xref: /netbsd-src/sys/dev/pci/if_msk.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /* $NetBSD: if_msk.c,v 1.27 2009/05/12 08:23:00 cegger Exp $ */
2 /*	$OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $	*/
3 
4 /*
5  * Copyright (c) 1997, 1998, 1999, 2000
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.27 2009/05/12 08:23:00 cegger Exp $");
56 
57 #include "bpfilter.h"
58 #include "rnd.h"
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/sockio.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/mutex.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/device.h>
69 #include <sys/queue.h>
70 #include <sys/callout.h>
71 #include <sys/sysctl.h>
72 #include <sys/endian.h>
73 #ifdef __NetBSD__
74  #define letoh16 htole16
75  #define letoh32 htole32
76 #endif
77 
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_types.h>
81 
82 #include <net/if_media.h>
83 
84 #if NBPFILTER > 0
85 #include <net/bpf.h>
86 #endif
87 #if NRND > 0
88 #include <sys/rnd.h>
89 #endif
90 
91 #include <dev/mii/mii.h>
92 #include <dev/mii/miivar.h>
93 #include <dev/mii/brgphyreg.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98 
99 #include <dev/pci/if_skreg.h>
100 #include <dev/pci/if_mskvar.h>
101 
102 int mskc_probe(device_t, cfdata_t, void *);
103 void mskc_attach(device_t, device_t self, void *aux);
104 static bool mskc_suspend(device_t PMF_FN_PROTO);
105 static bool mskc_resume(device_t PMF_FN_PROTO);
106 int msk_probe(device_t, cfdata_t, void *);
107 void msk_attach(device_t, device_t self, void *aux);
108 int mskcprint(void *, const char *);
109 int msk_intr(void *);
110 void msk_intr_yukon(struct sk_if_softc *);
111 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
112 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
113 void msk_txeof(struct sk_if_softc *, int);
114 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
115 void msk_start(struct ifnet *);
116 int msk_ioctl(struct ifnet *, u_long, void *);
117 int msk_init(struct ifnet *);
118 void msk_init_yukon(struct sk_if_softc *);
119 void msk_stop(struct ifnet *, int);
120 void msk_watchdog(struct ifnet *);
121 void msk_reset(struct sk_softc *);
122 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
123 int msk_alloc_jumbo_mem(struct sk_if_softc *);
124 void *msk_jalloc(struct sk_if_softc *);
125 void msk_jfree(struct mbuf *, void *, size_t, void *);
126 int msk_init_rx_ring(struct sk_if_softc *);
127 int msk_init_tx_ring(struct sk_if_softc *);
128 
129 void msk_update_int_mod(struct sk_softc *);
130 
131 int msk_miibus_readreg(device_t, int, int);
132 void msk_miibus_writereg(device_t, int, int, int);
133 void msk_miibus_statchg(device_t);
134 
135 void msk_setfilt(struct sk_if_softc *, void *, int);
136 void msk_setmulti(struct sk_if_softc *);
137 void msk_setpromisc(struct sk_if_softc *);
138 void msk_tick(void *);
139 
140 /* #define MSK_DEBUG 1 */
141 #ifdef MSK_DEBUG
142 #define DPRINTF(x)	if (mskdebug) printf x
143 #define DPRINTFN(n,x)	if (mskdebug >= (n)) printf x
144 int	mskdebug = MSK_DEBUG;
145 
146 void msk_dump_txdesc(struct msk_tx_desc *, int);
147 void msk_dump_mbuf(struct mbuf *);
148 void msk_dump_bytes(const char *, int);
149 #else
150 #define DPRINTF(x)
151 #define DPRINTFN(n,x)
152 #endif
153 
154 static int msk_sysctl_handler(SYSCTLFN_PROTO);
155 static int msk_root_num;
156 
157 /* supported device vendors */
158 static const struct msk_product {
159         pci_vendor_id_t         msk_vendor;
160         pci_product_id_t        msk_product;
161 } msk_products[] = {
162 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
163 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
164 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
165 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_1 },
166 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
167 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
168 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
169 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
170 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
171 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C055 },
172 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
173 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
174 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
175 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
176 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
177 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
178 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
179 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
180 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
181 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021CU },
182 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021X },
183 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022CU },
184 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022X },
185 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
190 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
191 };
192 
193 static inline u_int32_t
194 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
195 {
196 	return CSR_READ_4(sc, reg);
197 }
198 
199 static inline u_int16_t
200 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
201 {
202 	return CSR_READ_2(sc, reg);
203 }
204 
205 static inline u_int8_t
206 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
207 {
208 	return CSR_READ_1(sc, reg);
209 }
210 
211 static inline void
212 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
213 {
214 	CSR_WRITE_4(sc, reg, x);
215 }
216 
217 static inline void
218 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
219 {
220 	CSR_WRITE_2(sc, reg, x);
221 }
222 
223 static inline void
224 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
225 {
226 	CSR_WRITE_1(sc, reg, x);
227 }
228 
229 int
230 msk_miibus_readreg(device_t dev, int phy, int reg)
231 {
232 	struct sk_if_softc *sc_if = device_private(dev);
233 	u_int16_t val;
234 	int i;
235 
236         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
237 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
238 
239 	for (i = 0; i < SK_TIMEOUT; i++) {
240 		DELAY(1);
241 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
242 		if (val & YU_SMICR_READ_VALID)
243 			break;
244 	}
245 
246 	if (i == SK_TIMEOUT) {
247 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
248 		return (0);
249 	}
250 
251  	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
252 		     SK_TIMEOUT));
253 
254         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
255 
256 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
257 		     phy, reg, val));
258 
259 	return (val);
260 }
261 
262 void
263 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
264 {
265 	struct sk_if_softc *sc_if = device_private(dev);
266 	int i;
267 
268 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
269 		     phy, reg, val));
270 
271 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
272 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
273 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
274 
275 	for (i = 0; i < SK_TIMEOUT; i++) {
276 		DELAY(1);
277 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
278 			break;
279 	}
280 
281 	if (i == SK_TIMEOUT)
282 		aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
283 }
284 
285 void
286 msk_miibus_statchg(device_t dev)
287 {
288 	struct sk_if_softc *sc_if = device_private(dev);
289 	struct mii_data *mii = &sc_if->sk_mii;
290 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
291 	int gpcr;
292 
293 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
294 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
295 
296 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
297 		/* Set speed. */
298 		gpcr |= YU_GPCR_SPEED_DIS;
299 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
300 		case IFM_1000_SX:
301 		case IFM_1000_LX:
302 		case IFM_1000_CX:
303 		case IFM_1000_T:
304 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
305 			break;
306 		case IFM_100_TX:
307 			gpcr |= YU_GPCR_SPEED;
308 			break;
309 		}
310 
311 		/* Set duplex. */
312 		gpcr |= YU_GPCR_DPLX_DIS;
313 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
314 			gpcr |= YU_GPCR_DUPLEX;
315 
316 		/* Disable flow control. */
317 		gpcr |= YU_GPCR_FCTL_DIS;
318 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
319 	}
320 
321 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
322 
323 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
324 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
325 }
326 
327 #define HASH_BITS	6
328 
329 void
330 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
331 {
332 	char *addr = addrv;
333 	int base = XM_RXFILT_ENTRY(slot);
334 
335 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
336 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
337 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
338 }
339 
340 void
341 msk_setmulti(struct sk_if_softc *sc_if)
342 {
343 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
344 	u_int32_t hashes[2] = { 0, 0 };
345 	int h;
346 	struct ethercom *ec = &sc_if->sk_ethercom;
347 	struct ether_multi *enm;
348 	struct ether_multistep step;
349 	u_int16_t reg;
350 
