1 /* $NetBSD: if_msk.c,v 1.119 2022/09/24 18:12:42 thorpej Exp $ */ 2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */ 3 4 /* 5 * Copyright (c) 1997, 1998, 1999, 2000 6 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 * 35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $ 36 */ 37 38 /* 39 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 40 * 41 * Permission to use, copy, modify, and distribute this software for any 42 * purpose with or without fee is hereby granted, provided that the above 43 * copyright notice and this permission notice appear in all copies. 44 * 45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 52 */ 53 54 #include <sys/cdefs.h> 55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.119 2022/09/24 18:12:42 thorpej Exp $"); 56 57 #include <sys/param.h> 58 #include <sys/systm.h> 59 #include <sys/sockio.h> 60 #include <sys/mbuf.h> 61 #include <sys/mutex.h> 62 #include <sys/kernel.h> 63 #include <sys/socket.h> 64 #include <sys/device.h> 65 #include <sys/queue.h> 66 #include <sys/callout.h> 67 #include <sys/sysctl.h> 68 #include <sys/endian.h> 69 #ifdef __NetBSD__ 70 #define letoh16 le16toh 71 #define letoh32 le32toh 72 #endif 73 74 #include <net/if.h> 75 #include <net/if_dl.h> 76 #include <net/if_types.h> 77 78 #include <net/if_media.h> 79 80 #include <net/bpf.h> 81 #include <sys/rndsource.h> 82 83 #include <dev/mii/mii.h> 84 #include <dev/mii/miivar.h> 85 86 #include <dev/pci/pcireg.h> 87 #include <dev/pci/pcivar.h> 88 #include <dev/pci/pcidevs.h> 89 90 #include <dev/pci/if_skreg.h> 91 #include <dev/pci/if_mskvar.h> 92 93 static int mskc_probe(device_t, cfdata_t, void *); 94 static void mskc_attach(device_t, device_t, void *); 95 static int mskc_detach(device_t, int); 96 static void mskc_reset(struct sk_softc *); 97 static bool mskc_suspend(device_t, const pmf_qual_t *); 98 static bool mskc_resume(device_t, const pmf_qual_t *); 99 static int msk_probe(device_t, cfdata_t, void *); 100 static void msk_attach(device_t, device_t, void *); 101 static int msk_detach(device_t, int); 102 static void msk_reset(struct sk_if_softc *); 103 static int mskcprint(void *, const char *); 104 static int msk_intr(void *); 105 static void msk_intr_yukon(struct sk_if_softc *); 106 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t); 107 static void msk_txeof(struct sk_if_softc *); 108 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *); 109 static void msk_start(struct ifnet *); 110 static int msk_ioctl(struct ifnet *, u_long, void *); 111 static int msk_init(struct ifnet *); 112 static void msk_init_yukon(struct sk_if_softc *); 113 static void msk_stop(struct ifnet *, int); 114 static void msk_watchdog(struct ifnet *); 115 static int msk_newbuf(struct sk_if_softc *); 116 static int msk_alloc_jumbo_mem(struct sk_if_softc *); 117 static void *msk_jalloc(struct sk_if_softc *); 118 static void msk_jfree(struct mbuf *, void *, size_t, void *); 119 static int msk_init_rx_ring(struct sk_if_softc *); 120 static int msk_init_tx_ring(struct sk_if_softc *); 121 static void msk_fill_rx_ring(struct sk_if_softc *); 122 123 static void msk_update_int_mod(struct sk_softc *, int); 124 125 static int msk_miibus_readreg(device_t, int, int, uint16_t *); 126 static int msk_miibus_writereg(device_t, int, int, uint16_t); 127 static void msk_miibus_statchg(struct ifnet *); 128 129 static void msk_setmulti(struct sk_if_softc *); 130 static void msk_setpromisc(struct sk_if_softc *); 131 static void msk_tick(void *); 132 static void msk_fill_rx_tick(void *); 133 134 /* #define MSK_DEBUG 1 */ 135 #ifdef MSK_DEBUG 136 #define DPRINTF(x) if (mskdebug) printf x 137 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x 138 int mskdebug = MSK_DEBUG; 139 140 static void msk_dump_txdesc(struct msk_tx_desc *, int); 141 static void msk_dump_mbuf(struct mbuf *); 142 static void msk_dump_bytes(const char *, int); 143 #else 144 #define DPRINTF(x) 145 #define DPRINTFN(n, x) 146 #endif 147 148 static int msk_sysctl_handler(SYSCTLFN_PROTO); 149 static int msk_root_num; 150 151 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL) 152 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32) 153 154 /* supported device vendors */ 155 static const struct device_compatible_entry compat_data[] = { 156 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK, 157 PCI_PRODUCT_DLINK_DGE550SX) }, 158 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK, 159 PCI_PRODUCT_DLINK_DGE550T_B1) }, 160 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK, 161 PCI_PRODUCT_DLINK_DGE560SX) }, 162 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK, 163 PCI_PRODUCT_DLINK_DGE560T) }, 164 165 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 166 PCI_PRODUCT_MARVELL_YUKONII_8021CU) }, 167 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 168 PCI_PRODUCT_MARVELL_YUKONII_8021X) }, 169 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 170 PCI_PRODUCT_MARVELL_YUKONII_8022CU) }, 171 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 172 PCI_PRODUCT_MARVELL_YUKONII_8022X) }, 173 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 174 PCI_PRODUCT_MARVELL_YUKON_8035) }, 175 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 176 PCI_PRODUCT_MARVELL_YUKON_8036) }, 177 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 178 PCI_PRODUCT_MARVELL_YUKON_8038) }, 179 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 180 PCI_PRODUCT_MARVELL_YUKON_8039) }, 181 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 182 PCI_PRODUCT_MARVELL_YUKON_8040) }, 183 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 184 PCI_PRODUCT_MARVELL_YUKON_8040T) }, 185 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 186 PCI_PRODUCT_MARVELL_YUKON_8042) }, 187 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 188 PCI_PRODUCT_MARVELL_YUKON_8048) }, 189 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 190 PCI_PRODUCT_MARVELL_YUKON_8050) }, 191 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 192 PCI_PRODUCT_MARVELL_YUKON_8052) }, 193 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 194 PCI_PRODUCT_MARVELL_YUKON_8053) }, 195 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 196 PCI_PRODUCT_MARVELL_YUKON_8055) }, 197 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 198 PCI_PRODUCT_MARVELL_YUKON_8055_2) }, 199 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 200 PCI_PRODUCT_MARVELL_YUKON_8056) }, 201 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 202 PCI_PRODUCT_MARVELL_YUKON_8057) }, 203 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 204 PCI_PRODUCT_MARVELL_YUKON_8058) }, 205 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 206 PCI_PRODUCT_MARVELL_YUKON_8059) }, 207 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 208 PCI_PRODUCT_MARVELL_YUKONII_8061CU) }, 209 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 210 PCI_PRODUCT_MARVELL_YUKONII_8061X) }, 211 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 212 PCI_PRODUCT_MARVELL_YUKONII_8062CU) }, 213 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 214 PCI_PRODUCT_MARVELL_YUKONII_8062X) }, 215 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 216 PCI_PRODUCT_MARVELL_YUKON_8070) }, 217 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 218 PCI_PRODUCT_MARVELL_YUKON_8071) }, 219 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 220 PCI_PRODUCT_MARVELL_YUKON_8072) }, 221 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 222 PCI_PRODUCT_MARVELL_YUKON_8075) }, 223 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 224 PCI_PRODUCT_MARVELL_YUKON_8079) }, 225 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 226 PCI_PRODUCT_MARVELL_YUKON_C032) }, 227 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 228 PCI_PRODUCT_MARVELL_YUKON_C033) }, 229 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 230 PCI_PRODUCT_MARVELL_YUKON_C034) }, 231 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 232 PCI_PRODUCT_MARVELL_YUKON_C036) }, 233 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 234 PCI_PRODUCT_MARVELL_YUKON_C042) }, 235 236 { .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, 237 PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX) }, 238 { .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, 239 PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21) }, 240 241 PCI_COMPAT_EOL 242 }; 243 244 static inline uint32_t 245 sk_win_read_4(struct sk_softc *sc, uint32_t reg) 246 { 247 return CSR_READ_4(sc, reg); 248 } 249 250 static inline uint16_t 251 sk_win_read_2(struct sk_softc *sc, uint32_t reg) 252 { 253 return CSR_READ_2(sc, reg); 254 } 255 256 static inline uint8_t 257 sk_win_read_1(struct sk_softc *sc, uint32_t reg) 258 { 259 return CSR_READ_1(sc, reg); 260 } 261 262 static inline void 263 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x) 264 { 265 CSR_WRITE_4(sc, reg, x); 266 } 267 268 static inline void 269 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x) 270 { 271 CSR_WRITE_2(sc, reg, x); 272 } 273 274 static inline void 275 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x) 276 { 277 CSR_WRITE_1(sc, reg, x); 278 } 279 280 static int 281 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val) 282 { 283 struct sk_if_softc *sc_if = device_private(dev); 284 uint16_t data; 285 int i; 286 287 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 288 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); 289 290 for (i = 0; i < SK_TIMEOUT; i++) { 291 DELAY(1); 292 data = SK_YU_READ_2(sc_if, YUKON_SMICR); 293 if (data & YU_SMICR_READ_VALID) 294 break; 295 } 296 297 if (i == SK_TIMEOUT) { 298 device_printf(sc_if->sk_dev, "phy failed to come ready\n"); 299 return ETIMEDOUT; 300 } 301 302 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT)); 303 304 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR); 305 306 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n", 307 phy, reg, *val)); 308 309 return 0; 310 } 311 312 static int 313 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val) 314 { 315 struct sk_if_softc *sc_if = device_private(dev); 316 int i; 317 318 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n", 319 phy, reg, val)); 320 321 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); 322 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 323 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); 324 325 for (i = 0; i < SK_TIMEOUT; i++) { 326 DELAY(1); 327 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)) 328 break; 329 } 330 331 if (i == SK_TIMEOUT) { 332 device_printf(sc_if->sk_dev, "phy write timed out\n"); 333 return ETIMEDOUT; 334 } 335 336 return 0; 337 } 338 339 static void 340 msk_miibus_statchg(struct ifnet *ifp) 341 { 342 struct sk_if_softc *sc_if = ifp->if_softc; 343 struct mii_data *mii = &sc_if->sk_mii; 344 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 345 int gpcr; 346 347 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR); 348 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN); 349 350 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO || 351 