xref: /netbsd-src/sys/dev/pci/if_msk.c (revision b757af438b42b93f8c6571f026d8b8ef3eaf5fc9)
1 /* $NetBSD: if_msk.c,v 1.39 2012/02/02 19:43:05 tls Exp $ */
2 /*	$OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $	*/
3 
4 /*
5  * Copyright (c) 1997, 1998, 1999, 2000
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.39 2012/02/02 19:43:05 tls Exp $");
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71  #define letoh16 htole16
72  #define letoh32 htole32
73 #endif
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78 
79 #include <net/if_media.h>
80 
81 #include <net/bpf.h>
82 #include <sys/rnd.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87 
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91 
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94 
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 static bool mskc_suspend(device_t, const pmf_qual_t *);
98 static bool mskc_resume(device_t, const pmf_qual_t *);
99 int msk_probe(device_t, cfdata_t, void *);
100 void msk_attach(device_t, device_t, void *);
101 int mskcprint(void *, const char *);
102 int msk_intr(void *);
103 void msk_intr_yukon(struct sk_if_softc *);
104 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
105 void msk_txeof(struct sk_if_softc *, int);
106 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
107 void msk_start(struct ifnet *);
108 int msk_ioctl(struct ifnet *, u_long, void *);
109 int msk_init(struct ifnet *);
110 void msk_init_yukon(struct sk_if_softc *);
111 void msk_stop(struct ifnet *, int);
112 void msk_watchdog(struct ifnet *);
113 void msk_reset(struct sk_softc *);
114 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
115 int msk_alloc_jumbo_mem(struct sk_if_softc *);
116 void *msk_jalloc(struct sk_if_softc *);
117 void msk_jfree(struct mbuf *, void *, size_t, void *);
118 int msk_init_rx_ring(struct sk_if_softc *);
119 int msk_init_tx_ring(struct sk_if_softc *);
120 
121 void msk_update_int_mod(struct sk_softc *, int);
122 
123 int msk_miibus_readreg(device_t, int, int);
124 void msk_miibus_writereg(device_t, int, int, int);
125 void msk_miibus_statchg(device_t);
126 
127 void msk_setfilt(struct sk_if_softc *, void *, int);
128 void msk_setmulti(struct sk_if_softc *);
129 void msk_setpromisc(struct sk_if_softc *);
130 void msk_tick(void *);
131 
132 /* #define MSK_DEBUG 1 */
133 #ifdef MSK_DEBUG
134 #define DPRINTF(x)	if (mskdebug) printf x
135 #define DPRINTFN(n,x)	if (mskdebug >= (n)) printf x
136 int	mskdebug = MSK_DEBUG;
137 
138 void msk_dump_txdesc(struct msk_tx_desc *, int);
139 void msk_dump_mbuf(struct mbuf *);
140 void msk_dump_bytes(const char *, int);
141 #else
142 #define DPRINTF(x)
143 #define DPRINTFN(n,x)
144 #endif
145 
146 static int msk_sysctl_handler(SYSCTLFN_PROTO);
147 static int msk_root_num;
148 
149 /* supported device vendors */
150 static const struct msk_product {
151         pci_vendor_id_t         msk_vendor;
152         pci_product_id_t        msk_product;
153 } msk_products[] = {
154 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
155 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
156 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
157 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_1 },
158 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
159 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
160 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
161 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
162 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
163 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C055 },
164 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
165 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
166 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
167 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
168 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
169 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
170 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
171 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
172 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
173 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021CU },
174 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021X },
175 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022CU },
176 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022X },
177 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061CU },
178 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061X },
179 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062CU },
180 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062X },
181 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
182 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
183 };
184 
185 static inline u_int32_t
186 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
187 {
188 	return CSR_READ_4(sc, reg);
189 }
190 
191 static inline u_int16_t
192 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
193 {
194 	return CSR_READ_2(sc, reg);
195 }
196 
197 static inline u_int8_t
198 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
199 {
200 	return CSR_READ_1(sc, reg);
201 }
202 
203 static inline void
204 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
205 {
206 	CSR_WRITE_4(sc, reg, x);
207 }
208 
209 static inline void
210 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
211 {
212 	CSR_WRITE_2(sc, reg, x);
213 }
214 
215 static inline void
216 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
217 {
218 	CSR_WRITE_1(sc, reg, x);
219 }
220 
221 int
222 msk_miibus_readreg(device_t dev, int phy, int reg)
223 {
224 	struct sk_if_softc *sc_if = device_private(dev);
225 	u_int16_t val;
226 	int i;
227 
228         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
229 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
230 
231 	for (i = 0; i < SK_TIMEOUT; i++) {
232 		DELAY(1);
233 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
234 		if (val & YU_SMICR_READ_VALID)
235 			break;
236 	}
237 
238 	if (i == SK_TIMEOUT) {
239 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
240 		return (0);
241 	}
242 
243  	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
244 		     SK_TIMEOUT));
245 
246         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
247 
248 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
249 		     phy, reg, val));
250 
251 	return (val);
252 }
253 
254 void
255 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
256 {
257 	struct sk_if_softc *sc_if = device_private(dev);
258 	int i;
259 
260 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
261 		     phy, reg, val));
262 
263 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
264 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
265 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
266 
267 	for (i = 0; i < SK_TIMEOUT; i++) {
268 		DELAY(1);
269 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
270 			break;
271 	}
272 
273 	if (i == SK_TIMEOUT)
274 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
275 }
276 
277 void
278 msk_miibus_statchg(device_t dev)
279 {
280 	struct sk_if_softc *sc_if = device_private(dev);
281 	struct mii_data *mii = &sc_if->sk_mii;
282 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
283 	int gpcr;
284 
285 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
286 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
287 
288 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
289 		/* Set speed. */
290 		gpcr |= YU_GPCR_SPEED_DIS;
291 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
292 		case IFM_1000_SX:
293 		case IFM_1000_LX:
294 		case IFM_1000_CX:
295 		case IFM_1000_T:
296 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
297 			break;
298 		case IFM_100_TX:
299 			gpcr |= YU_GPCR_SPEED;
300 			break;
301 		}
302 
303 		/* Set duplex. */
304 		gpcr |= YU_GPCR_DPLX_DIS;
305 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
306 			gpcr |= YU_GPCR_DUPLEX;
307 
308 		/* Disable flow control. */
309 		gpcr |= YU_GPCR_FCTL_DIS;
310 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
311 	}
312 
313 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
314 
315 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
316 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
317 }
318 
319 #define HASH_BITS	6
320 
321 void
322 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
323 {
324 	char *addr = addrv;
325 	int base = XM_RXFILT_ENTRY(slot);
326 
327 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
328 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
329 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
330 }
331 
332 void
333 msk_setmulti(struct sk_if_softc *sc_if)
334 {
335 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
336 	u_int32_t hashes[2] = { 0, 0 };
337 	int h;
338 	struct ethercom *ec = &sc_if->sk_ethercom;
339 	struct ether_multi *enm;
340 	struct ether_multistep step;
341 	u_int16_t reg;
342 
343 	/* First, zot all the existing filters. */
344 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
345 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
346 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
347 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
348 
349 
350 	/* Now program new ones. */
351 	reg = SK_YU_READ_2(sc_if, YUKON_RCR);
352 	reg |= YU_RCR_UFLEN;
353 allmulti:
354 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
355 		if ((ifp->if_flags & IFF_PROMISC) != 0)
356 			reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
357 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
358 			hashes[0] = 0xFFFFFFFF;
359 			hashes[1] = 0xFFFFFFFF;
360 		}
361 	} else {
362 		/* First find the tail of the list. */
363 		ETHER_FIRST_MULTI(step, ec, enm);
364 		while (enm != NULL) {
365 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
