521 		splx(s);
2522 		return ENOBUFS;
2523 	}
2524 
2525 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2526 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2527 		    "memory for tx buffers\n");
2528 		msk_stop(ifp, 1);
2529 		splx(s);
2530 		return ENOBUFS;
2531 	}
2532 
2533 	/* Set interrupt moderation if changed via sysctl. */
2534 	switch (sc->sk_type) {
2535 	case SK_YUKON_EC:
2536 	case SK_YUKON_EC_U:
2537 	case SK_YUKON_EX:
2538 	case SK_YUKON_SUPR:
2539 	case SK_YUKON_ULTRA2:
2540 	case SK_YUKON_OPTIMA:
2541 	case SK_YUKON_PRM:
2542 	case SK_YUKON_OPTIMA2:
2543 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2544 		break;
2545 	case SK_YUKON_FE:
2546 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2547 		break;
2548 	case SK_YUKON_FE_P:
2549 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2550 		break;
2551 	case SK_YUKON_XL:
2552 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2553 		break;
2554 	default:
2555 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2556 	}
2557 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2558 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2559 		sk_win_write_4(sc, SK_IMTIMERINIT,
2560 		    SK_IM_USECS(sc->sk_int_mod));
2561 		aprint_verbose_dev(sc->sk_dev,
2562 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2563 	}
2564 
2565 	/* Initialize prefetch engine. */
2566 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2567 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2568 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2569 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2570 	    MSK_RX_RING_ADDR(sc_if, 0));
2571 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2572 	    (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2573 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2574 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2575 
2576 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2577 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2578 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2579 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2580 	    MSK_TX_RING_ADDR(sc_if, 0));
2581 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2582 	    (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2583 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2584 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2585 
2586 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2587 	    sc_if->sk_cdata.sk_rx_prod);
2588 
2589 
2590 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2591 		/* Disable flushing of non-ASF packets. */
2592 		SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2593 		    SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2594 	}
2595 
2596 	/* Configure interrupt handling */
2597 	if (sc_if->sk_port == SK_PORT_A)
2598 		sc->sk_intrmask |= SK_Y2_INTRS1;
2599 	else
2600 		sc->sk_intrmask |= SK_Y2_INTRS2;
2601 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2602 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2603 
2604 	ifp->if_flags |= IFF_RUNNING;
2605 	ifp->if_flags &= ~IFF_OACTIVE;
2606 
2607 	callout_schedule(&sc_if->sk_tick_ch, hz);
2608 
2609 out:
2610 	splx(s);
2611 	return rc;
2612 }
2613 
2614 /*
2615  * Note: the logic of second parameter is inverted compared to OpenBSD
2616  * code, since this code uses the function as if_stop hook too.
2617  */
2618 static void
2619 msk_stop(struct ifnet *ifp, int disable)
2620 {
2621 	struct sk_if_softc	*sc_if = ifp->if_softc;
2622 	struct sk_softc		*sc = sc_if->sk_softc;
2623 	struct sk_txmap_entry	*dma;
2624 	int			i;
2625 
2626 	DPRINTFN(2, ("msk_stop\n"));
2627 
2628 	callout_stop(&sc_if->sk_tick_ch);
2629 	callout_stop(&sc_if->sk_tick_rx);
2630 
2631 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2632 
2633 	/* Stop transfer of Tx descriptors */
2634 
2635 	/* Stop transfer of Rx descriptors */
2636 
2637 	if (disable) {
2638 		/* Turn off various components of this interface. */
2639 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2640 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2641 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2642 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2643 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2644 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2645 		SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2646 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2647 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2648 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2649 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2650 
