xref: /netbsd-src/sys/dev/pci/if_msk.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /* $NetBSD: if_msk.c,v 1.55 2017/10/20 12:01:43 christos Exp $ */
2 /*	$OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $	*/
3 
4 /*
5  * Copyright (c) 1997, 1998, 1999, 2000
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.55 2017/10/20 12:01:43 christos Exp $");
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71  #define letoh16 htole16
72  #define letoh32 htole32
73 #endif
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78 
79 #include <net/if_media.h>
80 
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87 
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91 
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94 
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 static bool mskc_suspend(device_t, const pmf_qual_t *);
98 static bool mskc_resume(device_t, const pmf_qual_t *);
99 int msk_probe(device_t, cfdata_t, void *);
100 void msk_attach(device_t, device_t, void *);
101 int mskcprint(void *, const char *);
102 int msk_intr(void *);
103 void msk_intr_yukon(struct sk_if_softc *);
104 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
105 void msk_txeof(struct sk_if_softc *, int);
106 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
107 void msk_start(struct ifnet *);
108 int msk_ioctl(struct ifnet *, u_long, void *);
109 int msk_init(struct ifnet *);
110 void msk_init_yukon(struct sk_if_softc *);
111 void msk_stop(struct ifnet *, int);
112 void msk_watchdog(struct ifnet *);
113 void msk_reset(struct sk_softc *);
114 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
115 int msk_alloc_jumbo_mem(struct sk_if_softc *);
116 void *msk_jalloc(struct sk_if_softc *);
117 void msk_jfree(struct mbuf *, void *, size_t, void *);
118 int msk_init_rx_ring(struct sk_if_softc *);
119 int msk_init_tx_ring(struct sk_if_softc *);
120 
121 void msk_update_int_mod(struct sk_softc *, int);
122 
123 int msk_miibus_readreg(device_t, int, int);
124 void msk_miibus_writereg(device_t, int, int, int);
125 void msk_miibus_statchg(struct ifnet *);
126 
127 void msk_setfilt(struct sk_if_softc *, void *, int);
128 void msk_setmulti(struct sk_if_softc *);
129 void msk_setpromisc(struct sk_if_softc *);
130 void msk_tick(void *);
131 
132 /* #define MSK_DEBUG 1 */
133 #ifdef MSK_DEBUG
134 #define DPRINTF(x)	if (mskdebug) printf x
135 #define DPRINTFN(n,x)	if (mskdebug >= (n)) printf x
136 int	mskdebug = MSK_DEBUG;
137 
138 void msk_dump_txdesc(struct msk_tx_desc *, int);
139 void msk_dump_mbuf(struct mbuf *);
140 void msk_dump_bytes(const char *, int);
141 #else
142 #define DPRINTF(x)
143 #define DPRINTFN(n,x)
144 #endif
145 
146 static int msk_sysctl_handler(SYSCTLFN_PROTO);
147 static int msk_root_num;
148 
149 /* supported device vendors */
150 static const struct msk_product {
151         pci_vendor_id_t         msk_vendor;
152         pci_product_id_t        msk_product;
153 } msk_products[] = {
154 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
155 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
156 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
157 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_1 },
158 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
159 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
160 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
161 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
162 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
163 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
164 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
165 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
166 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
167 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040 },
168 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
169 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
170 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
171 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
172 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
173 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8058 },
174 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021CU },
175 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021X },
176 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022CU },
177 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022X },
178 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061CU },
179 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061X },
180 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062CU },
181 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062X },
182 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
183 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
184 };
185 
186 static inline u_int32_t
187 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
188 {
189 	return CSR_READ_4(sc, reg);
190 }
191 
192 static inline u_int16_t
193 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
194 {
195 	return CSR_READ_2(sc, reg);
196 }
197 
198 static inline u_int8_t
199 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
200 {
201 	return CSR_READ_1(sc, reg);
202 }
203 
204 static inline void
205 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
206 {
207 	CSR_WRITE_4(sc, reg, x);
208 }
209 
210 static inline void
211 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
212 {
213 	CSR_WRITE_2(sc, reg, x);
214 }
215 
216 static inline void
217 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
218 {
219 	CSR_WRITE_1(sc, reg, x);
220 }
221 
222 int
223 msk_miibus_readreg(device_t dev, int phy, int reg)
224 {
225 	struct sk_if_softc *sc_if = device_private(dev);
226 	u_int16_t val;
227 	int i;
228 
229         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
230 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
231 
232 	for (i = 0; i < SK_TIMEOUT; i++) {
233 		DELAY(1);
234 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
235 		if (val & YU_SMICR_READ_VALID)
236 			break;
237 	}
238 
239 	if (i == SK_TIMEOUT) {
240 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
241 		return (0);
242 	}
243 
244  	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
245 		     SK_TIMEOUT));
246 
247         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
248 
249 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
250 		     phy, reg, val));
251 
252 	return (val);
253 }
254 
255 void
256 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
257 {
258 	struct sk_if_softc *sc_if = device_private(dev);
259 	int i;
260 
261 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
262 		     phy, reg, val));
263 
264 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
265 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
266 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
267 
268 	for (i = 0; i < SK_TIMEOUT; i++) {
269 		DELAY(1);
270 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
271 			break;
272 	}
273 
274 	if (i == SK_TIMEOUT)
275 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
276 }
277 
278 void
279 msk_miibus_statchg(struct ifnet *ifp)
280 {
281 	struct sk_if_softc *sc_if = ifp->if_softc;
282 	struct mii_data *mii = &sc_if->sk_mii;
283 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
284 	int gpcr;
285 
286 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
287 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
288 
289 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
290 		/* Set speed. */
291 		gpcr |= YU_GPCR_SPEED_DIS;
292 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
293 		case IFM_1000_SX:
294 		case IFM_1000_LX:
295 		case IFM_1000_CX:
296 		case IFM_1000_T:
297 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
298 			break;
299 		case IFM_100_TX:
300 			gpcr |= YU_GPCR_SPEED;
301 			break;
302 		}
303 
304 		/* Set duplex. */
305 		gpcr |= YU_GPCR_DPLX_DIS;
306 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
307 			gpcr |= YU_GPCR_DUPLEX;
308 
309 		/* Disable flow control. */
310 		gpcr |= YU_GPCR_FCTL_DIS;
311 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
312 	}
313 
314 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
315 
316 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
317 		     SK_YU_READ_2(sc_if, YUKON_GPCR)));
318 }
319 
320 #define HASH_BITS	6
321 
322 void
323 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
324 {
325 	char *addr = addrv;
326 	int base = XM_RXFILT_ENTRY(slot);
327 
328 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
329 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
330 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
331 }
332 
333 void
334 msk_setmulti(struct sk_if_softc *sc_if)
335 {
336 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
337 	u_int32_t hashes[2] = { 0, 0 };
338 	int h;
339 	struct ethercom *ec = &sc_if->sk_ethercom;
340 	struct ether_multi *enm;
341 	struct ether_multistep step;
342 	u_int16_t reg;
343 
344 	/* First, zot all the existing filters. */
345 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