351 	/* First, zot all the existing filters. */
352 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
353 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
354 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
355 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
356 
357 
358 	/* Now program new ones. */
359 	reg = SK_YU_READ_2(sc_if, YUKON_RCR);
360 	reg |= YU_RCR_UFLEN;
361 allmulti:
362 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
363 		if ((ifp->if_flags & IFF_PROMISC) != 0)
364 			reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
365 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
366 			hashes[0] = 0xFFFFFFFF;
367 			hashes[1] = 0xFFFFFFFF;
368 		}
369 	} else {
370 		/* First find the tail of the list. */
371 		ETHER_FIRST_MULTI(step, ec, enm);
372 		while (enm != NULL) {
373 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
374 				 ETHER_ADDR_LEN)) {
375 				ifp->if_flags |= IFF_ALLMULTI;
376 				goto allmulti;
377 			}
378 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
379 			    ((1 << HASH_BITS) - 1);
380 			if (h < 32)
381 				hashes[0] |= (1 << h);
382 			else
383 				hashes[1] |= (1 << (h - 32));
384 
385 			ETHER_NEXT_MULTI(step, enm);
386 		}
387 		reg |= YU_RCR_MUFLEN;
388 	}
389 
390 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
391 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
392 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
393 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
394 	SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
395 }
396 
397 void
398 msk_setpromisc(struct sk_if_softc *sc_if)
399 {
400 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
401 
402 	if (ifp->if_flags & IFF_PROMISC)
403 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
404 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
405 	else
406 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
407 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 }
409 
410 int
411 msk_init_rx_ring(struct sk_if_softc *sc_if)
412 {
413 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
414 	struct msk_ring_data	*rd = sc_if->sk_rdata;
415 	int			i, nexti;
416 
417 	memset((char *)rd->sk_rx_ring, 0,
418 	    sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
419 
420 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
421 		cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
422 		if (i == (MSK_RX_RING_CNT - 1))
423 			nexti = 0;
424 		else
425 			nexti = i + 1;
426 		cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
427 	}
428 
429 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
430 		if (msk_newbuf(sc_if, i, NULL,
431 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
432 			aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
433 			return (ENOBUFS);
434 		}
435 	}
436 
437 	sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
438 	sc_if->sk_cdata.sk_rx_cons = 0;
439 
440 	return (0);
441 }
442 
443 int
444 msk_init_tx_ring(struct sk_if_softc *sc_if)
445 {
446 	struct sk_softc		*sc = sc_if->sk_softc;
447 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
448 	struct msk_ring_data	*rd = sc_if->sk_rdata;
449 	bus_dmamap_t		dmamap;
450 	struct sk_txmap_entry	*entry;
451 	int			i, nexti;
452 
453 	memset((char *)sc_if->sk_rdata->sk_tx_ring, 0,
454 	    sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
455 
456 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
457 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
458 		cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
459 		if (i == (MSK_TX_RING_CNT - 1))
460 			nexti = 0;
461 		else
462 			nexti = i + 1;
463 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
464 
465 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
466 		   SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
467 			return (ENOBUFS);
468 
469 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
470 		if (!entry) {
471 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
472 			return (ENOBUFS);
473 		}
474 		entry->dmamap = dmamap;
475 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
476 	}
477 
478 	sc_if->sk_cdata.sk_tx_prod = 0;
479 	sc_if->sk_cdata.sk_tx_cons = 0;
480 	sc_if->sk_cdata.sk_tx_cnt = 0;
481 
482 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
483 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
484 
485 	return (0);
486 }
487 
488 int
489 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
490 	  bus_dmamap_t dmamap)
491 {
492 	struct mbuf		*m_new = NULL;
493 	struct sk_chain		*c;
494 	struct msk_rx_desc	*r;
495 
496 	if (m == NULL) {
497 		void *buf = NULL;
498 
499 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
500 		if (m_new == NULL)
501 			return (ENOBUFS);
502 
503 		/* Allocate the jumbo buffer */
504 		buf = msk_jalloc(sc_if);
505 		if (buf == NULL) {
506 			m_freem(m_new);
507 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
508 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
509 			return (ENOBUFS);
510 		}
511 
512 		/* Attach the buffer to the mbuf */
513 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
514 		MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
515 	} else {
516 		/*
517 	 	 * We're re-using a previously allocated mbuf;
518 		 * be sure to re-init pointers and lengths to
519 		 * default values.
520 		 */
521 		m_new = m;
522 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
523 		m_new->m_data = m_new->m_ext.ext_buf;
524 	}
525 	m_adj(m_new, ETHER_ALIGN);
526 
527 	c = &sc_if->sk_cdata.sk_rx_chain[i];
528 	r = c->sk_le;
529 	c->sk_mbuf = m_new;
530 	r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
531 	    (((vaddr_t)m_new->m_data
532              - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
533 	r->sk_len = htole16(SK_JLEN);
534 	r->sk_ctl = 0;
535 	r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
536 
537 	MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
538 
539 	return (0);
540 }
541 
542 /*
543  * Memory management for jumbo frames.
544  */
545 
546 int
547 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
548 {
549 	struct sk_softc		*sc = sc_if->sk_softc;
550 	char *ptr, *kva;
551 	bus_dma_segment_t	seg;
552 	int		i, rseg, state, error;
553 	struct sk_jpool_entry   *entry;
554 
555 	state = error = 0;
556 
557 	/* Grab a big chunk o' storage. */
558 	if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
559 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
560 		aprint_error(": can't alloc rx buffers");
561 		return (ENOBUFS);
562 	}
563 
564 	state = 1;
565 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
566 			   BUS_DMA_NOWAIT)) {
567 		aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
568 		error = ENOBUFS;
569 		goto out;
570 	}
571 
572 	state = 2;
573 	if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
574 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
575 		aprint_error(": can't create dma map");
576 		error = ENOBUFS;
577 		goto out;
578 	}
579 
580 	state = 3;
581 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
582 			    kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
583 		aprint_error(": can't load dma map");
584 		error = ENOBUFS;
585 		goto out;
586 	}
587 
588 	state = 4;
589 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
590 	DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
591 
592 	LIST_INIT(&sc_if->sk_jfree_listhead);
593 	LIST_INIT(&sc_if->sk_jinuse_listhead);
594 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
595 
596 	/*
597 	 * Now divide it up into 9K pieces and save the addresses
598 	 * in an array.
599 	 */
600 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
601 	for (i = 0; i < MSK_JSLOTS; i++) {
602 		sc_if->sk_cdata.sk_jslots[i] = ptr;
603 		ptr += SK_JLEN;
604 		entry = malloc(sizeof(struct sk_jpool_entry),
605 		    M_DEVBUF, M_NOWAIT);
606 		if (entry == NULL) {
607 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
608 			aprint_error(": no memory for jumbo buffer queue!");
609 			error = ENOBUFS;
610 			goto out;
611 		}
612 		entry->slot = i;
613 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
614 				 entry, jpool_entries);
615 	}
616 out:
617 	if (error != 0) {
618 		switch (state) {
619 		case 4:
620 			bus_dmamap_unload(sc->sc_dmatag,
621 			    sc_if->sk_cdata.sk_rx_jumbo_map);
622 		case 3:
623 			bus_dmamap_destroy(sc->sc_dmatag,
624 			    sc_if->sk_cdata.sk_rx_jumbo_map);
625 		case 2:
626 			bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
627 		case 1:
628 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
629 			break;
630 		default:
631 			break;
632 		}
633 	}
634 
635 	return (error);
636 }
637 
638 /*
639  * Allocate a jumbo buffer.
640  */
641 void *
642 msk_jalloc(struct sk_if_softc *sc_if)
643 {
644 	struct sk_jpool_entry   *entry;
645 
646 	mutex_enter(&sc_if->sk_jpool_mtx);
647 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
648 
649 	if (entry == NULL) {
650 		mutex_exit(&sc_if->sk_jpool_mtx);
651 		return NULL;
652 	}
653 
654 	LIST_REMOVE(entry, jpool_entries);
655 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
656 	mutex_exit(&sc_if->sk_jpool_mtx);
657 	return (sc_if->sk_cdata.sk_jslots[entry->slot]);
658 }
659 
660 /*
661  * Release a jumbo buffer.