366 				 ETHER_ADDR_LEN)) {
367 				ifp->if_flags |= IFF_ALLMULTI;
368 				goto allmulti;
369 			}
370 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
371 			    ((1 << HASH_BITS) - 1);
372 			if (h < 32)
373 				hashes[0] |= (1 << h);
374 			else
375 				hashes[1] |= (1 << (h - 32));
376 
377 			ETHER_NEXT_MULTI(step, enm);
378 		}
379 		reg |= YU_RCR_MUFLEN;
380 	}
381 
382 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
383 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
384 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
385 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
386 	SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
387 }
388 
389 void
390 msk_setpromisc(struct sk_if_softc *sc_if)
391 {
392 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
393 
394 	if (ifp->if_flags & IFF_PROMISC)
395 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
396 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
397 	else
398 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
399 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
400 }
401 
402 int
403 msk_init_rx_ring(struct sk_if_softc *sc_if)
404 {
405 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
406 	struct msk_ring_data	*rd = sc_if->sk_rdata;
407 	int			i, nexti;
408 
409 	memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
410 
411 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
412 		cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
413 		if (i == (MSK_RX_RING_CNT - 1))
414 			nexti = 0;
415 		else
416 			nexti = i + 1;
417 		cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
418 	}
419 
420 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
421 		if (msk_newbuf(sc_if, i, NULL,
422 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
423 			aprint_error_dev(sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
424 			return (ENOBUFS);
425 		}
426 	}
427 
428 	sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
429 	sc_if->sk_cdata.sk_rx_cons = 0;
430 
431 	return (0);
432 }
433 
434 int
435 msk_init_tx_ring(struct sk_if_softc *sc_if)
436 {
437 	struct sk_softc		*sc = sc_if->sk_softc;
438 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
439 	struct msk_ring_data	*rd = sc_if->sk_rdata;
440 	bus_dmamap_t		dmamap;
441 	struct sk_txmap_entry	*entry;
442 	int			i, nexti;
443 
444 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
445 	    sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
446 
447 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
448 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
449 		cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
450 		if (i == (MSK_TX_RING_CNT - 1))
451 			nexti = 0;
452 		else
453 			nexti = i + 1;
454 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
455 
456 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
457 		   SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
458 			return (ENOBUFS);
459 
460 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
461 		if (!entry) {
462 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
463 			return (ENOBUFS);
464 		}
465 		entry->dmamap = dmamap;
466 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
467 	}
468 
469 	sc_if->sk_cdata.sk_tx_prod = 0;
470 	sc_if->sk_cdata.sk_tx_cons = 0;
471 	sc_if->sk_cdata.sk_tx_cnt = 0;
472 
473 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
474 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
475 
476 	return (0);
477 }
478 
479 int
480 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
481 	  bus_dmamap_t dmamap)
482 {
483 	struct mbuf		*m_new = NULL;
484 	struct sk_chain		*c;
485 	struct msk_rx_desc	*r;
486 
487 	if (m == NULL) {
488 		void *buf = NULL;
489 
490 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
491 		if (m_new == NULL)
492 			return (ENOBUFS);
493 
494 		/* Allocate the jumbo buffer */
495 		buf = msk_jalloc(sc_if);
496 		if (buf == NULL) {
497 			m_freem(m_new);
498 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
499 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
500 			return (ENOBUFS);
501 		}
502 
503 		/* Attach the buffer to the mbuf */
504 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
505 		MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
506 	} else {
507 		/*
508 	 	 * We're re-using a previously allocated mbuf;
509 		 * be sure to re-init pointers and lengths to
510 		 * default values.
511 		 */
512 		m_new = m;
513 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
514 		m_new->m_data = m_new->m_ext.ext_buf;
515 	}
516 	m_adj(m_new, ETHER_ALIGN);
517 
518 	c = &sc_if->sk_cdata.sk_rx_chain[i];
519 	r = c->sk_le;
520 	c->sk_mbuf = m_new;
521 	r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
522 	    (((vaddr_t)m_new->m_data
523              - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
524 	r->sk_len = htole16(SK_JLEN);
525 	r->sk_ctl = 0;
526 	r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
527 
528 	MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
529 
530 	return (0);
531 }
532 
533 /*
534  * Memory management for jumbo frames.
535  */
536 
537 int
538 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
539 {
540 	struct sk_softc		*sc = sc_if->sk_softc;
541 	char *ptr, *kva;
542 	bus_dma_segment_t	seg;
543 	int		i, rseg, state, error;
544 	struct sk_jpool_entry   *entry;
545 
546 	state = error = 0;
547 
548 	/* Grab a big chunk o' storage. */
549 	if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
550 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
551 		aprint_error(": can't alloc rx buffers");
552 		return (ENOBUFS);
553 	}
554 
555 	state = 1;
556 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
557 			   BUS_DMA_NOWAIT)) {
558 		aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
559 		error = ENOBUFS;
560 		goto out;
561 	}
562 
563 	state = 2;
564 	if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
565 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
566 		aprint_error(": can't create dma map");
567 		error = ENOBUFS;
568 		goto out;
569 	}
570 
571 	state = 3;
572 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
573 			    kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
574 		aprint_error(": can't load dma map");
575 		error = ENOBUFS;
576 		goto out;
577 	}
578 
579 	state = 4;
580 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
581 	DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
582 
583 	LIST_INIT(&sc_if->sk_jfree_listhead);
584 	LIST_INIT(&sc_if->sk_jinuse_listhead);
585 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
586 
587 	/*
588 	 * Now divide it up into 9K pieces and save the addresses
589 	 * in an array.
590 	 */
591 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
592 	for (i = 0; i < MSK_JSLOTS; i++) {
593 		sc_if->sk_cdata.sk_jslots[i] = ptr;
594 		ptr += SK_JLEN;
595 		entry = malloc(sizeof(struct sk_jpool_entry),
596 		    M_DEVBUF, M_NOWAIT);
597 		if (entry == NULL) {
598 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
599 			aprint_error(": no memory for jumbo buffer queue!");
600 			error = ENOBUFS;
601 			goto out;
602 		}
603 		entry->slot = i;
604 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
605 				 entry, jpool_entries);
606 	}
607 out:
608 	if (error != 0) {
609 		switch (state) {
610 		case 4:
611 			bus_dmamap_unload(sc->sc_dmatag,
612 			    sc_if->sk_cdata.sk_rx_jumbo_map);
613 		case 3:
614 			bus_dmamap_destroy(sc->sc_dmatag,
615 			    sc_if->sk_cdata.sk_rx_jumbo_map);
616 		case 2:
617 			bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
618 		case 1:
619 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
620 			break;
621 		default:
622 			break;
623 		}
624 	}
625 
626 	return (error);
627 }
628 
629 /*
630  * Allocate a jumbo buffer.
631  */
632 void *
633 msk_jalloc(struct sk_if_softc *sc_if)
634 {
635 	struct sk_jpool_entry   *entry;
636 
637 	mutex_enter(&sc_if->sk_jpool_mtx);
638 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
639 
640 	if (entry == NULL) {
641 		mutex_exit(&sc_if->sk_jpool_mtx);
642 		return NULL;
643 	}
644 
645 	LIST_REMOVE(entry, jpool_entries);
646 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
647 	mutex_exit(&sc_if->sk_jpool_mtx);
648 	return (sc_if->sk_cdata.sk_jslots[entry->slot]);
649 }
650 
651 /*
652  * Release a jumbo buffer.
653  */
654 void
655 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
656 {
657 	struct sk_jpool_entry *entry;
658 	struct sk_if_softc *sc;
659 	int i;
660 
661 	/* Extract the softc struct pointer. */
662 	sc = (struct sk_if_softc *)arg;
663 
664 	if (sc == NULL)
665 		panic("msk_jfree: can't find softc pointer!");
666 
667 	/* calculate the slot this buffer belongs to */
668 	i = ((vaddr_t)buf
669 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
670 
671 	if ((i < 0) || (i >= MSK_JSLOTS))
672 		panic("msk_jfree: asked to free buffer that we don't manage!");
673 
674 	mutex_enter(&sc->sk_jpool_mtx);
675 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
676 	if (entry == NULL)
677 		panic("msk_jfree: buffer not in use!");
678 	entry->slot = i;
679 	LIST_REMOVE(entry, jpool_entries);
680 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
681 	mutex_exit(&sc->sk_jpool_mtx);
682 
683 	if (__predict_true(m != NULL))
684 		pool_cache_put(mb_cache, m);
685 }
686 
687 int
688 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
689 {
690 	struct sk_if_softc *sc_if = ifp->if_softc;
691 	int s, error = 0;
692 
693 	s = splnet();
694 
695 	DPRINTFN(2, ("msk_ioctl ETHER\n"));
696 	error = ether_ioctl(ifp, cmd, data);
697 
698 	if (error == ENETRESET) {
699 		error = 0;
700 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
701 			;
702 		else if (ifp->if_flags & IFF_RUNNING) {
703 			/*
704 			 * Multicast list has changed; set the hardware
705 			 * filter accordingly.