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) { 352 /* Set speed. */ 353 gpcr |= YU_GPCR_SPEED_DIS; 354 switch (IFM_SUBTYPE(mii->mii_media_active)) { 355 case IFM_1000_SX: 356 case IFM_1000_LX: 357 case IFM_1000_CX: 358 case IFM_1000_T: 359 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED); 360 break; 361 case IFM_100_TX: 362 gpcr |= YU_GPCR_SPEED; 363 break; 364 } 365 366 /* Set duplex. */ 367 gpcr |= YU_GPCR_DPLX_DIS; 368 if ((mii->mii_media_active & IFM_FDX) != 0) 369 gpcr |= YU_GPCR_DUPLEX; 370 371 /* Disable flow control. */ 372 gpcr |= YU_GPCR_FCTL_DIS; 373 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS); 374 } 375 376 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr); 377 378 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n", 379 SK_YU_READ_2(sc_if, YUKON_GPCR))); 380 } 381 382 static void 383 msk_setmulti(struct sk_if_softc *sc_if) 384 { 385 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if; 386 uint32_t hashes[2] = { 0, 0 }; 387 int h; 388 struct ethercom *ec = &sc_if->sk_ethercom; 389 struct ether_multi *enm; 390 struct ether_multistep step; 391 uint16_t reg; 392 393 /* First, zot all the existing filters. */ 394 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0); 395 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0); 396 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0); 397 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0); 398 399 400 /* Now program new ones. */ 401 reg = SK_YU_READ_2(sc_if, YUKON_RCR); 402 reg |= YU_RCR_UFLEN; 403 allmulti: 404 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 405 if ((ifp->if_flags & IFF_PROMISC) != 0) 406 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN); 407 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 408 hashes[0] = 0xFFFFFFFF; 409 hashes[1] = 0xFFFFFFFF; 410 } 411 } else { 412 /* First find the tail of the list. */ 413 ETHER_LOCK(ec); 414 ETHER_FIRST_MULTI(step, ec, enm); 415 while (enm != NULL) { 416 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 417 ETHER_ADDR_LEN)) { 418 ifp->if_flags |= IFF_ALLMULTI; 419 ETHER_UNLOCK(ec); 420 goto allmulti; 421 } 422 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 423 ((1 << SK_HASH_BITS) - 1); 424 if (h < 32) 425 hashes[0] |= (1 << h); 426 else 427 hashes[1] |= (1 << (h - 32)); 428 429 ETHER_NEXT_MULTI(step, enm); 430 } 431 ETHER_UNLOCK(ec); 432 reg |= YU_RCR_MUFLEN; 433 } 434 435 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); 436 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); 437 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); 438 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); 439 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg); 440 } 441 442 static void 443 msk_setpromisc(struct sk_if_softc *sc_if) 444 { 445 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 446 447 if (ifp->if_flags & IFF_PROMISC) 448 SK_YU_CLRBIT_2(sc_if, YUKON_RCR, 449 YU_RCR_UFLEN | YU_RCR_MUFLEN); 450 else 451 SK_YU_SETBIT_2(sc_if, YUKON_RCR, 452 YU_RCR_UFLEN | YU_RCR_MUFLEN); 453 } 454 455 static int 456 msk_init_rx_ring(struct sk_if_softc *sc_if) 457 { 458 struct msk_chain_data *cd = &sc_if->sk_cdata; 459 struct msk_ring_data *rd = sc_if->sk_rdata; 460 struct msk_rx_desc *r; 461 462 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT); 463 464 sc_if->sk_cdata.sk_rx_prod = 0; 465 sc_if->sk_cdata.sk_rx_cons = 0; 466 sc_if->sk_cdata.sk_rx_cnt = 0; 467 sc_if->sk_cdata.sk_rx_hiaddr = 0; 468 469 /* Mark the first ring element to initialize the high address. */ 470 sc_if->sk_cdata.sk_rx_hiaddr = 0; 471 r = &rd->sk_rx_ring[cd->sk_rx_prod]; 472 r->sk_addr = htole32(cd->sk_rx_hiaddr); 473 r->sk_len = 0; 474 r->sk_ctl = 0; 475 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN; 476 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod, 477 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 478 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT); 479 sc_if->sk_cdata.sk_rx_cnt++; 480 481 msk_fill_rx_ring(sc_if); 482 return 0; 483 } 484 485 static int 486 msk_init_tx_ring(struct sk_if_softc *sc_if) 487 { 488 struct msk_chain_data *cd = &sc_if->sk_cdata; 489 struct msk_ring_data *rd = sc_if->sk_rdata; 490 struct msk_tx_desc *t; 491 492 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT); 493 494 sc_if->sk_cdata.sk_tx_prod = 0; 495 sc_if->sk_cdata.sk_tx_cons = 0; 496 sc_if->sk_cdata.sk_tx_cnt = 0; 497 sc_if->sk_cdata.sk_tx_hiaddr = 0; 498 499 /* Mark the first ring element to initialize the high address. */ 500 sc_if->sk_cdata.sk_tx_hiaddr = 0; 501 t = &rd->sk_tx_ring[cd->sk_tx_prod]; 502 t->sk_addr = htole32(cd->sk_tx_hiaddr); 503 t->sk_len = 0; 504 t->sk_ctl = 0; 505 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN; 506 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT, 507 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 508 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT); 509 sc_if->sk_cdata.sk_tx_cnt++; 510 511 return 0; 512 } 513 514 static int 515 msk_newbuf(struct sk_if_softc *sc_if) 516 { 517 struct sk_softc *sc = sc_if->sk_softc; 518 struct mbuf *m_new = NULL; 519 struct sk_chain *c; 520 struct msk_rx_desc *r; 521 void *buf = NULL; 522 bus_addr_t addr; 523 bus_dmamap_t rxmap; 524 size_t i; 525 uint32_t rxidx, frag, cur, hiaddr, total; 526 uint32_t entries = 0; 527 uint8_t own = 0; 528 529 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 530 if (m_new == NULL) 531 return ENOBUFS; 532 533 /* Allocate the jumbo buffer */ 534 buf = msk_jalloc(sc_if); 535 if (buf == NULL) { 536 m_freem(m_new); 537 DPRINTFN(1, ("%s jumbo allocation failed -- packet " 538 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname)); 539 return ENOBUFS; 540 } 541 542 /* Attach the buffer to the mbuf */ 543 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; 544 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if); 545 546 m_adj(m_new, ETHER_ALIGN); 547 548 rxidx = frag = cur = sc_if->sk_cdata.sk_rx_prod; 549 rxmap = sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap; 550 551 if (bus_dmamap_load_mbuf(sc->sc_dmatag, rxmap, m_new, BUS_DMA_NOWAIT)) { 552 DPRINTFN(2, ("msk_newbuf: dmamap_load failed\n")); 553 m_freem(m_new); 554 return ENOBUFS; 555 } 556 557 /* Count how many rx descriptors needed. */ 558 hiaddr = sc_if->sk_cdata.sk_rx_hiaddr; 559 for (total = i = 0; i < rxmap->dm_nsegs; i++) { 560 if (hiaddr != MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr)) { 561 hiaddr = MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr); 562 total++; 563 } 564 total++; 565 } 566 567 if (total > MSK_RX_RING_CNT - sc_if->sk_cdata.sk_rx_cnt - 1) { 568 DPRINTFN(2, ("msk_newbuf: too few descriptors free\n")); 569 bus_dmamap_unload(sc->sc_dmatag, rxmap); 570 m_freem(m_new); 571 return ENOBUFS; 572 } 573 574 DPRINTFN(2, ("msk_newbuf: dm_nsegs=%d total desc=%u\n", 575 rxmap->dm_nsegs, total)); 576 577 /* Sync the DMA map. */ 578 bus_dmamap_sync(sc->sc_dmatag, rxmap, 0, rxmap->dm_mapsize, 579 BUS_DMASYNC_PREREAD); 580 581 for (i = 0; i < rxmap->dm_nsegs; i++) { 582 addr = rxmap->dm_segs[i].ds_addr; 583 DPRINTFN(2, ("msk_newbuf: addr %llx\n", 584 (unsigned long long)addr)); 585 hiaddr = MSK_ADDR_HI(addr); 586 587 if (sc_if->sk_cdata.sk_rx_hiaddr != hiaddr) { 588 c = &sc_if->sk_cdata.sk_rx_chain[frag]; 589 c->sk_mbuf = NULL; 590 r = &sc_if->sk_rdata->sk_rx_ring[frag]; 591 r->sk_addr = htole32(hiaddr); 592 r->sk_len = 0; 593 r->sk_ctl = 0; 594 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own; 595 own = SK_Y2_RXOPC_OWN; 596 sc_if->sk_cdata.sk_rx_hiaddr = hiaddr; 597 MSK_CDRXSYNC(sc_if, frag, 598 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 599 SK_INC(frag, MSK_RX_RING_CNT); 600 entries++; 601 DPRINTFN(10, ("%s: rx ADDR64: %#x\n", 602 sc_if->sk_ethercom.ec_if.if_xname, hiaddr)); 603 } 604 605 c = &sc_if->sk_cdata.sk_rx_chain[frag]; 606 r = &sc_if->sk_rdata->sk_rx_ring[frag]; 607 r->sk_addr = htole32(MSK_ADDR_LO(addr)); 608 r->sk_len = htole16(rxmap->dm_segs[i].ds_len); 609 r->sk_ctl = 0; 610 if (i == 0) { 611 r->sk_opcode = SK_Y2_RXOPC_PACKET | own; 612 } else 613 r->sk_opcode = SK_Y2_RXOPC_BUFFER | own; 614 own = SK_Y2_RXOPC_OWN; 615 MSK_CDRXSYNC(sc_if, frag, 616 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 617 cur = frag; 618 SK_INC(frag, MSK_RX_RING_CNT); 619 entries++; 620 } 621 KASSERTMSG(entries == total, "entries %u total %u", entries, total); 622 623 sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap = 624 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap; 625 sc_if->sk_cdata.sk_rx_chain[cur].sk_mbuf = m_new; 626 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap = rxmap; 627 628 sc_if->sk_rdata->sk_rx_ring[rxidx].sk_opcode |= SK_Y2_RXOPC_OWN; 629 MSK_CDRXSYNC(sc_if, rxidx, 630 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 631 632 sc_if->sk_cdata.sk_rx_cnt += entries; 633 sc_if->sk_cdata.sk_rx_prod = frag; 634 635 return 0; 636 } 637 638 /* 639 * Memory management for jumbo frames. 640 */ 641 642 static int 643 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if) 644 { 645 struct sk_softc *sc = sc_if->sk_softc; 646 char *ptr, *kva; 647 int i, state, error; 648 struct sk_jpool_entry *entry; 649 650 state = error = 0; 651 652 /* Grab a big chunk o' storage. */ 653 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0, 654 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg, 655 BUS_DMA_NOWAIT)) { 656 aprint_error(": can't alloc rx buffers"); 657 return ENOBUFS; 658 } 659 660 state = 1; 661 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg, 662 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva, 663 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) { 664 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM); 665 error = ENOBUFS; 666 goto out; 667 } 668 669 state = 2; 670 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0, 671 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) { 672 aprint_error(": can't create dma map"); 673 error = ENOBUFS; 674 goto out; 675 } 676 677 state = 3; 678 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map, 679 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) { 680 aprint_error(": can't load dma map"); 681 error = ENOBUFS; 682 goto out; 683 } 684 685 state = 4; 686 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva; 687 DPRINTFN(1,("msk_jumbo_buf = %p\n", 688 (void *)sc_if->sk_cdata.sk_jumbo_buf)); 689 690 LIST_INIT(&sc_if->sk_jfree_listhead); 691 LIST_INIT(&sc_if->sk_jinuse_listhead); 692 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET); 693 694 /* 695 * Now divide it up into 9K pieces and save the addresses 696 * in an array. 