662  */
663 void
664 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
665 {
666 	struct sk_jpool_entry *entry;
667 	struct sk_if_softc *sc;
668 	int i;
669 
670 	/* Extract the softc struct pointer. */
671 	sc = (struct sk_if_softc *)arg;
672 
673 	if (sc == NULL)
674 		panic("msk_jfree: can't find softc pointer!");
675 
676 	/* calculate the slot this buffer belongs to */
677 	i = ((vaddr_t)buf
678 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
679 
680 	if ((i < 0) || (i >= MSK_JSLOTS))
681 		panic("msk_jfree: asked to free buffer that we don't manage!");
682 
683 	mutex_enter(&sc->sk_jpool_mtx);
684 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
685 	if (entry == NULL)
686 		panic("msk_jfree: buffer not in use!");
687 	entry->slot = i;
688 	LIST_REMOVE(entry, jpool_entries);
689 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
690 	mutex_exit(&sc->sk_jpool_mtx);
691 
692 	if (__predict_true(m != NULL))
693 		pool_cache_put(mb_cache, m);
694 }
695 
696 int
697 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
698 {
699 	struct sk_if_softc *sc_if = ifp->if_softc;
700 	int s, error = 0;
701 
702 	s = splnet();
703 
704 	DPRINTFN(2, ("msk_ioctl ETHER\n"));
705 	error = ether_ioctl(ifp, cmd, data);
706 
707 	if (error == ENETRESET) {
708 		error = 0;
709 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
710 			;
711 		else if (ifp->if_flags & IFF_RUNNING) {
712 			/*
713 			 * Multicast list has changed; set the hardware
714 			 * filter accordingly.
715 			 */
716 			msk_setmulti(sc_if);
717 		}
718 	}
719 
720 	splx(s);
721 	return (error);
722 }
723 
724 void
725 msk_update_int_mod(struct sk_softc *sc)
726 {
727 	u_int32_t imtimer_ticks;
728 
729 	/*
730  	 * Configure interrupt moderation. The moderation timer
731 	 * defers interrupts specified in the interrupt moderation
732 	 * timer mask based on the timeout specified in the interrupt
733 	 * moderation timer init register. Each bit in the timer
734 	 * register represents one tick, so to specify a timeout in
735 	 * microseconds, we have to multiply by the correct number of
736 	 * ticks-per-microsecond.
737 	 */
738 	switch (sc->sk_type) {
739 	case SK_YUKON_EC:
740 	case SK_YUKON_EC_U:
741 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
742 		break;
743 	case SK_YUKON_FE:
744 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
745 		break;
746 	case SK_YUKON_XL:
747 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
748 		break;
749 	default:
750 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
751 	}
752 	aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
753 	    sc->sk_int_mod);
754         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
755         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
756 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
757         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
758 	sc->sk_int_mod_pending = 0;
759 }
760 
761 static int
762 msk_lookup(const struct pci_attach_args *pa)
763 {
764 	const struct msk_product *pmsk;
765 
766 	for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
767 		if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
768 		    PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
769 			return 1;
770 	}
771 	return 0;
772 }
773 
774 /*
775  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
776  * IDs against our list and return a device name if we find a match.
777  */
778 int
779 mskc_probe(device_t parent, cfdata_t match, void *aux)
780 {
781 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
782 
783 	return msk_lookup(pa);
784 }
785 
786 /*
787  * Force the GEnesis into reset, then bring it out of reset.
788  */
789 void msk_reset(struct sk_softc *sc)
790 {
791 	u_int32_t imtimer_ticks, reg1;
792 	int reg;
793 
794 	DPRINTFN(2, ("msk_reset\n"));
795 
796 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
797 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
798 
799 	DELAY(1000);
800 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
801 	DELAY(2);
802 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
803 	sk_win_write_1(sc, SK_TESTCTL1, 2);
804 
805 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
806 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
807 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
808 	else
809 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
810 
811 	if (sc->sk_type == SK_YUKON_EC_U) {
812 		uint32_t our;
813 
814 		CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
815 
816 		/* enable all clocks. */
817 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
818 		our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
819 		our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
820 			SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
821 			SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
822 			SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
823 		/* Set all bits to 0 except bits 15..12 */
824 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
825 		/* Set to default value */
826 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
827 	}
828 
829 	/* release PHY from PowerDown/Coma mode. */
830 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
831 
832 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
833 		sk_win_write_1(sc, SK_Y2_CLKGATE,
834 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
835 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
836 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
837 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
838 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
839 	else
840 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
841 
842 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
843 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
844 	DELAY(1000);
845 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
846 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
847 
848 	sk_win_write_1(sc, SK_TESTCTL1, 1);
849 
850 	DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
851 	DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
852 		     CSR_READ_2(sc, SK_LINK_CTRL)));
853 
854 	/* Disable ASF */
855 	CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
856 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
857 
858 	/* Clear I2C IRQ noise */
859 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
860 
861 	/* Disable hardware timer */
862 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
863 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
864 
865 	/* Disable descriptor polling */
866 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
867 
868 	/* Disable time stamps */
869 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
870 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
871 
872 	/* Enable RAM interface */
873 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
874 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
875 		sk_win_write_1(sc, reg, 36);
876 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
877 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
878 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
879 
880 	/*
881 	 * Configure interrupt moderation. The moderation timer
882 	 * defers interrupts specified in the interrupt moderation
883 	 * timer mask based on the timeout specified in the interrupt
884 	 * moderation timer init register. Each bit in the timer
885 	 * register represents one tick, so to specify a timeout in
886 	 * microseconds, we have to multiply by the correct number of
887 	 * ticks-per-microsecond.
888 	 */
889 	switch (sc->sk_type) {
890 	case SK_YUKON_EC:
891 	case SK_YUKON_EC_U:
892 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
893 		break;
894 	case SK_YUKON_FE:
895 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
896 		break;
897 	case SK_YUKON_XL:
898 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
899 		break;
900 	default:
901 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
902 	}
903 
904 	/* Reset status ring. */
905 	memset((char *)sc->sk_status_ring, 0,
906 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
907 	bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
908 	    sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
909 	sc->sk_status_idx = 0;
910 	sc->sk_status_own_idx = 0;
911 
912 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
913 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
914 
915 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
916 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
917 	    sc->sk_status_map->dm_segs[0].ds_addr);
918 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
919 	    (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
920 	if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
921 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
922 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
923 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
924 	} else {
925 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
926 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
927 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
928 		    ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
929 		sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
930 	}
931 
932 #if 0
933 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
934 #endif
935 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
936 
937 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
938 
939 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
940 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
941 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
942 
943 	msk_update_int_mod(sc);
944 }
945 
946 int
947 msk_probe(device_t parent, cfdata_t match, void *aux)
948 {
949 	struct skc_attach_args *sa = aux;
950 
951 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
952 		return (0);
953 
954 	switch (sa->skc_type) {
955 	case SK_YUKON_XL:
956 	case SK_YUKON_EC_U:
957 	case SK_YUKON_EC:
958 	case SK_YUKON_FE:
959 		return (1);
960 	}
961 
962 	return (0);
963 }
964 
965 static bool
966 msk_resume(device_t dv PMF_FN_ARGS)
967 {
968 	struct sk_if_softc *sc_if = device_private(dv);
969 
970 	msk_init_yukon(sc_if);
971 	return true;
972 }
973 
974 /*
975  * Each XMAC chip is attached as a separate logical IP interface.
976  * Single port cards will have only one logical interface of course.
977  */
978 void
979 msk_attach(device_t parent, device_t self, void *aux)
980 {
981 	struct sk_if_softc *sc_if = device_private(self);
982 	struct sk_softc *sc = device_private(parent);
983 	struct skc_attach_args *sa = aux;
984 	struct ifnet *ifp;
985 	void *kva;
986 	bus_dma_segment_t seg;
987 	int i, rseg;
988 	u_int32_t chunk, val;
989 
990 	sc_if->sk_port = sa->skc_port;
991 	sc_if->sk_softc = sc;
992 	sc->sk_if[sa->skc_port] = sc_if;
993 
994 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
995 
996 	/*
997 	 * Get station address for this interface. Note that
998 	 * dual port cards actually come with three station
999 	 * addresses: one for each port, plus an extra. The
1000 	 * extra one is used by the SysKonnect driver software
1001 	 * as a 'virtual' station address for when both ports
1002 	 * are operating in failover mode. Currently we don't
1003 	 * use this extra address.
1004 	 */
1005 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1006 		sc_if->sk_enaddr[i] =
1007 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1008 
1009 	aprint_normal(": Ethernet address %s\n",
1010 	    ether_sprintf(sc_if->sk_enaddr));
1011 
1012 	/*
1013 	 * Set up RAM buffer addresses. The NIC will have a certain
1014 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1015 	 * need to divide this up a) between the transmitter and
1016  	 * receiver and b) between the two XMACs, if this is a
1017 	 * dual port NIC. Our algorithm is to divide up the memory
1018 	 * evenly so that everyone gets a fair share.