346 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
347 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
348 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
349 
350 
351 	/* Now program new ones. */
352 	reg = SK_YU_READ_2(sc_if, YUKON_RCR);
353 	reg |= YU_RCR_UFLEN;
354 allmulti:
355 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
356 		if ((ifp->if_flags & IFF_PROMISC) != 0)
357 			reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
358 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
359 			hashes[0] = 0xFFFFFFFF;
360 			hashes[1] = 0xFFFFFFFF;
361 		}
362 	} else {
363 		/* First find the tail of the list. */
364 		ETHER_FIRST_MULTI(step, ec, enm);
365 		while (enm != NULL) {
366 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
367 				 ETHER_ADDR_LEN)) {
368 				ifp->if_flags |= IFF_ALLMULTI;
369 				goto allmulti;
370 			}
371 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
372 			    ((1 << HASH_BITS) - 1);
373 			if (h < 32)
374 				hashes[0] |= (1 << h);
375 			else
376 				hashes[1] |= (1 << (h - 32));
377 
378 			ETHER_NEXT_MULTI(step, enm);
379 		}
380 		reg |= YU_RCR_MUFLEN;
381 	}
382 
383 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
384 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
385 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
386 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
387 	SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
388 }
389 
390 void
391 msk_setpromisc(struct sk_if_softc *sc_if)
392 {
393 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
394 
395 	if (ifp->if_flags & IFF_PROMISC)
396 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
397 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
398 	else
399 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
400 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
401 }
402 
403 int
404 msk_init_rx_ring(struct sk_if_softc *sc_if)
405 {
406 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
407 	struct msk_ring_data	*rd = sc_if->sk_rdata;
408 	int			i, nexti;
409 
410 	memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
411 
412 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
413 		cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
414 		if (i == (MSK_RX_RING_CNT - 1))
415 			nexti = 0;
416 		else
417 			nexti = i + 1;
418 		cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
419 	}
420 
421 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
422 		if (msk_newbuf(sc_if, i, NULL,
423 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
424 			aprint_error_dev(sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
425 			return (ENOBUFS);
426 		}
427 	}
428 
429 	sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
430 	sc_if->sk_cdata.sk_rx_cons = 0;
431 
432 	return (0);
433 }
434 
435 int
436 msk_init_tx_ring(struct sk_if_softc *sc_if)
437 {
438 	struct sk_softc		*sc = sc_if->sk_softc;
439 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
440 	struct msk_ring_data	*rd = sc_if->sk_rdata;
441 	bus_dmamap_t		dmamap;
442 	struct sk_txmap_entry	*entry;
443 	int			i, nexti;
444 
445 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
446 	    sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
447 
448 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
449 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
450 		cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
451 		if (i == (MSK_TX_RING_CNT - 1))
452 			nexti = 0;
453 		else
454 			nexti = i + 1;
455 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
456 
457 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
458 		   SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
459 			return (ENOBUFS);
460 
461 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
462 		if (!entry) {
463 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
464 			return (ENOBUFS);
465 		}
466 		entry->dmamap = dmamap;
467 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
468 	}
469 
470 	sc_if->sk_cdata.sk_tx_prod = 0;
471 	sc_if->sk_cdata.sk_tx_cons = 0;
472 	sc_if->sk_cdata.sk_tx_cnt = 0;
473 
474 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
475 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
476 
477 	return (0);
478 }
479 
480 int
481 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
482 	  bus_dmamap_t dmamap)
483 {
484 	struct mbuf		*m_new = NULL;
485 	struct sk_chain		*c;
486 	struct msk_rx_desc	*r;
487 
488 	if (m == NULL) {
489 		void *buf = NULL;
490 
491 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
492 		if (m_new == NULL)
493 			return (ENOBUFS);
494 
495 		/* Allocate the jumbo buffer */
496 		buf = msk_jalloc(sc_if);
497 		if (buf == NULL) {
498 			m_freem(m_new);
499 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
500 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
501 			return (ENOBUFS);
502 		}
503 
504 		/* Attach the buffer to the mbuf */
505 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
506 		MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
507 	} else {
508 		/*
509 	 	 * We're re-using a previously allocated mbuf;
510 		 * be sure to re-init pointers and lengths to
511 		 * default values.
512 		 */
513 		m_new = m;
514 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
515 		m_new->m_data = m_new->m_ext.ext_buf;
516 	}
517 	m_adj(m_new, ETHER_ALIGN);
518 
519 	c = &sc_if->sk_cdata.sk_rx_chain[i];
520 	r = c->sk_le;
521 	c->sk_mbuf = m_new;
522 	r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
523 	    (((vaddr_t)m_new->m_data
524              - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
525 	r->sk_len = htole16(SK_JLEN);
526 	r->sk_ctl = 0;
527 	r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
528 
529 	MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
530 
531 	return (0);
532 }
533 
534 /*
535  * Memory management for jumbo frames.
536  */
537 
538 int
539 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
540 {
541 	struct sk_softc		*sc = sc_if->sk_softc;
542 	char *ptr, *kva;
543 	bus_dma_segment_t	seg;
544 	int		i, rseg, state, error;
545 	struct sk_jpool_entry   *entry;
546 
547 	state = error = 0;
548 
549 	/* Grab a big chunk o' storage. */
550 	if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
551 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
552 		aprint_error(": can't alloc rx buffers");
553 		return (ENOBUFS);
554 	}
555 
556 	state = 1;
557 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
558 			   BUS_DMA_NOWAIT)) {
559 		aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
560 		error = ENOBUFS;
561 		goto out;
562 	}
563 
564 	state = 2;
565 	if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
566 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
567 		aprint_error(": can't create dma map");
568 		error = ENOBUFS;
569 		goto out;
570 	}
571 
572 	state = 3;
573 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
574 			    kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
575 		aprint_error(": can't load dma map");
576 		error = ENOBUFS;
577 		goto out;
578 	}
579 
580 	state = 4;
581 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
582 	DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
583 
584 	LIST_INIT(&sc_if->sk_jfree_listhead);
585 	LIST_INIT(&sc_if->sk_jinuse_listhead);
586 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
587 
588 	/*
589 	 * Now divide it up into 9K pieces and save the addresses
590 	 * in an array.
591 	 */
592 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
593 	for (i = 0; i < MSK_JSLOTS; i++) {
594 		sc_if->sk_cdata.sk_jslots[i] = ptr;
595 		ptr += SK_JLEN;
596 		entry = malloc(sizeof(struct sk_jpool_entry),
597 		    M_DEVBUF, M_NOWAIT);
598 		if (entry == NULL) {
599 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
600 			aprint_error(": no memory for jumbo buffer queue!");
601 			error = ENOBUFS;
602 			goto out;
603 		}
604 		entry->slot = i;
605 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
606 				 entry, jpool_entries);
607 	}
608 out:
609 	if (error != 0) {
610 		switch (state) {
611 		case 4:
612 			bus_dmamap_unload(sc->sc_dmatag,
613 			    sc_if->sk_cdata.sk_rx_jumbo_map);
614 		case 3:
615 			bus_dmamap_destroy(sc->sc_dmatag,
616 			    sc_if->sk_cdata.sk_rx_jumbo_map);
617 		case 2:
618 			bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
619 		case 1:
620 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
621 			break;
622 		default:
623 			break;
624 		}
625 	}
626 
627 	return error;
628 }
629 
630 /*
631  * Allocate a jumbo buffer.
632  */
633 void *
634 msk_jalloc(struct sk_if_softc *sc_if)
635 {
636 	struct sk_jpool_entry   *entry;
637 
638 	mutex_enter(&sc_if->sk_jpool_mtx);
639 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
640 
641 	if (entry == NULL) {
642 		mutex_exit(&sc_if->sk_jpool_mtx);
643 		return NULL;
644 	}
645 
646 	LIST_REMOVE(entry, jpool_entries);
647 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
648 	mutex_exit(&sc_if->sk_jpool_mtx);
649 	return (sc_if->sk_cdata.sk_jslots[entry->slot]);
650 }
651 
652 /*
653  * Release a jumbo buffer.