697 */ 698 ptr = sc_if->sk_cdata.sk_jumbo_buf; 699 for (i = 0; i < MSK_JSLOTS; i++) { 700 sc_if->sk_cdata.sk_jslots[i] = ptr; 701 ptr += SK_JLEN; 702 entry = malloc(sizeof(struct sk_jpool_entry), 703 M_DEVBUF, M_WAITOK); 704 entry->slot = i; 705 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, 706 entry, jpool_entries); 707 } 708 out: 709 if (error != 0) { 710 switch (state) { 711 case 4: 712 bus_dmamap_unload(sc->sc_dmatag, 713 sc_if->sk_cdata.sk_rx_jumbo_map); 714 /* FALLTHROUGH */ 715 case 3: 716 bus_dmamap_destroy(sc->sc_dmatag, 717 sc_if->sk_cdata.sk_rx_jumbo_map); 718 /* FALLTHROUGH */ 719 case 2: 720 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM); 721 /* FALLTHROUGH */ 722 case 1: 723 bus_dmamem_free(sc->sc_dmatag, 724 &sc_if->sk_cdata.sk_jumbo_seg, 725 sc_if->sk_cdata.sk_jumbo_nseg); 726 break; 727 default: 728 break; 729 } 730 } 731 732 return error; 733 } 734 735 static void 736 msk_free_jumbo_mem(struct sk_if_softc *sc_if) 737 { 738 struct sk_softc *sc = sc_if->sk_softc; 739 740 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map); 741 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map); 742 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM); 743 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg, 744 sc_if->sk_cdata.sk_jumbo_nseg); 745 } 746 747 /* 748 * Allocate a jumbo buffer. 749 */ 750 static void * 751 msk_jalloc(struct sk_if_softc *sc_if) 752 { 753 struct sk_jpool_entry *entry; 754 755 mutex_enter(&sc_if->sk_jpool_mtx); 756 entry = LIST_FIRST(&sc_if->sk_jfree_listhead); 757 758 if (entry == NULL) { 759 mutex_exit(&sc_if->sk_jpool_mtx); 760 return NULL; 761 } 762 763 LIST_REMOVE(entry, jpool_entries); 764 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); 765 mutex_exit(&sc_if->sk_jpool_mtx); 766 return sc_if->sk_cdata.sk_jslots[entry->slot]; 767 } 768 769 /* 770 * Release a jumbo buffer. 771 */ 772 static void 773 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg) 774 { 775 struct sk_jpool_entry *entry; 776 struct sk_if_softc *sc; 777 int i; 778 779 /* Extract the softc struct pointer. */ 780 sc = (struct sk_if_softc *)arg; 781 782 if (sc == NULL) 783 panic("msk_jfree: can't find softc pointer!"); 784 785 /* calculate the slot this buffer belongs to */ 786 i = ((vaddr_t)buf 787 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN; 788 789 if ((i < 0) || (i >= MSK_JSLOTS)) 790 panic("msk_jfree: asked to free buffer that we don't manage!"); 791 792 mutex_enter(&sc->sk_jpool_mtx); 793 entry = LIST_FIRST(&sc->sk_jinuse_listhead); 794 if (entry == NULL) 795 panic("msk_jfree: buffer not in use!"); 796 entry->slot = i; 797 LIST_REMOVE(entry, jpool_entries); 798 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries); 799 mutex_exit(&sc->sk_jpool_mtx); 800 801 if (__predict_true(m != NULL)) 802 pool_cache_put(mb_cache, m); 803 804 /* Now that we know we have a free RX buffer, refill if running out */ 805 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0 806 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3)) 807 callout_schedule(&sc->sk_tick_rx, 0); 808 } 809 810 static int 811 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data) 812 { 813 struct sk_if_softc *sc = ifp->if_softc; 814 int s, error; 815 816 s = splnet(); 817 818 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd)); 819 switch (cmd) { 820 case SIOCSIFFLAGS: 821 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 822 break; 823 824 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 825 case IFF_RUNNING: 826 msk_stop(ifp, 1); 827 break; 828 case IFF_UP: 829 msk_init(ifp); 830 break; 831 case IFF_UP | IFF_RUNNING: 832 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) { 833 msk_setpromisc(sc); 834 msk_setmulti(sc); 835 } else 836 msk_init(ifp); 837 break; 838 } 839 sc->sk_if_flags = ifp->if_flags; 840 break; 841 default: 842 error = ether_ioctl(ifp, cmd, data); 843 if (error == ENETRESET) { 844 error = 0; 845 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 846 ; 847 else if (ifp->if_flags & IFF_RUNNING) { 848 /* 849 * Multicast list has changed; set the hardware 850 * filter accordingly. 851 */ 852 msk_setmulti(sc); 853 } 854 } 855 break; 856 } 857 858 splx(s); 859 return error; 860 } 861 862 static void 863 msk_update_int_mod(struct sk_softc *sc, int verbose) 864 { 865 uint32_t imtimer_ticks; 866 867 /* 868 * Configure interrupt moderation. The moderation timer 869 * defers interrupts specified in the interrupt moderation 870 * timer mask based on the timeout specified in the interrupt 871 * moderation timer init register. Each bit in the timer 872 * register represents one tick, so to specify a timeout in 873 * microseconds, we have to multiply by the correct number of 874 * ticks-per-microsecond. 875 */ 876 switch (sc->sk_type) { 877 case SK_YUKON_EC: 878 case SK_YUKON_EC_U: 879 case SK_YUKON_EX: 880 case SK_YUKON_SUPR: 881 case SK_YUKON_ULTRA2: 882 case SK_YUKON_OPTIMA: 883 case SK_YUKON_PRM: 884 case SK_YUKON_OPTIMA2: 885 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC; 886 break; 887 case SK_YUKON_FE: 888 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE; 889 break; 890 case SK_YUKON_FE_P: 891 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P; 892 break; 893 case SK_YUKON_XL: 894 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL; 895 break; 896 default: 897 imtimer_ticks = SK_IMTIMER_TICKS_YUKON; 898 } 899 if (verbose) 900 aprint_verbose_dev(sc->sk_dev, 901 "interrupt moderation is %d us\n", sc->sk_int_mod); 902 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod)); 903 sk_win_write_4(sc, SK_IMMR, 0); /* moderate no interrupts */ 904 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 905 sc->sk_int_mod_pending = 0; 906 } 907 908 /* 909 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device 910 * IDs against our list and return a device name if we find a match. 911 */ 912 static int 913 mskc_probe(device_t parent, cfdata_t match, void *aux) 914 { 915 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 916 917 return pci_compatible_match(pa, compat_data); 918 } 919 920 /* 921 * Force the GEnesis into reset, then bring it out of reset. 922 */ 923 static void 924 mskc_reset(struct sk_softc *sc) 925 { 926 uint32_t imtimer_ticks, reg1; 927 uint16_t status; 928 int reg; 929 930 DPRINTFN(2, ("mskc_reset\n")); 931 932 /* Disable ASF */ 933 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) { 934 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0); 935 status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR); 936 /* Clear AHB bridge & microcontroller reset. */ 937 status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST | 938 SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE); 939 /* Clear ASF microcontroller state. */ 940 status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK; 941 status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK; 942 CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status); 943 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0); 944 } else 945 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET); 946 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF); 947 948 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET); 949 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET); 950 951 DELAY(1000); 952 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET); 953 DELAY(2); 954 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 955 sk_win_write_1(sc, SK_TESTCTL1, 2); 956 957 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX || 958 sc->sk_type >= SK_YUKON_FE_P) { 959 uint32_t our; 960 961 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON); 962 963 /* enable all clocks. */ 964 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0); 965 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4)); 966 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST | 967 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN | 968 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY | 969 SK_Y2_REG4_ASPM_CLKRUN_REQUEST); 970 /* Set all bits to 0 except bits 15..12 */ 971 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our); 972 /* Set to default value */ 973 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0); 974 975 /* 976 * Disable status race, workaround for Yukon EC Ultra & 977 * Yukon EX. 978 */ 979 reg1 = sk_win_read_4(sc, SK_GPIO); 980 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS; 981 sk_win_write_4(sc, SK_GPIO, reg1); 982 sk_win_read_4(sc, SK_GPIO); 983 } 984 985 /* release PHY from PowerDown/Coma mode. */ 986 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1)); 987 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1) 988 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA); 989 else 990 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA); 991 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1); 992 993 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1) 994 sk_win_write_1(sc, SK_Y2_CLKGATE, 995 SK_Y2_CLKGATE_LINK1_GATE_DIS | 996 SK_Y2_CLKGATE_LINK2_GATE_DIS | 997 SK_Y2_CLKGATE_LINK1_CORE_DIS | 998 SK_Y2_CLKGATE_LINK2_CORE_DIS | 999 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS); 1000 else 1001 sk_win_write_1(sc, SK_Y2_CLKGATE, 0); 1002 1003 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); 1004 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET); 1005 DELAY(1000); 1006 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); 1007 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR); 1008 1009 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) { 1010 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX | 1011 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO); 1012 } 1013 1014 sk_win_write_1(sc, SK_TESTCTL1, 1); 1015 1016 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR))); 1017 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n", 1018 CSR_READ_2(sc, SK_LINK_CTRL))); 1019 1020 /* Clear I2C IRQ noise */ 1021 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1); 1022 1023 /* Disable hardware timer */ 1024 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP); 1025 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR); 1026 1027 /* Disable descriptor polling */ 1028 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP); 1029 1030 /* Disable time stamps */ 1031 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP); 1032 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR); 1033 1034 /* Enable RAM interface */ 1035 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1036 for (reg = SK_TO0;reg <= SK_TO11; reg++) 1037 sk_win_write_1(sc, reg, 36); 1038 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET); 1039 for (reg = SK_TO0;reg <= SK_TO11; reg++) 1040 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36); 1041 1042 /* 1043 * Configure interrupt moderation. The moderation timer 1044 * defers interrupts specified in the interrupt moderation 1045 * timer mask based on the timeout specified in the interrupt 1046 * moderation timer init register. Each bit in the timer 1047 * register represents one tick, so to specify a timeout in 1048 * microseconds, we have to multiply by the correct number of 1049 * ticks-per-microsecond. 