xref: /netbsd-src/sys/dev/pci/if_msk.c (revision 9fb66d812c00ebfb445c0b47dea128f32aa6fe96)
1 /* $NetBSD: if_msk.c,v 1.114 2020/10/04 16:23:04 jakllsch Exp $ */
2 /*	$OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $	*/
3 
4 /*
5  * Copyright (c) 1997, 1998, 1999, 2000
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.114 2020/10/04 16:23:04 jakllsch Exp $");
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71  #define letoh16 le16toh
72  #define letoh32 le32toh
73 #endif
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78 
79 #include <net/if_media.h>
80 
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcidevs.h>
90 
91 #include <dev/pci/if_skreg.h>
92 #include <dev/pci/if_mskvar.h>
93 
94 static int mskc_probe(device_t, cfdata_t, void *);
95 static void mskc_attach(device_t, device_t, void *);
96 static int mskc_detach(device_t, int);
97 static void mskc_reset(struct sk_softc *);
98 static bool mskc_suspend(device_t, const pmf_qual_t *);
99 static bool mskc_resume(device_t, const pmf_qual_t *);
100 static int msk_probe(device_t, cfdata_t, void *);
101 static void msk_attach(device_t, device_t, void *);
102 static int msk_detach(device_t, int);
103 static void msk_reset(struct sk_if_softc *);
104 static int mskcprint(void *, const char *);
105 static int msk_intr(void *);
106 static void msk_intr_yukon(struct sk_if_softc *);
107 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
108 static void msk_txeof(struct sk_if_softc *);
109 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
110 static void msk_start(struct ifnet *);
111 static int msk_ioctl(struct ifnet *, u_long, void *);
112 static int msk_init(struct ifnet *);
113 static void msk_init_yukon(struct sk_if_softc *);
114 static void msk_stop(struct ifnet *, int);
115 static void msk_watchdog(struct ifnet *);
116 static int msk_newbuf(struct sk_if_softc *);
117 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
118 static void *msk_jalloc(struct sk_if_softc *);
119 static void msk_jfree(struct mbuf *, void *, size_t, void *);
120 static int msk_init_rx_ring(struct sk_if_softc *);
121 static int msk_init_tx_ring(struct sk_if_softc *);
122 static void msk_fill_rx_ring(struct sk_if_softc *);
123 
124 static void msk_update_int_mod(struct sk_softc *, int);
125 
126 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
127 static int msk_miibus_writereg(device_t, int, int, uint16_t);
128 static void msk_miibus_statchg(struct ifnet *);
129 
130 static void msk_setmulti(struct sk_if_softc *);
131 static void msk_setpromisc(struct sk_if_softc *);
132 static void msk_tick(void *);
133 static void msk_fill_rx_tick(void *);
134 
135 /* #define MSK_DEBUG 1 */
136 #ifdef MSK_DEBUG
137 #define DPRINTF(x)	if (mskdebug) printf x
138 #define DPRINTFN(n, x)	if (mskdebug >= (n)) printf x
139 int	mskdebug = MSK_DEBUG;
140 
141 static void msk_dump_txdesc(struct msk_tx_desc *, int);
142 static void msk_dump_mbuf(struct mbuf *);
143 static void msk_dump_bytes(const char *, int);
144 #else
145 #define DPRINTF(x)
146 #define DPRINTFN(n, x)
147 #endif
148 
149 static int msk_sysctl_handler(SYSCTLFN_PROTO);
150 static int msk_root_num;
151 
152 #define MSK_ADDR_LO(x)	((uint64_t) (x) & 0xffffffffUL)
153 #define MSK_ADDR_HI(x)	((uint64_t) (x) >> 32)
154 
155 /* supported device vendors */
156 static const struct msk_product {
157 	pci_vendor_id_t		msk_vendor;
158 	pci_product_id_t	msk_product;
159 } msk_products[] = {
160 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
161 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550T_B1 },
162 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
163 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
164 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021CU },
165 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021X },
166 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022CU },
167 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022X },
168 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
169 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
170 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
171 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
172 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040 },
173 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040T },
174 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8042 },
175 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8048 },
176 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
177 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
178 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
179 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
180 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055_2 },
181 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
182 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8057 },
183 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8058 },
184 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8059 },
185 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8070 },
190 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8071 },
191 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8072 },
192 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8075 },
193 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8079 },
194 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
195 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
196 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
197 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
198 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
199 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
200 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
201 	{ 0,				0 }
202 };
203 
204 static inline uint32_t
205 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
206 {
207 	return CSR_READ_4(sc, reg);
208 }
209 
210 static inline uint16_t
211 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
212 {
213 	return CSR_READ_2(sc, reg);
214 }
215 
216 static inline uint8_t
217 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
218 {
219 	return CSR_READ_1(sc, reg);
220 }
221 
222 static inline void
223 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
224 {
225 	CSR_WRITE_4(sc, reg, x);
226 }
227 
228 static inline void
229 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
230 {
231 	CSR_WRITE_2(sc, reg, x);
232 }
233 
234 static inline void
235 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
236 {
237 	CSR_WRITE_1(sc, reg, x);
238 }
239 
240 static int
241 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
242 {
243 	struct sk_if_softc *sc_if = device_private(dev);
244 	uint16_t data;
245 	int i;
246 
247 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
248 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
249 
250 	for (i = 0; i < SK_TIMEOUT; i++) {
251 		DELAY(1);
252 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
253 		if (data & YU_SMICR_READ_VALID)
254 			break;
255 	}
256 
257 	if (i == SK_TIMEOUT) {
258 		device_printf(sc_if->sk_dev, "phy failed to come ready\n");
259 		return ETIMEDOUT;
260 	}
261 
262 	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
263 
264 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
265 
266 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
267 		phy, reg, *val));
268 
269 	return 0;
270 }
271 
272 static int
273 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
274 {
275 	struct sk_if_softc *sc_if = device_private(dev);
276 	int i;
277 
278 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
279 		     phy, reg, val));
280 
281 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
282 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
283 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
284 
285 	for (i = 0; i < SK_TIMEOUT; i++) {
286 		DELAY(1);
287 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
288 			break;
289 	}
290 
291 	if (i == SK_TIMEOUT) {
292 		device_printf(sc_if->sk_dev, "phy write timed out\n");
293 		return ETIMEDOUT;
294 	}
295 
296 	return 0;
297 }
298 
299 static void
300 msk_miibus_statchg(struct ifnet *ifp)
301 {
302 	struct sk_if_softc *sc_if = ifp->if_softc;
303 	struct mii_data *mii = &sc_if->sk_mii;
304 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
305 	int gpcr;
306 
307 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
308 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
309 
310 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
311 	    sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
312 		/* Set speed. */
313 		gpcr |= YU_GPCR_SPEED_DIS;
314 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
315 		case IFM_1000_SX:
316 		case IFM_1000_LX:
317 		case IFM_1000_CX:
318 		case IFM_1000_T:
319 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
320 			break;
321 		case IFM_100_TX:
322 			gpcr |= YU_GPCR_SPEED;
323 			break;
324 		}
325 
326 		/* Set duplex. */
327 		gpcr |= YU_GPCR_DPLX_DIS;
328 		if ((mii->mii_media_active & IFM_FDX) != 0)
329 			gpcr |= YU_GPCR_DUPLEX;
330 
331 		/* Disable flow control. */
332 		gpcr |= YU_GPCR_FCTL_DIS;
333 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
334 	}
335 
336 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
337 
338 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
339 		     SK_YU_READ_2(sc_if, YUKON_GPCR)));
340 }
341 
342 static void
343 msk_setmulti(struct sk_if_softc *sc_if)
344 {
345 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
346 	uint32_t hashes[2] = { 0, 0 };
347 	int h;
348 	struct ethercom *ec = &sc_if->sk_ethercom;
349 	struct ether_multi *enm;
350 	struct ether_multistep step;
351 	uint16_t reg;
352 
353 	/* First, zot all the existing filters. */
354 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
355 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
356 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
357 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
358 
359 
360 	/* Now program new ones. */
361 	reg = SK_YU_READ_2(sc_if, YUKON_RCR);
362 	reg |= YU_RCR_UFLEN;
363 allmulti:
364 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
365 		if ((ifp->if_flags & IFF_PROMISC) != 0)
366 			reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
367 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
368 			hashes[0] = 0xFFFFFFFF;
369 			hashes[1] = 0xFFFFFFFF;
370 		}
371 	} else {
372 		/* First find the tail of the list. */
373 		ETHER_LOCK(ec);
374 		ETHER_FIRST_MULTI(step, ec, enm);
375 		while (enm != NULL) {
376 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
377 				 ETHER_ADDR_LEN)) {
378 				ifp->if_flags |= IFF_ALLMULTI;
379 				ETHER_UNLOCK(ec);
380 				goto allmulti;
381 			}
382 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
383 			    ((1 << SK_HASH_BITS) - 1);
384 			if (h < 32)
385 				hashes[0] |= (1 << h);