706 			 */
707 			msk_setmulti(sc_if);
708 		}
709 	}
710 
711 	splx(s);
712 	return (error);
713 }
714 
715 void
716 msk_update_int_mod(struct sk_softc *sc, int verbose)
717 {
718 	u_int32_t imtimer_ticks;
719 
720 	/*
721  	 * Configure interrupt moderation. The moderation timer
722 	 * defers interrupts specified in the interrupt moderation
723 	 * timer mask based on the timeout specified in the interrupt
724 	 * moderation timer init register. Each bit in the timer
725 	 * register represents one tick, so to specify a timeout in
726 	 * microseconds, we have to multiply by the correct number of
727 	 * ticks-per-microsecond.
728 	 */
729 	switch (sc->sk_type) {
730 	case SK_YUKON_EC:
731 	case SK_YUKON_EC_U:
732 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
733 		break;
734 	case SK_YUKON_FE:
735 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
736 		break;
737 	case SK_YUKON_XL:
738 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
739 		break;
740 	default:
741 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
742 	}
743 	if (verbose)
744 		aprint_verbose_dev(sc->sk_dev,
745 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
746         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
747         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
748 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
749         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
750 	sc->sk_int_mod_pending = 0;
751 }
752 
753 static int
754 msk_lookup(const struct pci_attach_args *pa)
755 {
756 	const struct msk_product *pmsk;
757 
758 	for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
759 		if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
760 		    PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
761 			return 1;
762 	}
763 	return 0;
764 }
765 
766 /*
767  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
768  * IDs against our list and return a device name if we find a match.
769  */
770 int
771 mskc_probe(device_t parent, cfdata_t match, void *aux)
772 {
773 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
774 
775 	return msk_lookup(pa);
776 }
777 
778 /*
779  * Force the GEnesis into reset, then bring it out of reset.
780  */
781 void msk_reset(struct sk_softc *sc)
782 {
783 	u_int32_t imtimer_ticks, reg1;
784 	int reg;
785 
786 	DPRINTFN(2, ("msk_reset\n"));
787 
788 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
789 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
790 
791 	DELAY(1000);
792 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
793 	DELAY(2);
794 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
795 	sk_win_write_1(sc, SK_TESTCTL1, 2);
796 
797 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
798 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
799 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
800 	else
801 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
802 
803 	if (sc->sk_type == SK_YUKON_EC_U) {
804 		uint32_t our;
805 
806 		CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
807 
808 		/* enable all clocks. */
809 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
810 		our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
811 		our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
812 			SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
813 			SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
814 			SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
815 		/* Set all bits to 0 except bits 15..12 */
816 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
817 		/* Set to default value */
818 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
819 	}
820 
821 	/* release PHY from PowerDown/Coma mode. */
822 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
823 
824 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
825 		sk_win_write_1(sc, SK_Y2_CLKGATE,
826 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
827 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
828 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
829 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
830 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
831 	else
832 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
833 
834 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
835 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
836 	DELAY(1000);
837 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
838 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
839 
840 	sk_win_write_1(sc, SK_TESTCTL1, 1);
841 
842 	DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
843 	DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
844 		     CSR_READ_2(sc, SK_LINK_CTRL)));
845 
846 	/* Disable ASF */
847 	CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
848 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
849 
850 	/* Clear I2C IRQ noise */
851 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
852 
853 	/* Disable hardware timer */
854 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
855 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
856 
857 	/* Disable descriptor polling */
858 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
859 
860 	/* Disable time stamps */
861 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
862 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
863 
864 	/* Enable RAM interface */
865 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
866 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
867 		sk_win_write_1(sc, reg, 36);
868 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
869 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
870 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
871 
872 	/*
873 	 * Configure interrupt moderation. The moderation timer
874 	 * defers interrupts specified in the interrupt moderation
875 	 * timer mask based on the timeout specified in the interrupt
876 	 * moderation timer init register. Each bit in the timer
877 	 * register represents one tick, so to specify a timeout in
878 	 * microseconds, we have to multiply by the correct number of
879 	 * ticks-per-microsecond.
880 	 */
881 	switch (sc->sk_type) {
882 	case SK_YUKON_EC:
883 	case SK_YUKON_EC_U:
884 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
885 		break;
886 	case SK_YUKON_FE:
887 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
888 		break;
889 	case SK_YUKON_XL:
890 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
891 		break;
892 	default:
893 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
894 	}
895 
896 	/* Reset status ring. */
897 	memset(sc->sk_status_ring, 0,
898 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
899 	bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
900 	    sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
901 	sc->sk_status_idx = 0;
902 	sc->sk_status_own_idx = 0;
903 
904 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
905 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
906 
907 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
908 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
909 	    sc->sk_status_map->dm_segs[0].ds_addr);
910 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
911 	    (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
912 	if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
913 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
914 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
915 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
916 	} else {
917 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
918 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
919 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
920 		    ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
921 		sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
922 	}
923 
924 #if 0
925 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
926 #endif
927 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
928 
929 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
930 
931 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
932 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
933 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
934 
935 	msk_update_int_mod(sc, 0);
936 }
937 
938 int
939 msk_probe(device_t parent, cfdata_t match, void *aux)
940 {
941 	struct skc_attach_args *sa = aux;
942 
943 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
944 		return (0);
945 
946 	switch (sa->skc_type) {
947 	case SK_YUKON_XL:
948 	case SK_YUKON_EC_U:
949 	case SK_YUKON_EC:
950 	case SK_YUKON_FE:
951 		return (1);
952 	}
953 
954 	return (0);
955 }
956 
957 static bool
958 msk_resume(device_t dv, const pmf_qual_t *qual)
959 {
960 	struct sk_if_softc *sc_if = device_private(dv);
961 
962 	msk_init_yukon(sc_if);
963 	return true;
964 }
965 
966 /*
967  * Each XMAC chip is attached as a separate logical IP interface.
968  * Single port cards will have only one logical interface of course.
969  */
970 void
971 msk_attach(device_t parent, device_t self, void *aux)
972 {
973 	struct sk_if_softc *sc_if = device_private(self);
974 	struct sk_softc *sc = device_private(parent);
975 	struct skc_attach_args *sa = aux;
976 	struct ifnet *ifp;
977 	void *kva;
978 	bus_dma_segment_t seg;
979 	int i, rseg;
980 	u_int32_t chunk, val;
981 
982 	sc_if->sk_dev = self;
983 	sc_if->sk_port = sa->skc_port;
984 	sc_if->sk_softc = sc;
985 	sc->sk_if[sa->skc_port] = sc_if;
986 
987 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
988 
989 	/*
990 	 * Get station address for this interface. Note that
991 	 * dual port cards actually come with three station
992 	 * addresses: one for each port, plus an extra. The
993 	 * extra one is used by the SysKonnect driver software
994 	 * as a 'virtual' station address for when both ports
995 	 * are operating in failover mode. Currently we don't
996 	 * use this extra address.
997 	 */
998 	for (i = 0; i < ETHER_ADDR_LEN; i++)
999 		sc_if->sk_enaddr[i] =
1000 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1001 
1002 	aprint_normal(": Ethernet address %s\n",
1003 	    ether_sprintf(sc_if->sk_enaddr));
1004 
1005 	/*
1006 	 * Set up RAM buffer addresses. The NIC will have a certain
1007 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1008 	 * need to divide this up a) between the transmitter and
1009  	 * receiver and b) between the two XMACs, if this is a
1010 	 * dual port NIC. Our algorithm is to divide up the memory
1011 	 * evenly so that everyone gets a fair share.
1012 	 *
1013 	 * Just to be contrary, Yukon2 appears to have separate memory
1014 	 * for each MAC.