1050 */ 1051 switch (sc->sk_type) { 1052 case SK_YUKON_EC: 1053 case SK_YUKON_EC_U: 1054 case SK_YUKON_EX: 1055 case SK_YUKON_SUPR: 1056 case SK_YUKON_ULTRA2: 1057 case SK_YUKON_OPTIMA: 1058 case SK_YUKON_PRM: 1059 case SK_YUKON_OPTIMA2: 1060 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC; 1061 break; 1062 case SK_YUKON_FE: 1063 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE; 1064 break; 1065 case SK_YUKON_FE_P: 1066 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P; 1067 break; 1068 case SK_YUKON_XL: 1069 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL; 1070 break; 1071 default: 1072 imtimer_ticks = SK_IMTIMER_TICKS_YUKON; 1073 break; 1074 } 1075 1076 /* Reset status ring. */ 1077 memset(sc->sk_status_ring, 0, 1078 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); 1079 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0, 1080 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD); 1081 sc->sk_status_idx = 0; 1082 1083 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET); 1084 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET); 1085 1086 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1); 1087 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO, 1088 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr)); 1089 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI, 1090 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr)); 1091 if (sc->sk_type == SK_YUKON_EC && 1092 sc->sk_rev == SK_YUKON_EC_REV_A1) { 1093 /* WA for dev. #4.3 */ 1094 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 1095 SK_STAT_BMU_TXTHIDX_MSK); 1096 /* WA for dev. #4.18 */ 1097 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21); 1098 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07); 1099 } else { 1100 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a); 1101 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10); 1102 if (sc->sk_type == SK_YUKON_XL) 1103 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04); 1104 else 1105 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10); 1106 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */ 1107 } 1108 1109 #if 0 1110 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100)); 1111 #endif 1112 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000)); 1113 1114 /* Enable status unit. */ 1115 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON); 1116 1117 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START); 1118 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START); 1119 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START); 1120 1121 msk_update_int_mod(sc, 0); 1122 } 1123 1124 static int 1125 msk_probe(device_t parent, cfdata_t match, void *aux) 1126 { 1127 struct skc_attach_args *sa = aux; 1128 1129 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B) 1130 return 0; 1131 1132 switch (sa->skc_type) { 1133 case SK_YUKON_XL: 1134 case SK_YUKON_EC_U: 1135 case SK_YUKON_EX: 1136 case SK_YUKON_EC: 1137 case SK_YUKON_FE: 1138 case SK_YUKON_FE_P: 1139 case SK_YUKON_SUPR: 1140 case SK_YUKON_ULTRA2: 1141 case SK_YUKON_OPTIMA: 1142 case SK_YUKON_PRM: 1143 case SK_YUKON_OPTIMA2: 1144 return 1; 1145 } 1146 1147 return 0; 1148 } 1149 1150 static void 1151 msk_reset(struct sk_if_softc *sc_if) 1152 { 1153 /* GMAC and GPHY Reset */ 1154 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 1155 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); 1156 DELAY(1000); 1157 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR); 1158 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | 1159 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); 1160 } 1161 1162 static bool 1163 msk_resume(device_t dv, const pmf_qual_t *qual) 1164 { 1165 struct sk_if_softc *sc_if = device_private(dv); 1166 1167 msk_init_yukon(sc_if); 1168 return true; 1169 } 1170 1171 /* 1172 * Each XMAC chip is attached as a separate logical IP interface. 1173 * Single port cards will have only one logical interface of course. 1174 */ 1175 static void 1176 msk_attach(device_t parent, device_t self, void *aux) 1177 { 1178 struct sk_if_softc *sc_if = device_private(self); 1179 struct sk_softc *sc = device_private(parent); 1180 struct skc_attach_args *sa = aux; 1181 bus_dmamap_t dmamap; 1182 struct ifnet *ifp; 1183 struct mii_data * const mii = &sc_if->sk_mii; 1184 void *kva; 1185 int i; 1186 uint32_t chunk; 1187 int mii_flags; 1188 1189 sc_if->sk_dev = self; 1190 sc_if->sk_port = sa->skc_port; 1191 sc_if->sk_softc = sc; 1192 sc->sk_if[sa->skc_port] = sc_if; 1193 1194 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port)); 1195 1196 /* 1197 * Get station address for this interface. Note that 1198 * dual port cards actually come with three station 1199 * addresses: one for each port, plus an extra. The 1200 * extra one is used by the SysKonnect driver software 1201 * as a 'virtual' station address for when both ports 1202 * are operating in failover mode. Currently we don't 1203 * use this extra address. 1204 */ 1205 for (i = 0; i < ETHER_ADDR_LEN; i++) 1206 sc_if->sk_enaddr[i] = 1207 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i); 1208 1209 aprint_normal(": Ethernet address %s\n", 1210 ether_sprintf(sc_if->sk_enaddr)); 1211 1212 /* 1213 * Set up RAM buffer addresses. The Yukon2 has a small amount 1214 * of SRAM on it, somewhere between 4K and 48K. We need to 1215 * divide this up between the transmitter and receiver. We 1216 * give the receiver 2/3 of the memory (rounded down), and the 1217 * transmitter whatever remains. 1218 */ 1219 if (sc->sk_ramsize) { 1220 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff; 1221 sc_if->sk_rx_ramstart = 0; 1222 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1; 1223 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk; 1224 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1; 1225 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1; 1226 1227 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n" 1228 " tx_ramstart=%#x tx_ramend=%#x\n", 1229 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend, 1230 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend)); 1231 } 1232 1233 /* Allocate the descriptor queues. */ 1234 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data), 1235 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg, 1236 BUS_DMA_NOWAIT)) { 1237 aprint_error(": can't alloc rx buffers\n"); 1238 goto fail; 1239 } 1240 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg, 1241 sc_if->sk_ring_nseg, 1242 sizeof(struct msk_ring_data), &kva, 1243 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) { 1244 aprint_error(": can't map dma buffers (%zu bytes)\n", 1245 sizeof(struct msk_ring_data)); 1246 goto fail_1; 1247 } 1248 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1, 1249 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT, 1250 &sc_if->sk_ring_map)) { 1251 aprint_error(": can't create dma map\n"); 1252 goto fail_2; 1253 } 1254 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva, 1255 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) { 1256 aprint_error(": can't load dma map\n"); 1257 goto fail_3; 1258 } 1259 1260 for (i = 0; i < MSK_TX_RING_CNT; i++) { 1261 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 1262 1263 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG, 1264 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) { 1265 aprint_error_dev(sc_if->sk_dev, 1266 "Can't create TX dmamap\n"); 1267 goto fail_3; 1268 } 1269 1270 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap = dmamap; 1271 } 1272 1273 for (i = 0; i < MSK_RX_RING_CNT; i++) { 1274 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 1275 1276 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, 1277 howmany(SK_JLEN + 1, NBPG), 1278 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) { 1279 aprint_error_dev(sc_if->sk_dev, 1280 "Can't create RX dmamap\n"); 1281 goto fail_3; 1282 } 1283 1284 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap = dmamap; 1285 } 1286 1287 sc_if->sk_rdata = (struct msk_ring_data *)kva; 1288 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data)); 1289 1290 if (sc->sk_type != SK_YUKON_FE && 1291 sc->sk_type != SK_YUKON_FE_P) 1292 sc_if->sk_pktlen = SK_JLEN; 1293 else 1294 sc_if->sk_pktlen = MCLBYTES; 1295 1296 /* Try to allocate memory for jumbo buffers. */ 1297 if (msk_alloc_jumbo_mem(sc_if)) { 1298 aprint_error(": jumbo buffer allocation failed\n"); 1299 goto fail_3; 1300 } 1301 1302 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU; 1303 if (sc->sk_type != SK_YUKON_FE && 1304 sc->sk_type != SK_YUKON_FE_P) 1305 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 1306 1307 ifp = &sc_if->sk_ethercom.ec_if; 1308 ifp->if_softc = sc_if; 1309 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1310 ifp->if_ioctl = msk_ioctl; 1311 ifp->if_start = msk_start; 1312 ifp->if_stop = msk_stop; 1313 ifp->if_init = msk_init; 1314 ifp->if_watchdog = msk_watchdog; 1315 ifp->if_baudrate = 1000000000; 1316 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1); 1317 IFQ_SET_READY(&ifp->if_snd); 1318 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ); 1319 1320 msk_reset(sc_if); 1321 1322 /* 1323 * Do miibus setup. 1324 */ 1325 DPRINTFN(2, ("msk_attach: 1\n")); 1326 1327 mii->mii_ifp = ifp; 1328 mii->mii_readreg = msk_miibus_readreg; 1329 mii->mii_writereg = msk_miibus_writereg; 1330 mii->mii_statchg = msk_miibus_statchg; 1331 1332 sc_if->sk_ethercom.ec_mii = mii; 1333 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); 1334 mii_flags = MIIF_DOPAUSE; 1335 if (sc->sk_fibertype) 1336 mii_flags |= MIIF_HAVEFIBER; 1337 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags); 1338 if (LIST_FIRST(&mii->mii_phys) == NULL) { 1339 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n"); 1340 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 1341 0, NULL); 1342 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL); 1343 } else 1344 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 1345 1346 callout_init(&sc_if->sk_tick_ch, 0); 1347 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if); 1348 callout_schedule(&sc_if->sk_tick_ch, hz); 1349 1350 callout_init(&sc_if->sk_tick_rx, 0); 1351 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if); 1352 1353 /* 1354 * Call MI attach routines. 