386 			else
387 				hashes[1] |= (1 << (h - 32));
388 
389 			ETHER_NEXT_MULTI(step, enm);
390 		}
391 		ETHER_UNLOCK(ec);
392 		reg |= YU_RCR_MUFLEN;
393 	}
394 
395 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
396 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
397 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
398 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
399 	SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
400 }
401 
402 static void
403 msk_setpromisc(struct sk_if_softc *sc_if)
404 {
405 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
406 
407 	if (ifp->if_flags & IFF_PROMISC)
408 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
409 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
410 	else
411 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
412 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
413 }
414 
415 static int
416 msk_init_rx_ring(struct sk_if_softc *sc_if)
417 {
418 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
419 	struct msk_ring_data	*rd = sc_if->sk_rdata;
420 	struct msk_rx_desc	*r;
421 
422 	memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
423 
424 	sc_if->sk_cdata.sk_rx_prod = 0;
425 	sc_if->sk_cdata.sk_rx_cons = 0;
426 	sc_if->sk_cdata.sk_rx_cnt = 0;
427 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
428 
429 	/* Mark the first ring element to initialize the high address. */
430 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
431 	r = &rd->sk_rx_ring[cd->sk_rx_prod];
432 	r->sk_addr = htole32(cd->sk_rx_hiaddr);
433 	r->sk_len = 0;
434 	r->sk_ctl = 0;
435 	r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
436 	MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
437 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
438 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
439 	sc_if->sk_cdata.sk_rx_cnt++;
440 
441 	msk_fill_rx_ring(sc_if);
442 	return 0;
443 }
444 
445 static int
446 msk_init_tx_ring(struct sk_if_softc *sc_if)
447 {
448 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
449 	struct msk_ring_data	*rd = sc_if->sk_rdata;
450 	struct msk_tx_desc	*t;
451 
452 	memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
453 
454 	sc_if->sk_cdata.sk_tx_prod = 0;
455 	sc_if->sk_cdata.sk_tx_cons = 0;
456 	sc_if->sk_cdata.sk_tx_cnt = 0;
457 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
458 
459 	/* Mark the first ring element to initialize the high address. */
460 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
461 	t = &rd->sk_tx_ring[cd->sk_tx_prod];
462 	t->sk_addr = htole32(cd->sk_tx_hiaddr);
463 	t->sk_len = 0;
464 	t->sk_ctl = 0;
465 	t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
466 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
467 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
468 	SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
469 	sc_if->sk_cdata.sk_tx_cnt++;
470 
471 	return 0;
472 }
473 
474 static int
475 msk_newbuf(struct sk_if_softc *sc_if)
476 {
477 	struct sk_softc		*sc = sc_if->sk_softc;
478 	struct mbuf		*m_new = NULL;
479 	struct sk_chain		*c;
480 	struct msk_rx_desc	*r;
481 	void			*buf = NULL;
482 	bus_addr_t		addr;
483 	bus_dmamap_t		rxmap;
484 	size_t			i;
485 	uint32_t		rxidx, frag, cur, hiaddr, total;
486 	uint32_t		entries = 0;
487 	uint8_t			own = 0;
488 
489 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
490 	if (m_new == NULL)
491 		return ENOBUFS;
492 
493 	/* Allocate the jumbo buffer */
494 	buf = msk_jalloc(sc_if);
495 	if (buf == NULL) {
496 		m_freem(m_new);
497 		DPRINTFN(1, ("%s jumbo allocation failed -- packet "
498 		    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
499 		return ENOBUFS;
500 	}
501 
502 	/* Attach the buffer to the mbuf */
503 	m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
504 	MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
505 
506 	m_adj(m_new, ETHER_ALIGN);
507 
508 	rxidx = frag = cur = sc_if->sk_cdata.sk_rx_prod;
509 	rxmap = sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap;
510 
511 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, rxmap, m_new, BUS_DMA_NOWAIT)) {
512 		DPRINTFN(2, ("msk_newbuf: dmamap_load failed\n"));
513 		m_freem(m_new);
514 		return ENOBUFS;
515 	}
516 
517 	/* Count how many rx descriptors needed. */
518 	hiaddr = sc_if->sk_cdata.sk_rx_hiaddr;
519 	for (total = i = 0; i < rxmap->dm_nsegs; i++) {
520 		if (hiaddr != MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr)) {
521 			hiaddr = MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr);
522 			total++;
523 		}
524 		total++;
525 	}
526 
527 	if (total > MSK_RX_RING_CNT - sc_if->sk_cdata.sk_rx_cnt - 1) {
528 		DPRINTFN(2, ("msk_newbuf: too few descriptors free\n"));
529 		bus_dmamap_unload(sc->sc_dmatag, rxmap);
530 		m_freem(m_new);
531 		return ENOBUFS;
532 	}
533 
534 	DPRINTFN(2, ("msk_newbuf: dm_nsegs=%d total desc=%u\n",
535 	    rxmap->dm_nsegs, total));
536 
537 	/* Sync the DMA map. */
538 	bus_dmamap_sync(sc->sc_dmatag, rxmap, 0, rxmap->dm_mapsize,
539 	    BUS_DMASYNC_PREREAD);
540 
541 	for (i = 0; i < rxmap->dm_nsegs; i++) {
542 		addr = rxmap->dm_segs[i].ds_addr;
543 		DPRINTFN(2, ("msk_newbuf: addr %llx\n",
544 		    (unsigned long long)addr));
545 		hiaddr = MSK_ADDR_HI(addr);
546 
547 		if (sc_if->sk_cdata.sk_rx_hiaddr != hiaddr) {
548 			c = &sc_if->sk_cdata.sk_rx_chain[frag];
549 			c->sk_mbuf = NULL;
550 			r = &sc_if->sk_rdata->sk_rx_ring[frag];
551 			r->sk_addr = htole32(hiaddr);
552 			r->sk_len = 0;
553 			r->sk_ctl = 0;
554 			r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own;
555 			own = SK_Y2_RXOPC_OWN;
556 			sc_if->sk_cdata.sk_rx_hiaddr = hiaddr;
557 			MSK_CDRXSYNC(sc_if, frag,
558 			    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
559 			SK_INC(frag, MSK_RX_RING_CNT);
560 			entries++;
561 			DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
562 			    sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
563 		}
564 
565 		c = &sc_if->sk_cdata.sk_rx_chain[frag];
566 		r = &sc_if->sk_rdata->sk_rx_ring[frag];
567 		r->sk_addr = htole32(MSK_ADDR_LO(addr));
568 		r->sk_len = htole16(rxmap->dm_segs[i].ds_len);
569 		r->sk_ctl = 0;
570 		if (i == 0) {
571 			r->sk_opcode = SK_Y2_RXOPC_PACKET | own;
572 		} else
573 			r->sk_opcode = SK_Y2_RXOPC_BUFFER | own;
574 		own = SK_Y2_RXOPC_OWN;
575 		MSK_CDRXSYNC(sc_if, frag,
576 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
577 		cur = frag;
578 		SK_INC(frag, MSK_RX_RING_CNT);
579 		entries++;
580 	}
581 	KASSERTMSG(entries == total, "entries %u total %u", entries, total);
582 
583 	sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap =
584 	    sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap;
585 	sc_if->sk_cdata.sk_rx_chain[cur].sk_mbuf = m_new;
586 	sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap = rxmap;
587 
588 	sc_if->sk_rdata->sk_rx_ring[rxidx].sk_opcode |= SK_Y2_RXOPC_OWN;
589 	MSK_CDRXSYNC(sc_if, rxidx,
590 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
591 
592 	sc_if->sk_cdata.sk_rx_cnt += entries;
593 	sc_if->sk_cdata.sk_rx_prod = frag;
594 
595 	return 0;
596 }
597 
598 /*
599  * Memory management for jumbo frames.
600  */
601 
602 static int
603 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
604 {
605 	struct sk_softc		*sc = sc_if->sk_softc;
606 	char *ptr, *kva;
607 	int		i, state, error;
608 	struct sk_jpool_entry	*entry;
609 
610 	state = error = 0;
611 
612 	/* Grab a big chunk o' storage. */
613 	if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
614 	     &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
615 	     BUS_DMA_NOWAIT)) {
616 		aprint_error(": can't alloc rx buffers");
617 		return ENOBUFS;
618 	}
619 
620 	state = 1;
621 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
622 	    sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
623 	    BUS_DMA_NOWAIT)) {
624 		aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
625 		error = ENOBUFS;
626 		goto out;
627 	}
628 
629 	state = 2;
630 	if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
631 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
632 		aprint_error(": can't create dma map");
633 		error = ENOBUFS;
634 		goto out;
635 	}
636 
637 	state = 3;
638 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
639 			    kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
640 		aprint_error(": can't load dma map");
641 		error = ENOBUFS;
642 		goto out;
643 	}
644 
645 	state = 4;
646 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
647 	DPRINTFN(1,("msk_jumbo_buf = %p\n",
648 		(void *)sc_if->sk_cdata.sk_jumbo_buf));
649 
650 	LIST_INIT(&sc_if->sk_jfree_listhead);
651 	LIST_INIT(&sc_if->sk_jinuse_listhead);
652 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
653 
654 	/*
655 	 * Now divide it up into 9K pieces and save the addresses
656 	 * in an array.
657 	 */
658 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
659 	for (i = 0; i < MSK_JSLOTS; i++) {
660 		sc_if->sk_cdata.sk_jslots[i] = ptr;
661 		ptr += SK_JLEN;
662 		entry = malloc(sizeof(struct sk_jpool_entry),
663 		    M_DEVBUF, M_WAITOK);
664 		entry->slot = i;
665 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
666 				 entry, jpool_entries);
667 	}
668 out:
669 	if (error != 0) {
670 		switch (state) {
671 		case 4:
672 			bus_dmamap_unload(sc->sc_dmatag,
673 			    sc_if->sk_cdata.sk_rx_jumbo_map);
674 			/* FALLTHROUGH */
675 		case 3:
676 			bus_dmamap_destroy(sc->sc_dmatag,
677 			    sc_if->sk_cdata.sk_rx_jumbo_map);
678 			/* FALLTHROUGH */
679 		case 2:
680 			bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
681 			/* FALLTHROUGH */
682 		case 1:
683 			bus_dmamem_free(sc->sc_dmatag,
684 			    &sc_if->sk_cdata.sk_jumbo_seg,
685 			    sc_if->sk_cdata.sk_jumbo_nseg);
686 			break;
687 		default:
688 			break;
689 		}
690 	}
691 
692 	return error;
693 }
694 
695 static void
696 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
697 {
698 	struct sk_softc		*sc = sc_if->sk_softc;
699 
700 	bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
701 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
702 	bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
703 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
704 	    sc_if->sk_cdata.sk_jumbo_nseg);
705 }
706 
707 /*
708  * Allocate a jumbo buffer.
709  */
710 static void *
711 msk_jalloc(struct sk_if_softc *sc_if)
712 {
713 	struct sk_jpool_entry	*entry;
714 
715 	mutex_enter(&sc_if->sk_jpool_mtx);
716 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
717 
718 	if (entry == NULL) {
719 		mutex_exit(&sc_if->sk_jpool_mtx);
720 		return NULL;
721 	}
722 
723 	LIST_REMOVE(entry, jpool_entries);
724 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
725 	mutex_exit(&sc_if->sk_jpool_mtx);
726 	return sc_if->sk_cdata.sk_jslots[entry->slot];
727 }
728 
729 /*
730  * Release a jumbo buffer.