1015 	 */
1016 	chunk = sc->sk_ramsize  - (sc->sk_ramsize + 2) / 3;
1017 	val = sc->sk_rboff / sizeof(u_int64_t);
1018 	sc_if->sk_rx_ramstart = val;
1019 	val += (chunk / sizeof(u_int64_t));
1020 	sc_if->sk_rx_ramend = val - 1;
1021 	chunk = sc->sk_ramsize - chunk;
1022 	sc_if->sk_tx_ramstart = val;
1023 	val += (chunk / sizeof(u_int64_t));
1024 	sc_if->sk_tx_ramend = val - 1;
1025 
1026 	DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1027 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1028 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1029 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1030 
1031 	/* Allocate the descriptor queues. */
1032 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1033 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1034 		aprint_error(": can't alloc rx buffers\n");
1035 		goto fail;
1036 	}
1037 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1038 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1039 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1040 		       sizeof(struct msk_ring_data));
1041 		goto fail_1;
1042 	}
1043 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1044 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1045             &sc_if->sk_ring_map)) {
1046 		aprint_error(": can't create dma map\n");
1047 		goto fail_2;
1048 	}
1049 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1050 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1051 		aprint_error(": can't load dma map\n");
1052 		goto fail_3;
1053 	}
1054         sc_if->sk_rdata = (struct msk_ring_data *)kva;
1055 	memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1056 
1057 	ifp = &sc_if->sk_ethercom.ec_if;
1058 	/* Try to allocate memory for jumbo buffers. */
1059 	if (msk_alloc_jumbo_mem(sc_if)) {
1060 		aprint_error(": jumbo buffer allocation failed\n");
1061 		goto fail_3;
1062 	}
1063 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1064 	if (sc->sk_type != SK_YUKON_FE)
1065 		sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1066 
1067 	ifp->if_softc = sc_if;
1068 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1069 	ifp->if_ioctl = msk_ioctl;
1070 	ifp->if_start = msk_start;
1071 	ifp->if_stop = msk_stop;
1072 	ifp->if_init = msk_init;
1073 	ifp->if_watchdog = msk_watchdog;
1074 	ifp->if_baudrate = 1000000000;
1075 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1076 	IFQ_SET_READY(&ifp->if_snd);
1077 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1078 
1079 	/*
1080 	 * Do miibus setup.
1081 	 */
1082 	msk_init_yukon(sc_if);
1083 
1084  	DPRINTFN(2, ("msk_attach: 1\n"));
1085 
1086 	sc_if->sk_mii.mii_ifp = ifp;
1087 	sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1088 	sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1089 	sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1090 
1091 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1092 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1093 	    ether_mediachange, ether_mediastatus);
1094 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1095 	    MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1096 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1097 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1098 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1099 			    0, NULL);
1100 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1101 	} else
1102 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1103 
1104 	callout_init(&sc_if->sk_tick_ch, 0);
1105 	callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1106 	callout_schedule(&sc_if->sk_tick_ch, hz);
1107 
1108 	/*
1109 	 * Call MI attach routines.
1110 	 */
1111 	if_attach(ifp);
1112 	ether_ifattach(ifp, sc_if->sk_enaddr);
1113 
1114 	if (pmf_device_register(self, NULL, msk_resume))
1115 		pmf_class_network_register(self, ifp);
1116 	else
1117 		aprint_error_dev(self, "couldn't establish power handler\n");
1118 
1119 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1120 		RND_TYPE_NET, 0);
1121 
1122 	DPRINTFN(2, ("msk_attach: end\n"));
1123 	return;
1124 
1125 fail_3:
1126 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1127 fail_2:
1128 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1129 fail_1:
1130 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1131 fail:
1132 	sc->sk_if[sa->skc_port] = NULL;
1133 }
1134 
1135 int
1136 mskcprint(void *aux, const char *pnp)
1137 {
1138 	struct skc_attach_args *sa = aux;
1139 
1140 	if (pnp)
1141 		aprint_normal("sk port %c at %s",
1142 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1143 	else
1144 		aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1145 	return (UNCONF);
1146 }
1147 
1148 /*
1149  * Attach the interface. Allocate softc structures, do ifmedia
1150  * setup and ethernet/BPF attach.
1151  */
1152 void
1153 mskc_attach(device_t parent, device_t self, void *aux)
1154 {
1155 	struct sk_softc *sc = device_private(self);
1156 	struct pci_attach_args *pa = aux;
1157 	struct skc_attach_args skca;
1158 	pci_chipset_tag_t pc = pa->pa_pc;
1159 	pcireg_t command, memtype;
1160 	pci_intr_handle_t ih;
1161 	const char *intrstr = NULL;
1162 	bus_size_t size;
1163 	int rc, sk_nodenum;
1164 	u_int8_t hw, skrs;
1165 	const char *revstr = NULL;
1166 	const struct sysctlnode *node;
1167 	void *kva;
1168 	bus_dma_segment_t seg;
1169 	int rseg;
1170 
1171 	DPRINTFN(2, ("begin mskc_attach\n"));
1172 
1173 	sc->sk_dev = self;
1174 	/*
1175 	 * Handle power management nonsense.
1176 	 */
1177 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1178 
1179 	if (command == 0x01) {
1180 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1181 		if (command & SK_PSTATE_MASK) {
1182 			u_int32_t		iobase, membase, irq;
1183 
1184 			/* Save important PCI config data. */
1185 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1186 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1187 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1188 
1189 			/* Reset the power state. */
1190 			aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1191 			    "mode -- setting to D0\n",
1192 			    command & SK_PSTATE_MASK);
1193 			command &= 0xFFFFFFFC;
1194 			pci_conf_write(pc, pa->pa_tag,
1195 			    SK_PCI_PWRMGMTCTRL, command);
1196 
1197 			/* Restore PCI config data. */
1198 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1199 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1200 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1201 		}
1202 	}
1203 
1204 	/*
1205 	 * Map control/status registers.