1355 */ 1356 if_attach(ifp); 1357 if_deferred_start_init(ifp, NULL); 1358 ether_ifattach(ifp, sc_if->sk_enaddr); 1359 1360 if (pmf_device_register(self, NULL, msk_resume)) 1361 pmf_class_network_register(self, ifp); 1362 else 1363 aprint_error_dev(self, "couldn't establish power handler\n"); 1364 1365 if (sc->rnd_attached++ == 0) { 1366 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev), 1367 RND_TYPE_NET, RND_FLAG_DEFAULT); 1368 } 1369 1370 DPRINTFN(2, ("msk_attach: end\n")); 1371 return; 1372 1373 fail_3: 1374 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); 1375 fail_2: 1376 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data)); 1377 fail_1: 1378 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg); 1379 fail: 1380 sc->sk_if[sa->skc_port] = NULL; 1381 } 1382 1383 static int 1384 msk_detach(device_t self, int flags) 1385 { 1386 struct sk_if_softc *sc_if = device_private(self); 1387 struct sk_softc *sc = sc_if->sk_softc; 1388 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 1389 int i; 1390 1391 if (sc->sk_if[sc_if->sk_port] == NULL) 1392 return 0; 1393 1394 msk_stop(ifp, 1); 1395 1396 for (i = 0; i < MSK_TX_RING_CNT; i++) { 1397 bus_dmamap_destroy(sc->sc_dmatag, 1398 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap); 1399 } 1400 1401 for (i = 0; i < MSK_RX_RING_CNT; i++) { 1402 bus_dmamap_destroy(sc->sc_dmatag, 1403 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap); 1404 } 1405 1406 if (--sc->rnd_attached == 0) 1407 rnd_detach_source(&sc->rnd_source); 1408 1409 callout_halt(&sc_if->sk_tick_ch, NULL); 1410 callout_destroy(&sc_if->sk_tick_ch); 1411 1412 callout_halt(&sc_if->sk_tick_rx, NULL); 1413 callout_destroy(&sc_if->sk_tick_rx); 1414 1415 /* Detach any PHYs we might have. */ 1416 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL) 1417 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY); 1418 1419 pmf_device_deregister(self); 1420 1421 ether_ifdetach(ifp); 1422 if_detach(ifp); 1423 1424 /* Delete any remaining media. */ 1425 ifmedia_fini(&sc_if->sk_mii.mii_media); 1426 1427 msk_free_jumbo_mem(sc_if); 1428 1429 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata, 1430 sizeof(struct msk_ring_data)); 1431 bus_dmamem_free(sc->sc_dmatag, 1432 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg); 1433 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); 1434 sc->sk_if[sc_if->sk_port] = NULL; 1435 1436 return 0; 1437 } 1438 1439 static int 1440 mskcprint(void *aux, const char *pnp) 1441 { 1442 struct skc_attach_args *sa = aux; 1443 1444 if (pnp) 1445 aprint_normal("msk port %c at %s", 1446 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp); 1447 else 1448 aprint_normal(" port %c", 1449 (sa->skc_port == SK_PORT_A) ? 'A' : 'B'); 1450 return UNCONF; 1451 } 1452 1453 /* 1454 * Attach the interface. Allocate softc structures, do ifmedia 1455 * setup and ethernet/BPF attach. 1456 */ 1457 static void 1458 mskc_attach(device_t parent, device_t self, void *aux) 1459 { 1460 struct sk_softc *sc = device_private(self); 1461 struct pci_attach_args *pa = aux; 1462 struct skc_attach_args skca; 1463 pci_chipset_tag_t pc = pa->pa_pc; 1464 pcireg_t command, memtype; 1465 const char *intrstr = NULL; 1466 int rc, sk_nodenum; 1467 uint8_t hw, pmd; 1468 const char *revstr = NULL; 1469 const struct sysctlnode *node; 1470 void *kva; 1471 char intrbuf[PCI_INTRSTR_LEN]; 1472 1473 DPRINTFN(2, ("begin mskc_attach\n")); 1474 1475 sc->sk_dev = self; 1476 /* 1477 * Handle power management nonsense. 1478 */ 1479 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF; 1480 1481 if (command == 0x01) { 1482 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL); 1483 if (command & SK_PSTATE_MASK) { 1484 uint32_t iobase, membase, irq; 1485 1486 /* Save important PCI config data. */ 1487 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO); 1488 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM); 1489 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE); 1490 1491 /* Reset the power state. */ 1492 aprint_normal_dev(sc->sk_dev, "chip is in D%d power " 1493 "mode -- setting to D0\n", 1494 command & SK_PSTATE_MASK); 1495 command &= 0xFFFFFFFC; 1496 pci_conf_write(pc, pa->pa_tag, 1497 SK_PCI_PWRMGMTCTRL, command); 1498 1499 /* Restore PCI config data. */ 1500 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase); 1501 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase); 1502 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq); 1503 } 1504 } 1505 1506 /* 1507 * Map control/status registers. 1508 */ 1509 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM); 1510 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag, 1511 &sc->sk_bhandle, NULL, &sc->sk_bsize)) { 1512 aprint_error(": can't map mem space\n"); 1513 return; 1514 } 1515 1516 if (pci_dma64_available(pa)) 1517 sc->sc_dmatag = pa->pa_dmat64; 1518 else 1519 sc->sc_dmatag = pa->pa_dmat; 1520 1521 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1522 command |= PCI_COMMAND_MASTER_ENABLE; 1523 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1524 1525 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); 1526 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4); 1527 1528 /* bail out here if chip is not recognized */ 1529 if (!(SK_IS_YUKON2(sc))) { 1530 aprint_error(": unknown chip type: %d\n", sc->sk_type); 1531 goto fail_1; 1532 } 1533 DPRINTFN(2, ("mskc_attach: allocate interrupt\n")); 1534 1535 /* Allocate interrupt */ 1536 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) { 1537 aprint_error(": couldn't map interrupt\n"); 1538 goto fail_1; 1539 } 1540 1541 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf)); 1542 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET, 1543 msk_intr, sc, device_xname(sc->sk_dev)); 1544 if (sc->sk_intrhand == NULL) { 1545 aprint_error(": couldn't establish interrupt"); 1546 if (intrstr != NULL) 1547 aprint_error(" at %s", intrstr); 1548 aprint_error("\n"); 1549 goto fail_1; 1550 } 1551 sc->sk_pc = pc; 1552 1553 if (bus_dmamem_alloc(sc->sc_dmatag, 1554 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1555 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1556 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) { 1557 aprint_error(": can't alloc status buffers\n"); 1558 goto fail_2; 1559 } 1560 1561 if (bus_dmamem_map(sc->sc_dmatag, 1562 &sc->sk_status_seg, sc->sk_status_nseg, 1563 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1564 &kva, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) { 1565 aprint_error(": can't map dma buffers (%zu bytes)\n", 1566 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); 1567 goto fail_3; 1568 } 1569 if (bus_dmamap_create(sc->sc_dmatag, 1570 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1, 1571 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0, 1572 BUS_DMA_NOWAIT, &sc->sk_status_map)) { 1573 aprint_error(": can't create dma map\n"); 1574 goto fail_4; 1575 } 1576 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva, 1577 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1578 NULL, BUS_DMA_NOWAIT)) { 1579 aprint_error(": can't load dma map\n"); 1580 goto fail_5; 1581 } 1582 sc->sk_status_ring = (struct msk_status_desc *)kva; 1583 1584 sc->sk_int_mod = SK_IM_DEFAULT; 1585 sc->sk_int_mod_pending = 0; 1586 1587 /* Reset the adapter. */ 1588 mskc_reset(sc); 1589 1590 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096; 1591 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024)); 1592 1593 pmd = sk_win_read_1(sc, SK_PMDTYPE); 1594 if (pmd == 'L' || pmd == 'S' || pmd == 'P') 1595 sc->sk_fibertype = 1; 1596 1597 switch (sc->sk_type) { 1598 case SK_YUKON_XL: 1599 sc->sk_name = "Yukon-2 XL"; 1600 break; 1601 case SK_YUKON_EC_U: 1602 sc->sk_name = "Yukon-2 EC Ultra"; 1603 break; 1604 case SK_YUKON_EX: 1605 sc->sk_name = "Yukon-2 Extreme"; 1606 break; 1607 case SK_YUKON_EC: 1608 sc->sk_name = "Yukon-2 EC"; 1609 break; 1610 case SK_YUKON_FE: 1611 sc->sk_name = "Yukon-2 FE"; 1612 break; 1613 case SK_YUKON_FE_P: 1614 sc->sk_name = "Yukon-2 FE+"; 1615 break; 1616 case SK_YUKON_SUPR: 1617 sc->sk_name = "Yukon-2 Supreme"; 1618 break; 1619 case SK_YUKON_ULTRA2: 1620 sc->sk_name = "Yukon-2 Ultra 2"; 1621 break; 1622 case SK_YUKON_OPTIMA: 1623 sc->sk_name = "Yukon-2 Optima"; 1624 break; 1625 case SK_YUKON_PRM: 1626 sc->sk_name = "Yukon-2 Optima Prime"; 1627 break; 1628 case SK_YUKON_OPTIMA2: 1629 sc->sk_name = "Yukon-2 Optima 2"; 1630 break; 1631 default: 1632 sc->sk_name = "Yukon (Unknown)"; 1633 } 1634 1635 if (sc->sk_type == SK_YUKON_XL) { 1636 switch (sc->sk_rev) { 1637 case SK_YUKON_XL_REV_A0: 1638 revstr = "A0"; 1639 break; 1640 case SK_YUKON_XL_REV_A1: 1641 revstr = "A1"; 1642 break; 1643 case SK_YUKON_XL_REV_A2: 1644 revstr = "A2"; 1645 break; 1646 case SK_YUKON_XL_REV_A3: 1647 revstr = "A3"; 1648 break; 1649 default: 1650 break; 1651 } 1652 } 1653 1654 if (sc->sk_type == SK_YUKON_EC) { 1655 switch (sc->sk_rev) { 1656 case SK_YUKON_EC_REV_A1: 1657 revstr = "A1"; 1658 break; 1659 case SK_YUKON_EC_REV_A2: 1660 revstr = "A2"; 1661 break; 1662 case SK_YUKON_EC_REV_A3: 1663 revstr = "A3"; 1664 break; 1665 default: 1666 break; 1667 } 1668 } 1669 1670 if (sc->sk_type == SK_YUKON_FE) { 1671 switch (sc->sk_rev) { 1672 case SK_YUKON_FE_REV_A1: 1673 revstr = "A1"; 1674 break; 1675 case SK_YUKON_FE_REV_A2: 1676 revstr = "A2"; 1677 break; 1678 default: 1679 break; 1680 } 1681 } 1682 1683 if (sc->sk_type == SK_YUKON_EC_U) { 1684 switch (sc->sk_rev) { 1685 case SK_YUKON_EC_U_REV_A0: 1686 revstr = "A0"; 1687 break; 1688 case SK_YUKON_EC_U_REV_A1: 1689 revstr = "A1"; 1690 break; 1691 case SK_YUKON_EC_U_REV_B0: 1692 revstr = "B0"; 1693 break; 1694 case SK_YUKON_EC_U_REV_B1: 1695 revstr = "B1"; 1696 break; 1697 default: 1698 break; 1699 } 1700 } 1701 1702 if (sc->sk_type == SK_YUKON_FE) { 1703 switch (sc->sk_rev) { 1704 case SK_YUKON_FE_REV_A1: 1705 revstr = "A1"; 1706 break; 1707 case SK_YUKON_FE_REV_A2: 1708 revstr = "A2"; 1709 break; 1710 default: 1711 ; 1712 } 1713 } 1714 1715 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0) 1716 revstr = "A0"; 1717 1718 if (sc->sk_type == SK_YUKON_EX) { 1719 switch (sc->sk_rev) { 1720 case SK_YUKON_EX_REV_A0: 1721 revstr = "A0"; 1722 break; 1723 case SK_YUKON_EX_REV_B0: 1724 revstr = "B0"; 1725 break; 1726 default: 1727 ; 1728 } 1729 } 1730 1731 if (sc->sk_type == SK_YUKON_SUPR) { 1732 switch (sc->sk_rev) { 1733 case SK_YUKON_SUPR_REV_A0: 1734 revstr = "A0"; 1735 break; 1736 case SK_YUKON_SUPR_REV_B0: 1737 revstr = "B0"; 1738 break; 1739 case SK_YUKON_SUPR_REV_B1: 1740 revstr = "B1"; 1741 break; 1742 default: 1743 ; 1744 } 1745 } 1746 1747 if (sc->sk_type == SK_YUKON_PRM) { 1748 switch (sc->sk_rev) { 1749 case SK_YUKON_PRM_REV_Z1: 1750 revstr = "Z1"; 1751 break; 1752 case SK_YUKON_PRM_REV_A0: 1753 revstr = "A0"; 1754 break; 1755 default: 1756 ; 1757 } 1758 } 1759 1760 /* Announce the product name. */ 1761 aprint_normal(", %s", sc->sk_name); 1762 if (revstr != NULL) 1763 aprint_normal(" rev. %s", revstr); 1764 aprint_normal(" (0x%x)\n", sc->sk_rev); 1765 1766 aprint_normal_dev(sc->sk_dev, "interrupting at %s\n", intrstr); 1767 1768 sc->sk_macs = 1; 1769 1770 hw = sk_win_read_1(sc, SK_Y2_HWRES); 1771 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) { 1772 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) & 1773 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0) 1774 sc->sk_macs++; 1775 } 1776 1777 skca.skc_port = SK_PORT_A; 1778 skca.skc_type = sc->sk_type; 1779 skca.skc_rev = sc->sk_rev; 1780 (void)config_found(sc->sk_dev, &skca, mskcprint, CFARGS_NONE); 1781 1782 if (sc->sk_macs > 1) { 1783 skca.skc_port = SK_PORT_B; 1784 skca.skc_type = sc->sk_type; 1785 skca.skc_rev = sc->sk_rev; 1786 (void)config_found(sc->sk_dev, &skca, mskcprint, CFARGS_NONE); 1787 } 1788 1789 /* Turn on the 'driver is loaded' LED. */ 1790 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1791 1792 /* skc sysctl setup */ 1793 1794 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node, 1795 0, CTLTYPE_NODE, device_xname(sc->sk_dev), 1796 SYSCTL_DESCR("mskc per-controller controls"), 1797 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE, 1798 CTL_EOL)) != 0) { 1799 