731  */
732 static void
733 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
734 {
735 	struct sk_jpool_entry *entry;
736 	struct sk_if_softc *sc;
737 	int i;
738 
739 	/* Extract the softc struct pointer. */
740 	sc = (struct sk_if_softc *)arg;
741 
742 	if (sc == NULL)
743 		panic("msk_jfree: can't find softc pointer!");
744 
745 	/* calculate the slot this buffer belongs to */
746 	i = ((vaddr_t)buf
747 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
748 
749 	if ((i < 0) || (i >= MSK_JSLOTS))
750 		panic("msk_jfree: asked to free buffer that we don't manage!");
751 
752 	mutex_enter(&sc->sk_jpool_mtx);
753 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
754 	if (entry == NULL)
755 		panic("msk_jfree: buffer not in use!");
756 	entry->slot = i;
757 	LIST_REMOVE(entry, jpool_entries);
758 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
759 	mutex_exit(&sc->sk_jpool_mtx);
760 
761 	if (__predict_true(m != NULL))
762 		pool_cache_put(mb_cache, m);
763 
764 	/* Now that we know we have a free RX buffer, refill if running out */
765 	if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
766 	    && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
767 		callout_schedule(&sc->sk_tick_rx, 0);
768 }
769 
770 static int
771 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
772 {
773 	struct sk_if_softc *sc = ifp->if_softc;
774 	int s, error;
775 
776 	s = splnet();
777 
778 	DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
779 	switch (cmd) {
780 	case SIOCSIFFLAGS:
781 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
782 			break;
783 
784 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
785 		case IFF_RUNNING:
786 			msk_stop(ifp, 1);
787 			break;
788 		case IFF_UP:
789 			msk_init(ifp);
790 			break;
791 		case IFF_UP | IFF_RUNNING:
792 			if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
793 				msk_setpromisc(sc);
794 				msk_setmulti(sc);
795 			} else
796 				msk_init(ifp);
797 			break;
798 		}
799 		sc->sk_if_flags = ifp->if_flags;
800 		break;
801 	default:
802 		error = ether_ioctl(ifp, cmd, data);
803 		if (error == ENETRESET) {
804 			error = 0;
805 			if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
806 				;
807 			else if (ifp->if_flags & IFF_RUNNING) {
808 				/*
809 				 * Multicast list has changed; set the hardware
810 				 * filter accordingly.
811 				 */
812 				msk_setmulti(sc);
813 			}
814 		}
815 		break;
816 	}
817 
818 	splx(s);
819 	return error;
820 }
821 
822 static void
823 msk_update_int_mod(struct sk_softc *sc, int verbose)
824 {
825 	uint32_t imtimer_ticks;
826 
827 	/*
828  	 * Configure interrupt moderation. The moderation timer
829 	 * defers interrupts specified in the interrupt moderation
830 	 * timer mask based on the timeout specified in the interrupt
831 	 * moderation timer init register. Each bit in the timer
832 	 * register represents one tick, so to specify a timeout in
833 	 * microseconds, we have to multiply by the correct number of
834 	 * ticks-per-microsecond.
835 	 */
836 	switch (sc->sk_type) {
837 	case SK_YUKON_EC:
838 	case SK_YUKON_EC_U:
839 	case SK_YUKON_EX:
840 	case SK_YUKON_SUPR:
841 	case SK_YUKON_ULTRA2:
842 	case SK_YUKON_OPTIMA:
843 	case SK_YUKON_PRM:
844 	case SK_YUKON_OPTIMA2:
845 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
846 		break;
847 	case SK_YUKON_FE:
848 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
849 		break;
850 	case SK_YUKON_FE_P:
851 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
852 		break;
853 	case SK_YUKON_XL:
854 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
855 		break;
856 	default:
857 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
858 	}
859 	if (verbose)
860 		aprint_verbose_dev(sc->sk_dev,
861 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
862 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
863 	sk_win_write_4(sc, SK_IMMR, 0); /* moderate no interrupts */
864 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
865 	sc->sk_int_mod_pending = 0;
866 }
867 
868 static int
869 msk_lookup(const struct pci_attach_args *pa)
870 {
871 	const struct msk_product *pmsk;
872 
873 	for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
874 		if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
875 		    PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
876 			return 1;
877 	}
878 	return 0;
879 }
880 
881 /*
882  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
883  * IDs against our list and return a device name if we find a match.
884  */
885 static int
886 mskc_probe(device_t parent, cfdata_t match, void *aux)
887 {
888 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
889 
890 	return msk_lookup(pa);
891 }
892 
893 /*
894  * Force the GEnesis into reset, then bring it out of reset.
895  */
896 static void
897 mskc_reset(struct sk_softc *sc)
898 {
899 	uint32_t imtimer_ticks, reg1;
900 	uint16_t status;
901 	int reg;
902 
903 	DPRINTFN(2, ("mskc_reset\n"));
904 
905 	/* Disable ASF */
906 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
907 		CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
908 		status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
909 		/* Clear AHB bridge & microcontroller reset. */
910 		status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
911 		    SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
912 		/* Clear ASF microcontroller state. */
913 		status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
914 		status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
915 		CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
916 		CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
917 	} else
918 		CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
919 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
920 
921 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
922 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
923 
924 	DELAY(1000);
925 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
926 	DELAY(2);
927 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
928 	sk_win_write_1(sc, SK_TESTCTL1, 2);
929 
930 	if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
931 	    sc->sk_type >= SK_YUKON_FE_P) {
932 		uint32_t our;
933 
934 		CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
935 
936 		/* enable all clocks. */
937 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
938 		our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
939 		our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
940 			SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
941 			SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
942 			SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
943 		/* Set all bits to 0 except bits 15..12 */
944 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
945 		/* Set to default value */
946 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
947 
948 		/*
949 		 * Disable status race, workaround for Yukon EC Ultra &
950 		 * Yukon EX.
951 		 */
952 		reg1 = sk_win_read_4(sc, SK_GPIO);
953 		reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
954 		sk_win_write_4(sc, SK_GPIO, reg1);
955 		sk_win_read_4(sc, SK_GPIO);
956 	}
957 
958 	/* release PHY from PowerDown/Coma mode. */
959 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
960 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
961 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
962 	else
963 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
964 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
965 
966 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
967 		sk_win_write_1(sc, SK_Y2_CLKGATE,
968 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
969 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
970 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
971 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
972 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
973 	else
974 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
975 
976 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
977 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
978 	DELAY(1000);
979 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
980 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
981 
982 	if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
983 		CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
984 		    SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
985 	}
986 
987 	sk_win_write_1(sc, SK_TESTCTL1, 1);
988 
989 	DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
990 	DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
991 		     CSR_READ_2(sc, SK_LINK_CTRL)));
992 
993 	/* Clear I2C IRQ noise */
994 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
995 
996 	/* Disable hardware timer */
997 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
998 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
999 
1000 	/* Disable descriptor polling */
1001 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
1002 
1003 	/* Disable time stamps */
1004 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
1005 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
1006 
1007 	/* Enable RAM interface */
1008 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1009 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
1010 		sk_win_write_1(sc, reg, 36);
1011 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
1012 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
1013 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
1014 
1015 	/*
1016 	 * Configure interrupt moderation. The moderation timer
1017 	 * defers interrupts specified in the interrupt moderation
1018 	 * timer mask based on the timeout specified in the interrupt
1019 	 * moderation timer init register. Each bit in the timer
1020 	 * register represents one tick, so to specify a timeout in
1021 	 * microseconds, we have to multiply by the correct number of
1022 	 * ticks-per-microsecond.
1023 	 */
1024 	switch (sc->sk_type) {
1025 	case SK_YUKON_EC:
1026 	case SK_YUKON_EC_U:
1027 	case SK_YUKON_EX:
1028 	case SK_YUKON_SUPR:
1029 	case SK_YUKON_ULTRA2:
1030 	case SK_YUKON_OPTIMA:
1031 	case SK_YUKON_PRM:
1032 	case SK_YUKON_OPTIMA2:
1033 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1034 		break;
1035 	case SK_YUKON_FE:
1036 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1037 		break;
1038 	case SK_YUKON_FE_P:
1039 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1040 		break;
1041 	case SK_YUKON_XL:
1042 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1043 		break;
1044 	default:
1045 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1046 		break;
1047 	}
1048 
1049 	/* Reset status ring. */
1050 	memset(sc->sk_status_ring, 0,
1051 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1052 	bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1053 	    sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1054 	sc->sk_status_idx = 0;
1055 
1056 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1057 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1058 
1059 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1060 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1061 	    MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1062 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1063 	    MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1064 	if (sc->sk_type == SK_YUKON_EC &&
1065 	    sc->sk_rev == SK_YUKON_EC_REV_A1) {
1066 		/* WA for dev. #4.3 */
1067 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1068 		    SK_STAT_BMU_TXTHIDX_MSK);
1069 		/* WA for dev. #4.18 */
1070 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1071 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1072 	} else {
1073 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1074 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1075 		if (sc->sk_type == SK_YUKON_XL)
1076 			sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1077 		else
1078 			sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1079 		sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1080 	}
1081 
1082 #if 0
1083 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1084 #endif
1085 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1086 
1087 	/* Enable status unit. */
1088 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1089 
1090 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1091 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1092 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1093 
1094 	msk_update_int_mod(sc, 0);
1095 }
1096 
1097 static int
1098 msk_probe(device_t parent, cfdata_t match, void *aux)
1099 {
1100 	struct skc_attach_args *sa = aux;
1101 
1102 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1103 		return 0;
1104 
1105 	switch (sa->skc_type) {
1106 	case SK_YUKON_XL:
1107 	case SK_YUKON_EC_U:
1108 	case SK_YUKON_EX:
1109 	case SK_YUKON_EC:
1110 	case SK_YUKON_FE:
1111 	case SK_YUKON_FE_P:
1112 	case SK_YUKON_SUPR:
1113 	case SK_YUKON_ULTRA2:
1114 	case SK_YUKON_OPTIMA:
1115 	case SK_YUKON_PRM:
1116 	case SK_YUKON_OPTIMA2:
1117 		return 1;
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 static void
1124 msk_reset(struct sk_if_softc *sc_if)
1125 {
1126 	/* GMAC and GPHY Reset */
1127 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1128 	SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1129 	DELAY(1000);
1130 	SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1131 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1132 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1133 }
1134 
1135 static bool
1136 msk_resume(device_t dv, const pmf_qual_t *qual)
1137 {
1138 	struct sk_if_softc *sc_if = device_private(dv);
1139 
1140 	msk_init_yukon(sc_if);
1141 	return true;
1142 }
1143 
1144 /*
1145  * Each XMAC chip is attached as a separate logical IP interface.