1206 	 */
1207 
1208 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1209 	switch (memtype) {
1210 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1211 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1212 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1213 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1214 				   NULL, &size) == 0) {
1215 			break;
1216 		}
1217 	default:
1218 		aprint_error(": can't map mem space\n");
1219 		return;
1220 	}
1221 
1222 	sc->sc_dmatag = pa->pa_dmat;
1223 
1224 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1225 	command |= PCI_COMMAND_MASTER_ENABLE;
1226 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1227 
1228 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1229 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1230 
1231 	/* bail out here if chip is not recognized */
1232 	if (!(SK_IS_YUKON2(sc))) {
1233 		aprint_error(": unknown chip type: %d\n", sc->sk_type);
1234 		goto fail_1;
1235 	}
1236 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1237 
1238 	/* Allocate interrupt */
1239 	if (pci_intr_map(pa, &ih)) {
1240 		aprint_error(": couldn't map interrupt\n");
1241 		goto fail_1;
1242 	}
1243 
1244 	intrstr = pci_intr_string(pc, ih);
1245 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1246 	if (sc->sk_intrhand == NULL) {
1247 		aprint_error(": couldn't establish interrupt");
1248 		if (intrstr != NULL)
1249 			aprint_error(" at %s", intrstr);
1250 		aprint_error("\n");
1251 		goto fail_1;
1252 	}
1253 
1254 	if (bus_dmamem_alloc(sc->sc_dmatag,
1255 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1256 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1257 		aprint_error(": can't alloc status buffers\n");
1258 		goto fail_2;
1259 	}
1260 
1261 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1262 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1263 	    &kva, BUS_DMA_NOWAIT)) {
1264 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1265 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1266 		goto fail_3;
1267 	}
1268 	if (bus_dmamap_create(sc->sc_dmatag,
1269 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1270 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1271 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1272 		aprint_error(": can't create dma map\n");
1273 		goto fail_4;
1274 	}
1275 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1276 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1277 	    NULL, BUS_DMA_NOWAIT)) {
1278 		aprint_error(": can't load dma map\n");
1279 		goto fail_5;
1280 	}
1281 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1282 
1283 
1284 	sc->sk_int_mod = SK_IM_DEFAULT;
1285 	sc->sk_int_mod_pending = 0;
1286 
1287 	/* Reset the adapter. */
1288 	msk_reset(sc);
1289 
1290 	skrs = sk_win_read_1(sc, SK_EPROM0);
1291 	if (skrs == 0x00)
1292 		sc->sk_ramsize = 0x20000;
1293 	else
1294 		sc->sk_ramsize = skrs * (1<<12);
1295 	sc->sk_rboff = SK_RBOFF_0;
1296 
1297 	DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1298 		     sc->sk_ramsize, sc->sk_ramsize / 1024,
1299 		     sc->sk_rboff));
1300 
1301 	switch (sc->sk_type) {
1302 	case SK_YUKON_XL:
1303 		sc->sk_name = "Yukon-2 XL";
1304 		break;
1305 	case SK_YUKON_EC_U:
1306 		sc->sk_name = "Yukon-2 EC Ultra";
1307 		break;
1308 	case SK_YUKON_EC:
1309 		sc->sk_name = "Yukon-2 EC";
1310 		break;
1311 	case SK_YUKON_FE:
1312 		sc->sk_name = "Yukon-2 FE";
1313 		break;
1314 	default:
1315 		sc->sk_name = "Yukon (Unknown)";
1316 	}
1317 
1318 	if (sc->sk_type == SK_YUKON_XL) {
1319 		switch (sc->sk_rev) {
1320 		case SK_YUKON_XL_REV_A0:
1321 			sc->sk_workaround = 0;
1322 			revstr = "A0";
1323 			break;
1324 		case SK_YUKON_XL_REV_A1:
1325 			sc->sk_workaround = SK_WA_4109;
1326 			revstr = "A1";
1327 			break;
1328 		case SK_YUKON_XL_REV_A2:
1329 			sc->sk_workaround = SK_WA_4109;
1330 			revstr = "A2";
1331 			break;
1332 		case SK_YUKON_XL_REV_A3:
1333 			sc->sk_workaround = SK_WA_4109;
1334 			revstr = "A3";
1335 			break;
1336 		default:
1337 			sc->sk_workaround = 0;
1338 			break;
1339 		}
1340 	}
1341 
1342 	if (sc->sk_type == SK_YUKON_EC) {
1343 		switch (sc->sk_rev) {
1344 		case SK_YUKON_EC_REV_A1:
1345 			sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1346 			revstr = "A1";
1347 			break;
1348 		case SK_YUKON_EC_REV_A2:
1349 			sc->sk_workaround = SK_WA_4109;
1350 			revstr = "A2";
1351 			break;
1352 		case SK_YUKON_EC_REV_A3:
1353 			sc->sk_workaround = SK_WA_4109;
1354 			revstr = "A3";
1355 			break;
1356 		default:
1357 			sc->sk_workaround = 0;
1358 			break;
1359 		}
1360 	}
1361 
1362 	if (sc->sk_type == SK_YUKON_FE) {
1363 		sc->sk_workaround = SK_WA_4109;
1364 		switch (sc->sk_rev) {
1365 		case SK_YUKON_FE_REV_A1:
1366 			revstr = "A1";
1367 			break;
1368 		case SK_YUKON_FE_REV_A2:
1369 			revstr = "A2";
1370 			break;
1371 		default:
1372 			sc->sk_workaround = 0;
1373 			break;
1374 		}
1375 	}
1376 
1377 	if (sc->sk_type == SK_YUKON_EC_U) {
1378 		sc->sk_workaround = SK_WA_4109;
1379 		switch (sc->sk_rev) {
1380 		case SK_YUKON_EC_U_REV_A0:
1381 			revstr = "A0";
1382 			break;
1383 		case SK_YUKON_EC_U_REV_A1:
1384 			revstr = "A1";
1385 			break;
1386 		case SK_YUKON_EC_U_REV_B0:
1387 			revstr = "B0";
1388 			break;
1389 		default:
1390 			sc->sk_workaround = 0;
1391 			break;
1392 		}
1393 	}
1394 
1395 	/* Announce the product name. */
1396 	aprint_normal(", %s", sc->sk_name);
1397 	if (revstr != NULL)
1398 		aprint_normal(" rev. %s", revstr);
1399 	aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1400 
1401 	sc->sk_macs = 1;
1402 
1403 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1404 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1405 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1406 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1407 			sc->sk_macs++;
1408 	}
1409 
1410 	skca.skc_port = SK_PORT_A;
1411 	skca.skc_type = sc->sk_type;
1412 	skca.skc_rev = sc->sk_rev;
1413 	(void)config_found(sc->sk_dev, &skca, mskcprint);
1414 
1415 	if (sc->sk_macs > 1) {
1416 		skca.skc_port = SK_PORT_B;
1417 		skca.skc_type = sc->sk_type;
1418 		skca.skc_rev = sc->sk_rev;
1419 		(void)config_found(sc->sk_dev, &skca, mskcprint);
1420 	}
1421 
1422 	/* Turn on the 'driver is loaded' LED. */
1423 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1424 
1425 	/* skc sysctl setup */
1426 
1427 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1428 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1429 	    SYSCTL_DESCR("mskc per-controller controls"),
1430 	    NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1431 	    CTL_EOL)) != 0) {
1432 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1433 		goto fail_6;
1434 	}
1435 
1436 	sk_nodenum = node->sysctl_num;
1437 
1438 	/* interrupt moderation time in usecs */
1439 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1440 	    CTLFLAG_READWRITE,
1441 	    CTLTYPE_INT, "int_mod",
1442 	    SYSCTL_DESCR("msk interrupt moderation timer"),
1443 	    msk_sysctl_handler, 0, sc,
1444 	    0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1445 	    CTL_EOL)) != 0) {
1446 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1447 		goto fail_6;
1448 	}
1449 
1450 	if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1451 		aprint_error_dev(self, "couldn't establish power handler\n");
1452 
1453 	return;
1454 
1455  fail_6:
1456 	bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1457 fail_5:
1458 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1459 fail_4:
1460 	bus_dmamem_unmap(sc->sc_dmatag, kva,
1461 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1462 fail_3:
1463 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1464 fail_2:
1465 	pci_intr_disestablish(pc, sc->sk_intrhand);
1466 fail_1:
1467 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1468 }
1469 
1470 int
1471 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1472 {
1473 	struct sk_softc		*sc = sc_if->sk_softc;
1474 	struct msk_tx_desc		*f = NULL;
1475 	u_int32_t		frag, cur;
1476 	int			i;
1477 	struct sk_txmap_entry	*entry;
1478 	bus_dmamap_t		txmap;
1479 
1480 	DPRINTFN(2, ("msk_encap\n"));
1481 
1482 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1483 	if (entry == NULL) {
1484 		DPRINTFN(2, ("msk_encap: no txmap available\n"));
1485 		return (ENOBUFS);
1486 	}
1487 	txmap = entry->dmamap;
1488 
1489 	cur = frag = *txidx;
1490 
1491 #ifdef MSK_DEBUG
1492 	if (mskdebug >= 2)
1493 		msk_dump_mbuf(m_head);
1494 #endif
1495 
1496 	/*
1497 	 * Start packing the mbufs in this chain into
1498 	 * the fragment pointers. Stop when we run out
1499 	 * of fragments or hit the end of the mbuf chain.
1500 	 */
1501 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1502 	    BUS_DMA_NOWAIT)) {
1503 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1504 		return (ENOBUFS);
1505 	}
1506 
1507 	if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1508 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1509 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1510 		return (ENOBUFS);
1511 	}
1512 
1513 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1514 
1515 	/* Sync the DMA map. */
1516 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1517 	    BUS_DMASYNC_PREWRITE);
1518 
1519 	for (i = 0; i < txmap->dm_nsegs; i++) {
1520 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1521 		f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1522 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1523 		f->sk_ctl = 0;
1524 		if (i == 0)
1525 			f->sk_opcode = SK_Y2_TXOPC_PACKET;
1526 		else
1527 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1528 		cur = frag;
1529 		SK_INC(frag, MSK_TX_RING_CNT);
1530 	}
1531 
1532 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1533 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1534 
1535 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1536 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1537 
1538 	/* Sync descriptors before handing to chip */
1539 	MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1540             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1541 
1542 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1543 
1544 	/* Sync first descriptor to hand it off */
1545 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1546 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1547 
1548 	sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1549 
1550 #ifdef MSK_DEBUG
1551 	if (mskdebug >= 2) {
1552 		struct msk_tx_desc *le;
1553 		u_int32_t idx;
1554 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1555 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1556 			msk_dump_txdesc(le, idx);
1557 		}
1558 	}
1559 #endif
1560 
1561 	*txidx = frag;
1562 
1563 	DPRINTFN(2, ("msk_encap: completed successfully\n"));
1564 
1565 	return (0);
1566 }
1567 
1568 void
1569 msk_start(struct ifnet *ifp)
1570 {
1571         struct sk_if_softc	*sc_if = ifp->if_softc;
1572         struct mbuf		*m_head = NULL;
1573         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1574 	int			pkts = 0;
1575 
1576 	DPRINTFN(2, ("msk_start\n"));
1577 
1578 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1579 		IFQ_POLL(&ifp->if_snd, m_head);
1580 		if (m_head == NULL)
1581 			break;
1582 
1583 		/*
1584 		 * Pack the data into the transmit ring. If we
1585 		 * don't have room, set the OACTIVE flag and wait
1586 		 * for the NIC to drain the ring.