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n"); 1800 goto fail_6; 1801 } 1802 1803 sk_nodenum = node->sysctl_num; 1804 1805 /* interrupt moderation time in usecs */ 1806 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node, 1807 CTLFLAG_READWRITE, 1808 CTLTYPE_INT, "int_mod", 1809 SYSCTL_DESCR("msk interrupt moderation timer"), 1810 msk_sysctl_handler, 0, (void *)sc, 1811 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE, 1812 CTL_EOL)) != 0) { 1813 aprint_normal_dev(sc->sk_dev, 1814 "couldn't create int_mod sysctl node\n"); 1815 goto fail_6; 1816 } 1817 1818 if (!pmf_device_register(self, mskc_suspend, mskc_resume)) 1819 aprint_error_dev(self, "couldn't establish power handler\n"); 1820 1821 return; 1822 1823 fail_6: 1824 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map); 1825 fail_4: 1826 bus_dmamem_unmap(sc->sc_dmatag, kva, 1827 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); 1828 fail_3: 1829 bus_dmamem_free(sc->sc_dmatag, 1830 &sc->sk_status_seg, sc->sk_status_nseg); 1831 sc->sk_status_nseg = 0; 1832 fail_5: 1833 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map); 1834 fail_2: 1835 pci_intr_disestablish(pc, sc->sk_intrhand); 1836 sc->sk_intrhand = NULL; 1837 fail_1: 1838 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize); 1839 sc->sk_bsize = 0; 1840 } 1841 1842 static int 1843 mskc_detach(device_t self, int flags) 1844 { 1845 struct sk_softc *sc = device_private(self); 1846 int rv; 1847 1848 if (sc->sk_intrhand) { 1849 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand); 1850 sc->sk_intrhand = NULL; 1851 } 1852 1853 if (sc->sk_pihp != NULL) { 1854 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1); 1855 sc->sk_pihp = NULL; 1856 } 1857 1858 rv = config_detach_children(self, flags); 1859 if (rv != 0) 1860 return rv; 1861 1862 sysctl_teardown(&sc->sk_clog); 1863 1864 if (sc->sk_status_nseg > 0) { 1865 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map); 1866 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring, 1867 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); 1868 bus_dmamem_free(sc->sc_dmatag, 1869 &sc->sk_status_seg, sc->sk_status_nseg); 1870 } 1871 1872 if (sc->sk_bsize > 0) 1873 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize); 1874 1875 return 0; 1876 } 1877 1878 static int 1879 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx) 1880 { 1881 struct sk_softc *sc = sc_if->sk_softc; 1882 struct msk_tx_desc *f = NULL; 1883 uint32_t frag, cur, hiaddr, total; 1884 uint32_t entries = 0; 1885 uint8_t own = 0; 1886 size_t i; 1887 bus_dmamap_t txmap; 1888 bus_addr_t addr; 1889 1890 DPRINTFN(2, ("msk_encap\n")); 1891 1892 txmap = sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap; 1893 1894 cur = frag = *txidx; 1895 1896 #ifdef MSK_DEBUG 1897 if (mskdebug >= 2) 1898 msk_dump_mbuf(m_head); 1899 #endif 1900 1901 /* 1902 * Start packing the mbufs in this chain into 1903 * the fragment pointers. Stop when we run out 1904 * of fragments or hit the end of the mbuf chain. 1905 */ 1906 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head, 1907 BUS_DMA_NOWAIT)) { 1908 DPRINTFN(2, ("msk_encap: dmamap failed\n")); 1909 return ENOBUFS; 1910 } 1911 1912 /* Count how many tx descriptors needed. */ 1913 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr; 1914 for (total = i = 0; i < txmap->dm_nsegs; i++) { 1915 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) { 1916 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr); 1917 total++; 1918 } 1919 total++; 1920 } 1921 1922 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) { 1923 DPRINTFN(2, ("msk_encap: too few descriptors free\n")); 1924 bus_dmamap_unload(sc->sc_dmatag, txmap); 1925 return ENOBUFS; 1926 } 1927 1928 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n", 1929 txmap->dm_nsegs, total)); 1930 1931 /* Sync the DMA map. */ 1932 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize, 1933 BUS_DMASYNC_PREWRITE); 1934 1935 for (i = 0; i < txmap->dm_nsegs; i++) { 1936 addr = txmap->dm_segs[i].ds_addr; 1937 DPRINTFN(2, ("msk_encap: addr %llx\n", 1938 (unsigned long long)addr)); 1939 hiaddr = MSK_ADDR_HI(addr); 1940 1941 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) { 1942 f = &sc_if->sk_rdata->sk_tx_ring[frag]; 1943 f->sk_addr = htole32(hiaddr); 1944 f->sk_len = 0; 1945 f->sk_ctl = 0; 1946 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own; 1947 own = SK_Y2_TXOPC_OWN; 1948 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr; 1949 SK_INC(frag, MSK_TX_RING_CNT); 1950 entries++; 1951 DPRINTFN(10, ("%s: tx ADDR64: %#x\n", 1952 sc_if->sk_ethercom.ec_if.if_xname, hiaddr)); 1953 } 1954 1955 f = &sc_if->sk_rdata->sk_tx_ring[frag]; 1956 f->sk_addr = htole32(MSK_ADDR_LO(addr)); 1957 f->sk_len = htole16(txmap->dm_segs[i].ds_len); 1958 f->sk_ctl = 0; 1959 if (i == 0) { 1960 f->sk_opcode = SK_Y2_TXOPC_PACKET | own; 1961 } else 1962 f->sk_opcode = SK_Y2_TXOPC_BUFFER | own; 1963 own = SK_Y2_TXOPC_OWN; 1964 cur = frag; 1965 SK_INC(frag, MSK_TX_RING_CNT); 1966 entries++; 1967 } 1968 KASSERTMSG(entries == total, "entries %u total %u", entries, total); 1969 1970 sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap = 1971 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap; 1972 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; 1973 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap = txmap; 1974 1975 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG; 1976 1977 /* Sync descriptors before handing to chip */ 1978 MSK_CDTXSYNC(sc_if, *txidx, entries, 1979 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1980 1981 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN; 1982 1983 /* Sync first descriptor to hand it off */ 1984 MSK_CDTXSYNC(sc_if, *txidx, 1, 1985 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1986 1987 sc_if->sk_cdata.sk_tx_cnt += entries; 1988 1989 #ifdef MSK_DEBUG 1990 if (mskdebug >= 2) { 1991 struct msk_tx_desc *le; 1992 uint32_t idx; 1993 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) { 1994 le = &sc_if->sk_rdata->sk_tx_ring[idx]; 1995 msk_dump_txdesc(le, idx); 1996 } 1997 } 1998 #endif 1999 2000 *txidx = frag; 2001 2002 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries)); 2003 2004 return 0; 2005 } 2006 2007 static void 2008 msk_start(struct ifnet *ifp) 2009 { 2010 struct sk_if_softc *sc_if = ifp->if_softc; 2011 struct mbuf *m_head = NULL; 2012 uint32_t idx = sc_if->sk_cdata.sk_tx_prod; 2013 int pkts = 0; 2014 2015 DPRINTFN(2, ("msk_start\n")); 2016 2017 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { 2018 IFQ_POLL(&ifp->if_snd, m_head); 2019 if (m_head == NULL) 2020 break; 2021 2022 /* 2023 * Pack the data into the transmit ring. If we 2024 * don't have room, set the OACTIVE flag and wait 2025 * for the NIC to drain the ring. 2026 */ 2027 if (msk_encap(sc_if, m_head, &idx)) { 2028 ifp->if_flags |= IFF_OACTIVE; 2029 break; 2030 } 2031 2032 /* now we are committed to transmit the packet */ 2033 IFQ_DEQUEUE(&ifp->if_snd, m_head); 2034 pkts++; 2035 2036 /* 2037 * If there's a BPF listener, bounce a copy of this frame 2038 * to him. 2039 */ 2040 bpf_mtap(ifp, m_head, BPF_D_OUT); 2041 } 2042 if (pkts == 0) 2043 return; 2044 2045 /* Transmit */ 2046 if (idx != sc_if->sk_cdata.sk_tx_prod) { 2047 sc_if->sk_cdata.sk_tx_prod = idx; 2048 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx); 2049 2050 /* Set a timeout in case the chip goes out to lunch. */ 2051 ifp->if_timer = 5; 2052 } 2053 } 2054 2055 static void 2056 msk_watchdog(struct ifnet *ifp) 2057 { 2058 struct sk_if_softc *sc_if = ifp->if_softc; 2059 2060 /* 2061 * Reclaim first as there is a possibility of losing Tx completion 2062 * interrupts. 2063 */ 2064 msk_txeof(sc_if); 2065 if (sc_if->sk_cdata.sk_tx_cnt != 0) { 2066 device_printf(sc_if->sk_dev, "watchdog timeout\n"); 2067 2068 if_statinc(ifp, if_oerrors); 2069 2070 /* XXX Resets both ports; we shouldn't do that. */ 2071 mskc_reset(sc_if->sk_softc); 2072 msk_reset(sc_if); 2073 msk_init(ifp); 2074 } 2075 } 2076 2077 static bool 2078 mskc_suspend(device_t dv, const pmf_qual_t *qual) 2079 { 2080 struct sk_softc *sc = device_private(dv); 2081 2082 DPRINTFN(2, ("mskc_suspend\n")); 2083 2084 /* Turn off the 'driver is loaded' LED. */ 2085 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 2086 2087 return true; 2088 } 2089 2090 static bool 2091 mskc_resume(device_t dv, const pmf_qual_t *qual) 2092 { 2093 struct sk_softc *sc = device_private(dv); 2094 2095 DPRINTFN(2, ("mskc_resume\n")); 2096 2097 mskc_reset(sc); 2098 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 2099 2100 return true; 2101 } 2102 2103 static __inline int 2104 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len) 2105 { 2106 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR | 2107 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | 2108 YU_RXSTAT_JABBER)) != 0 || 2109 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK || 2110 YU_RXSTAT_BYTES(stat) != len) 2111 return 0; 2112 2113 return 1; 2114 } 2115 2116 static void 2117 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat) 2118 { 2119 struct sk_softc *sc = sc_if->sk_softc; 2120 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2121 struct mbuf *m; 2122 unsigned cur, prod, tail, total_len = len; 2123 bus_dmamap_t dmamap; 2124 2125 cur = sc_if->sk_cdata.sk_rx_cons; 2126 prod = sc_if->sk_cdata.sk_rx_prod; 2127 2128 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod, 2129 sc_if->sk_cdata.sk_rx_cnt)); 2130 2131 while (prod != cur) { 2132 MSK_CDRXSYNC(sc_if, cur, 2133 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2134 2135 tail = cur; 2136 SK_INC(cur, MSK_RX_RING_CNT); 2137 2138 sc_if->sk_cdata.sk_rx_cnt--; 2139 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf; 2140 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL; 2141 if (m != NULL) 2142 break; /* found it */ 2143 } 2144 sc_if->sk_cdata.sk_rx_cons = cur; 2145 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur, 2146 sc_if->sk_cdata.sk_rx_cnt, m)); 2147 2148 if (m == NULL) 2149 return; 2150 2151 dmamap = sc_if->sk_cdata.sk_rx_chain[tail].sk_dmamap; 2152 2153 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0, 2154 uimin(dmamap->dm_mapsize, total_len), BUS_DMASYNC_POSTREAD); 2155 bus_dmamap_unload(sc->sc_dmatag, dmamap); 2156 2157 if (total_len < SK_MIN_FRAMELEN || 2158 total_len > ETHER_MAX_LEN_JUMBO || 2159 msk_rxvalid(sc, rxstat, total_len) == 0) { 2160 if_statinc(ifp, if_ierrors); 2161 m_freem(m); 2162 return; 2163 } 2164 2165 m_set_rcvif(m, ifp); 2166 m->m_pkthdr.len = m->m_len = total_len; 2167 2168 /* pass it on. */ 2169 if_percpuq_enqueue(ifp->if_percpuq, m); 2170 } 2171 2172 static void 2173 msk_txeof(struct sk_if_softc *sc_if) 2174 { 2175 struct sk_softc *sc = sc_if->sk_softc; 2176 struct msk_tx_desc *cur_tx; 2177 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2178 uint32_t idx, reg, sk_ctl; 2179 bus_dmamap_t dmamap; 2180 2181 DPRINTFN(2, ("msk_txeof\n")); 2182 2183 if (sc_if->sk_port == SK_PORT_A) 2184 reg = SK_STAT_BMU_TXA1_RIDX; 2185 else 2186 reg = SK_STAT_BMU_TXA2_RIDX; 2187 2188 /* 2189 * Go through our