1146  * Single port cards will have only one logical interface of course.
1147  */
1148 static void
1149 msk_attach(device_t parent, device_t self, void *aux)
1150 {
1151 	struct sk_if_softc *sc_if = device_private(self);
1152 	struct sk_softc *sc = device_private(parent);
1153 	struct skc_attach_args *sa = aux;
1154 	bus_dmamap_t dmamap;
1155 	struct ifnet *ifp;
1156 	struct mii_data * const mii = &sc_if->sk_mii;
1157 	void *kva;
1158 	int i;
1159 	uint32_t chunk;
1160 	int mii_flags;
1161 
1162 	sc_if->sk_dev = self;
1163 	sc_if->sk_port = sa->skc_port;
1164 	sc_if->sk_softc = sc;
1165 	sc->sk_if[sa->skc_port] = sc_if;
1166 
1167 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1168 
1169 	/*
1170 	 * Get station address for this interface. Note that
1171 	 * dual port cards actually come with three station
1172 	 * addresses: one for each port, plus an extra. The
1173 	 * extra one is used by the SysKonnect driver software
1174 	 * as a 'virtual' station address for when both ports
1175 	 * are operating in failover mode. Currently we don't
1176 	 * use this extra address.
1177 	 */
1178 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1179 		sc_if->sk_enaddr[i] =
1180 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1181 
1182 	aprint_normal(": Ethernet address %s\n",
1183 	    ether_sprintf(sc_if->sk_enaddr));
1184 
1185 	/*
1186 	 * Set up RAM buffer addresses. The Yukon2 has a small amount
1187 	 * of SRAM on it, somewhere between 4K and 48K.  We need to
1188 	 * divide this up between the transmitter and receiver.  We
1189 	 * give the receiver 2/3 of the memory (rounded down), and the
1190 	 * transmitter whatever remains.
1191 	 */
1192 	if (sc->sk_ramsize) {
1193 		chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1194 		sc_if->sk_rx_ramstart = 0;
1195 		sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1196 		chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1197 		sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1198 		sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1199 
1200 		DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1201 			     "           tx_ramstart=%#x tx_ramend=%#x\n",
1202 			     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1203 			     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1204 	}
1205 
1206 	/* Allocate the descriptor queues. */
1207 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1208 	    PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1209 	    BUS_DMA_NOWAIT)) {
1210 		aprint_error(": can't alloc rx buffers\n");
1211 		goto fail;
1212 	}
1213 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1214 	    sc_if->sk_ring_nseg,
1215 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1216 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1217 		       sizeof(struct msk_ring_data));
1218 		goto fail_1;
1219 	}
1220 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1221 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1222 	    &sc_if->sk_ring_map)) {
1223 		aprint_error(": can't create dma map\n");
1224 		goto fail_2;
1225 	}
1226 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1227 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1228 		aprint_error(": can't load dma map\n");
1229 		goto fail_3;
1230 	}
1231 
1232 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1233 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1234 
1235 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1236 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1237 			aprint_error_dev(sc_if->sk_dev,
1238 			    "Can't create TX dmamap\n");
1239 			goto fail_3;
1240 		}
1241 
1242 		sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap = dmamap;
1243 	}
1244 
1245 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
1246 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1247 
1248 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN,
1249 		    howmany(SK_JLEN + 1, NBPG),
1250 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1251 			aprint_error_dev(sc_if->sk_dev,
1252 			    "Can't create RX dmamap\n");
1253 			goto fail_3;
1254 		}
1255 
1256 		sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap = dmamap;
1257 	}
1258 
1259 	sc_if->sk_rdata = (struct msk_ring_data *)kva;
1260 	memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1261 
1262 	if (sc->sk_type != SK_YUKON_FE &&
1263 	    sc->sk_type != SK_YUKON_FE_P)
1264 		sc_if->sk_pktlen = SK_JLEN;
1265 	else
1266 		sc_if->sk_pktlen = MCLBYTES;
1267 
1268 	/* Try to allocate memory for jumbo buffers. */
1269 	if (msk_alloc_jumbo_mem(sc_if)) {
1270 		aprint_error(": jumbo buffer allocation failed\n");
1271 		goto fail_3;
1272 	}
1273 
1274 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1275 	if (sc->sk_type != SK_YUKON_FE &&
1276 	    sc->sk_type != SK_YUKON_FE_P)
1277 		sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1278 
1279 	ifp = &sc_if->sk_ethercom.ec_if;
1280 	ifp->if_softc = sc_if;
1281 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1282 	ifp->if_ioctl = msk_ioctl;
1283 	ifp->if_start = msk_start;
1284 	ifp->if_stop = msk_stop;
1285 	ifp->if_init = msk_init;
1286 	ifp->if_watchdog = msk_watchdog;
1287 	ifp->if_baudrate = 1000000000;
1288 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1289 	IFQ_SET_READY(&ifp->if_snd);
1290 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1291 
1292 	msk_reset(sc_if);
1293 
1294 	/*
1295 	 * Do miibus setup.
1296 	 */
1297 	DPRINTFN(2, ("msk_attach: 1\n"));
1298 
1299 	mii->mii_ifp = ifp;
1300 	mii->mii_readreg = msk_miibus_readreg;
1301 	mii->mii_writereg = msk_miibus_writereg;
1302 	mii->mii_statchg = msk_miibus_statchg;
1303 
1304 	sc_if->sk_ethercom.ec_mii = mii;
1305 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1306 	mii_flags = MIIF_DOPAUSE;
1307 	if (sc->sk_fibertype)
1308 		mii_flags |= MIIF_HAVEFIBER;
1309 	mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1310 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
1311 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1312 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1313 			    0, NULL);
1314 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1315 	} else
1316 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1317 
1318 	callout_init(&sc_if->sk_tick_ch, 0);
1319 	callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1320 	callout_schedule(&sc_if->sk_tick_ch, hz);
1321 
1322 	callout_init(&sc_if->sk_tick_rx, 0);
1323 	callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1324 
1325 	/*
1326 	 * Call MI attach routines.
1327 	 */
1328 	if_attach(ifp);
1329 	if_deferred_start_init(ifp, NULL);
1330 	ether_ifattach(ifp, sc_if->sk_enaddr);
1331 
1332 	if (pmf_device_register(self, NULL, msk_resume))
1333 		pmf_class_network_register(self, ifp);
1334 	else
1335 		aprint_error_dev(self, "couldn't establish power handler\n");
1336 
1337 	if (sc->rnd_attached++ == 0) {
1338 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1339 			RND_TYPE_NET, RND_FLAG_DEFAULT);
1340 	}
1341 
1342 	DPRINTFN(2, ("msk_attach: end\n"));
1343 	return;
1344 
1345 fail_3:
1346 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1347 fail_2:
1348 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1349 fail_1:
1350 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1351 fail:
1352 	sc->sk_if[sa->skc_port] = NULL;
1353 }
1354 
1355 static int
1356 msk_detach(device_t self, int flags)
1357 {
1358 	struct sk_if_softc *sc_if = device_private(self);
1359 	struct sk_softc *sc = sc_if->sk_softc;
1360 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1361 	int i;
1362 
1363 	if (sc->sk_if[sc_if->sk_port] == NULL)
1364 		return 0;
1365 
1366 	msk_stop(ifp, 1);
1367 
1368 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1369 		bus_dmamap_destroy(sc->sc_dmatag,
1370 		    sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap);
1371 	}
1372 
1373 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
1374 		bus_dmamap_destroy(sc->sc_dmatag,
1375 		    sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap);
1376 	}
1377 
1378 	if (--sc->rnd_attached == 0)
1379 		rnd_detach_source(&sc->rnd_source);
1380 
1381 	callout_halt(&sc_if->sk_tick_ch, NULL);
1382 	callout_destroy(&sc_if->sk_tick_ch);
1383 
1384 	callout_halt(&sc_if->sk_tick_rx, NULL);
1385 	callout_destroy(&sc_if->sk_tick_rx);
1386 
1387 	/* Detach any PHYs we might have. */
1388 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1389 		mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1390 
1391 	pmf_device_deregister(self);
1392 
1393 	ether_ifdetach(ifp);
1394 	if_detach(ifp);
1395 
1396 	/* Delete any remaining media. */
1397 	ifmedia_fini(&sc_if->sk_mii.mii_media);
1398 
1399 	msk_free_jumbo_mem(sc_if);
1400 
1401 	bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1402 	    sizeof(struct msk_ring_data));
1403 	bus_dmamem_free(sc->sc_dmatag,
1404 	    &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1405 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1406 	sc->sk_if[sc_if->sk_port] = NULL;
1407 
1408 	return 0;
1409 }
1410 
1411 static int
1412 mskcprint(void *aux, const char *pnp)
1413 {
1414 	struct skc_attach_args *sa = aux;
1415 
1416 	if (pnp)
1417 		aprint_normal("msk port %c at %s",
1418 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1419 	else
1420 		aprint_normal(" port %c",
1421 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1422 	return UNCONF;
1423 }
1424 
1425 /*
1426  * Attach the interface. Allocate softc structures, do ifmedia
1427  * setup and ethernet/BPF attach.
1428  */
1429 static void
1430 mskc_attach(device_t parent, device_t self, void *aux)
1431 {
1432 	struct sk_softc *sc = device_private(self);
1433 	struct pci_attach_args *pa = aux;
1434 	struct skc_attach_args skca;
1435 	pci_chipset_tag_t pc = pa->pa_pc;
1436 	pcireg_t command, memtype;
1437 	const char *intrstr = NULL;
1438 	int rc, sk_nodenum;
1439 	uint8_t hw, pmd;
1440 	const char *revstr = NULL;
1441 	const struct sysctlnode *node;
1442 	void *kva;
1443 	char intrbuf[PCI_INTRSTR_LEN];
1444 
1445 	DPRINTFN(2, ("begin mskc_attach\n"));
1446 
1447 	sc->sk_dev = self;
1448 	/*
1449 	 * Handle power management nonsense.