654  */
655 void
656 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
657 {
658 	struct sk_jpool_entry *entry;
659 	struct sk_if_softc *sc;
660 	int i;
661 
662 	/* Extract the softc struct pointer. */
663 	sc = (struct sk_if_softc *)arg;
664 
665 	if (sc == NULL)
666 		panic("msk_jfree: can't find softc pointer!");
667 
668 	/* calculate the slot this buffer belongs to */
669 	i = ((vaddr_t)buf
670 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
671 
672 	if ((i < 0) || (i >= MSK_JSLOTS))
673 		panic("msk_jfree: asked to free buffer that we don't manage!");
674 
675 	mutex_enter(&sc->sk_jpool_mtx);
676 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
677 	if (entry == NULL)
678 		panic("msk_jfree: buffer not in use!");
679 	entry->slot = i;
680 	LIST_REMOVE(entry, jpool_entries);
681 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
682 	mutex_exit(&sc->sk_jpool_mtx);
683 
684 	if (__predict_true(m != NULL))
685 		pool_cache_put(mb_cache, m);
686 }
687 
688 int
689 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
690 {
691 	struct sk_if_softc *sc = ifp->if_softc;
692 	int s, error;
693 
694 	s = splnet();
695 
696 	DPRINTFN(2, ("msk_ioctl ETHER\n"));
697 	switch (cmd) {
698 	case SIOCSIFFLAGS:
699 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
700 			break;
701 
702 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
703 		case IFF_RUNNING:
704 			msk_stop(ifp, 1);
705 			break;
706 		case IFF_UP:
707 			msk_init(ifp);
708 			break;
709 		case IFF_UP | IFF_RUNNING:
710 			if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
711 				msk_setpromisc(sc);
712 				msk_setmulti(sc);
713 			} else
714 				msk_init(ifp);
715 			break;
716 		}
717 		sc->sk_if_flags = ifp->if_flags;
718 		break;
719 	default:
720 		error = ether_ioctl(ifp, cmd, data);
721 		if (error == ENETRESET) {
722 			error = 0;
723 			if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
724 				;
725 			else if (ifp->if_flags & IFF_RUNNING) {
726 				/*
727 				 * Multicast list has changed; set the hardware
728 				 * filter accordingly.
729 				 */
730 				msk_setmulti(sc);
731 			}
732 		}
733 		break;
734 	}
735 
736 	splx(s);
737 	return error;
738 }
739 
740 void
741 msk_update_int_mod(struct sk_softc *sc, int verbose)
742 {
743 	u_int32_t imtimer_ticks;
744 
745 	/*
746  	 * Configure interrupt moderation. The moderation timer
747 	 * defers interrupts specified in the interrupt moderation
748 	 * timer mask based on the timeout specified in the interrupt
749 	 * moderation timer init register. Each bit in the timer
750 	 * register represents one tick, so to specify a timeout in
751 	 * microseconds, we have to multiply by the correct number of
752 	 * ticks-per-microsecond.
753 	 */
754 	switch (sc->sk_type) {
755 	case SK_YUKON_EC:
756 	case SK_YUKON_EC_U:
757 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
758 		break;
759 	case SK_YUKON_FE:
760 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
761 		break;
762 	case SK_YUKON_XL:
763 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
764 		break;
765 	default:
766 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
767 	}
768 	if (verbose)
769 		aprint_verbose_dev(sc->sk_dev,
770 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
771         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
772         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
773 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
774         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
775 	sc->sk_int_mod_pending = 0;
776 }
777 
778 static int
779 msk_lookup(const struct pci_attach_args *pa)
780 {
781 	const struct msk_product *pmsk;
782 
783 	for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
784 		if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
785 		    PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
786 			return 1;
787 	}
788 	return 0;
789 }
790 
791 /*
792  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
793  * IDs against our list and return a device name if we find a match.
794  */
795 int
796 mskc_probe(device_t parent, cfdata_t match, void *aux)
797 {
798 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
799 
800 	return msk_lookup(pa);
801 }
802 
803 /*
804  * Force the GEnesis into reset, then bring it out of reset.
805  */
806 void msk_reset(struct sk_softc *sc)
807 {
808 	u_int32_t imtimer_ticks, reg1;
809 	int reg;
810 
811 	DPRINTFN(2, ("msk_reset\n"));
812 
813 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
814 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
815 
816 	DELAY(1000);
817 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
818 	DELAY(2);
819 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
820 	sk_win_write_1(sc, SK_TESTCTL1, 2);
821 
822 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
823 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
824 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
825 	else
826 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
827 
828 	if (sc->sk_type == SK_YUKON_EC_U) {
829 		uint32_t our;
830 
831 		CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
832 
833 		/* enable all clocks. */
834 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
835 		our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
836 		our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
837 			SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
838 			SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
839 			SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
840 		/* Set all bits to 0 except bits 15..12 */
841 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
842 		/* Set to default value */
843 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
844 	}
845 
846 	/* release PHY from PowerDown/Coma mode. */
847 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
848 
849 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
850 		sk_win_write_1(sc, SK_Y2_CLKGATE,
851 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
852 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
853 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
854 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
855 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
856 	else
857 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
858 
859 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
860 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
861 	DELAY(1000);
862 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
863 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
864 
865 	sk_win_write_1(sc, SK_TESTCTL1, 1);
866 
867 	DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
868 	DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
869 		     CSR_READ_2(sc, SK_LINK_CTRL)));
870 
871 	/* Disable ASF */
872 	CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
873 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
874 
875 	/* Clear I2C IRQ noise */
876 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
877 
878 	/* Disable hardware timer */
879 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
880 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
881 
882 	/* Disable descriptor polling */
883 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
884 
885 	/* Disable time stamps */
886 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
887 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
888 
889 	/* Enable RAM interface */
890 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
891 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
892 		sk_win_write_1(sc, reg, 36);
893 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
894 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
895 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
896 
897 	/*
898 	 * Configure interrupt moderation. The moderation timer
899 	 * defers interrupts specified in the interrupt moderation
900 	 * timer mask based on the timeout specified in the interrupt
901 	 * moderation timer init register. Each bit in the timer
902 	 * register represents one tick, so to specify a timeout in
903 	 * microseconds, we have to multiply by the correct number of
904 	 * ticks-per-microsecond.
905 	 */
906 	switch (sc->sk_type) {
907 	case SK_YUKON_EC:
908 	case SK_YUKON_EC_U:
909 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
910 		break;
911 	case SK_YUKON_FE:
912 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
913 		break;
914 	case SK_YUKON_XL:
915 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
916 		break;
917 	default:
918 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
919 	}
920 
921 	/* Reset status ring. */
922 	memset(sc->sk_status_ring, 0,
923 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
924 	bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
925 	    sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
926 	sc->sk_status_idx = 0;
927 	sc->sk_status_own_idx = 0;
928 
929 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
930 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
931 
932 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
933 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
934 	    sc->sk_status_map->dm_segs[0].ds_addr);
935 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
936 	    (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
937 	if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
938 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
939 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
940 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
941 	} else {
942 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
943 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
944 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
945 		    ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
946 		sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
947 	}
948 
949 #if 0
950 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
951 #endif
952 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
953 
954 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
955 
956 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
957 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
958 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
959 
960 	msk_update_int_mod(sc, 0);
961 }
962 
963 int
964 msk_probe(device_t parent, cfdata_t match, void *aux)
965 {
966 	struct skc_attach_args *sa = aux;
967 
968 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
969 		return (0);
970 
971 	switch (sa->skc_type) {
972 	case SK_YUKON_XL:
973 	case SK_YUKON_EC_U:
974 	case SK_YUKON_EC:
975 	case SK_YUKON_FE:
976 	case SK_YUKON_FE_P:
977 		return (1);
978 	}
979 
980 	return (0);
981 }
982 
983 static bool
984 msk_resume(device_t dv, const pmf_qual_t *qual)
985 {
986 	struct sk_if_softc *sc_if = device_private(dv);
987 
988 	msk_init_yukon(sc_if);
989 	return true;
990 }
991 
992 /*
993  * Each XMAC chip is attached as a separate logical IP interface.
994  * Single port cards will have only one logical interface of course.
995  */
996 void
997 msk_attach(device_t parent, device_t self, void *aux)
998 {
999 	struct sk_if_softc *sc_if = device_private(self);
1000 	struct sk_softc *sc = device_private(parent);
1001 	struct skc_attach_args *sa = aux;
1002 	struct ifnet *ifp;
1003 	void *kva;
1004 	bus_dma_segment_t seg;
1005 	int i, rseg;
1006 	u_int32_t chunk, val;
1007 
1008 	sc_if->sk_dev = self;
1009 	sc_if->sk_port = sa->skc_port;
1010 	sc_if->sk_softc = sc;
1011 	sc->sk_if[sa->skc_port] = sc_if;
1012 
1013 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1014 
1015 	/*
1016 	 * Get station address for this interface. Note that
1017 	 * dual port cards actually come with three station
1018 	 * addresses: one for each port, plus an extra. The
1019 	 * extra one is used by the SysKonnect driver software
1020 	 * as a 'virtual' station address for when both ports
1021 	 * are operating in failover mode. Currently we don't
1022 	 * use this extra address.