1019 	 *
1020 	 * Just to be contrary, Yukon2 appears to have separate memory
1021 	 * for each MAC.
1022 	 */
1023 	chunk = sc->sk_ramsize  - (sc->sk_ramsize + 2) / 3;
1024 	val = sc->sk_rboff / sizeof(u_int64_t);
1025 	sc_if->sk_rx_ramstart = val;
1026 	val += (chunk / sizeof(u_int64_t));
1027 	sc_if->sk_rx_ramend = val - 1;
1028 	chunk = sc->sk_ramsize - chunk;
1029 	sc_if->sk_tx_ramstart = val;
1030 	val += (chunk / sizeof(u_int64_t));
1031 	sc_if->sk_tx_ramend = val - 1;
1032 
1033 	DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1034 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1035 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1036 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1037 
1038 	/* Allocate the descriptor queues. */
1039 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1040 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1041 		aprint_error(": can't alloc rx buffers\n");
1042 		goto fail;
1043 	}
1044 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1045 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1046 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1047 		       sizeof(struct msk_ring_data));
1048 		goto fail_1;
1049 	}
1050 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1051 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1052             &sc_if->sk_ring_map)) {
1053 		aprint_error(": can't create dma map\n");
1054 		goto fail_2;
1055 	}
1056 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1057 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1058 		aprint_error(": can't load dma map\n");
1059 		goto fail_3;
1060 	}
1061         sc_if->sk_rdata = (struct msk_ring_data *)kva;
1062 	memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1063 
1064 	ifp = &sc_if->sk_ethercom.ec_if;
1065 	/* Try to allocate memory for jumbo buffers. */
1066 	if (msk_alloc_jumbo_mem(sc_if)) {
1067 		aprint_error(": jumbo buffer allocation failed\n");
1068 		goto fail_3;
1069 	}
1070 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1071 	if (sc->sk_type != SK_YUKON_FE)
1072 		sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1073 
1074 	ifp->if_softc = sc_if;
1075 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1076 	ifp->if_ioctl = msk_ioctl;
1077 	ifp->if_start = msk_start;
1078 	ifp->if_stop = msk_stop;
1079 	ifp->if_init = msk_init;
1080 	ifp->if_watchdog = msk_watchdog;
1081 	ifp->if_baudrate = 1000000000;
1082 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1083 	IFQ_SET_READY(&ifp->if_snd);
1084 	strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1085 
1086 	/*
1087 	 * Do miibus setup.
1088 	 */
1089 	msk_init_yukon(sc_if);
1090 
1091  	DPRINTFN(2, ("msk_attach: 1\n"));
1092 
1093 	sc_if->sk_mii.mii_ifp = ifp;
1094 	sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1095 	sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1096 	sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1097 
1098 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1099 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1100 	    ether_mediachange, ether_mediastatus);
1101 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1102 	    MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1103 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1104 		aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1105 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1106 			    0, NULL);
1107 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1108 	} else
1109 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1110 
1111 	callout_init(&sc_if->sk_tick_ch, 0);
1112 	callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1113 	callout_schedule(&sc_if->sk_tick_ch, hz);
1114 
1115 	/*
1116 	 * Call MI attach routines.
1117 	 */
1118 	if_attach(ifp);
1119 	ether_ifattach(ifp, sc_if->sk_enaddr);
1120 
1121 	if (!pmf_device_register(self, NULL, msk_resume))
1122 		aprint_error_dev(self, "couldn't establish power handler\n");
1123 	else
1124 		pmf_class_network_register(self, ifp);
1125 
1126 #if NRND > 0
1127 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1128 		RND_TYPE_NET, 0);
1129 #endif
1130 
1131 	DPRINTFN(2, ("msk_attach: end\n"));
1132 	return;
1133 
1134 fail_3:
1135 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1136 fail_2:
1137 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1138 fail_1:
1139 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1140 fail:
1141 	sc->sk_if[sa->skc_port] = NULL;
1142 }
1143 
1144 int
1145 mskcprint(void *aux, const char *pnp)
1146 {
1147 	struct skc_attach_args *sa = aux;
1148 
1149 	if (pnp)
1150 		aprint_normal("sk port %c at %s",
1151 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1152 	else
1153 		aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1154 	return (UNCONF);
1155 }
1156 
1157 /*
1158  * Attach the interface. Allocate softc structures, do ifmedia
1159  * setup and ethernet/BPF attach.
1160  */
1161 void
1162 mskc_attach(device_t parent, device_t self, void *aux)
1163 {
1164 	struct sk_softc *sc = device_private(self);
1165 	struct pci_attach_args *pa = aux;
1166 	struct skc_attach_args skca;
1167 	pci_chipset_tag_t pc = pa->pa_pc;
1168 	pcireg_t command, memtype;
1169 	pci_intr_handle_t ih;
1170 	const char *intrstr = NULL;
1171 	bus_size_t size;
1172 	int rc, sk_nodenum;
1173 	u_int8_t hw, skrs;
1174 	const char *revstr = NULL;
1175 	const struct sysctlnode *node;
1176 	void *kva;
1177 	bus_dma_segment_t seg;
1178 	int rseg;
1179 
1180 	DPRINTFN(2, ("begin mskc_attach\n"));
1181 
1182 	/*
1183 	 * Handle power management nonsense.
1184 	 */
1185 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1186 
1187 	if (command == 0x01) {
1188 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1189 		if (command & SK_PSTATE_MASK) {
1190 			u_int32_t		iobase, membase, irq;
1191 
1192 			/* Save important PCI config data. */
1193 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1194 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1195 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1196 
1197 			/* Reset the power state. */
1198 			aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1199 			    "-- setting to D0\n",
1200 			    command & SK_PSTATE_MASK);
1201 			command &= 0xFFFFFFFC;
1202 			pci_conf_write(pc, pa->pa_tag,
1203 			    SK_PCI_PWRMGMTCTRL, command);
1204 
1205 			/* Restore PCI config data. */
1206 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1207 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1208 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1209 		}
1210 	}
1211 
1212 	/*
1213 	 * Map control/status registers.