1450 	 */
1451 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1452 
1453 	if (command == 0x01) {
1454 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1455 		if (command & SK_PSTATE_MASK) {
1456 			uint32_t		iobase, membase, irq;
1457 
1458 			/* Save important PCI config data. */
1459 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1460 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1461 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1462 
1463 			/* Reset the power state. */
1464 			aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1465 			    "mode -- setting to D0\n",
1466 			    command & SK_PSTATE_MASK);
1467 			command &= 0xFFFFFFFC;
1468 			pci_conf_write(pc, pa->pa_tag,
1469 			    SK_PCI_PWRMGMTCTRL, command);
1470 
1471 			/* Restore PCI config data. */
1472 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1473 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1474 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1475 		}
1476 	}
1477 
1478 	/*
1479 	 * Map control/status registers.
1480 	 */
1481 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1482 	if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1483 	    &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1484 		aprint_error(": can't map mem space\n");
1485 		return;
1486 	}
1487 
1488 	if (pci_dma64_available(pa))
1489 		sc->sc_dmatag = pa->pa_dmat64;
1490 	else
1491 		sc->sc_dmatag = pa->pa_dmat;
1492 
1493 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1494 	command |= PCI_COMMAND_MASTER_ENABLE;
1495 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1496 
1497 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1498 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1499 
1500 	/* bail out here if chip is not recognized */
1501 	if (!(SK_IS_YUKON2(sc))) {
1502 		aprint_error(": unknown chip type: %d\n", sc->sk_type);
1503 		goto fail_1;
1504 	}
1505 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1506 
1507 	/* Allocate interrupt */
1508 	if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1509 		aprint_error(": couldn't map interrupt\n");
1510 		goto fail_1;
1511 	}
1512 
1513 	intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1514 	sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1515 	    msk_intr, sc, device_xname(sc->sk_dev));
1516 	if (sc->sk_intrhand == NULL) {
1517 		aprint_error(": couldn't establish interrupt");
1518 		if (intrstr != NULL)
1519 			aprint_error(" at %s", intrstr);
1520 		aprint_error("\n");
1521 		goto fail_1;
1522 	}
1523 	sc->sk_pc = pc;
1524 
1525 	if (bus_dmamem_alloc(sc->sc_dmatag,
1526 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1527 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1528 	    0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1529 		aprint_error(": can't alloc status buffers\n");
1530 		goto fail_2;
1531 	}
1532 
1533 	if (bus_dmamem_map(sc->sc_dmatag,
1534 	    &sc->sk_status_seg, sc->sk_status_nseg,
1535 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1536 	    &kva, BUS_DMA_NOWAIT)) {
1537 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1538 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1539 		goto fail_3;
1540 	}
1541 	if (bus_dmamap_create(sc->sc_dmatag,
1542 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1543 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1544 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1545 		aprint_error(": can't create dma map\n");
1546 		goto fail_4;
1547 	}
1548 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1549 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1550 	    NULL, BUS_DMA_NOWAIT)) {
1551 		aprint_error(": can't load dma map\n");
1552 		goto fail_5;
1553 	}
1554 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1555 
1556 	sc->sk_int_mod = SK_IM_DEFAULT;
1557 	sc->sk_int_mod_pending = 0;
1558 
1559 	/* Reset the adapter. */
1560 	mskc_reset(sc);
1561 
1562 	sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1563 	DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1564 
1565 	pmd = sk_win_read_1(sc, SK_PMDTYPE);
1566 	if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1567 		sc->sk_fibertype = 1;
1568 
1569 	switch (sc->sk_type) {
1570 	case SK_YUKON_XL:
1571 		sc->sk_name = "Yukon-2 XL";
1572 		break;
1573 	case SK_YUKON_EC_U:
1574 		sc->sk_name = "Yukon-2 EC Ultra";
1575 		break;
1576 	case SK_YUKON_EX:
1577 		sc->sk_name = "Yukon-2 Extreme";
1578 		break;
1579 	case SK_YUKON_EC:
1580 		sc->sk_name = "Yukon-2 EC";
1581 		break;
1582 	case SK_YUKON_FE:
1583 		sc->sk_name = "Yukon-2 FE";
1584 		break;
1585 	case SK_YUKON_FE_P:
1586 		sc->sk_name = "Yukon-2 FE+";
1587 		break;
1588 	case SK_YUKON_SUPR:
1589 		sc->sk_name = "Yukon-2 Supreme";
1590 		break;
1591 	case SK_YUKON_ULTRA2:
1592 		sc->sk_name = "Yukon-2 Ultra 2";
1593 		break;
1594 	case SK_YUKON_OPTIMA:
1595 		sc->sk_name = "Yukon-2 Optima";
1596 		break;
1597 	case SK_YUKON_PRM:
1598 		sc->sk_name = "Yukon-2 Optima Prime";
1599 		break;
1600 	case SK_YUKON_OPTIMA2:
1601 		sc->sk_name = "Yukon-2 Optima 2";
1602 		break;
1603 	default:
1604 		sc->sk_name = "Yukon (Unknown)";
1605 	}
1606 
1607 	if (sc->sk_type == SK_YUKON_XL) {
1608 		switch (sc->sk_rev) {
1609 		case SK_YUKON_XL_REV_A0:
1610 			revstr = "A0";
1611 			break;
1612 		case SK_YUKON_XL_REV_A1:
1613 			revstr = "A1";
1614 			break;
1615 		case SK_YUKON_XL_REV_A2:
1616 			revstr = "A2";
1617 			break;
1618 		case SK_YUKON_XL_REV_A3:
1619 			revstr = "A3";
1620 			break;
1621 		default:
1622 			break;
1623 		}
1624 	}
1625 
1626 	if (sc->sk_type == SK_YUKON_EC) {
1627 		switch (sc->sk_rev) {
1628 		case SK_YUKON_EC_REV_A1:
1629 			revstr = "A1";
1630 			break;
1631 		case SK_YUKON_EC_REV_A2:
1632 			revstr = "A2";
1633 			break;
1634 		case SK_YUKON_EC_REV_A3:
1635 			revstr = "A3";
1636 			break;
1637 		default:
1638 			break;
1639 		}
1640 	}
1641 
1642 	if (sc->sk_type == SK_YUKON_FE) {
1643 		switch (sc->sk_rev) {
1644 		case SK_YUKON_FE_REV_A1:
1645 			revstr = "A1";
1646 			break;
1647 		case SK_YUKON_FE_REV_A2:
1648 			revstr = "A2";
1649 			break;
1650 		default:
1651 			break;
1652 		}
1653 	}
1654 
1655 	if (sc->sk_type == SK_YUKON_EC_U) {
1656 		switch (sc->sk_rev) {
1657 		case SK_YUKON_EC_U_REV_A0:
1658 			revstr = "A0";
1659 			break;
1660 		case SK_YUKON_EC_U_REV_A1:
1661 			revstr = "A1";
1662 			break;
1663 		case SK_YUKON_EC_U_REV_B0:
1664 			revstr = "B0";
1665 			break;
1666 		case SK_YUKON_EC_U_REV_B1:
1667 			revstr = "B1";
1668 			break;
1669 		default:
1670 			break;
1671 		}
1672 	}
1673 
1674 	if (sc->sk_type == SK_YUKON_FE) {
1675 		switch (sc->sk_rev) {
1676 		case SK_YUKON_FE_REV_A1:
1677 			revstr = "A1";
1678 			break;
1679 		case SK_YUKON_FE_REV_A2:
1680 			revstr = "A2";
1681 			break;
1682 		default:
1683 			;
1684 		}
1685 	}
1686 
1687 	if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1688 		revstr = "A0";
1689 
1690 	if (sc->sk_type == SK_YUKON_EX) {
1691 		switch (sc->sk_rev) {
1692 		case SK_YUKON_EX_REV_A0:
1693 			revstr = "A0";
1694 			break;
1695 		case SK_YUKON_EX_REV_B0:
1696 			revstr = "B0";
1697 			break;
1698 		default:
1699 			;
1700 		}
1701 	}
1702 
1703 	if (sc->sk_type == SK_YUKON_SUPR) {
1704 		switch (sc->sk_rev) {
1705 		case SK_YUKON_SUPR_REV_A0:
1706 			revstr = "A0";
1707 			break;
1708 		case SK_YUKON_SUPR_REV_B0:
1709 			revstr = "B0";
1710 			break;
1711 		case SK_YUKON_SUPR_REV_B1:
1712 			revstr = "B1";
1713 			break;
1714 		default:
1715 			;
1716 		}
1717 	}
1718 
1719 	if (sc->sk_type == SK_YUKON_PRM) {
1720 		switch (sc->sk_rev) {
1721 		case SK_YUKON_PRM_REV_Z1:
1722 			revstr = "Z1";
1723 			break;
1724 		case SK_YUKON_PRM_REV_A0:
1725 			revstr = "A0";
1726 			break;
1727 		default:
1728 			;
1729 		}
1730 	}
1731 
1732 	/* Announce the product name. */
1733 	aprint_normal(", %s", sc->sk_name);
1734 	if (revstr != NULL)
1735 		aprint_normal(" rev. %s", revstr);
1736 	aprint_normal(" (0x%x)\n", sc->sk_rev);
1737 
1738 	aprint_normal_dev(sc->sk_dev, "interrupting at %s\n", intrstr);
1739 
1740 	sc->sk_macs = 1;
1741 
1742 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1743 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1744 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1745 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1746 			sc->sk_macs++;
1747 	}
1748 
1749 	skca.skc_port = SK_PORT_A;
1750 	skca.skc_type = sc->sk_type;
1751 	skca.skc_rev = sc->sk_rev;
1752 	(void)config_found(sc->sk_dev, &skca, mskcprint);
1753 
1754 	if (sc->sk_macs > 1) {
1755 		skca.skc_port = SK_PORT_B;
1756 		skca.skc_type = sc->sk_type;
1757 		skca.skc_rev = sc->sk_rev;
1758 		(void)config_found(sc->sk_dev, &skca, mskcprint);
1759 	}
1760 
1761 	/* Turn on the 'driver is loaded' LED. */
1762 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1763 
1764 	/* skc sysctl setup */
1765 
1766 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1767 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1768 	    SYSCTL_DESCR("mskc per-controller controls"),
1769 	    NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1770 	    CTL_EOL)) != 0) {
1771 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1772 		goto fail_6;
1773 	}
1774 
1775 	sk_nodenum = node->sysctl_num;
1776 
1777 	/* interrupt moderation time in usecs */
1778 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1779 	    CTLFLAG_READWRITE,
1780 	    CTLTYPE_INT, "int_mod",
1781 	    SYSCTL_DESCR("msk interrupt moderation timer"),
1782 	    msk_sysctl_handler, 0, (void *)sc,
1783 	    0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1784 	    CTL_EOL)) != 0) {
1785 		aprint_normal_dev(sc->sk_dev,
1786 		    "couldn't create int_mod sysctl node\n");
1787 		goto fail_6;
1788 	}
1789 
1790 	if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1791 		aprint_error_dev(self, "couldn't establish power handler\n");
1792 
1793 	return;
1794 
1795 fail_6:
1796 	bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1797 fail_4:
1798 	bus_dmamem_unmap(sc->sc_dmatag, kva,
1799 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1800 fail_3:
1801 	bus_dmamem_free(sc->sc_dmatag,
1802 	    &sc->sk_status_seg, sc->sk_status_nseg);
1803 	sc->sk_status_nseg = 0;
1804 fail_5:
1805 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1806 fail_2:
1807 	pci_intr_disestablish(pc, sc->sk_intrhand);
1808 	sc->sk_intrhand = NULL;
1809 fail_1:
1810 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1811 	sc->sk_bsize = 0;
1812 }
1813 
1814 static int
1815 mskc_detach(device_t self, int flags)
1816 {
1817 	struct sk_softc *sc = device_private(self);
1818 	int rv;
1819 
1820 	if (sc->sk_intrhand) {
1821 		pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1822 		sc->sk_intrhand = NULL;
1823 	}
1824 
1825 	if (sc->sk_pihp != NULL) {
1826 		pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1827 		sc->sk_pihp = NULL;
1828 	}
1829 
1830 	rv = config_detach_children(self, flags);
1831 	if (rv != 0)
1832 		return rv;
1833 
1834 	sysctl_teardown(&sc->sk_clog);
1835 
1836 	if (sc->sk_status_nseg > 0) {
1837 		bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1838 		bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1839 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1840 		bus_dmamem_free(sc->sc_dmatag,
1841 		    &sc->sk_status_seg, sc->sk_status_nseg);
1842 	}
1843 
1844 	if (sc->sk_bsize > 0)
1845 		bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1846 
1847 	return 0;
1848 }
1849 
1850 static int
1851 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1852 {
1853 	struct sk_softc		*sc = sc_if->sk_softc;
1854 	struct msk_tx_desc		*f = NULL;
1855 	uint32_t		frag, cur, hiaddr, total;
1856 	uint32_t		entries = 0;
1857 	uint8_t			own = 0;
1858 	size_t			i;
1859 	bus_dmamap_t		txmap;
1860 	bus_addr_t		addr;
1861 
1862 	DPRINTFN(2, ("msk_encap\n"));
1863 
1864 	txmap = sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap;
1865 
1866 	cur = frag = *txidx;
1867 
1868 #ifdef MSK_DEBUG
1869 	if (mskdebug >= 2)
1870 		msk_dump_mbuf(m_head);
1871 #endif
1872 
1873 	/*
1874 	 * Start packing the mbufs in this chain into
1875 	 * the fragment pointers. Stop when we run out
1876 	 * of fragments or hit the end of the mbuf chain.
1877 	 */
1878 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1879 	    BUS_DMA_NOWAIT)) {
1880 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1881 		return ENOBUFS;
1882 	}
1883 
1884 	/* Count how many tx descriptors needed. */
1885 	hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1886 	for (total = i = 0; i < txmap->dm_nsegs; i++) {
1887 		if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1888 			hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1889 			total++;
1890 		}
1891 		total++;
1892 	}
1893 
1894 	if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1895 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1896 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1897 		return ENOBUFS;
1898 	}
1899 
1900 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1901 	    txmap->dm_nsegs, total));
1902 
1903 	/* Sync the DMA map. */
1904 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1905 	    BUS_DMASYNC_PREWRITE);
1906 
1907 	for (i = 0; i < txmap->dm_nsegs; i++) {
1908 		addr = txmap->dm_segs[i].ds_addr;
1909 		DPRINTFN(2, ("msk_encap: addr %llx\n",
1910 		    (unsigned long long)addr));
1911 		hiaddr = MSK_ADDR_HI(addr);
1912 
1913 		if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1914 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1915 			f->sk_addr = htole32(hiaddr);
1916 			f->sk_len = 0;
1917 			f->sk_ctl = 0;
1918 			f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own;
1919 			own = SK_Y2_TXOPC_OWN;
1920 			sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1921 			SK_INC(frag, MSK_TX_RING_CNT);
1922 			entries++;
1923 			DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1924 			    sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1925 		}
1926 
1927 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1928 		f->sk_addr = htole32(MSK_ADDR_LO(addr));
1929 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1930 		f->sk_ctl = 0;
1931 		if (i == 0) {
1932 			f->sk_opcode = SK_Y2_TXOPC_PACKET | own;
1933 		} else
1934 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | own;
1935 		own = SK_Y2_TXOPC_OWN;
1936 		cur = frag;
1937 		SK_INC(frag, MSK_TX_RING_CNT);
1938 		entries++;
1939 	}
1940 	KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1941 
1942 	sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap =
1943 		sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap;
1944 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1945 	sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap = txmap;
1946 
1947 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1948 
1949 	/* Sync descriptors before handing to chip */
1950 	MSK_CDTXSYNC(sc_if, *txidx, entries,
1951 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1952 
1953 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1954 
1955 	/* Sync first descriptor to hand it off */
1956 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1957 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1958 
1959 	sc_if->sk_cdata.sk_tx_cnt += entries;
1960 
1961 #ifdef MSK_DEBUG
1962 	if (mskdebug >= 2) {
1963 		struct msk_tx_desc *le;
1964 		uint32_t idx;
1965 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1966 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1967 			msk_dump_txdesc(le, idx);
1968 		}
1969 	}
1970 #endif
1971 
1972 	*txidx = frag;
1973 
1974 	DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1975 
1976 	return 0;
1977 }
1978 
1979 static void
1980 msk_start(struct ifnet *ifp)
1981 {
1982 	struct sk_if_softc	*sc_if = ifp->if_softc;
1983 	struct mbuf		*m_head = NULL;
1984 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1985 	int			pkts = 0;
1986 
1987 	DPRINTFN(2, ("msk_start\n"));
1988 
1989 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1990 		IFQ_POLL(&ifp->if_snd, m_head);
1991 		if (m_head == NULL)
1992 			break;
1993 
1994 		/*
1995 		 * Pack the data into the transmit ring. If we
1996 		 * don't have room, set the OACTIVE flag and wait
1997 		 * for the NIC to drain the ring.
1998 		 */
1999 		if (msk_encap(sc_if, m_head, &idx)) {
2000 			ifp->if_flags |= IFF_OACTIVE;
2001 			break;
2002 		}
2003 
2004 		/* now we are committed to transmit the packet */
2005 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2006 		pkts++;
2007 
2008 		/*
2009 		 * If there's a BPF listener, bounce a copy of this frame
2010 		 * to him.
2011 		 */
2012 		bpf_mtap(ifp, m_head, BPF_D_OUT);
2013 	}
2014 	if (pkts == 0)
2015 		return;
2016 
2017 	/* Transmit */
2018 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
2019 		sc_if->sk_cdata.sk_tx_prod = idx;
2020 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
2021 
2022 		/* Set a timeout in case the chip goes out to lunch. */
2023 		ifp->if_timer = 5;
2024 	}
2025 }
2026 
2027 static void
2028 msk_watchdog(struct ifnet *ifp)
2029 {
2030 	struct sk_if_softc *sc_if = ifp->if_softc;
2031 
2032 	/*
2033 	 * Reclaim first as there is a possibility of losing Tx completion
2034 	 * interrupts.
2035 	 */
2036 	msk_txeof(sc_if);
2037 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2038 		device_printf(sc_if->sk_dev, "watchdog timeout\n");
2039 
2040 		if_statinc(ifp, if_oerrors);
2041 
2042 		/* XXX Resets both ports; we shouldn't do that. */
2043 		mskc_reset(sc_if->sk_softc);
2044 		msk_reset(sc_if);
2045 		msk_init(ifp);
2046 	}
2047 }
2048 
2049 static bool
2050 mskc_suspend(device_t dv, const pmf_qual_t *qual)
2051 {
2052 	struct sk_softc *sc = device_private(dv);
2053 
2054 	DPRINTFN(2, ("mskc_suspend\n"));
2055 
2056 	/* Turn off the 'driver is loaded' LED. */
2057 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2058 
2059 	return true;
2060 }
2061 
2062 static bool
2063 mskc_resume(device_t dv, const pmf_qual_t *qual)
2064 {
2065 	struct sk_softc *sc = device_private(dv);
2066 
2067 	DPRINTFN(2, ("mskc_resume\n"));
2068 
2069 	mskc_reset(sc);
2070 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2071 
2072 	return true;
2073 }
2074 
2075 static __inline int
2076 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2077 {
2078 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2079 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2080 	    YU_RXSTAT_JABBER)) != 0 ||
2081 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2082 	    YU_RXSTAT_BYTES(stat) != len)
2083 		return 0;
2084 
2085 	return 1;
2086 }
2087 
2088 static void
2089 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2090 {
2091 	struct sk_softc		*sc = sc_if->sk_softc;
2092 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2093 	struct mbuf		*m;
2094 	unsigned		cur, prod, tail, total_len = len;
2095 	bus_dmamap_t		dmamap;
2096 
2097 	cur = sc_if->sk_cdata.sk_rx_cons;
2098 	prod = sc_if->sk_cdata.sk_rx_prod;
2099 
2100 	DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2101 		sc_if->sk_cdata.sk_rx_cnt));
2102 
2103 	while (prod != cur) {
2104 		MSK_CDRXSYNC(sc_if, cur,
2105 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2106 
2107 		tail = cur;
2108 		SK_INC(cur, MSK_RX_RING_CNT);
2109 
2110 		sc_if->sk_cdata.sk_rx_cnt--;
2111 		m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2112 		sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2113 		if (m != NULL)
2114 			break;	/* found it */
2115 	}
2116 	sc_if->sk_cdata.sk_rx_cons = cur;
2117 	DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2118 		sc_if->sk_cdata.sk_rx_cnt, m));
2119 
2120 	if (m == NULL)
2121 		return;
2122 
2123 	dmamap = sc_if->sk_cdata.sk_rx_chain[tail].sk_dmamap;
2124 
2125 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2126 	    uimin(dmamap->dm_mapsize, total_len), BUS_DMASYNC_POSTREAD);
2127 	bus_dmamap_unload(sc->sc_dmatag, dmamap);
2128 
2129 	if (total_len < SK_MIN_FRAMELEN ||
2130 	    total_len > ETHER_MAX_LEN_JUMBO ||
2131 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
2132 		if_statinc(ifp, if_ierrors);
2133 		m_freem(m);
2134 		return;
2135 	}
2136 
2137 	m_set_rcvif(m, ifp);
2138 	m->m_pkthdr.len = m->m_len = total_len;
2139 
2140 	/* pass it on. */
2141 	if_percpuq_enqueue(ifp->if_percpuq, m);
2142 }
2143 
2144 static void
2145 msk_txeof(struct sk_if_softc *sc_if)
2146 {
2147 	struct sk_softc		*sc = sc_if->sk_softc;
2148 	struct msk_tx_desc	*cur_tx;
2149 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2150 	uint32_t		idx, reg, sk_ctl;
2151 	bus_dmamap_t		dmamap;
2152 
2153 	DPRINTFN(2, ("msk_txeof\n"));
2154 
2155 	if (sc_if->sk_port == SK_PORT_A)
2156 		reg = SK_STAT_BMU_TXA1_RIDX;
2157 	else
2158 		reg = SK_STAT_BMU_TXA2_RIDX;
2159 
2160 	/*
2161 	 * Go through our tx ring and free mbufs for those
2162 	 * frames that have been sent.