1587 		 */
1588 		if (msk_encap(sc_if, m_head, &idx)) {
1589 			ifp->if_flags |= IFF_OACTIVE;
1590 			break;
1591 		}
1592 
1593 		/* now we are committed to transmit the packet */
1594 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1595 		pkts++;
1596 
1597 		/*
1598 		 * If there's a BPF listener, bounce a copy of this frame
1599 		 * to him.
1600 		 */
1601 		bpf_mtap(ifp, m_head);
1602 	}
1603 	if (pkts == 0)
1604 		return;
1605 
1606 	/* Transmit */
1607 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1608 		sc_if->sk_cdata.sk_tx_prod = idx;
1609 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1610 
1611 		/* Set a timeout in case the chip goes out to lunch. */
1612 		ifp->if_timer = 5;
1613 	}
1614 }
1615 
1616 void
1617 msk_watchdog(struct ifnet *ifp)
1618 {
1619 	struct sk_if_softc *sc_if = ifp->if_softc;
1620 	u_int32_t reg;
1621 	int idx;
1622 
1623 	/*
1624 	 * Reclaim first as there is a possibility of losing Tx completion
1625 	 * interrupts.
1626 	 */
1627 	if (sc_if->sk_port == SK_PORT_A)
1628 		reg = SK_STAT_BMU_TXA1_RIDX;
1629 	else
1630 		reg = SK_STAT_BMU_TXA2_RIDX;
1631 
1632 	idx = sk_win_read_2(sc_if->sk_softc, reg);
1633 	if (sc_if->sk_cdata.sk_tx_cons != idx) {
1634 		msk_txeof(sc_if, idx);
1635 		if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1636 			aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1637 
1638 			ifp->if_oerrors++;
1639 
1640 			/* XXX Resets both ports; we shouldn't do that. */
1641 			msk_reset(sc_if->sk_softc);
1642 			msk_init(ifp);
1643 		}
1644 	}
1645 }
1646 
1647 static bool
1648 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1649 {
1650 	struct sk_softc *sc = device_private(dv);
1651 
1652 	DPRINTFN(2, ("mskc_suspend\n"));
1653 
1654 	/* Turn off the 'driver is loaded' LED. */
1655 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1656 
1657 	return true;
1658 }
1659 
1660 static bool
1661 mskc_resume(device_t dv, const pmf_qual_t *qual)
1662 {
1663 	struct sk_softc *sc = device_private(dv);
1664 
1665 	DPRINTFN(2, ("mskc_resume\n"));
1666 
1667 	msk_reset(sc);
1668 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1669 
1670 	return true;
1671 }
1672 
1673 static __inline int
1674 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1675 {
1676 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1677 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1678 	    YU_RXSTAT_JABBER)) != 0 ||
1679 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1680 	    YU_RXSTAT_BYTES(stat) != len)
1681 		return (0);
1682 
1683 	return (1);
1684 }
1685 
1686 void
1687 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1688 {
1689 	struct sk_softc		*sc = sc_if->sk_softc;
1690 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1691 	struct mbuf		*m;
1692 	struct sk_chain		*cur_rx;
1693 	int			cur, total_len = len;
1694 	bus_dmamap_t		dmamap;
1695 
1696 	DPRINTFN(2, ("msk_rxeof\n"));
1697 
1698 	cur = sc_if->sk_cdata.sk_rx_cons;
1699 	SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1700 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1701 
1702 	/* Sync the descriptor */
1703 	MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1704 
1705 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1706 	dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1707 
1708 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1709 	    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1710 
1711 	m = cur_rx->sk_mbuf;
1712 	cur_rx->sk_mbuf = NULL;
1713 
1714 	if (total_len < SK_MIN_FRAMELEN ||
1715 	    total_len > ETHER_MAX_LEN_JUMBO ||
1716 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
1717 		ifp->if_ierrors++;
1718 		msk_newbuf(sc_if, cur, m, dmamap);
1719 		return;
1720 	}
1721 
1722 	/*
1723 	 * Try to allocate a new jumbo buffer. If that fails, copy the
1724 	 * packet to mbufs and put the jumbo buffer back in the ring
1725 	 * so it can be re-used. If allocating mbufs fails, then we
1726 	 * have to drop the packet.
1727 	 */
1728 	if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1729 		struct mbuf		*m0;
1730 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1731 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
1732 		msk_newbuf(sc_if, cur, m, dmamap);
1733 		if (m0 == NULL) {
1734 			ifp->if_ierrors++;
1735 			return;
1736 		}
1737 		m_adj(m0, ETHER_ALIGN);
1738 		m = m0;
1739 	} else {
1740 		m->m_pkthdr.rcvif = ifp;
1741 		m->m_pkthdr.len = m->m_len = total_len;
1742 	}
1743 
1744 	ifp->if_ipackets++;
1745 
1746 	bpf_mtap(ifp, m);
1747 
1748 	/* pass it on. */
1749 	(*ifp->if_input)(ifp, m);
1750 }
1751 
1752 void
1753 msk_txeof(struct sk_if_softc *sc_if, int idx)
1754 {
1755 	struct sk_softc		*sc = sc_if->sk_softc;
1756 	struct msk_tx_desc	*cur_tx;
1757 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1758 	u_int32_t		sk_ctl;
1759 	struct sk_txmap_entry	*entry;
1760 	int			cons, prog;
1761 
1762 	DPRINTFN(2, ("msk_txeof\n"));
1763 
1764 	/*
1765 	 * Go through our tx ring and free mbufs for those
1766 	 * frames that have been sent.