1214 	 */
1215 
1216 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1217 	switch (memtype) {
1218 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1219 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1220 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1221 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1222 				   NULL, &size) == 0)
1223 			break;
1224 	default:
1225 		aprint_error(": can't map mem space\n");
1226 		return;
1227 	}
1228 
1229 	sc->sc_dmatag = pa->pa_dmat;
1230 
1231 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1232 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1233 
1234 	/* bail out here if chip is not recognized */
1235 	if (!(SK_IS_YUKON2(sc))) {
1236 		aprint_error(": unknown chip type: %d\n", sc->sk_type);
1237 		goto fail_1;
1238 	}
1239 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1240 
1241 	/* Allocate interrupt */
1242 	if (pci_intr_map(pa, &ih)) {
1243 		aprint_error(": couldn't map interrupt\n");
1244 		goto fail_1;
1245 	}
1246 
1247 	intrstr = pci_intr_string(pc, ih);
1248 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1249 	if (sc->sk_intrhand == NULL) {
1250 		aprint_error(": couldn't establish interrupt");
1251 		if (intrstr != NULL)
1252 			aprint_error(" at %s", intrstr);
1253 		aprint_error("\n");
1254 		goto fail_1;
1255 	}
1256 
1257 	if (bus_dmamem_alloc(sc->sc_dmatag,
1258 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1259 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1260 		aprint_error(": can't alloc status buffers\n");
1261 		goto fail_2;
1262 	}
1263 
1264 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1265 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1266 	    &kva, BUS_DMA_NOWAIT)) {
1267 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1268 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1269 		goto fail_3;
1270 	}
1271 	if (bus_dmamap_create(sc->sc_dmatag,
1272 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1273 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1274 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1275 		aprint_error(": can't create dma map\n");
1276 		goto fail_4;
1277 	}
1278 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1279 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1280 	    NULL, BUS_DMA_NOWAIT)) {
1281 		aprint_error(": can't load dma map\n");
1282 		goto fail_5;
1283 	}
1284 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1285 
1286 	/* Reset the adapter. */
1287 	msk_reset(sc);
1288 
1289 	skrs = sk_win_read_1(sc, SK_EPROM0);
1290 	if (skrs == 0x00)
1291 		sc->sk_ramsize = 0x20000;
1292 	else
1293 		sc->sk_ramsize = skrs * (1<<12);
1294 	sc->sk_rboff = SK_RBOFF_0;
1295 
1296 	DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1297 		     sc->sk_ramsize, sc->sk_ramsize / 1024,
1298 		     sc->sk_rboff));
1299 
1300 	switch (sc->sk_type) {
1301 	case SK_YUKON_XL:
1302 		sc->sk_name = "Yukon-2 XL";
1303 		break;
1304 	case SK_YUKON_EC_U:
1305 		sc->sk_name = "Yukon-2 EC Ultra";
1306 		break;
1307 	case SK_YUKON_EC:
1308 		sc->sk_name = "Yukon-2 EC";
1309 		break;
1310 	case SK_YUKON_FE:
1311 		sc->sk_name = "Yukon-2 FE";
1312 		break;
1313 	default:
1314 		sc->sk_name = "Yukon (Unknown)";
1315 	}
1316 
1317 	if (sc->sk_type == SK_YUKON_XL) {
1318 		switch (sc->sk_rev) {
1319 		case SK_YUKON_XL_REV_A0:
1320 			sc->sk_workaround = 0;
1321 			revstr = "A0";
1322 			break;
1323 		case SK_YUKON_XL_REV_A1:
1324 			sc->sk_workaround = SK_WA_4109;
1325 			revstr = "A1";
1326 			break;
1327 		case SK_YUKON_XL_REV_A2:
1328 			sc->sk_workaround = SK_WA_4109;
1329 			revstr = "A2";
1330 			break;
1331 		case SK_YUKON_XL_REV_A3:
1332 			sc->sk_workaround = SK_WA_4109;
1333 			revstr = "A3";
1334 			break;
1335 		default:
1336 			sc->sk_workaround = 0;
1337 			break;
1338 		}
1339 	}
1340 
1341 	if (sc->sk_type == SK_YUKON_EC) {
1342 		switch (sc->sk_rev) {
1343 		case SK_YUKON_EC_REV_A1:
1344 			sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1345 			revstr = "A1";
1346 			break;
1347 		case SK_YUKON_EC_REV_A2:
1348 			sc->sk_workaround = SK_WA_4109;
1349 			revstr = "A2";
1350 			break;
1351 		case SK_YUKON_EC_REV_A3:
1352 			sc->sk_workaround = SK_WA_4109;
1353 			revstr = "A3";
1354 			break;
1355 		default:
1356 			sc->sk_workaround = 0;
1357 			break;
1358 		}
1359 	}
1360 
1361 	if (sc->sk_type == SK_YUKON_FE) {
1362 		sc->sk_workaround = SK_WA_4109;
1363 		switch (sc->sk_rev) {
1364 		case SK_YUKON_FE_REV_A1:
1365 			revstr = "A1";
1366 			break;
1367 		case SK_YUKON_FE_REV_A2:
1368 			revstr = "A2";
1369 			break;
1370 		default:
1371 			sc->sk_workaround = 0;
1372 			break;
1373 		}
1374 	}
1375 
1376 	if (sc->sk_type == SK_YUKON_EC_U) {
1377 		sc->sk_workaround = SK_WA_4109;
1378 		switch (sc->sk_rev) {
1379 		case SK_YUKON_EC_U_REV_A0:
1380 			revstr = "A0";
1381 			break;
1382 		case SK_YUKON_EC_U_REV_A1:
1383 			revstr = "A1";
1384 			break;
1385 		case SK_YUKON_EC_U_REV_B0:
1386 			revstr = "B0";
1387 			break;
1388 		default:
1389 			sc->sk_workaround = 0;
1390 			break;
1391 		}
1392 	}
1393 
1394 	/* Announce the product name. */
1395 	aprint_normal(", %s", sc->sk_name);
1396 	if (revstr != NULL)
1397 		aprint_normal(" rev. %s", revstr);
1398 	aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1399 
1400 	sc->sk_macs = 1;
1401 
1402 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1403 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1404 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1405 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1406 			sc->sk_macs++;
1407 	}
1408 
1409 	skca.skc_port = SK_PORT_A;
1410 	skca.skc_type = sc->sk_type;
1411 	skca.skc_rev = sc->sk_rev;
1412 	(void)config_found(&sc->sk_dev, &skca, mskcprint);
1413 
1414 	if (sc->sk_macs > 1) {
1415 		skca.skc_port = SK_PORT_B;
1416 		skca.skc_type = sc->sk_type;
1417 		skca.skc_rev = sc->sk_rev;
1418 		(void)config_found(&sc->sk_dev, &skca, mskcprint);
1419 	}
1420 
1421 	/* Turn on the 'driver is loaded' LED. */
1422 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1423 
1424 	/* skc sysctl setup */
1425 
1426 	sc->sk_int_mod = SK_IM_DEFAULT;
1427 	sc->sk_int_mod_pending = 0;
1428 
1429 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1430 	    0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1431 	    SYSCTL_DESCR("mskc per-controller controls"),
1432 	    NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1433 	    CTL_EOL)) != 0) {
1434 		aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1435 		goto fail_6;
1436 	}
1437 
1438 	sk_nodenum = node->sysctl_num;
1439 
1440 	/* interrupt moderation time in usecs */
1441 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1442 	    CTLFLAG_READWRITE,
1443 	    CTLTYPE_INT, "int_mod",
1444 	    SYSCTL_DESCR("msk interrupt moderation timer"),
1445 	    msk_sysctl_handler, 0, sc,
1446 	    0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1447 	    CTL_EOL)) != 0) {
1448 		aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1449 		goto fail_6;
1450 	}
1451 
1452 	if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1453 		aprint_error_dev(self, "couldn't establish power handler\n");
1454 
1455 	return;
1456 
1457  fail_6:
1458 	bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1459 fail_5:
1460 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1461 fail_4:
1462 	bus_dmamem_unmap(sc->sc_dmatag, kva,
1463 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1464 fail_3:
1465 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1466 fail_2:
1467 	pci_intr_disestablish(pc, sc->sk_intrhand);
1468 fail_1:
1469 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1470 }
1471 
1472 int
1473 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1474 {
1475 	struct sk_softc		*sc = sc_if->sk_softc;
1476 	struct msk_tx_desc		*f = NULL;
1477 	u_int32_t		frag, cur;
1478 	int			i;
1479 	struct sk_txmap_entry	*entry;
1480 	bus_dmamap_t		txmap;
1481 
1482 	DPRINTFN(2, ("msk_encap\n"));
1483 
1484 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1485 	if (entry == NULL) {
1486 		DPRINTFN(2, ("msk_encap: no txmap available\n"));
1487 		return (ENOBUFS);
1488 	}
1489 	txmap = entry->dmamap;
1490 
1491 	cur = frag = *txidx;
1492 
1493 #ifdef MSK_DEBUG
1494 	if (mskdebug >= 2)
1495 		msk_dump_mbuf(m_head);
1496 #endif
1497 
1498 	/*
1499 	 * Start packing the mbufs in this chain into
1500 	 * the fragment pointers. Stop when we run out
1501 	 * of fragments or hit the end of the mbuf chain.