1023 	 */
1024 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1025 		sc_if->sk_enaddr[i] =
1026 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1027 
1028 	aprint_normal(": Ethernet address %s\n",
1029 	    ether_sprintf(sc_if->sk_enaddr));
1030 
1031 	/*
1032 	 * Set up RAM buffer addresses. The NIC will have a certain
1033 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1034 	 * need to divide this up a) between the transmitter and
1035  	 * receiver and b) between the two XMACs, if this is a
1036 	 * dual port NIC. Our algorithm is to divide up the memory
1037 	 * evenly so that everyone gets a fair share.
1038 	 *
1039 	 * Just to be contrary, Yukon2 appears to have separate memory
1040 	 * for each MAC.
1041 	 */
1042 	chunk = sc->sk_ramsize  - (sc->sk_ramsize + 2) / 3;
1043 	val = sc->sk_rboff / sizeof(u_int64_t);
1044 	sc_if->sk_rx_ramstart = val;
1045 	val += (chunk / sizeof(u_int64_t));
1046 	sc_if->sk_rx_ramend = val - 1;
1047 	chunk = sc->sk_ramsize - chunk;
1048 	sc_if->sk_tx_ramstart = val;
1049 	val += (chunk / sizeof(u_int64_t));
1050 	sc_if->sk_tx_ramend = val - 1;
1051 
1052 	DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1053 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1054 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1055 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1056 
1057 	/* Allocate the descriptor queues. */
1058 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1059 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1060 		aprint_error(": can't alloc rx buffers\n");
1061 		goto fail;
1062 	}
1063 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1064 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1065 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1066 		       sizeof(struct msk_ring_data));
1067 		goto fail_1;
1068 	}
1069 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1070 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1071             &sc_if->sk_ring_map)) {
1072 		aprint_error(": can't create dma map\n");
1073 		goto fail_2;
1074 	}
1075 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1076 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1077 		aprint_error(": can't load dma map\n");
1078 		goto fail_3;
1079 	}
1080         sc_if->sk_rdata = (struct msk_ring_data *)kva;
1081 	memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1082 
1083 	ifp = &sc_if->sk_ethercom.ec_if;
1084 	/* Try to allocate memory for jumbo buffers. */
1085 	if (msk_alloc_jumbo_mem(sc_if)) {
1086 		aprint_error(": jumbo buffer allocation failed\n");
1087 		goto fail_3;
1088 	}
1089 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1090 	if (sc->sk_type != SK_YUKON_FE)
1091 		sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1092 
1093 	ifp->if_softc = sc_if;
1094 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1095 	ifp->if_ioctl = msk_ioctl;
1096 	ifp->if_start = msk_start;
1097 	ifp->if_stop = msk_stop;
1098 	ifp->if_init = msk_init;
1099 	ifp->if_watchdog = msk_watchdog;
1100 	ifp->if_baudrate = 1000000000;
1101 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1102 	IFQ_SET_READY(&ifp->if_snd);
1103 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1104 
1105 	/*
1106 	 * Do miibus setup.
1107 	 */
1108 	msk_init_yukon(sc_if);
1109 
1110  	DPRINTFN(2, ("msk_attach: 1\n"));
1111 
1112 	sc_if->sk_mii.mii_ifp = ifp;
1113 	sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1114 	sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1115 	sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1116 
1117 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1118 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1119 	    ether_mediachange, ether_mediastatus);
1120 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1121 	    MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1122 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1123 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1124 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1125 			    0, NULL);
1126 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1127 	} else
1128 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1129 
1130 	callout_init(&sc_if->sk_tick_ch, 0);
1131 	callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1132 	callout_schedule(&sc_if->sk_tick_ch, hz);
1133 
1134 	/*
1135 	 * Call MI attach routines.
1136 	 */
1137 	if_attach(ifp);
1138 	if_deferred_start_init(ifp, NULL);
1139 	ether_ifattach(ifp, sc_if->sk_enaddr);
1140 
1141 	if (pmf_device_register(self, NULL, msk_resume))
1142 		pmf_class_network_register(self, ifp);
1143 	else
1144 		aprint_error_dev(self, "couldn't establish power handler\n");
1145 
1146 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1147 		RND_TYPE_NET, RND_FLAG_DEFAULT);
1148 
1149 	DPRINTFN(2, ("msk_attach: end\n"));
1150 	return;
1151 
1152 fail_3:
1153 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1154 fail_2:
1155 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1156 fail_1:
1157 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1158 fail:
1159 	sc->sk_if[sa->skc_port] = NULL;
1160 }
1161 
1162 int
1163 mskcprint(void *aux, const char *pnp)
1164 {
1165 	struct skc_attach_args *sa = aux;
1166 
1167 	if (pnp)
1168 		aprint_normal("sk port %c at %s",
1169 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1170 	else
1171 		aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1172 	return (UNCONF);
1173 }
1174 
1175 /*
1176  * Attach the interface. Allocate softc structures, do ifmedia
1177  * setup and ethernet/BPF attach.
1178  */
1179 void
1180 mskc_attach(device_t parent, device_t self, void *aux)
1181 {
1182 	struct sk_softc *sc = device_private(self);
1183 	struct pci_attach_args *pa = aux;
1184 	struct skc_attach_args skca;
1185 	pci_chipset_tag_t pc = pa->pa_pc;
1186 	pcireg_t command, memtype;
1187 	pci_intr_handle_t ih;
1188 	const char *intrstr = NULL;
1189 	bus_size_t size;
1190 	int rc, sk_nodenum;
1191 	u_int8_t hw, skrs;
1192 	const char *revstr = NULL;
1193 	const struct sysctlnode *node;
1194 	void *kva;
1195 	bus_dma_segment_t seg;
1196 	int rseg;
1197 	char intrbuf[PCI_INTRSTR_LEN];
1198 
1199 	DPRINTFN(2, ("begin mskc_attach\n"));
1200 
1201 	sc->sk_dev = self;
1202 	/*
1203 	 * Handle power management nonsense.
1204 	 */
1205 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1206 
1207 	if (command == 0x01) {
1208 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1209 		if (command & SK_PSTATE_MASK) {
1210 			u_int32_t		iobase, membase, irq;
1211 
1212 			/* Save important PCI config data. */
1213 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1214 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1215 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1216 
1217 			/* Reset the power state. */
1218 			aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1219 			    "mode -- setting to D0\n",
1220 			    command & SK_PSTATE_MASK);
1221 			command &= 0xFFFFFFFC;
1222 			pci_conf_write(pc, pa->pa_tag,
1223 			    SK_PCI_PWRMGMTCTRL, command);
1224 
1225 			/* Restore PCI config data. */
1226 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1227 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1228 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1229 		}
1230 	}
1231 
1232 	/*
1233 	 * Map control/status registers.