1767 	 */
1768 	cons = sc_if->sk_cdata.sk_tx_cons;
1769 	prog = 0;
1770 	while (cons != idx) {
1771 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1772 			break;
1773 		prog++;
1774 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1775 
1776 		MSK_CDTXSYNC(sc_if, cons, 1,
1777 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1778 		sk_ctl = cur_tx->sk_ctl;
1779 		MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1780 #ifdef MSK_DEBUG
1781 		if (mskdebug >= 2)
1782 			msk_dump_txdesc(cur_tx, cons);
1783 #endif
1784 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1785 			ifp->if_opackets++;
1786 		if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1787 			entry = sc_if->sk_cdata.sk_tx_map[cons];
1788 
1789 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1790 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1791 
1792 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1793 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1794 					  link);
1795 			sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1796 			m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1797 			sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1798 		}
1799 		sc_if->sk_cdata.sk_tx_cnt--;
1800 		SK_INC(cons, MSK_TX_RING_CNT);
1801 	}
1802 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1803 
1804 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1805 		ifp->if_flags &= ~IFF_OACTIVE;
1806 
1807 	if (prog > 0)
1808 		sc_if->sk_cdata.sk_tx_cons = cons;
1809 }
1810 
1811 void
1812 msk_tick(void *xsc_if)
1813 {
1814 	struct sk_if_softc *sc_if = xsc_if;
1815 	struct mii_data *mii = &sc_if->sk_mii;
1816 	uint16_t gpsr;
1817 	int s;
1818 
1819 	s = splnet();
1820 	gpsr = SK_YU_READ_2(sc_if, YUKON_GPSR);
1821 	if ((gpsr & YU_GPSR_MII_PHY_STC) != 0) {
1822 		SK_YU_WRITE_2(sc_if, YUKON_GPSR, YU_GPSR_MII_PHY_STC);
1823 		mii_tick(mii);
1824 	}
1825 	splx(s);
1826 
1827 	callout_schedule(&sc_if->sk_tick_ch, hz);
1828 }
1829 
1830 void
1831 msk_intr_yukon(struct sk_if_softc *sc_if)
1832 {
1833 	u_int8_t status;
1834 
1835 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1836 	/* RX overrun */
1837 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1838 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1839 		    SK_RFCTL_RX_FIFO_OVER);
1840 	}
1841 	/* TX underrun */
1842 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1843 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1844 		    SK_TFCTL_TX_FIFO_UNDER);
1845 	}
1846 
1847 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1848 }
1849 
1850 int
1851 msk_intr(void *xsc)
1852 {
1853 	struct sk_softc		*sc = xsc;
1854 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1855 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1856 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1857 	int			claimed = 0;
1858 	u_int32_t		status;
1859 	uint32_t		st_status;
1860 	uint16_t		st_len;
1861 	uint8_t			st_opcode, st_link;
1862 	struct msk_status_desc	*cur_st;
1863 
1864 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
1865 	if (status == 0) {
1866 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1867 		return (0);
1868 	}
1869 
1870 	status = CSR_READ_4(sc, SK_ISR);
1871 
1872 	if (sc_if0 != NULL)
1873 		ifp0 = &sc_if0->sk_ethercom.ec_if;
1874 	if (sc_if1 != NULL)
1875 		ifp1 = &sc_if1->sk_ethercom.ec_if;
1876 
1877 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1878 	    (ifp0->if_flags & IFF_RUNNING)) {
1879 		msk_intr_yukon(sc_if0);
1880 	}
1881 
1882 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1883 	    (ifp1->if_flags & IFF_RUNNING)) {
1884 		msk_intr_yukon(sc_if1);
1885 	}
1886 
1887 	for (;;) {
1888 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1889 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
1890 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1891 		st_opcode = cur_st->sk_opcode;
1892 		if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1893 			MSK_CDSTSYNC(sc, sc->sk_status_idx,
1894 			    BUS_DMASYNC_PREREAD);
1895 			break;
1896 		}
1897 		st_status = le32toh(cur_st->sk_status);
1898 		st_len = le16toh(cur_st->sk_len);
1899 		st_link = cur_st->sk_link;
1900 		st_opcode &= ~SK_Y2_STOPC_OWN;
1901 
1902 		switch (st_opcode) {
1903 		case SK_Y2_STOPC_RXSTAT:
1904 			msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1905 			SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1906 			    SK_RXQ1_Y2_PREF_PUTIDX,
1907 			    sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1908 			break;
1909 		case SK_Y2_STOPC_TXSTAT:
1910 			if (sc_if0)
1911 				msk_txeof(sc_if0, st_status
1912 				    & SK_Y2_ST_TXA1_MSKL);
1913 			if (sc_if1)
1914 				msk_txeof(sc_if1,
1915 				    ((st_status & SK_Y2_ST_TXA2_MSKL)
1916 					>> SK_Y2_ST_TXA2_SHIFTL)
1917 				    | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1918 			break;
1919 		default:
1920 			aprint_error("opcode=0x%x\n", st_opcode);
1921 			break;
1922 		}
1923 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1924 	}
1925 
1926 #define MSK_STATUS_RING_OWN_CNT(sc)			\
1927 	(((sc)->sk_status_idx + MSK_STATUS_RING_CNT -	\
1928 	    (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1929 
1930 	while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1931 		cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1932 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1933 		MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1934 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1935 
1936 		SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1937 	}
1938 
1939 	if (status & SK_Y2_IMR_BMU) {
1940 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1941 		claimed = 1;
1942 	}
1943 
1944 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1945 
1946 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1947 		msk_start(ifp0);
1948 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1949 		msk_start(ifp1);
1950 
1951 	rnd_add_uint32(&sc->rnd_source, status);
1952 
1953 	if (sc->sk_int_mod_pending)
1954 		msk_update_int_mod(sc, 1);
1955 
1956 	return claimed;
1957 }
1958 
1959 void
1960 msk_init_yukon(struct sk_if_softc *sc_if)
1961 {
1962 	u_int32_t		v;
1963 	u_int16_t		reg;
1964 	struct sk_softc		*sc;
1965 	int			i;
1966 
1967 	sc = sc_if->sk_softc;
1968 
1969 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1970 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1971 
1972 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
1973 
1974 	/* GMAC and GPHY Reset */
1975 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1976 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1977 	DELAY(1000);
1978 
1979 	DPRINTFN(6, ("msk_init_yukon: 2\n"));
1980 
1981 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1982 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1983 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1984 
1985 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1986 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1987 
1988 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
1989 
1990 	/* unused read of the interrupt source register */
1991 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
1992 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1993 
1994 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1995 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1996 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1997 
1998 	/* MIB Counter Clear Mode set */
1999         reg |= YU_PAR_MIB_CLR;
2000 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2001 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2002 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2003 
2004 	/* MIB Counter Clear Mode clear */
2005 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
2006         reg &= ~YU_PAR_MIB_CLR;
2007 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2008 
2009 	/* receive control reg */
2010 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
2011 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2012 
2013 	/* transmit control register */
2014 	SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2015 
2016 	/* transmit flow control register */
2017 	SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2018 
2019 	/* transmit parameter register */
2020 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
2021 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2022 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2023 
2024 	/* serial mode register */
2025 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
2026 	reg = YU_SMR_DATA_BLIND(0x1c) |
2027 	      YU_SMR_MFL_VLAN |
2028 	      YU_SMR_IPG_DATA(0x1e);
2029 
2030 	if (sc->sk_type != SK_YUKON_FE)
2031 		reg |= YU_SMR_MFL_JUMBO;
2032 
2033 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2034 
2035 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
2036 	/* Setup Yukon's address */
2037 	for (i = 0; i < 3; i++) {
2038 		/* Write Source Address 1 (unicast filter) */
2039 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2040 			      sc_if->sk_enaddr[i * 2] |
2041 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2042 	}
2043 
2044 	for (i = 0; i < 3; i++) {
2045 		reg = sk_win_read_2(sc_if->sk_softc,
2046 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2047 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2048 	}
2049 
2050 	/* Set promiscuous mode */
2051 	msk_setpromisc(sc_if);
2052 
2053 	/* Set multicast filter */
2054 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
2055 	msk_setmulti(sc_if);
2056 
2057 	/* enable interrupt mask for counter overflows */
2058 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
2059 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2060 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2061 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2062 
2063 	/* Configure RX MAC FIFO Flush Mask */
2064 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2065 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2066 	    YU_RXSTAT_JABBER;
2067 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2068 
2069 	/* Configure RX MAC FIFO */
2070 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2071 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2072 	    SK_RFCTL_FIFO_FLUSH_ON);
2073 
2074 	/* Increase flush threshould to 64 bytes */
2075 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2076 	    SK_RFCTL_FIFO_THRESHOLD + 1);
2077 
2078 	/* Configure TX MAC FIFO */
2079 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2080 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2081 
2082 #if 1
2083 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2084 #endif
2085 	DPRINTFN(6, ("msk_init_yukon: end\n"));
2086 }
2087 
2088 /*
2089  * Note that to properly initialize any part of the GEnesis chip,
2090  * you first have to take it out of reset mode.