1502 	 */
1503 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1504 	    BUS_DMA_NOWAIT)) {
1505 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1506 		return (ENOBUFS);
1507 	}
1508 
1509 	if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1510 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1511 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1512 		return (ENOBUFS);
1513 	}
1514 
1515 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1516 
1517 	/* Sync the DMA map. */
1518 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1519 	    BUS_DMASYNC_PREWRITE);
1520 
1521 	for (i = 0; i < txmap->dm_nsegs; i++) {
1522 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1523 		f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1524 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1525 		f->sk_ctl = 0;
1526 		if (i == 0)
1527 			f->sk_opcode = SK_Y2_TXOPC_PACKET;
1528 		else
1529 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1530 		cur = frag;
1531 		SK_INC(frag, MSK_TX_RING_CNT);
1532 	}
1533 
1534 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1535 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1536 
1537 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1538 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1539 
1540 	/* Sync descriptors before handing to chip */
1541 	MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1542             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1543 
1544 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1545 
1546 	/* Sync first descriptor to hand it off */
1547 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1548 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1549 
1550 	sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1551 
1552 #ifdef MSK_DEBUG
1553 	if (mskdebug >= 2) {
1554 		struct msk_tx_desc *le;
1555 		u_int32_t idx;
1556 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1557 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1558 			msk_dump_txdesc(le, idx);
1559 		}
1560 	}
1561 #endif
1562 
1563 	*txidx = frag;
1564 
1565 	DPRINTFN(2, ("msk_encap: completed successfully\n"));
1566 
1567 	return (0);
1568 }
1569 
1570 void
1571 msk_start(struct ifnet *ifp)
1572 {
1573         struct sk_if_softc	*sc_if = ifp->if_softc;
1574         struct mbuf		*m_head = NULL;
1575         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1576 	int			pkts = 0;
1577 
1578 	DPRINTFN(2, ("msk_start\n"));
1579 
1580 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1581 		IFQ_POLL(&ifp->if_snd, m_head);
1582 		if (m_head == NULL)
1583 			break;
1584 
1585 		/*
1586 		 * Pack the data into the transmit ring. If we
1587 		 * don't have room, set the OACTIVE flag and wait
1588 		 * for the NIC to drain the ring.
1589 		 */
1590 		if (msk_encap(sc_if, m_head, &idx)) {
1591 			ifp->if_flags |= IFF_OACTIVE;
1592 			break;
1593 		}
1594 
1595 		/* now we are committed to transmit the packet */
1596 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1597 		pkts++;
1598 
1599 		/*
1600 		 * If there's a BPF listener, bounce a copy of this frame
1601 		 * to him.
1602 		 */
1603 #if NBPFILTER > 0
1604 		if (ifp->if_bpf)
1605 			bpf_mtap(ifp->if_bpf, m_head);
1606 #endif
1607 	}
1608 	if (pkts == 0)
1609 		return;
1610 
1611 	/* Transmit */
1612 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1613 		sc_if->sk_cdata.sk_tx_prod = idx;
1614 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1615 
1616 		/* Set a timeout in case the chip goes out to lunch. */
1617 		ifp->if_timer = 5;
1618 	}
1619 }
1620 
1621 void
1622 msk_watchdog(struct ifnet *ifp)
1623 {
1624 	struct sk_if_softc *sc_if = ifp->if_softc;
1625 	u_int32_t reg;
1626 	int idx;
1627 
1628 	/*
1629 	 * Reclaim first as there is a possibility of losing Tx completion
1630 	 * interrupts.
1631 	 */
1632 	if (sc_if->sk_port == SK_PORT_A)
1633 		reg = SK_STAT_BMU_TXA1_RIDX;
1634 	else
1635 		reg = SK_STAT_BMU_TXA2_RIDX;
1636 
1637 	idx = sk_win_read_2(sc_if->sk_softc, reg);
1638 	if (sc_if->sk_cdata.sk_tx_cons != idx) {
1639 		msk_txeof(sc_if, idx);
1640 		if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1641 			aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1642 
1643 			ifp->if_oerrors++;
1644 
1645 			/* XXX Resets both ports; we shouldn't do that. */
1646 			msk_reset(sc_if->sk_softc);
1647 			msk_init(ifp);
1648 		}
1649 	}
1650 }
1651 
1652 static bool
1653 mskc_suspend(device_t dv PMF_FN_ARGS)
1654 {
1655 	struct sk_softc *sc = device_private(dv);
1656 
1657 	DPRINTFN(2, ("mskc_suspend\n"));
1658 
1659 	/* Turn off the 'driver is loaded' LED. */
1660 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1661 
1662 	return true;
1663 }
1664 
1665 static bool
1666 mskc_resume(device_t dv PMF_FN_ARGS)
1667 {
1668 	struct sk_softc *sc = device_private(dv);
1669 
1670 	DPRINTFN(2, ("mskc_resume\n"));
1671 
1672 	msk_reset(sc);
1673 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1674 
1675 	return true;
1676 }
1677 
1678 __inline int
1679 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1680 {
1681 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1682 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1683 	    YU_RXSTAT_JABBER)) != 0 ||
1684 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1685 	    YU_RXSTAT_BYTES(stat) != len)
1686 		return (0);
1687 
1688 	return (1);
1689 }
1690 
1691 void
1692 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1693 {
1694 	struct sk_softc		*sc = sc_if->sk_softc;
1695 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1696 	struct mbuf		*m;
1697 	struct sk_chain		*cur_rx;
1698 	int			cur, total_len = len;
1699 	bus_dmamap_t		dmamap;
1700 
1701 	DPRINTFN(2, ("msk_rxeof\n"));
1702 
1703 	cur = sc_if->sk_cdata.sk_rx_cons;
1704 	SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1705 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1706 
1707 	/* Sync the descriptor */
1708 	MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1709 
1710 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1711 	dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1712 
1713 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1714 	    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1715 
1716 	m = cur_rx->sk_mbuf;
1717 	cur_rx->sk_mbuf = NULL;
1718 
1719 	if (total_len < SK_MIN_FRAMELEN ||
1720 	    total_len > ETHER_MAX_LEN_JUMBO ||
1721 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
1722 		ifp->if_ierrors++;
1723 		msk_newbuf(sc_if, cur, m, dmamap);
1724 		return;
1725 	}
1726 
1727 	/*
1728 	 * Try to allocate a new jumbo buffer. If that fails, copy the
1729 	 * packet to mbufs and put the jumbo buffer back in the ring
1730 	 * so it can be re-used. If allocating mbufs fails, then we
1731 	 * have to drop the packet.
1732 	 */
1733 	if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1734 		struct mbuf		*m0;
1735 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1736 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
1737 		msk_newbuf(sc_if, cur, m, dmamap);
1738 		if (m0 == NULL) {
1739 			ifp->if_ierrors++;
1740 			return;
1741 		}
1742 		m_adj(m0, ETHER_ALIGN);
1743 		m = m0;
1744 	} else {
1745 		m->m_pkthdr.rcvif = ifp;
1746 		m->m_pkthdr.len = m->m_len = total_len;
1747 	}
1748 
1749 	ifp->if_ipackets++;
1750 
1751 #if NBPFILTER > 0
1752 	if (ifp->if_bpf)
1753 		bpf_mtap(ifp->if_bpf, m);
1754 #endif
1755 
1756 	/* pass it on. */
1757 	(*ifp->if_input)(ifp, m);
1758 }
1759 
1760 void
1761 msk_txeof(struct sk_if_softc *sc_if, int idx)
1762 {
1763 	struct sk_softc		*sc = sc_if->sk_softc;
1764 	struct msk_tx_desc	*cur_tx;
1765 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1766 	u_int32_t		sk_ctl;
1767 	struct sk_txmap_entry	*entry;
1768 	int			cons, prog;
1769 
1770 	DPRINTFN(2, ("msk_txeof\n"));
1771 
1772 	/*
1773 	 * Go through our tx ring and free mbufs for those
1774 	 * frames that have been sent.