2163 	 */
2164 	idx = sc_if->sk_cdata.sk_tx_cons;
2165 	while (idx != sk_win_read_2(sc, reg)) {
2166 		MSK_CDTXSYNC(sc_if, idx, 1,
2167 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2168 
2169 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2170 		sk_ctl = cur_tx->sk_ctl;
2171 #ifdef MSK_DEBUG
2172 		if (mskdebug >= 2)
2173 			msk_dump_txdesc(cur_tx, idx);
2174 #endif
2175 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2176 			if_statinc(ifp, if_opackets);
2177 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2178 			dmamap = sc_if->sk_cdata.sk_tx_chain[idx].sk_dmamap;
2179 
2180 			bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2181 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2182 
2183 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
2184 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2185 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2186 		}
2187 		sc_if->sk_cdata.sk_tx_cnt--;
2188 		SK_INC(idx, MSK_TX_RING_CNT);
2189 	}
2190 	if (idx == sc_if->sk_cdata.sk_tx_cons)
2191 		return;
2192 
2193 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2194 
2195 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2196 		ifp->if_flags &= ~IFF_OACTIVE;
2197 
2198 	sc_if->sk_cdata.sk_tx_cons = idx;
2199 }
2200 
2201 static void
2202 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2203 {
2204 	/* Make sure to not completely wrap around */
2205 	while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2206 		if (msk_newbuf(sc_if) == ENOBUFS) {
2207 			goto schedretry;
2208 		}
2209 	}
2210 
2211 	return;
2212 
2213 schedretry:
2214 	/* Try later */
2215 	callout_schedule(&sc_if->sk_tick_rx, hz/2);
2216 }
2217 
2218 static void
2219 msk_fill_rx_tick(void *xsc_if)
2220 {
2221 	struct sk_if_softc *sc_if = xsc_if;
2222 	int s, rx_prod;
2223 
2224 	KASSERT(KERNEL_LOCKED_P());	/* XXXSMP */
2225 
2226 	s = splnet();
2227 	rx_prod = sc_if->sk_cdata.sk_rx_prod;
2228 	msk_fill_rx_ring(sc_if);
2229 	if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2230 		SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2231 		    sc_if->sk_cdata.sk_rx_prod);
2232 	}
2233 	splx(s);
2234 }
2235 
2236 static void
2237 msk_tick(void *xsc_if)
2238 {
2239 	struct sk_if_softc *sc_if = xsc_if;
2240 	struct mii_data *mii = &sc_if->sk_mii;
2241 	int s;
2242 
2243 	s = splnet();
2244 	mii_tick(mii);
2245 	splx(s);
2246 
2247 	callout_schedule(&sc_if->sk_tick_ch, hz);
2248 }
2249 
2250 static void
2251 msk_intr_yukon(struct sk_if_softc *sc_if)
2252 {
2253 	uint8_t status;
2254 
2255 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2256 	/* RX overrun */
2257 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2258 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2259 		    SK_RFCTL_RX_FIFO_OVER);
2260 	}
2261 	/* TX underrun */
2262 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2263 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2264 		    SK_TFCTL_TX_FIFO_UNDER);
2265 	}
2266 
2267 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2268 }
2269 
2270 static int
2271 msk_intr(void *xsc)
2272 {
2273 	struct sk_softc		*sc = xsc;
2274 	struct sk_if_softc	*sc_if;
2275 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2276 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2277 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2278 	uint32_t		status;
2279 	struct msk_status_desc	*cur_st;
2280 	bool			retried = false;
2281 
2282 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
2283 	if (status == 0xffffffff)
2284 		return 0;
2285 	if (status == 0) {
2286 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2287 		return 0;
2288 	}
2289 
2290 	status = CSR_READ_4(sc, SK_ISR);
2291 
2292 	if (sc_if0 != NULL)
2293 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2294 	if (sc_if1 != NULL)
2295 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2296 
2297 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2298 	    (ifp0->if_flags & IFF_RUNNING)) {
2299 		msk_intr_yukon(sc_if0);
2300 	}
2301 
2302 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2303 	    (ifp1->if_flags & IFF_RUNNING)) {
2304 		msk_intr_yukon(sc_if1);
2305 	}
2306 
2307 again:
2308 	MSK_CDSTSYNC(sc, sc->sk_status_idx,
2309 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2310 	cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2311 
2312 	while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2313 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2314 		switch (cur_st->sk_opcode) {
2315 		case SK_Y2_STOPC_RXSTAT:
2316 			sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2317 			if (sc_if) {
2318 				msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2319 				    letoh32(cur_st->sk_status));
2320 				if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2321 					msk_fill_rx_tick(sc_if);
2322 			}
2323 			break;
2324 		case SK_Y2_STOPC_TXSTAT:
2325 			if (sc_if0)
2326 				msk_txeof(sc_if0);
2327 			if (sc_if1)
2328 				msk_txeof(sc_if1);
2329 			break;
2330 		default:
2331 			aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2332 			break;
2333 		}
2334 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2335 
2336 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
2337 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2338 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2339 	}
2340 
2341 	if (CSR_READ_2(sc, SK_STAT_BMU_PUTIDX) == sc->sk_status_idx) {
2342 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2343 	} else if (!retried) {
2344 		retried = true;
2345 		goto again;
2346 	}
2347 
2348 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2349 
2350 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2351 		if_schedule_deferred_start(ifp0);
2352 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2353 		if_schedule_deferred_start(ifp1);
2354 
2355 	KASSERT(sc->rnd_attached > 0);
2356 	rnd_add_uint32(&sc->rnd_source, status);
2357 
2358 	if (sc->sk_int_mod_pending)
2359 		msk_update_int_mod(sc, 1);
2360 
2361 	return (status & sc->sk_intrmask) != 0;
2362 }
2363 
2364 static void
2365 msk_init_yukon(struct sk_if_softc *sc_if)
2366 {
2367 	uint32_t		v;
2368 	uint16_t		reg;
2369 	struct sk_softc		*sc;
2370 	int			i;
2371 
2372 	sc = sc_if->sk_softc;
2373 
2374 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2375 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2376 
2377 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
2378 
2379 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2380 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2381 
2382 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
2383 
2384 	/* unused read of the interrupt source register */
2385 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
2386 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2387 
2388 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2389 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2390 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2391 
2392 	/* MIB Counter Clear Mode set */
2393 	reg |= YU_PAR_MIB_CLR;
2394 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2395 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2396 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2397 
2398 	/* MIB Counter Clear Mode clear */
2399 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
2400 	reg &= ~YU_PAR_MIB_CLR;
2401 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2402 
2403 	/* receive control reg */
2404 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
2405 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2406 
2407 	/* transmit control register */
2408 	SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2409 
2410 	/* transmit flow control register */
2411 	SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2412 
2413 	/* transmit parameter register */
2414 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
2415 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2416 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2417 
2418 	/* serial mode register */
2419 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
2420 	reg = YU_SMR_DATA_BLIND(0x1c) |
2421 	      YU_SMR_MFL_VLAN |
2422 	      YU_SMR_IPG_DATA(0x1e);
2423 
2424 	if (sc->sk_type != SK_YUKON_FE &&
2425 	    sc->sk_type != SK_YUKON_FE_P)
2426 		reg |= YU_SMR_MFL_JUMBO;
2427 
2428 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2429 
2430 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
2431 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2432 	/* msk_attach calls me before ether_ifattach so check null */
2433 	if (ifp != NULL && ifp->if_sadl != NULL)
2434 		memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2435 		    sizeof(sc_if->sk_enaddr));
2436 	/* Setup Yukon's address */
2437 	for (i = 0; i < 3; i++) {
2438 		/* Write Source Address 1 (unicast filter) */
2439 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2440 			      sc_if->sk_enaddr[i * 2] |
2441 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2442 	}
2443 
2444 	for (i = 0; i < 3; i++) {
2445 		reg = sk_win_read_2(sc_if->sk_softc,
2446 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2447 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2448 	}
2449 
2450 	/* Set promiscuous mode */
2451 	msk_setpromisc(sc_if);
2452 
2453 	/* Set multicast filter */
2454 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
2455 	msk_setmulti(sc_if);
2456 
2457 	/* enable interrupt mask for counter overflows */
2458 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
2459 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2460 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2461 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2462 
2463 	/* Configure RX MAC FIFO Flush Mask */
2464 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2465 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2466 	    YU_RXSTAT_JABBER;
2467 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2468 
2469 	/* Configure RX MAC FIFO */
2470 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2471 	v =  SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2472 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2473 		v |= SK_RFCTL_RX_OVER_ON;
2474 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2475 
2476 	if ((sc->sk_type == SK_YUKON_FE_P) &&
2477 	    (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2478 		v = 0x178; /* Magic value */
2479 	else {
2480 		/* Increase flush threshold to 64 bytes */
2481 		v = SK_RFCTL_FIFO_THRESHOLD + 1;
2482 	}
2483 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2484 
2485 	/* Configure TX MAC FIFO */
2486 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2487 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2488 
2489 	if ((sc->sk_type == SK_YUKON_FE_P) &&
2490 	    (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2491 		v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2492 		v &= ~SK_TXEND_WM_ON;
2493 		SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2494 	}
2495 
2496 #if 1
2497 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2498 #endif
2499 	DPRINTFN(6, ("msk_init_yukon: end\n"));
2500 }
2501 
2502 /*
2503  * Note that to properly initialize any part of the GEnesis chip,
2504  * you first have to take it out of reset mode.