2091  */
2092 int
2093 msk_init(struct ifnet *ifp)
2094 {
2095 	struct sk_if_softc	*sc_if = ifp->if_softc;
2096 	struct sk_softc		*sc = sc_if->sk_softc;
2097 	int			rc = 0, s;
2098 	uint32_t		imr, imtimer_ticks;
2099 
2100 
2101 	DPRINTFN(2, ("msk_init\n"));
2102 
2103 	s = splnet();
2104 
2105 	/* Cancel pending I/O and free all RX/TX buffers. */
2106 	msk_stop(ifp,0);
2107 
2108 	/* Configure I2C registers */
2109 
2110 	/* Configure XMAC(s) */
2111 	msk_init_yukon(sc_if);
2112 	if ((rc = ether_mediachange(ifp)) != 0)
2113 		goto out;
2114 
2115 	/* Configure transmit arbiter(s) */
2116 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2117 #if 0
2118 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2119 #endif
2120 
2121 	/* Configure RAMbuffers */
2122 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2123 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2124 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2125 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2126 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2127 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2128 
2129 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2130 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2131 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2132 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2133 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2134 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2135 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2136 
2137 	/* Configure BMUs */
2138 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2139 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2140 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2141 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600);	/* XXX ??? */
2142 
2143 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2144 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2145 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2146 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600);	/* XXX ??? */
2147 
2148 	/* Make sure the sync transmit queue is disabled. */
2149 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2150 
2151 	/* Init descriptors */
2152 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2153 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2154 		    "memory for rx buffers\n");
2155 		msk_stop(ifp,0);
2156 		splx(s);
2157 		return ENOBUFS;
2158 	}
2159 
2160 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2161 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2162 		    "memory for tx buffers\n");
2163 		msk_stop(ifp,0);
2164 		splx(s);
2165 		return ENOBUFS;
2166 	}
2167 
2168 	/* Set interrupt moderation if changed via sysctl. */
2169 	switch (sc->sk_type) {
2170 	case SK_YUKON_EC:
2171 	case SK_YUKON_EC_U:
2172 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2173 		break;
2174 	case SK_YUKON_FE:
2175 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2176 		break;
2177 	case SK_YUKON_XL:
2178 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2179 		break;
2180 	default:
2181 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2182 	}
2183 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2184 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2185 		sk_win_write_4(sc, SK_IMTIMERINIT,
2186 		    SK_IM_USECS(sc->sk_int_mod));
2187 		aprint_verbose_dev(sc->sk_dev,
2188 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2189 	}
2190 
2191 	/* Initialize prefetch engine. */
2192 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2193 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2194 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2195 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2196 	    MSK_RX_RING_ADDR(sc_if, 0));
2197 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2198 	    (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2199 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2200 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2201 
2202 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2203 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2204 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2205 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2206 	    MSK_TX_RING_ADDR(sc_if, 0));
2207 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2208 	    (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2209 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2210 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2211 
2212 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2213 	    sc_if->sk_cdata.sk_rx_prod);
2214 
2215 	/* Configure interrupt handling */
2216 	if (sc_if->sk_port == SK_PORT_A)
2217 		sc->sk_intrmask |= SK_Y2_INTRS1;
2218 	else
2219 		sc->sk_intrmask |= SK_Y2_INTRS2;
2220 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2221 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2222 
2223 	ifp->if_flags |= IFF_RUNNING;
2224 	ifp->if_flags &= ~IFF_OACTIVE;
2225 
2226 	callout_schedule(&sc_if->sk_tick_ch, hz);
2227 
2228 out:
2229 	splx(s);
2230 	return rc;
2231 }
2232 
2233 void
2234 msk_stop(struct ifnet *ifp, int disable)
2235 {
2236 	struct sk_if_softc	*sc_if = ifp->if_softc;
2237 	struct sk_softc		*sc = sc_if->sk_softc;
2238 	struct sk_txmap_entry	*dma;
2239 	int			i;
2240 
2241 	DPRINTFN(2, ("msk_stop\n"));
2242 
2243 	callout_stop(&sc_if->sk_tick_ch);
2244 
2245 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2246 
2247 	/* Stop transfer of Tx descriptors */
2248 
2249 	/* Stop transfer of Rx descriptors */
2250 
2251 	/* Turn off various components of this interface. */
2252 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2253 	SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2254 	SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2255 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2256 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2257 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2258 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2259 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2260 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2261 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2262 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2263 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2264 
2265 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2266 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2267 
2268 	/* Disable interrupts */
2269 	if (sc_if->sk_port == SK_PORT_A)
2270 		sc->sk_intrmask &= ~SK_Y2_INTRS1;
2271 	else
2272 		sc->sk_intrmask &= ~SK_Y2_INTRS2;
2273 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2274 
2275 	SK_XM_READ_2(sc_if, XM_ISR);
2276 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2277 
2278 	/* Free RX and TX mbufs still in the queues. */
2279 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2280 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2281 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2282 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2283 		}
2284 	}
2285 
2286 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2287 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2288 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2289 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2290 #if 1
2291 			SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2292 			    sc_if->sk_cdata.sk_tx_map[i], link);
2293 			sc_if->sk_cdata.sk_tx_map[i] = 0;
2294 #endif
2295 		}
2296 	}
2297 
2298 #if 1
2299 	while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2300 		SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2301 		bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2302 		free(dma, M_DEVBUF);
2303 	}
2304 #endif
2305 }
2306 
2307 CFATTACH_DECL_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2308 	NULL, NULL);
2309 
2310 CFATTACH_DECL_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2311 	NULL, NULL);
2312 
2313 #ifdef MSK_DEBUG
2314 void
2315 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2316 {
2317 #define DESC_PRINT(X)					\
2318 	if (X)					\
2319 		printf("txdesc[%d]." #X "=%#x\n",	\
2320 		       idx, X);
2321 
2322 	DESC_PRINT(letoh32(le->sk_addr));
2323 	DESC_PRINT(letoh16(le->sk_len));
2324 	DESC_PRINT(le->sk_ctl);
2325 	DESC_PRINT(le->sk_opcode);
2326 #undef DESC_PRINT
2327 }
2328 
2329 void
2330 msk_dump_bytes(const char *data, int len)
2331 {
2332 	int c, i, j;
2333 
2334 	for (i = 0; i < len; i += 16) {
2335 		printf("%08x  ", i);
2336 		c = len - i;
2337 		if (c > 16) c = 16;
2338 
2339 		for (j = 0; j < c; j++) {
2340 			printf("%02x ", data[i + j] & 0xff);
2341 			if ((j & 0xf) == 7 && j > 0)
2342 				printf(" ");
2343 		}
2344 
2345 		for (; j < 16; j++)
2346 			printf("   ");
2347 		printf("  ");
2348 
2349 		for (j = 0; j < c; j++) {
2350 			int ch = data[i + j] & 0xff;
2351 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2352 		}
2353 
2354 		printf("\n");
2355 
2356 		if (c < 16)
2357 			break;
2358 	}
2359 }
2360 
2361 void
2362 msk_dump_mbuf(struct mbuf *m)
2363 {
2364 	int count = m->m_pkthdr.len;
2365 
2366 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2367 
2368 	while (count > 0 && m) {
2369 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2370 		       m, m->m_data, m->m_len);
2371 		msk_dump_bytes(mtod(m, char *), m->m_len);
2372 
2373 		count -= m->m_len;
2374 		m = m->m_next;
2375 	}
2376 }
2377 #endif
2378 
2379 static int
2380 msk_sysctl_handler(SYSCTLFN_ARGS)
2381 {
2382 	int error, t;
2383 	struct sysctlnode node;
2384 	struct sk_softc *sc;
2385 
2386 	node = *rnode;
2387 	sc = node.sysctl_data;
2388 	t = sc->sk_int_mod;
2389 	node.sysctl_data = &t;
2390 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2391 	if (error || newp == NULL)
2392 		return error;
2393 
2394 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2395 		return EINVAL;
2396 
2397 	/* update the softc with sysctl-changed value, and mark
2398 	   for hardware update */
2399 	sc->sk_int_mod = t;
2400 	sc->sk_int_mod_pending = 1;
2401 	return 0;
2402 }
2403 
2404 /*
2405  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2406  * set up in skc_attach()
2407  */
2408 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2409 {
2410 	int rc;
2411 	const struct sysctlnode *node;
2412 
2413 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2414 	    0, CTLTYPE_NODE, "hw", NULL,
2415 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2416 		goto err;
2417 	}
2418 
2419 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2420 	    0, CTLTYPE_NODE, "msk",
2421 	    SYSCTL_DESCR("msk interface controls"),
2422 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2423 		goto err;
2424 	}
2425 
2426 	msk_root_num = node->sysctl_num;
2427 	return;
2428 
2429 err:
2430 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2431 }
2432