1234 	 */
1235 
1236 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1237 	switch (memtype) {
1238 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1239 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1240 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1241 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1242 				   NULL, &size) == 0) {
1243 			break;
1244 		}
1245 	default:
1246 		aprint_error(": can't map mem space\n");
1247 		return;
1248 	}
1249 
1250 	sc->sc_dmatag = pa->pa_dmat;
1251 
1252 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1253 	command |= PCI_COMMAND_MASTER_ENABLE;
1254 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1255 
1256 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1257 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1258 
1259 	/* bail out here if chip is not recognized */
1260 	if (!(SK_IS_YUKON2(sc))) {
1261 		aprint_error(": unknown chip type: %d\n", sc->sk_type);
1262 		goto fail_1;
1263 	}
1264 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1265 
1266 	/* Allocate interrupt */
1267 	if (pci_intr_map(pa, &ih)) {
1268 		aprint_error(": couldn't map interrupt\n");
1269 		goto fail_1;
1270 	}
1271 
1272 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1273 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1274 	if (sc->sk_intrhand == NULL) {
1275 		aprint_error(": couldn't establish interrupt");
1276 		if (intrstr != NULL)
1277 			aprint_error(" at %s", intrstr);
1278 		aprint_error("\n");
1279 		goto fail_1;
1280 	}
1281 
1282 	if (bus_dmamem_alloc(sc->sc_dmatag,
1283 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1284 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1285 		aprint_error(": can't alloc status buffers\n");
1286 		goto fail_2;
1287 	}
1288 
1289 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1290 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1291 	    &kva, BUS_DMA_NOWAIT)) {
1292 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1293 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1294 		goto fail_3;
1295 	}
1296 	if (bus_dmamap_create(sc->sc_dmatag,
1297 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1298 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1299 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1300 		aprint_error(": can't create dma map\n");
1301 		goto fail_4;
1302 	}
1303 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1304 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1305 	    NULL, BUS_DMA_NOWAIT)) {
1306 		aprint_error(": can't load dma map\n");
1307 		goto fail_5;
1308 	}
1309 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1310 
1311 
1312 	sc->sk_int_mod = SK_IM_DEFAULT;
1313 	sc->sk_int_mod_pending = 0;
1314 
1315 	/* Reset the adapter. */
1316 	msk_reset(sc);
1317 
1318 	skrs = sk_win_read_1(sc, SK_EPROM0);
1319 	if (skrs == 0x00)
1320 		sc->sk_ramsize = 0x20000;
1321 	else
1322 		sc->sk_ramsize = skrs * (1<<12);
1323 	sc->sk_rboff = SK_RBOFF_0;
1324 
1325 	DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1326 		     sc->sk_ramsize, sc->sk_ramsize / 1024,
1327 		     sc->sk_rboff));
1328 
1329 	switch (sc->sk_type) {
1330 	case SK_YUKON_XL:
1331 		sc->sk_name = "Yukon-2 XL";
1332 		break;
1333 	case SK_YUKON_EC_U:
1334 		sc->sk_name = "Yukon-2 EC Ultra";
1335 		break;
1336 	case SK_YUKON_EC:
1337 		sc->sk_name = "Yukon-2 EC";
1338 		break;
1339 	case SK_YUKON_FE:
1340 		sc->sk_name = "Yukon-2 FE";
1341 		break;
1342 	default:
1343 		sc->sk_name = "Yukon (Unknown)";
1344 	}
1345 
1346 	if (sc->sk_type == SK_YUKON_XL) {
1347 		switch (sc->sk_rev) {
1348 		case SK_YUKON_XL_REV_A0:
1349 			sc->sk_workaround = 0;
1350 			revstr = "A0";
1351 			break;
1352 		case SK_YUKON_XL_REV_A1:
1353 			sc->sk_workaround = SK_WA_4109;
1354 			revstr = "A1";
1355 			break;
1356 		case SK_YUKON_XL_REV_A2:
1357 			sc->sk_workaround = SK_WA_4109;
1358 			revstr = "A2";
1359 			break;
1360 		case SK_YUKON_XL_REV_A3:
1361 			sc->sk_workaround = SK_WA_4109;
1362 			revstr = "A3";
1363 			break;
1364 		default:
1365 			sc->sk_workaround = 0;
1366 			break;
1367 		}
1368 	}
1369 
1370 	if (sc->sk_type == SK_YUKON_EC) {
1371 		switch (sc->sk_rev) {
1372 		case SK_YUKON_EC_REV_A1:
1373 			sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1374 			revstr = "A1";
1375 			break;
1376 		case SK_YUKON_EC_REV_A2:
1377 			sc->sk_workaround = SK_WA_4109;
1378 			revstr = "A2";
1379 			break;
1380 		case SK_YUKON_EC_REV_A3:
1381 			sc->sk_workaround = SK_WA_4109;
1382 			revstr = "A3";
1383 			break;
1384 		default:
1385 			sc->sk_workaround = 0;
1386 			break;
1387 		}
1388 	}
1389 
1390 	if (sc->sk_type == SK_YUKON_FE) {
1391 		sc->sk_workaround = SK_WA_4109;
1392 		switch (sc->sk_rev) {
1393 		case SK_YUKON_FE_REV_A1:
1394 			revstr = "A1";
1395 			break;
1396 		case SK_YUKON_FE_REV_A2:
1397 			revstr = "A2";
1398 			break;
1399 		default:
1400 			sc->sk_workaround = 0;
1401 			break;
1402 		}
1403 	}
1404 
1405 	if (sc->sk_type == SK_YUKON_EC_U) {
1406 		sc->sk_workaround = SK_WA_4109;
1407 		switch (sc->sk_rev) {
1408 		case SK_YUKON_EC_U_REV_A0:
1409 			revstr = "A0";
1410 			break;
1411 		case SK_YUKON_EC_U_REV_A1:
1412 			revstr = "A1";
1413 			break;
1414 		case SK_YUKON_EC_U_REV_B0:
1415 			revstr = "B0";
1416 			break;
1417 		default:
1418 			sc->sk_workaround = 0;
1419 			break;
1420 		}
1421 	}
1422 
1423 	/* Announce the product name. */
1424 	aprint_normal(", %s", sc->sk_name);
1425 	if (revstr != NULL)
1426 		aprint_normal(" rev. %s", revstr);
1427 	aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1428 
1429 	sc->sk_macs = 1;
1430 
1431 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1432 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1433 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1434 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1435 			sc->sk_macs++;
1436 	}
1437 
1438 	skca.skc_port = SK_PORT_A;
1439 	skca.skc_type = sc->sk_type;
1440 	skca.skc_rev = sc->sk_rev;
1441 	(void)config_found(sc->sk_dev, &skca, mskcprint);
1442 
1443 	if (sc->sk_macs > 1) {
1444 		skca.skc_port = SK_PORT_B;
1445 		skca.skc_type = sc->sk_type;
1446 		skca.skc_rev = sc->sk_rev;
1447 		(void)config_found(sc->sk_dev, &skca, mskcprint);
1448 	}
1449 
1450 	/* Turn on the 'driver is loaded' LED. */
1451 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1452 
1453 	/* skc sysctl setup */
1454 
1455 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1456 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1457 	    SYSCTL_DESCR("mskc per-controller controls"),
1458 	    NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1459 	    CTL_EOL)) != 0) {
1460 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1461 		goto fail_6;
1462 	}
1463 
1464 	sk_nodenum = node->sysctl_num;
1465 
1466 	/* interrupt moderation time in usecs */
1467 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1468 	    CTLFLAG_READWRITE,
1469 	    CTLTYPE_INT, "int_mod",
1470 	    SYSCTL_DESCR("msk interrupt moderation timer"),
1471 	    msk_sysctl_handler, 0, (void *)sc,
1472 	    0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1473 	    CTL_EOL)) != 0) {
1474 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1475 		goto fail_6;
1476 	}
1477 
1478 	if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1479 		aprint_error_dev(self, "couldn't establish power handler\n");
1480 
1481 	return;
1482 
1483  fail_6:
1484 	bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1485 fail_5:
1486 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1487 fail_4:
1488 	bus_dmamem_unmap(sc->sc_dmatag, kva,
1489 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1490 fail_3:
1491 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1492 fail_2:
1493 	pci_intr_disestablish(pc, sc->sk_intrhand);
1494 fail_1:
1495 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1496 }
1497 
1498 int
1499 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1500 {
1501 	struct sk_softc		*sc = sc_if->sk_softc;
1502 	struct msk_tx_desc		*f = NULL;
1503 	u_int32_t		frag, cur;
1504 	int			i;
1505 	struct sk_txmap_entry	*entry;
1506 	bus_dmamap_t		txmap;
1507 
1508 	DPRINTFN(2, ("msk_encap\n"));
1509 
1510 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1511 	if (entry == NULL) {
1512 		DPRINTFN(2, ("msk_encap: no txmap available\n"));
1513 		return (ENOBUFS);
1514 	}
1515 	txmap = entry->dmamap;
1516 
1517 	cur = frag = *txidx;
1518 
1519 #ifdef MSK_DEBUG
1520 	if (mskdebug >= 2)
1521 		msk_dump_mbuf(m_head);
1522 #endif
1523 
1524 	/*
1525 	 * Start packing the mbufs in this chain into
1526 	 * the fragment pointers. Stop when we run out
1527 	 * of fragments or hit the end of the mbuf chain.