2505  */
2506 static int
2507 msk_init(struct ifnet *ifp)
2508 {
2509 	struct sk_if_softc	*sc_if = ifp->if_softc;
2510 	struct sk_softc		*sc = sc_if->sk_softc;
2511 	int			rc = 0, s;
2512 	uint32_t		imr, imtimer_ticks;
2513 
2514 
2515 	DPRINTFN(2, ("msk_init\n"));
2516 
2517 	s = splnet();
2518 
2519 	/* Cancel pending I/O and free all RX/TX buffers. */
2520 	msk_stop(ifp, 1);
2521 
2522 	/* Configure I2C registers */
2523 
2524 	/* Configure XMAC(s) */
2525 	msk_init_yukon(sc_if);
2526 	if ((rc = ether_mediachange(ifp)) != 0)
2527 		goto out;
2528 
2529 	/* Configure transmit arbiter(s) */
2530 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2531 #if 0
2532 /*	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2533 #endif
2534 
2535 	if (sc->sk_ramsize) {
2536 		/* Configure RAMbuffers */
2537 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2538 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2539 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2540 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2541 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2542 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2543 
2544 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2545 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2546 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2547 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2548 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2549 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2550 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2551 	}
2552 
2553 	/* Configure BMUs */
2554 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2555 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2556 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2557 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600);	/* XXX ??? */
2558 
2559 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2560 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2561 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2562 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600);	/* XXX ??? */
2563 
2564 	/* Make sure the sync transmit queue is disabled. */
2565 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2566 
2567 	/* Init descriptors */
2568 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2569 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2570 		    "memory for rx buffers\n");
2571 		msk_stop(ifp, 1);
2572 		splx(s);
2573 		return ENOBUFS;
2574 	}
2575 
2576 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2577 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2578 		    "memory for tx buffers\n");
2579 		msk_stop(ifp, 1);
2580 		splx(s);
2581 		return ENOBUFS;
2582 	}
2583 
2584 	/* Set interrupt moderation if changed via sysctl. */
2585 	switch (sc->sk_type) {
2586 	case SK_YUKON_EC:
2587 	case SK_YUKON_EC_U:
2588 	case SK_YUKON_EX:
2589 	case SK_YUKON_SUPR:
2590 	case SK_YUKON_ULTRA2:
2591 	case SK_YUKON_OPTIMA:
2592 	case SK_YUKON_PRM:
2593 	case SK_YUKON_OPTIMA2:
2594 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2595 		break;
2596 	case SK_YUKON_FE:
2597 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2598 		break;
2599 	case SK_YUKON_FE_P:
2600 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2601 		break;
2602 	case SK_YUKON_XL:
2603 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2604 		break;
2605 	default:
2606 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2607 	}
2608 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2609 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2610 		sk_win_write_4(sc, SK_IMTIMERINIT,
2611 		    SK_IM_USECS(sc->sk_int_mod));
2612 		aprint_verbose_dev(sc->sk_dev,
2613 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2614 	}
2615 
2616 	/* Initialize prefetch engine. */
2617 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2618 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2619 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2620 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2621 	    MSK_RX_RING_ADDR(sc_if, 0));
2622 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2623 	    (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2624 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2625 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2626 
2627 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2628 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2629 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2630 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2631 	    MSK_TX_RING_ADDR(sc_if, 0));
2632 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2633 	    (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2634 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2635 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2636 
2637 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2638 	    sc_if->sk_cdata.sk_rx_prod);
2639 
2640 
2641 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2642 		/* Disable flushing of non-ASF packets. */
2643 		SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2644 		    SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2645 	}
2646 
2647 	/* Configure interrupt handling */
2648 	if (sc_if->sk_port == SK_PORT_A)
2649 		sc->sk_intrmask |= SK_Y2_INTRS1;
2650 	else
2651 		sc->sk_intrmask |= SK_Y2_INTRS2;
2652 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2653 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2654 
2655 	ifp->if_flags |= IFF_RUNNING;
2656 	ifp->if_flags &= ~IFF_OACTIVE;
2657 
2658 	callout_schedule(&sc_if->sk_tick_ch, hz);
2659 
2660 out:
2661 	splx(s);
2662 	return rc;
2663 }
2664 
2665 /*
2666  * Note: the logic of second parameter is inverted compared to OpenBSD
2667  * code, since this code uses the function as if_stop hook too.
2668  */
2669 static void
2670 msk_stop(struct ifnet *ifp, int disable)
2671 {
2672 	struct sk_if_softc	*sc_if = ifp->if_softc;
2673 	struct sk_softc		*sc = sc_if->sk_softc;
2674 	bus_dmamap_t		dmamap;
2675 	int			i;
2676 
2677 	DPRINTFN(2, ("msk_stop\n"));
2678 
2679 	callout_stop(&sc_if->sk_tick_ch);
2680 	callout_stop(&sc_if->sk_tick_rx);
2681 
2682 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2683 
2684 	/* Stop transfer of Tx descriptors */
2685 
2686 	/* Stop transfer of Rx descriptors */
2687 
2688 	if (disable) {
2689 		/* Turn off various components of this interface. */
2690 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2691 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2692 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2693 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2694 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2695 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2696 		SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2697 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2698 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2699 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2700 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2701 
2702 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2703 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2704 
2705 		/* Disable interrupts */
2706 		if (sc_if->sk_port == SK_PORT_A)
2707 			sc->sk_intrmask &= ~SK_Y2_INTRS1;
2708 		else
2709 			sc->sk_intrmask &= ~SK_Y2_INTRS2;
2710 		CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2711 	}
2712 
2713 	/* Free RX and TX mbufs still in the queues. */
2714 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2715 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2716 			dmamap = sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap;
2717 
2718 			bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2719 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2720 
2721 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
2722 
2723 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2724 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2725 		}
2726 	}
2727 
2728 	sc_if->sk_cdata.sk_rx_prod = 0;
2729 	sc_if->sk_cdata.sk_rx_cons = 0;
2730 	sc_if->sk_cdata.sk_rx_cnt = 0;
2731 
2732 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2733 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2734 			dmamap = sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap;
2735 
2736 			bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2737 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2738 
2739 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
2740 
2741 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2742 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2743 		}
2744 	}
2745 }
2746 
2747 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2748 	mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2749 
2750 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2751 	msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2752 
2753 #ifdef MSK_DEBUG
2754 static void
2755 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2756 {
2757 #define DESC_PRINT(X)					\
2758 	if (X)						\
2759 		printf("txdesc[%d]." #X "=%#x\n",	\
2760 		       idx, X);
2761 
2762 	DESC_PRINT(letoh32(le->sk_addr));
2763 	DESC_PRINT(letoh16(le->sk_len));
2764 	DESC_PRINT(le->sk_ctl);
2765 	DESC_PRINT(le->sk_opcode);
2766 #undef DESC_PRINT
2767 }
2768 
2769 static void
2770 msk_dump_bytes(const char *data, int len)
2771 {
2772 	int c, i, j;
2773 
2774 	for (i = 0; i < len; i += 16) {
2775 		printf("%08x  ", i);
2776 		c = len - i;
2777 		if (c > 16) c = 16;
2778 
2779 		for (j = 0; j < c; j++) {
2780 			printf("%02x ", data[i + j] & 0xff);
2781 			if ((j & 0xf) == 7 && j > 0)
2782 				printf(" ");
2783 		}
2784 
2785 		for (; j < 16; j++)
2786 			printf("   ");
2787 		printf("  ");
2788 
2789 		for (j = 0; j < c; j++) {
2790 			int ch = data[i + j] & 0xff;
2791 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2792 		}
2793 
2794 		printf("\n");
2795 
2796 		if (c < 16)
2797 			break;
2798 	}
2799 }
2800 
2801 static void
2802 msk_dump_mbuf(struct mbuf *m)
2803 {
2804 	int count = m->m_pkthdr.len;
2805 
2806 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2807 
2808 	while (count > 0 && m) {
2809 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2810 		       m, m->m_data, m->m_len);
2811 		if (mskdebug >= 4)
2812 			msk_dump_bytes(mtod(m, char *), m->m_len);
2813 
2814 		count -= m->m_len;
2815 		m = m->m_next;
2816 	}
2817 }
2818 #endif
2819 
2820 static int
2821 msk_sysctl_handler(SYSCTLFN_ARGS)
2822 {
2823 	int error, t;
2824 	struct sysctlnode node;
2825 	struct sk_softc *sc;
2826 
2827 	node = *rnode;
2828 	sc = node.sysctl_data;
2829 	t = sc->sk_int_mod;
2830 	node.sysctl_data = &t;
2831 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2832 	if (error || newp == NULL)
2833 		return error;
2834 
2835 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2836 		return EINVAL;
2837 
2838 	/* update the softc with sysctl-changed value, and mark
2839 	   for hardware update */
2840 	sc->sk_int_mod = t;
2841 	sc->sk_int_mod_pending = 1;
2842 	return 0;
2843 }
2844 
2845 /*
2846  * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2847  * set up in mskc_attach()
2848  */
2849 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2850 {
2851 	int rc;
2852 	const struct sysctlnode *node;
2853 
2854 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2855 	    0, CTLTYPE_NODE, "msk",
2856 	    SYSCTL_DESCR("msk interface controls"),
2857 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2858 		goto err;
2859 	}
2860 
2861 	msk_root_num = node->sysctl_num;
2862 	return;
2863 
2864 err:
2865 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2866 }
2867