tx ring and free mbufs for those 2190 * frames that have been sent. 2191 */ 2192 idx = sc_if->sk_cdata.sk_tx_cons; 2193 while (idx != sk_win_read_2(sc, reg)) { 2194 MSK_CDTXSYNC(sc_if, idx, 1, 2195 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2196 2197 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; 2198 sk_ctl = cur_tx->sk_ctl; 2199 #ifdef MSK_DEBUG 2200 if (mskdebug >= 2) 2201 msk_dump_txdesc(cur_tx, idx); 2202 #endif 2203 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG) 2204 if_statinc(ifp, if_opackets); 2205 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { 2206 dmamap = sc_if->sk_cdata.sk_tx_chain[idx].sk_dmamap; 2207 2208 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, 2209 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2210 2211 bus_dmamap_unload(sc->sc_dmatag, dmamap); 2212 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); 2213 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; 2214 } 2215 sc_if->sk_cdata.sk_tx_cnt--; 2216 SK_INC(idx, MSK_TX_RING_CNT); 2217 } 2218 if (idx == sc_if->sk_cdata.sk_tx_cons) 2219 return; 2220 2221 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0; 2222 2223 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2) 2224 ifp->if_flags &= ~IFF_OACTIVE; 2225 2226 sc_if->sk_cdata.sk_tx_cons = idx; 2227 } 2228 2229 static void 2230 msk_fill_rx_ring(struct sk_if_softc *sc_if) 2231 { 2232 /* Make sure to not completely wrap around */ 2233 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) { 2234 if (msk_newbuf(sc_if) == ENOBUFS) { 2235 goto schedretry; 2236 } 2237 } 2238 2239 return; 2240 2241 schedretry: 2242 /* Try later */ 2243 callout_schedule(&sc_if->sk_tick_rx, hz/2); 2244 } 2245 2246 static void 2247 msk_fill_rx_tick(void *xsc_if) 2248 { 2249 struct sk_if_softc *sc_if = xsc_if; 2250 int s, rx_prod; 2251 2252 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */ 2253 2254 s = splnet(); 2255 rx_prod = sc_if->sk_cdata.sk_rx_prod; 2256 msk_fill_rx_ring(sc_if); 2257 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) { 2258 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX, 2259 sc_if->sk_cdata.sk_rx_prod); 2260 } 2261 splx(s); 2262 } 2263 2264 static void 2265 msk_tick(void *xsc_if) 2266 { 2267 struct sk_if_softc *sc_if = xsc_if; 2268 struct mii_data *mii = &sc_if->sk_mii; 2269 int s; 2270 2271 s = splnet(); 2272 mii_tick(mii); 2273 splx(s); 2274 2275 callout_schedule(&sc_if->sk_tick_ch, hz); 2276 } 2277 2278 static void 2279 msk_intr_yukon(struct sk_if_softc *sc_if) 2280 { 2281 uint8_t status; 2282 2283 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR); 2284 /* RX overrun */ 2285 if ((status & SK_GMAC_INT_RX_OVER) != 0) { 2286 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 2287 SK_RFCTL_RX_FIFO_OVER); 2288 } 2289 /* TX underrun */ 2290 if ((status & SK_GMAC_INT_TX_UNDER) != 0) { 2291 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, 2292 SK_TFCTL_TX_FIFO_UNDER); 2293 } 2294 2295 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status)); 2296 } 2297 2298 static int 2299 msk_intr(void *xsc) 2300 { 2301 struct sk_softc *sc = xsc; 2302 struct sk_if_softc *sc_if; 2303 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A]; 2304 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B]; 2305 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2306 uint32_t status; 2307 struct msk_status_desc *cur_st; 2308 bool retried = false; 2309 2310 status = CSR_READ_4(sc, SK_Y2_ISSR2); 2311 if (status == 0xffffffff) 2312 return 0; 2313 if (status == 0) { 2314 CSR_WRITE_4(sc, SK_Y2_ICR, 2); 2315 return 0; 2316 } 2317 2318 status = CSR_READ_4(sc, SK_ISR); 2319 2320 if (sc_if0 != NULL) 2321 ifp0 = &sc_if0->sk_ethercom.ec_if; 2322 if (sc_if1 != NULL) 2323 ifp1 = &sc_if1->sk_ethercom.ec_if; 2324 2325 if (sc_if0 && (status & SK_Y2_IMR_MAC1) && 2326 (ifp0->if_flags & IFF_RUNNING)) { 2327 msk_intr_yukon(sc_if0); 2328 } 2329 2330 if (sc_if1 && (status & SK_Y2_IMR_MAC2) && 2331 (ifp1->if_flags & IFF_RUNNING)) { 2332 msk_intr_yukon(sc_if1); 2333 } 2334 2335 again: 2336 MSK_CDSTSYNC(sc, sc->sk_status_idx, 2337 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2338 cur_st = &sc->sk_status_ring[sc->sk_status_idx]; 2339 2340 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) { 2341 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN; 2342 switch (cur_st->sk_opcode) { 2343 case SK_Y2_STOPC_RXSTAT: 2344 sc_if = sc->sk_if[cur_st->sk_link & 0x01]; 2345 if (sc_if) { 2346 msk_rxeof(sc_if, letoh16(cur_st->sk_len), 2347 letoh32(cur_st->sk_status)); 2348 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3)) 2349 msk_fill_rx_tick(sc_if); 2350 } 2351 break; 2352 case SK_Y2_STOPC_TXSTAT: 2353 if (sc_if0) 2354 msk_txeof(sc_if0); 2355 if (sc_if1) 2356 msk_txeof(sc_if1); 2357 break; 2358 default: 2359 aprint_error("opcode=0x%x\n", cur_st->sk_opcode); 2360 break; 2361 } 2362 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT); 2363 2364 MSK_CDSTSYNC(sc, sc->sk_status_idx, 2365 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2366 cur_st = &sc->sk_status_ring[sc->sk_status_idx]; 2367 } 2368 2369 if (CSR_READ_2(sc, SK_STAT_BMU_PUTIDX) == sc->sk_status_idx) { 2370 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR); 2371 } else if (!retried) { 2372 retried = true; 2373 goto again; 2374 } 2375 2376 CSR_WRITE_4(sc, SK_Y2_ICR, 2); 2377 2378 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd)) 2379 if_schedule_deferred_start(ifp0); 2380 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd)) 2381 if_schedule_deferred_start(ifp1); 2382 2383 KASSERT(sc->rnd_attached > 0); 2384 rnd_add_uint32(&sc->rnd_source, status); 2385 2386 if (sc->sk_int_mod_pending) 2387 msk_update_int_mod(sc, 1); 2388 2389 return (status & sc->sk_intrmask) != 0; 2390 } 2391 2392 static void 2393 msk_init_yukon(struct sk_if_softc *sc_if) 2394 { 2395 uint32_t v; 2396 uint16_t reg; 2397 struct sk_softc *sc; 2398 int i; 2399 2400 sc = sc_if->sk_softc; 2401 2402 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n", 2403 CSR_READ_4(sc_if->sk_softc, SK_CSR))); 2404 2405 DPRINTFN(6, ("msk_init_yukon: 1\n")); 2406 2407 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n", 2408 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL))); 2409 2410 DPRINTFN(6, ("msk_init_yukon: 3\n")); 2411 2412 /* unused read of the interrupt source register */ 2413 DPRINTFN(6, ("msk_init_yukon: 4\n")); 2414 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 2415 2416 DPRINTFN(6, ("msk_init_yukon: 4a\n")); 2417 reg = SK_YU_READ_2(sc_if, YUKON_PAR); 2418 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg)); 2419 2420 /* MIB Counter Clear Mode set */ 2421 reg |= YU_PAR_MIB_CLR; 2422 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg)); 2423 DPRINTFN(6, ("msk_init_yukon: 4b\n")); 2424 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2425 2426 /* MIB Counter Clear Mode clear */ 2427 DPRINTFN(6, ("msk_init_yukon: 5\n")); 2428 reg &= ~YU_PAR_MIB_CLR; 2429 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2430 2431 /* receive control reg */ 2432 DPRINTFN(6, ("msk_init_yukon: 7\n")); 2433 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); 2434 2435 /* transmit control register */ 2436 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10)); 2437 2438 /* transmit flow control register */ 2439 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff); 2440 2441 /* transmit parameter register */ 2442 DPRINTFN(6, ("msk_init_yukon: 8\n")); 2443 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | 2444 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04); 2445 2446 /* serial mode register */ 2447 DPRINTFN(6, ("msk_init_yukon: 9\n")); 2448 reg = YU_SMR_DATA_BLIND(0x1c) | 2449 YU_SMR_MFL_VLAN | 2450 YU_SMR_IPG_DATA(0x1e); 2451 2452 if (sc->sk_type != SK_YUKON_FE && 2453 sc->sk_type != SK_YUKON_FE_P) 2454 reg |= YU_SMR_MFL_JUMBO; 2455 2456 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg); 2457 2458 DPRINTFN(6, ("msk_init_yukon: 10\n")); 2459 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2460 /* msk_attach calls me before ether_ifattach so check null */ 2461 if (ifp != NULL && ifp->if_sadl != NULL) 2462 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl), 2463 sizeof(sc_if->sk_enaddr)); 2464 /* Setup Yukon's address */ 2465 for (i = 0; i < 3; i++) { 2466 /* Write Source Address 1 (unicast filter) */ 2467 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 2468 sc_if->sk_enaddr[i * 2] | 2469 sc_if->sk_enaddr[i * 2 + 1] << 8); 2470 } 2471 2472 for (i = 0; i < 3; i++) { 2473 reg = sk_win_read_2(sc_if->sk_softc, 2474 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8); 2475 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg); 2476 } 2477 2478 /* Set promiscuous mode */ 2479 msk_setpromisc(sc_if); 2480 2481 /* Set multicast filter */ 2482 DPRINTFN(6, ("msk_init_yukon: 11\n")); 2483 msk_setmulti(sc_if); 2484 2485 /* enable interrupt mask for counter overflows */ 2486 DPRINTFN(6, ("msk_init_yukon: 12\n")); 2487 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); 2488 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); 2489 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); 2490 2491 /* Configure RX MAC FIFO Flush Mask */ 2492 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR | 2493 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT | 2494 YU_RXSTAT_JABBER; 2495 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v); 2496 2497 /* Configure RX MAC FIFO */ 2498 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); 2499 v = SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON; 2500 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P)) 2501 v |= SK_RFCTL_RX_OVER_ON; 2502 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v); 2503 2504 if ((sc->sk_type == SK_YUKON_FE_P) && 2505 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) 2506 v = 0x178; /* Magic value */ 2507 else { 2508 /* Increase flush threshold to 64 bytes */ 2509 v = SK_RFCTL_FIFO_THRESHOLD + 1; 2510 } 2511 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v); 2512 2513 /* Configure TX MAC FIFO */ 2514 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); 2515 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); 2516 2517 if ((sc->sk_type == SK_YUKON_FE_P) && 2518 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) { 2519 v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END); 2520 v &= ~SK_TXEND_WM_ON; 2521 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v); 2522 } 2523 2524 #if 1 2525 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN); 2526 #endif 2527 DPRINTFN(6, ("msk_init_yukon: end\n")); 2528 } 2529 2530 /* 2531 * Note that to properly initialize any part of the GEnesis chip, 2532 * you first have to take it out of reset mode. 2533 */ 2534 static int 2535 msk_init(struct ifnet *ifp) 2536 { 2537 struct sk_if_softc *sc_if = ifp->if_softc; 2538 struct sk_softc *sc = sc_if->sk_softc; 2539 int rc = 0, s; 2540 uint32_t imr, imtimer_ticks; 2541 2542 2543 DPRINTFN(2, ("msk_init\n")); 2544 2545 s = splnet(); 2546 2547 /* Cancel pending I/O and free all RX/TX buffers. */ 