1528 	 */
1529 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1530 	    BUS_DMA_NOWAIT)) {
1531 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1532 		return (ENOBUFS);
1533 	}
1534 
1535 	if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1536 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1537 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1538 		return (ENOBUFS);
1539 	}
1540 
1541 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1542 
1543 	/* Sync the DMA map. */
1544 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1545 	    BUS_DMASYNC_PREWRITE);
1546 
1547 	for (i = 0; i < txmap->dm_nsegs; i++) {
1548 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1549 		f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1550 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1551 		f->sk_ctl = 0;
1552 		if (i == 0)
1553 			f->sk_opcode = SK_Y2_TXOPC_PACKET;
1554 		else
1555 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1556 		cur = frag;
1557 		SK_INC(frag, MSK_TX_RING_CNT);
1558 	}
1559 
1560 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1561 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1562 
1563 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1564 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1565 
1566 	/* Sync descriptors before handing to chip */
1567 	MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1568             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1569 
1570 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1571 
1572 	/* Sync first descriptor to hand it off */
1573 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1574 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1575 
1576 	sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1577 
1578 #ifdef MSK_DEBUG
1579 	if (mskdebug >= 2) {
1580 		struct msk_tx_desc *le;
1581 		u_int32_t idx;
1582 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1583 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1584 			msk_dump_txdesc(le, idx);
1585 		}
1586 	}
1587 #endif
1588 
1589 	*txidx = frag;
1590 
1591 	DPRINTFN(2, ("msk_encap: completed successfully\n"));
1592 
1593 	return (0);
1594 }
1595 
1596 void
1597 msk_start(struct ifnet *ifp)
1598 {
1599         struct sk_if_softc	*sc_if = ifp->if_softc;
1600         struct mbuf		*m_head = NULL;
1601         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1602 	int			pkts = 0;
1603 
1604 	DPRINTFN(2, ("msk_start\n"));
1605 
1606 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1607 		IFQ_POLL(&ifp->if_snd, m_head);
1608 		if (m_head == NULL)
1609 			break;
1610 
1611 		/*
1612 		 * Pack the data into the transmit ring. If we
1613 		 * don't have room, set the OACTIVE flag and wait
1614 		 * for the NIC to drain the ring.
1615 		 */
1616 		if (msk_encap(sc_if, m_head, &idx)) {
1617 			ifp->if_flags |= IFF_OACTIVE;
1618 			break;
1619 		}
1620 
1621 		/* now we are committed to transmit the packet */
1622 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1623 		pkts++;
1624 
1625 		/*
1626 		 * If there's a BPF listener, bounce a copy of this frame
1627 		 * to him.
1628 		 */
1629 		bpf_mtap(ifp, m_head);
1630 	}
1631 	if (pkts == 0)
1632 		return;
1633 
1634 	/* Transmit */
1635 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1636 		sc_if->sk_cdata.sk_tx_prod = idx;
1637 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1638 
1639 		/* Set a timeout in case the chip goes out to lunch. */
1640 		ifp->if_timer = 5;
1641 	}
1642 }
1643 
1644 void
1645 msk_watchdog(struct ifnet *ifp)
1646 {
1647 	struct sk_if_softc *sc_if = ifp->if_softc;
1648 	u_int32_t reg;
1649 	int idx;
1650 
1651 	/*
1652 	 * Reclaim first as there is a possibility of losing Tx completion
1653 	 * interrupts.
1654 	 */
1655 	if (sc_if->sk_port == SK_PORT_A)
1656 		reg = SK_STAT_BMU_TXA1_RIDX;
1657 	else
1658 		reg = SK_STAT_BMU_TXA2_RIDX;
1659 
1660 	idx = sk_win_read_2(sc_if->sk_softc, reg);
1661 	if (sc_if->sk_cdata.sk_tx_cons != idx) {
1662 		msk_txeof(sc_if, idx);
1663 		if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1664 			aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1665 
1666 			ifp->if_oerrors++;
1667 
1668 			/* XXX Resets both ports; we shouldn't do that. */
1669 			msk_reset(sc_if->sk_softc);
1670 			msk_init(ifp);
1671 		}
1672 	}
1673 }
1674 
1675 static bool
1676 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1677 {
1678 	struct sk_softc *sc = device_private(dv);
1679 
1680 	DPRINTFN(2, ("mskc_suspend\n"));
1681 
1682 	/* Turn off the 'driver is loaded' LED. */
1683 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1684 
1685 	return true;
1686 }
1687 
1688 static bool
1689 mskc_resume(device_t dv, const pmf_qual_t *qual)
1690 {
1691 	struct sk_softc *sc = device_private(dv);
1692 
1693 	DPRINTFN(2, ("mskc_resume\n"));
1694 
1695 	msk_reset(sc);
1696 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1697 
1698 	return true;
1699 }
1700 
1701 static __inline int
1702 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1703 {
1704 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1705 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1706 	    YU_RXSTAT_JABBER)) != 0 ||
1707 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1708 	    YU_RXSTAT_BYTES(stat) != len)
1709 		return (0);
1710 
1711 	return (1);
1712 }
1713 
1714 void
1715 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1716 {
1717 	struct sk_softc		*sc = sc_if->sk_softc;
1718 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1719 	struct mbuf		*m;
1720 	struct sk_chain		*cur_rx;
1721 	int			cur, total_len = len;
1722 	bus_dmamap_t		dmamap;
1723 
1724 	DPRINTFN(2, ("msk_rxeof\n"));
1725 
1726 	cur = sc_if->sk_cdata.sk_rx_cons;
1727 	SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1728 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1729 
1730 	/* Sync the descriptor */
1731 	MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1732 
1733 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1734 	if (cur_rx->sk_mbuf == NULL)
1735 		return;
1736 
1737 	dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1738 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1739 	    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1740 
1741 	m = cur_rx->sk_mbuf;
1742 	cur_rx->sk_mbuf = NULL;
1743 
1744 	if (total_len < SK_MIN_FRAMELEN ||
1745 	    total_len > ETHER_MAX_LEN_JUMBO ||
1746 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
1747 		ifp->if_ierrors++;
1748 		msk_newbuf(sc_if, cur, m, dmamap);
1749 		return;
1750 	}
1751 
1752 	/*
1753 	 * Try to allocate a new jumbo buffer. If that fails, copy the
1754 	 * packet to mbufs and put the jumbo buffer back in the ring
1755 	 * so it can be re-used. If allocating mbufs fails, then we
1756 	 * have to drop the packet.
1757 	 */
1758 	if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1759 		struct mbuf		*m0;
1760 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1761 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
1762 		msk_newbuf(sc_if, cur, m, dmamap);
1763 		if (m0 == NULL) {
1764 			ifp->if_ierrors++;
1765 			return;
1766 		}
1767 		m_adj(m0, ETHER_ALIGN);
1768 		m = m0;
1769 	} else {
1770 		m_set_rcvif(m, ifp);
1771 		m->m_pkthdr.len = m->m_len = total_len;
1772 	}
1773 
1774 	/* pass it on. */
1775 	if_percpuq_enqueue(ifp->if_percpuq, m);
1776 }
1777 
1778 void
1779 msk_txeof(struct sk_if_softc *sc_if, int idx)
1780 {
1781 	struct sk_softc		*sc = sc_if->sk_softc;
1782 	struct msk_tx_desc	*cur_tx;
1783 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1784 	u_int32_t		sk_ctl;
1785 	struct sk_txmap_entry	*entry;
1786 	int			cons, prog;
1787 
1788 	DPRINTFN(2, ("msk_txeof\n"));
1789 
1790 	/*
1791 	 * Go through our tx ring and free mbufs for those
1792 	 * frames that have been sent.