1775 	 */
1776 	cons = sc_if->sk_cdata.sk_tx_cons;
1777 	prog = 0;
1778 	while (cons != idx) {
1779 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1780 			break;
1781 		prog++;
1782 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1783 
1784 		MSK_CDTXSYNC(sc_if, cons, 1,
1785 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1786 		sk_ctl = cur_tx->sk_ctl;
1787 		MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1788 #ifdef MSK_DEBUG
1789 		if (mskdebug >= 2)
1790 			msk_dump_txdesc(cur_tx, cons);
1791 #endif
1792 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1793 			ifp->if_opackets++;
1794 		if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1795 			entry = sc_if->sk_cdata.sk_tx_map[cons];
1796 
1797 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1798 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1799 
1800 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1801 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1802 					  link);
1803 			sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1804 			m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1805 			sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1806 		}
1807 		sc_if->sk_cdata.sk_tx_cnt--;
1808 		SK_INC(cons, MSK_TX_RING_CNT);
1809 	}
1810 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1811 
1812 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1813 		ifp->if_flags &= ~IFF_OACTIVE;
1814 
1815 	if (prog > 0)
1816 		sc_if->sk_cdata.sk_tx_cons = cons;
1817 }
1818 
1819 void
1820 msk_tick(void *xsc_if)
1821 {
1822 	struct sk_if_softc *sc_if = xsc_if;
1823 	struct mii_data *mii = &sc_if->sk_mii;
1824 	int s;
1825 
1826 	s = splnet();
1827 	mii_tick(mii);
1828 	splx(s);
1829 
1830 	callout_schedule(&sc_if->sk_tick_ch, hz);
1831 }
1832 
1833 void
1834 msk_intr_yukon(struct sk_if_softc *sc_if)
1835 {
1836 	u_int8_t status;
1837 
1838 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1839 	/* RX overrun */
1840 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1841 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1842 		    SK_RFCTL_RX_FIFO_OVER);
1843 	}
1844 	/* TX underrun */
1845 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1846 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1847 		    SK_TFCTL_TX_FIFO_UNDER);
1848 	}
1849 
1850 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1851 }
1852 
1853 int
1854 msk_intr(void *xsc)
1855 {
1856 	struct sk_softc		*sc = xsc;
1857 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1858 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1859 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1860 	int			claimed = 0;
1861 	u_int32_t		status;
1862 	uint32_t		st_status;
1863 	uint16_t		st_len;
1864 	uint8_t			st_opcode, st_link;
1865 	struct msk_status_desc	*cur_st;
1866 
1867 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
1868 	if (status == 0) {
1869 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1870 		return (0);
1871 	}
1872 
1873 	status = CSR_READ_4(sc, SK_ISR);
1874 
1875 	if (sc_if0 != NULL)
1876 		ifp0 = &sc_if0->sk_ethercom.ec_if;
1877 	if (sc_if1 != NULL)
1878 		ifp1 = &sc_if1->sk_ethercom.ec_if;
1879 
1880 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1881 	    (ifp0->if_flags & IFF_RUNNING)) {
1882 		msk_intr_yukon(sc_if0);
1883 	}
1884 
1885 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1886 	    (ifp1->if_flags & IFF_RUNNING)) {
1887 		msk_intr_yukon(sc_if1);
1888 	}
1889 
1890 	for (;;) {
1891 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1892 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
1893 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1894 		st_opcode = cur_st->sk_opcode;
1895 		if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1896 			MSK_CDSTSYNC(sc, sc->sk_status_idx,
1897 			    BUS_DMASYNC_PREREAD);
1898 			break;
1899 		}
1900 		st_status = le32toh(cur_st->sk_status);
1901 		st_len = le16toh(cur_st->sk_len);
1902 		st_link = cur_st->sk_link;
1903 		st_opcode &= ~SK_Y2_STOPC_OWN;
1904 
1905 		switch (st_opcode) {
1906 		case SK_Y2_STOPC_RXSTAT:
1907 			msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1908 			SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1909 			    SK_RXQ1_Y2_PREF_PUTIDX,
1910 			    sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1911 			break;
1912 		case SK_Y2_STOPC_TXSTAT:
1913 			if (sc_if0)
1914 				msk_txeof(sc_if0, st_status
1915 				    & SK_Y2_ST_TXA1_MSKL);
1916 			if (sc_if1)
1917 				msk_txeof(sc_if1,
1918 				    ((st_status & SK_Y2_ST_TXA2_MSKL)
1919 					>> SK_Y2_ST_TXA2_SHIFTL)
1920 				    | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1921 			break;
1922 		default:
1923 			aprint_error("opcode=0x%x\n", st_opcode);
1924 			break;
1925 		}
1926 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1927 	}
1928 
1929 #define MSK_STATUS_RING_OWN_CNT(sc)			\
1930 	(((sc)->sk_status_idx + MSK_STATUS_RING_CNT -	\
1931 	    (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1932 
1933 	while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1934 		cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1935 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1936 		MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1937 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1938 
1939 		SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1940 	}
1941 
1942 	if (status & SK_Y2_IMR_BMU) {
1943 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1944 		claimed = 1;
1945 	}
1946 
1947 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1948 
1949 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1950 		msk_start(ifp0);
1951 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1952 		msk_start(ifp1);
1953 
1954 #if NRND > 0
1955 	if (RND_ENABLED(&sc->rnd_source))
1956 		rnd_add_uint32(&sc->rnd_source, status);
1957 #endif
1958 
1959 	if (sc->sk_int_mod_pending)
1960 		msk_update_int_mod(sc);
1961 
1962 	return claimed;
1963 }
1964 
1965 void
1966 msk_init_yukon(struct sk_if_softc *sc_if)
1967 {
1968 	u_int32_t		v;
1969 	u_int16_t		reg;
1970 	struct sk_softc		*sc;
1971 	int			i;
1972 
1973 	sc = sc_if->sk_softc;
1974 
1975 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1976 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1977 
1978 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
1979 
1980 	/* GMAC and GPHY Reset */
1981 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1982 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1983 	DELAY(1000);
1984 
1985 	DPRINTFN(6, ("msk_init_yukon: 2\n"));
1986 
1987 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1988 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1989 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1990 
1991 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1992 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1993 
1994 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
1995 
1996 	/* unused read of the interrupt source register */
1997 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
1998 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1999 
2000 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2001 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2002 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2003 
2004 	/* MIB Counter Clear Mode set */
2005         reg |= YU_PAR_MIB_CLR;
2006 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2007 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2008 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2009 
2010 	/* MIB Counter Clear Mode clear */
2011 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
2012         reg &= ~YU_PAR_MIB_CLR;
2013 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2014 
2015 	/* receive control reg */
2016 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
2017 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2018 
2019 	/* transmit control register */
2020 	SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2021 
2022 	/* transmit flow control register */
2023 	SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2024 
2025 	/* transmit parameter register */
2026 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
2027 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2028 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2029 
2030 	/* serial mode register */
2031 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
2032 	reg = YU_SMR_DATA_BLIND(0x1c) |
2033 	      YU_SMR_MFL_VLAN |
2034 	      YU_SMR_IPG_DATA(0x1e);
2035 
2036 	if (sc->sk_type != SK_YUKON_FE)
2037 		reg |= YU_SMR_MFL_JUMBO;
2038 
2039 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2040 
2041 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
2042 	/* Setup Yukon's address */
2043 	for (i = 0; i < 3; i++) {
2044 		/* Write Source Address 1 (unicast filter) */
2045 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2046 			      sc_if->sk_enaddr[i * 2] |
2047 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2048 	}
2049 
2050 	for (i = 0; i < 3; i++) {
2051 		reg = sk_win_read_2(sc_if->sk_softc,
2052 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2053 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2054 	}
2055 
2056 	/* Set promiscuous mode */
2057 	msk_setpromisc(sc_if);
2058 
2059 	/* Set multicast filter */
2060 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
2061 	msk_setmulti(sc_if);
2062 
2063 	/* enable interrupt mask for counter overflows */
2064 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
2065 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2066 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2067 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2068 
2069 	/* Configure RX MAC FIFO Flush Mask */
2070 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2071 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2072 	    YU_RXSTAT_JABBER;
2073 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2074 
2075 	/* Configure RX MAC FIFO */
2076 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2077 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2078 	    SK_RFCTL_FIFO_FLUSH_ON);
2079 
2080 	/* Increase flush threshould to 64 bytes */
2081 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2082 	    SK_RFCTL_FIFO_THRESHOLD + 1);
2083 
2084 	/* Configure TX MAC FIFO */
2085 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2086 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2087 
2088 #if 1
2089 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2090 #endif
2091 	DPRINTFN(6, ("msk_init_yukon: end\n"));
2092 }
2093 
2094 /*
2095  * Note that to properly initialize any part of the GEnesis chip,
2096  * you first have to take it out of reset mode.