2548 msk_stop(ifp, 1); 2549 2550 /* Configure I2C registers */ 2551 2552 /* Configure XMAC(s) */ 2553 msk_init_yukon(sc_if); 2554 if ((rc = ether_mediachange(ifp)) != 0) 2555 goto out; 2556 2557 /* Configure transmit arbiter(s) */ 2558 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON); 2559 #if 0 2560 /* SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */ 2561 #endif 2562 2563 if (sc->sk_ramsize) { 2564 /* Configure RAMbuffers */ 2565 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 2566 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 2567 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 2568 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 2569 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 2570 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 2571 2572 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET); 2573 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON); 2574 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart); 2575 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart); 2576 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart); 2577 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend); 2578 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON); 2579 } 2580 2581 /* Configure BMUs */ 2582 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016); 2583 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28); 2584 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080); 2585 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */ 2586 2587 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016); 2588 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28); 2589 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080); 2590 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */ 2591 2592 /* Make sure the sync transmit queue is disabled. */ 2593 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET); 2594 2595 /* Init descriptors */ 2596 if (msk_init_rx_ring(sc_if) == ENOBUFS) { 2597 aprint_error_dev(sc_if->sk_dev, "initialization failed: no " 2598 "memory for rx buffers\n"); 2599 msk_stop(ifp, 1); 2600 splx(s); 2601 return ENOBUFS; 2602 } 2603 2604 if (msk_init_tx_ring(sc_if) == ENOBUFS) { 2605 aprint_error_dev(sc_if->sk_dev, "initialization failed: no " 2606 "memory for tx buffers\n"); 2607 msk_stop(ifp, 1); 2608 splx(s); 2609 return ENOBUFS; 2610 } 2611 2612 /* Set interrupt moderation if changed via sysctl. */ 2613 switch (sc->sk_type) { 2614 case SK_YUKON_EC: 2615 case SK_YUKON_EC_U: 2616 case SK_YUKON_EX: 2617 case SK_YUKON_SUPR: 2618 case SK_YUKON_ULTRA2: 2619 case SK_YUKON_OPTIMA: 2620 case SK_YUKON_PRM: 2621 case SK_YUKON_OPTIMA2: 2622 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC; 2623 break; 2624 case SK_YUKON_FE: 2625 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE; 2626 break; 2627 case SK_YUKON_FE_P: 2628 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P; 2629 break; 2630 case SK_YUKON_XL: 2631 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL; 2632 break; 2633 default: 2634 imtimer_ticks = SK_IMTIMER_TICKS_YUKON; 2635 } 2636 imr = sk_win_read_4(sc, SK_IMTIMERINIT); 2637 if (imr != SK_IM_USECS(sc->sk_int_mod)) { 2638 sk_win_write_4(sc, SK_IMTIMERINIT, 2639 SK_IM_USECS(sc->sk_int_mod)); 2640 aprint_verbose_dev(sc->sk_dev, 2641 "interrupt moderation is %d us\n", sc->sk_int_mod); 2642 } 2643 2644 /* Initialize prefetch engine. */ 2645 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001); 2646 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002); 2647 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1); 2648 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO, 2649 MSK_RX_RING_ADDR(sc_if, 0)); 2650 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI, 2651 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32); 2652 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008); 2653 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR); 2654 2655 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001); 2656 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002); 2657 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1); 2658 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO, 2659 MSK_TX_RING_ADDR(sc_if, 0)); 2660 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI, 2661 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32); 2662 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008); 2663 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR); 2664 2665 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX, 2666 sc_if->sk_cdata.sk_rx_prod); 2667 2668 2669 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) { 2670 /* Disable flushing of non-ASF packets. */ 2671 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, 2672 SK_RFCTL_RX_MACSEC_FLUSH_OFF); 2673 } 2674 2675 /* Configure interrupt handling */ 2676 if (sc_if->sk_port == SK_PORT_A) 2677 sc->sk_intrmask |= SK_Y2_INTRS1; 2678 else 2679 sc->sk_intrmask |= SK_Y2_INTRS2; 2680 sc->sk_intrmask |= SK_Y2_IMR_BMU; 2681 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2682 2683 ifp->if_flags |= IFF_RUNNING; 2684 ifp->if_flags &= ~IFF_OACTIVE; 2685 2686 callout_schedule(&sc_if->sk_tick_ch, hz); 2687 2688 out: 2689 splx(s); 2690 return rc; 2691 } 2692 2693 /* 2694 * Note: the logic of second parameter is inverted compared to OpenBSD 2695 * code, since this code uses the function as if_stop hook too. 2696 */ 2697 static void 2698 msk_stop(struct ifnet *ifp, int disable) 2699 { 2700 struct sk_if_softc *sc_if = ifp->if_softc; 2701 struct sk_softc *sc = sc_if->sk_softc; 2702 bus_dmamap_t dmamap; 2703 int i; 2704 2705 DPRINTFN(2, ("msk_stop\n")); 2706 2707 callout_stop(&sc_if->sk_tick_ch); 2708 callout_stop(&sc_if->sk_tick_rx); 2709 2710 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2711 2712 /* Stop transfer of Tx descriptors */ 2713 2714 /* Stop transfer of Rx descriptors */ 2715 2716 if (disable) { 2717 /* Turn off various components of this interface. */ 2718 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); 2719 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); 2720 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 2721 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF); 2722 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE); 2723 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF); 2724 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 2725 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2726 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP); 2727 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 2728 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 2729 2730 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001); 2731 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001); 2732 2733 /* Disable interrupts */ 2734 if (sc_if->sk_port == SK_PORT_A) 2735 sc->sk_intrmask &= ~SK_Y2_INTRS1; 2736 else 2737 sc->sk_intrmask &= ~SK_Y2_INTRS2; 2738 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2739 } 2740 2741 /* Free RX and TX mbufs still in the queues. */ 2742 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2743 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { 2744 dmamap = sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap; 2745 2746 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, 2747 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2748 2749 bus_dmamap_unload(sc->sc_dmatag, dmamap); 2750 2751 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); 2752 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 2753 } 2754 } 2755 2756 sc_if->sk_cdata.sk_rx_prod = 0; 2757 sc_if->sk_cdata.sk_rx_cons = 0; 2758 sc_if->sk_cdata.sk_rx_cnt = 0; 2759 2760 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2761 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { 2762 dmamap = sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap; 2763 2764 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, 2765 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2766 2767 bus_dmamap_unload(sc->sc_dmatag, dmamap); 2768 2769 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); 2770 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 2771 } 2772 } 2773 } 2774 2775 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach, 2776 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 2777 2778 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach, 2779 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 2780 2781 #ifdef MSK_DEBUG 2782 static void 2783 msk_dump_txdesc(struct msk_tx_desc *le, int idx) 2784 { 2785 #define DESC_PRINT(X) \ 2786 if (X) \ 2787 printf("txdesc[%d]." #X "=%#x\n", \ 2788 idx, X); 2789 2790 DESC_PRINT(letoh32(le->sk_addr)); 2791 DESC_PRINT(letoh16(le->sk_len)); 2792 DESC_PRINT(le->sk_ctl); 2793 DESC_PRINT(le->sk_opcode); 2794 #undef DESC_PRINT 2795 } 2796 2797 static void 2798 msk_dump_bytes(const char *data, int len) 2799 { 2800 int c, i, j; 2801 2802 for (i = 0; i < len; i += 16) { 2803 printf("%08x ", i); 2804 c = len - i; 2805 if (c > 16) c = 16; 2806 2807 for (j = 0; j < c; j++) { 2808 printf("%02x ", data[i + j] & 0xff); 2809 if ((j & 0xf) == 7 && j > 0) 2810 printf(" "); 2811 } 2812 2813 for (; j < 16; j++) 2814 printf(" "); 2815 printf(" "); 2816 2817 for (j = 0; j < c; j++) { 2818 int ch = data[i + j] & 0xff; 2819 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' '); 2820 } 2821 2822 printf("\n"); 2823 2824 if (c < 16) 2825 break; 2826 } 2827 } 2828 2829 static void 2830 msk_dump_mbuf(struct mbuf *m) 2831 { 2832 int count = m->m_pkthdr.len; 2833 2834 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len); 2835 2836 while (count > 0 && m) { 2837 printf("m=%p, m->m_data=%p, m->m_len=%d\n", 2838 m, m->m_data, m->m_len); 2839 if (mskdebug >= 4) 2840 msk_dump_bytes(mtod(m, char *), m->m_len); 2841 2842 count -= m->m_len; 2843 m = m->m_next; 2844 } 2845 } 2846 #endif 2847 2848 static int 2849 msk_sysctl_handler(SYSCTLFN_ARGS) 2850 { 2851 int error, t; 2852 struct sysctlnode node; 2853 struct sk_softc *sc; 2854 2855 node = *rnode; 2856 sc = node.sysctl_data; 2857 t = sc->sk_int_mod; 2858 node.sysctl_data = &t; 2859 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2860 if (error || newp == NULL) 2861 return error; 2862 2863 if (t < SK_IM_MIN || t > SK_IM_MAX) 2864 return EINVAL; 2865 2866 /* update the softc with sysctl-changed value, and mark 2867 for hardware update */ 2868 sc->sk_int_mod = t; 2869 sc->sk_int_mod_pending = 1; 2870 return 0; 2871 } 2872 2873 /* 2874 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be 2875 * set up in mskc_attach() 2876 */ 2877 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup") 2878 { 2879 int rc; 2880 const struct sysctlnode *node; 2881 2882 if ((rc = sysctl_createv(clog, 0, NULL, &node, 2883 0, CTLTYPE_NODE, "msk", 2884 SYSCTL_DESCR("msk interface controls"), 2885 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 2886 goto err; 2887 } 2888 2889 msk_root_num = node->sysctl_num; 2890 return; 2891 2892 err: 2893 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc); 2894 } 2895