1793 	 */
1794 	cons = sc_if->sk_cdata.sk_tx_cons;
1795 	prog = 0;
1796 	while (cons != idx) {
1797 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1798 			break;
1799 		prog++;
1800 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1801 
1802 		MSK_CDTXSYNC(sc_if, cons, 1,
1803 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1804 		sk_ctl = cur_tx->sk_ctl;
1805 		MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1806 #ifdef MSK_DEBUG
1807 		if (mskdebug >= 2)
1808 			msk_dump_txdesc(cur_tx, cons);
1809 #endif
1810 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1811 			ifp->if_opackets++;
1812 		if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1813 			entry = sc_if->sk_cdata.sk_tx_map[cons];
1814 
1815 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1816 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1817 
1818 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1819 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1820 					  link);
1821 			sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1822 			m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1823 			sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1824 		}
1825 		sc_if->sk_cdata.sk_tx_cnt--;
1826 		SK_INC(cons, MSK_TX_RING_CNT);
1827 	}
1828 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1829 
1830 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1831 		ifp->if_flags &= ~IFF_OACTIVE;
1832 
1833 	if (prog > 0)
1834 		sc_if->sk_cdata.sk_tx_cons = cons;
1835 }
1836 
1837 void
1838 msk_tick(void *xsc_if)
1839 {
1840 	struct sk_if_softc *sc_if = xsc_if;
1841 	struct mii_data *mii = &sc_if->sk_mii;
1842 	uint16_t gpsr;
1843 	int s;
1844 
1845 	s = splnet();
1846 	gpsr = SK_YU_READ_2(sc_if, YUKON_GPSR);
1847 	if ((gpsr & YU_GPSR_MII_PHY_STC) != 0) {
1848 		SK_YU_WRITE_2(sc_if, YUKON_GPSR, YU_GPSR_MII_PHY_STC);
1849 		mii_tick(mii);
1850 	}
1851 	splx(s);
1852 
1853 	callout_schedule(&sc_if->sk_tick_ch, hz);
1854 }
1855 
1856 void
1857 msk_intr_yukon(struct sk_if_softc *sc_if)
1858 {
1859 	u_int8_t status;
1860 
1861 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1862 	/* RX overrun */
1863 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1864 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1865 		    SK_RFCTL_RX_FIFO_OVER);
1866 	}
1867 	/* TX underrun */
1868 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1869 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1870 		    SK_TFCTL_TX_FIFO_UNDER);
1871 	}
1872 
1873 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1874 }
1875 
1876 int
1877 msk_intr(void *xsc)
1878 {
1879 	struct sk_softc		*sc = xsc;
1880 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1881 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1882 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1883 	int			claimed = 0;
1884 	u_int32_t		status;
1885 	uint32_t		st_status;
1886 	uint16_t		st_len;
1887 	uint8_t			st_opcode, st_link;
1888 	struct msk_status_desc	*cur_st;
1889 
1890 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
1891 	if (status == 0) {
1892 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1893 		return (0);
1894 	}
1895 
1896 	status = CSR_READ_4(sc, SK_ISR);
1897 
1898 	if (sc_if0 != NULL)
1899 		ifp0 = &sc_if0->sk_ethercom.ec_if;
1900 	if (sc_if1 != NULL)
1901 		ifp1 = &sc_if1->sk_ethercom.ec_if;
1902 
1903 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1904 	    (ifp0->if_flags & IFF_RUNNING)) {
1905 		msk_intr_yukon(sc_if0);
1906 	}
1907 
1908 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1909 	    (ifp1->if_flags & IFF_RUNNING)) {
1910 		msk_intr_yukon(sc_if1);
1911 	}
1912 
1913 	for (;;) {
1914 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1915 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
1916 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1917 		st_opcode = cur_st->sk_opcode;
1918 		if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1919 			MSK_CDSTSYNC(sc, sc->sk_status_idx,
1920 			    BUS_DMASYNC_PREREAD);
1921 			break;
1922 		}
1923 		st_status = le32toh(cur_st->sk_status);
1924 		st_len = le16toh(cur_st->sk_len);
1925 		st_link = cur_st->sk_link;
1926 		st_opcode &= ~SK_Y2_STOPC_OWN;
1927 
1928 		switch (st_opcode) {
1929 		case SK_Y2_STOPC_RXSTAT:
1930 			msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1931 			SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1932 			    SK_RXQ1_Y2_PREF_PUTIDX,
1933 			    sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1934 			break;
1935 		case SK_Y2_STOPC_TXSTAT:
1936 			if (sc_if0)
1937 				msk_txeof(sc_if0, st_status
1938 				    & SK_Y2_ST_TXA1_MSKL);
1939 			if (sc_if1)
1940 				msk_txeof(sc_if1,
1941 				    ((st_status & SK_Y2_ST_TXA2_MSKL)
1942 					>> SK_Y2_ST_TXA2_SHIFTL)
1943 				    | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1944 			break;
1945 		default:
1946 			aprint_error("opcode=0x%x\n", st_opcode);
1947 			break;
1948 		}
1949 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1950 	}
1951 
1952 #define MSK_STATUS_RING_OWN_CNT(sc)			\
1953 	(((sc)->sk_status_idx + MSK_STATUS_RING_CNT -	\
1954 	    (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1955 
1956 	while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1957 		cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1958 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1959 		MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1960 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1961 
1962 		SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1963 	}
1964 
1965 	if (status & SK_Y2_IMR_BMU) {
1966 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1967 		claimed = 1;
1968 	}
1969 
1970 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1971 
1972 	if (ifp0 != NULL)
1973 		if_schedule_deferred_start(ifp0);
1974 	if (ifp1 != NULL)
1975 		if_schedule_deferred_start(ifp1);
1976 
1977 	rnd_add_uint32(&sc->rnd_source, status);
1978 
1979 	if (sc->sk_int_mod_pending)
1980 		msk_update_int_mod(sc, 1);
1981 
1982 	return claimed;
1983 }
1984 
1985 void
1986 msk_init_yukon(struct sk_if_softc *sc_if)
1987 {
1988 	u_int32_t		v;
1989 	u_int16_t		reg;
1990 	struct sk_softc		*sc;
1991 	int			i;
1992 
1993 	sc = sc_if->sk_softc;
1994 
1995 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1996 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1997 
1998 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
1999 
2000 	/* GMAC and GPHY Reset */
2001 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2002 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2003 	DELAY(1000);
2004 
2005 	DPRINTFN(6, ("msk_init_yukon: 2\n"));
2006 
2007 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
2008 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2009 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2010 
2011 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2012 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2013 
2014 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
2015 
2016 	/* unused read of the interrupt source register */
2017 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
2018 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2019 
2020 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2021 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2022 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2023 
2024 	/* MIB Counter Clear Mode set */
2025         reg |= YU_PAR_MIB_CLR;
2026 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2027 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2028 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2029 
2030 	/* MIB Counter Clear Mode clear */
2031 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
2032         reg &= ~YU_PAR_MIB_CLR;
2033 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2034 
2035 	/* receive control reg */
2036 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
2037 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2038 
2039 	/* transmit control register */
2040 	SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2041 
2042 	/* transmit flow control register */
2043 	SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2044 
2045 	/* transmit parameter register */
2046 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
2047 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2048 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2049 
2050 	/* serial mode register */
2051 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
2052 	reg = YU_SMR_DATA_BLIND(0x1c) |
2053 	      YU_SMR_MFL_VLAN |
2054 	      YU_SMR_IPG_DATA(0x1e);
2055 
2056 	if (sc->sk_type != SK_YUKON_FE)
2057 		reg |= YU_SMR_MFL_JUMBO;
2058 
2059 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2060 
2061 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
2062 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2063 	/* msk_attach calls me before ether_ifattach so check null */
2064 	if (ifp != NULL && ifp->if_sadl != NULL)
2065 		memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2066 		    sizeof(sc_if->sk_enaddr));
2067 	/* Setup Yukon's address */
2068 	for (i = 0; i < 3; i++) {
2069 		/* Write Source Address 1 (unicast filter) */
2070 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2071 			      sc_if->sk_enaddr[i * 2] |
2072 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2073 	}
2074 
2075 	for (i = 0; i < 3; i++) {
2076 		reg = sk_win_read_2(sc_if->sk_softc,
2077 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2078 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2079 	}
2080 
2081 	/* Set promiscuous mode */
2082 	msk_setpromisc(sc_if);
2083 
2084 	/* Set multicast filter */
2085 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
2086 	msk_setmulti(sc_if);
2087 
2088 	/* enable interrupt mask for counter overflows */
2089 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
2090 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2091 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2092 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2093 
2094 	/* Configure RX MAC FIFO Flush Mask */
2095 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2096 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2097 	    YU_RXSTAT_JABBER;
2098 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2099 
2100 	/* Configure RX MAC FIFO */
2101 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2102 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2103 	    SK_RFCTL_FIFO_FLUSH_ON);
2104 
2105 	/* Increase flush threshould to 64 bytes */
2106 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2107 	    SK_RFCTL_FIFO_THRESHOLD + 1);
2108 
2109 	/* Configure TX MAC FIFO */
2110 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2111 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2112 
2113 #if 1
2114 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2115 #endif
2116 	DPRINTFN(6, ("msk_init_yukon: end\n"));
2117 }
2118 
2119 /*
2120  * Note that to properly initialize any part of the GEnesis chip,
2121  * you first have to take it out of reset mode.