2097  */
2098 int
2099 msk_init(struct ifnet *ifp)
2100 {
2101 	struct sk_if_softc	*sc_if = ifp->if_softc;
2102 	struct sk_softc		*sc = sc_if->sk_softc;
2103 	int			rc = 0, s;
2104 	uint32_t		imr, imtimer_ticks;
2105 
2106 
2107 	DPRINTFN(2, ("msk_init\n"));
2108 
2109 	s = splnet();
2110 
2111 	/* Cancel pending I/O and free all RX/TX buffers. */
2112 	msk_stop(ifp,0);
2113 
2114 	/* Configure I2C registers */
2115 
2116 	/* Configure XMAC(s) */
2117 	msk_init_yukon(sc_if);
2118 	if ((rc = ether_mediachange(ifp)) != 0)
2119 		goto out;
2120 
2121 	/* Configure transmit arbiter(s) */
2122 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2123 #if 0
2124 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2125 #endif
2126 
2127 	/* Configure RAMbuffers */
2128 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2129 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2130 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2131 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2132 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2133 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2134 
2135 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2136 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2137 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2138 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2139 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2140 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2141 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2142 
2143 	/* Configure BMUs */
2144 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2145 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2146 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2147 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600);	/* XXX ??? */
2148 
2149 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2150 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2151 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2152 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600);	/* XXX ??? */
2153 
2154 	/* Make sure the sync transmit queue is disabled. */
2155 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2156 
2157 	/* Init descriptors */
2158 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2159 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2160 		    "memory for rx buffers\n");
2161 		msk_stop(ifp,0);
2162 		splx(s);
2163 		return ENOBUFS;
2164 	}
2165 
2166 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2167 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2168 		    "memory for tx buffers\n");
2169 		msk_stop(ifp,0);
2170 		splx(s);
2171 		return ENOBUFS;
2172 	}
2173 
2174 	/* Set interrupt moderation if changed via sysctl. */
2175 	switch (sc->sk_type) {
2176 	case SK_YUKON_EC:
2177 	case SK_YUKON_EC_U:
2178 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2179 		break;
2180 	case SK_YUKON_FE:
2181 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2182 		break;
2183 	case SK_YUKON_XL:
2184 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2185 		break;
2186 	default:
2187 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2188 	}
2189 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2190 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2191 		sk_win_write_4(sc, SK_IMTIMERINIT,
2192 		    SK_IM_USECS(sc->sk_int_mod));
2193 		aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2194 		    sc->sk_int_mod);
2195 	}
2196 
2197 	/* Initialize prefetch engine. */
2198 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2199 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2200 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2201 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2202 	    MSK_RX_RING_ADDR(sc_if, 0));
2203 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2204 	    (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2205 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2206 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2207 
2208 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2209 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2210 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2211 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2212 	    MSK_TX_RING_ADDR(sc_if, 0));
2213 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2214 	    (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2215 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2216 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2217 
2218 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2219 	    sc_if->sk_cdata.sk_rx_prod);
2220 
2221 	/* Configure interrupt handling */
2222 	if (sc_if->sk_port == SK_PORT_A)
2223 		sc->sk_intrmask |= SK_Y2_INTRS1;
2224 	else
2225 		sc->sk_intrmask |= SK_Y2_INTRS2;
2226 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2227 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2228 
2229 	ifp->if_flags |= IFF_RUNNING;
2230 	ifp->if_flags &= ~IFF_OACTIVE;
2231 
2232 	callout_schedule(&sc_if->sk_tick_ch, hz);
2233 
2234 out:
2235 	splx(s);
2236 	return rc;
2237 }
2238 
2239 void
2240 msk_stop(struct ifnet *ifp, int disable)
2241 {
2242 	struct sk_if_softc	*sc_if = ifp->if_softc;
2243 	struct sk_softc		*sc = sc_if->sk_softc;
2244 	struct sk_txmap_entry	*dma;
2245 	int			i;
2246 
2247 	DPRINTFN(2, ("msk_stop\n"));
2248 
2249 	callout_stop(&sc_if->sk_tick_ch);
2250 
2251 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2252 
2253 	/* Stop transfer of Tx descriptors */
2254 
2255 	/* Stop transfer of Rx descriptors */
2256 
2257 	/* Turn off various components of this interface. */
2258 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2259 	SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2260 	SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2261 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2262 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2263 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2264 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2265 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2266 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2267 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2268 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2269 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2270 
2271 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2272 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2273 
2274 	/* Disable interrupts */
2275 	if (sc_if->sk_port == SK_PORT_A)
2276 		sc->sk_intrmask &= ~SK_Y2_INTRS1;
2277 	else
2278 		sc->sk_intrmask &= ~SK_Y2_INTRS2;
2279 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2280 
2281 	SK_XM_READ_2(sc_if, XM_ISR);
2282 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2283 
2284 	/* Free RX and TX mbufs still in the queues. */
2285 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2286 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2287 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2288 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2289 		}
2290 	}
2291 
2292 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2293 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2294 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2295 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2296 #if 1
2297 			SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2298 			    sc_if->sk_cdata.sk_tx_map[i], link);
2299 			sc_if->sk_cdata.sk_tx_map[i] = 0;
2300 #endif
2301 		}
2302 	}
2303 
2304 #if 1
2305 	while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2306 		SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2307 		bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2308 		free(dma, M_DEVBUF);
2309 	}
2310 #endif
2311 }
2312 
2313 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2314 	NULL, NULL);
2315 
2316 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2317 	NULL, NULL);
2318 
2319 #ifdef MSK_DEBUG
2320 void
2321 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2322 {
2323 #define DESC_PRINT(X)					\
2324 	if (X)					\
2325 		printf("txdesc[%d]." #X "=%#x\n",	\
2326 		       idx, X);
2327 
2328 	DESC_PRINT(letoh32(le->sk_addr));
2329 	DESC_PRINT(letoh16(le->sk_len));
2330 	DESC_PRINT(le->sk_ctl);
2331 	DESC_PRINT(le->sk_opcode);
2332 #undef DESC_PRINT
2333 }
2334 
2335 void
2336 msk_dump_bytes(const char *data, int len)
2337 {
2338 	int c, i, j;
2339 
2340 	for (i = 0; i < len; i += 16) {
2341 		printf("%08x  ", i);
2342 		c = len - i;
2343 		if (c > 16) c = 16;
2344 
2345 		for (j = 0; j < c; j++) {
2346 			printf("%02x ", data[i + j] & 0xff);
2347 			if ((j & 0xf) == 7 && j > 0)
2348 				printf(" ");
2349 		}
2350 
2351 		for (; j < 16; j++)
2352 			printf("   ");
2353 		printf("  ");
2354 
2355 		for (j = 0; j < c; j++) {
2356 			int ch = data[i + j] & 0xff;
2357 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2358 		}
2359 
2360 		printf("\n");
2361 
2362 		if (c < 16)
2363 			break;
2364 	}
2365 }
2366 
2367 void
2368 msk_dump_mbuf(struct mbuf *m)
2369 {
2370 	int count = m->m_pkthdr.len;
2371 
2372 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2373 
2374 	while (count > 0 && m) {
2375 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2376 		       m, m->m_data, m->m_len);
2377 		msk_dump_bytes(mtod(m, char *), m->m_len);
2378 
2379 		count -= m->m_len;
2380 		m = m->m_next;
2381 	}
2382 }
2383 #endif
2384 
2385 static int
2386 msk_sysctl_handler(SYSCTLFN_ARGS)
2387 {
2388 	int error, t;
2389 	struct sysctlnode node;
2390 	struct sk_softc *sc;
2391 
2392 	node = *rnode;
2393 	sc = node.sysctl_data;
2394 	t = sc->sk_int_mod;
2395 	node.sysctl_data = &t;
2396 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2397 	if (error || newp == NULL)
2398 		return error;
2399 
2400 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2401 		return EINVAL;
2402 
2403 	/* update the softc with sysctl-changed value, and mark
2404 	   for hardware update */
2405 	sc->sk_int_mod = t;
2406 	sc->sk_int_mod_pending = 1;
2407 	return 0;
2408 }
2409 
2410 /*
2411  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2412  * set up in skc_attach()
2413  */
2414 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2415 {
2416 	int rc;
2417 	const struct sysctlnode *node;
2418 
2419 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2420 	    0, CTLTYPE_NODE, "hw", NULL,
2421 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2422 		goto err;
2423 	}
2424 
2425 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2426 	    0, CTLTYPE_NODE, "msk",
2427 	    SYSCTL_DESCR("msk interface controls"),
2428 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2429 		goto err;
2430 	}
2431 
2432 	msk_root_num = node->sysctl_num;
2433 	return;
2434 
2435 err:
2436 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2437 }
2438