2651 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2652 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2653 
2654 		/* Disable interrupts */
2655 		if (sc_if->sk_port == SK_PORT_A)
2656 			sc->sk_intrmask &= ~SK_Y2_INTRS1;
2657 		else
2658 			sc->sk_intrmask &= ~SK_Y2_INTRS2;
2659 		CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2660 	}
2661 
2662 	/* Free RX and TX mbufs still in the queues. */
2663 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2664 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2665 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2666 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2667 		}
2668 	}
2669 
2670 	sc_if->sk_cdata.sk_rx_prod = 0;
2671 	sc_if->sk_cdata.sk_rx_cons = 0;
2672 	sc_if->sk_cdata.sk_rx_cnt = 0;
2673 
2674 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2675 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2676 			dma = sc_if->sk_cdata.sk_tx_map[i];
2677 
2678 			bus_dmamap_sync(sc->sc_dmatag, dma->dmamap, 0,
2679 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2680 
2681 			bus_dmamap_unload(sc->sc_dmatag, dma->dmamap);
2682 #if 1
2683 			SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2684 			    sc_if->sk_cdata.sk_tx_map[i], link);
2685 			sc_if->sk_cdata.sk_tx_map[i] = 0;
2686 #endif
2687 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2688 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2689 		}
2690 	}
2691 
2692 #if 1
2693 	while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2694 		SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2695 		bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2696 		free(dma, M_DEVBUF);
2697 	}
2698 #endif
2699 }
2700 
2701 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2702 	mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2703 
2704 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2705 	msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2706 
2707 #ifdef MSK_DEBUG
2708 static void
2709 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2710 {
2711 #define DESC_PRINT(X)					\
2712 	if (X)						\
2713 		printf("txdesc[%d]." #X "=%#x\n",	\
2714 		       idx, X);
2715 
2716 	DESC_PRINT(letoh32(le->sk_addr));
2717 	DESC_PRINT(letoh16(le->sk_len));
2718 	DESC_PRINT(le->sk_ctl);
2719 	DESC_PRINT(le->sk_opcode);
2720 #undef DESC_PRINT
2721 }
2722 
2723 static void
2724 msk_dump_bytes(const char *data, int len)
2725 {
2726 	int c, i, j;
2727 
2728 	for (i = 0; i < len; i += 16) {
2729 		printf("%08x  ", i);
2730 		c = len - i;
2731 		if (c > 16) c = 16;
2732 
2733 		for (j = 0; j < c; j++) {
2734 			printf("%02x ", data[i + j] & 0xff);
2735 			if ((j & 0xf) == 7 && j > 0)
2736 				printf(" ");
2737 		}
2738 
2739 		for (; j < 16; j++)
2740 			printf("   ");
2741 		printf("  ");
2742 
2743 		for (j = 0; j < c; j++) {
2744 			int ch = data[i + j] & 0xff;
2745 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2746 		}
2747 
2748 		printf("\n");
2749 
2750 		if (c < 16)
2751 			break;
2752 	}
2753 }
2754 
2755 static void
2756 msk_dump_mbuf(struct mbuf *m)
2757 {
2758 	int count = m->m_pkthdr.len;
2759 
2760 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2761 
2762 	while (count > 0 && m) {
2763 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2764 		       m, m->m_data, m->m_len);
2765 		if (mskdebug >= 4)
2766 			msk_dump_bytes(mtod(m, char *), m->m_len);
2767 
2768 		count -= m->m_len;
2769 		m = m->m_next;
2770 	}
2771 }
2772 #endif
2773 
2774 static int
2775 msk_sysctl_handler(SYSCTLFN_ARGS)
2776 {
2777 	int error, t;
2778 	struct sysctlnode node;
2779 	struct sk_softc *sc;
2780 
2781 	node = *rnode;
2782 	sc = node.sysctl_data;
2783 	t = sc->sk_int_mod;
2784 	node.sysctl_data = &t;
2785 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2786 	if (error || newp == NULL)
2787 		return error;
2788 
2789 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2790 		return EINVAL;
2791 
2792 	/* update the softc with sysctl-changed value, and mark
2793 	   for hardware update */
2794 	sc->sk_int_mod = t;
2795 	sc->sk_int_mod_pending = 1;
2796 	return 0;
2797 }
2798 
2799 /*
2800  * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2801  * set up in mskc_attach()
2802  */
2803 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2804 {
2805 	int rc;
2806 	const struct sysctlnode *node;
2807 
2808 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2809 	    0, CTLTYPE_NODE, "msk",
2810 	    SYSCTL_DESCR("msk interface controls"),
2811 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2812 		goto err;
2813 	}
2814 
2815 	msk_root_num = node->sysctl_num;
2816 	return;
2817 
2818 err:
2819 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2820 }
2821