2122  */
2123 int
2124 msk_init(struct ifnet *ifp)
2125 {
2126 	struct sk_if_softc	*sc_if = ifp->if_softc;
2127 	struct sk_softc		*sc = sc_if->sk_softc;
2128 	int			rc = 0, s;
2129 	uint32_t		imr, imtimer_ticks;
2130 
2131 
2132 	DPRINTFN(2, ("msk_init\n"));
2133 
2134 	s = splnet();
2135 
2136 	/* Cancel pending I/O and free all RX/TX buffers. */
2137 	msk_stop(ifp,0);
2138 
2139 	/* Configure I2C registers */
2140 
2141 	/* Configure XMAC(s) */
2142 	msk_init_yukon(sc_if);
2143 	if ((rc = ether_mediachange(ifp)) != 0)
2144 		goto out;
2145 
2146 	/* Configure transmit arbiter(s) */
2147 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2148 #if 0
2149 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2150 #endif
2151 
2152 	/* Configure RAMbuffers */
2153 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2154 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2155 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2156 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2157 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2158 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2159 
2160 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2161 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2162 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2163 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2164 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2165 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2166 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2167 
2168 	/* Configure BMUs */
2169 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2170 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2171 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2172 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600);	/* XXX ??? */
2173 
2174 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2175 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2176 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2177 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600);	/* XXX ??? */
2178 
2179 	/* Make sure the sync transmit queue is disabled. */
2180 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2181 
2182 	/* Init descriptors */
2183 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2184 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2185 		    "memory for rx buffers\n");
2186 		msk_stop(ifp,0);
2187 		splx(s);
2188 		return ENOBUFS;
2189 	}
2190 
2191 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2192 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2193 		    "memory for tx buffers\n");
2194 		msk_stop(ifp,0);
2195 		splx(s);
2196 		return ENOBUFS;
2197 	}
2198 
2199 	/* Set interrupt moderation if changed via sysctl. */
2200 	switch (sc->sk_type) {
2201 	case SK_YUKON_EC:
2202 	case SK_YUKON_EC_U:
2203 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2204 		break;
2205 	case SK_YUKON_FE:
2206 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2207 		break;
2208 	case SK_YUKON_XL:
2209 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2210 		break;
2211 	default:
2212 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2213 	}
2214 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2215 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2216 		sk_win_write_4(sc, SK_IMTIMERINIT,
2217 		    SK_IM_USECS(sc->sk_int_mod));
2218 		aprint_verbose_dev(sc->sk_dev,
2219 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2220 	}
2221 
2222 	/* Initialize prefetch engine. */
2223 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2224 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2225 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2226 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2227 	    MSK_RX_RING_ADDR(sc_if, 0));
2228 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2229 	    (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2230 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2231 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2232 
2233 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2234 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2235 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2236 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2237 	    MSK_TX_RING_ADDR(sc_if, 0));
2238 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2239 	    (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2240 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2241 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2242 
2243 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2244 	    sc_if->sk_cdata.sk_rx_prod);
2245 
2246 	/* Configure interrupt handling */
2247 	if (sc_if->sk_port == SK_PORT_A)
2248 		sc->sk_intrmask |= SK_Y2_INTRS1;
2249 	else
2250 		sc->sk_intrmask |= SK_Y2_INTRS2;
2251 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2252 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2253 
2254 	ifp->if_flags |= IFF_RUNNING;
2255 	ifp->if_flags &= ~IFF_OACTIVE;
2256 
2257 	callout_schedule(&sc_if->sk_tick_ch, hz);
2258 
2259 out:
2260 	splx(s);
2261 	return rc;
2262 }
2263 
2264 void
2265 msk_stop(struct ifnet *ifp, int disable)
2266 {
2267 	struct sk_if_softc	*sc_if = ifp->if_softc;
2268 	struct sk_softc		*sc = sc_if->sk_softc;
2269 	struct sk_txmap_entry	*dma;
2270 	int			i;
2271 
2272 	DPRINTFN(2, ("msk_stop\n"));
2273 
2274 	callout_stop(&sc_if->sk_tick_ch);
2275 
2276 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2277 
2278 	/* Stop transfer of Tx descriptors */
2279 
2280 	/* Stop transfer of Rx descriptors */
2281 
2282 	/* Turn off various components of this interface. */
2283 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2284 	SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2285 	SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2286 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2287 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2288 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2289 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2290 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2291 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2292 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2293 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2294 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2295 
2296 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2297 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2298 
2299 	/* Disable interrupts */
2300 	if (sc_if->sk_port == SK_PORT_A)
2301 		sc->sk_intrmask &= ~SK_Y2_INTRS1;
2302 	else
2303 		sc->sk_intrmask &= ~SK_Y2_INTRS2;
2304 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2305 
2306 	SK_XM_READ_2(sc_if, XM_ISR);
2307 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2308 
2309 	/* Free RX and TX mbufs still in the queues. */
2310 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2311 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2312 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2313 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2314 		}
2315 	}
2316 
2317 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2318 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2319 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2320 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2321 #if 1
2322 			SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2323 			    sc_if->sk_cdata.sk_tx_map[i], link);
2324 			sc_if->sk_cdata.sk_tx_map[i] = 0;
2325 #endif
2326 		}
2327 	}
2328 
2329 #if 1
2330 	while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2331 		SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2332 		bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2333 		free(dma, M_DEVBUF);
2334 	}
2335 #endif
2336 }
2337 
2338 CFATTACH_DECL_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2339 	NULL, NULL);
2340 
2341 CFATTACH_DECL_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2342 	NULL, NULL);
2343 
2344 #ifdef MSK_DEBUG
2345 void
2346 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2347 {
2348 #define DESC_PRINT(X)					\
2349 	if (X)					\
2350 		printf("txdesc[%d]." #X "=%#x\n",	\
2351 		       idx, X);
2352 
2353 	DESC_PRINT(letoh32(le->sk_addr));
2354 	DESC_PRINT(letoh16(le->sk_len));
2355 	DESC_PRINT(le->sk_ctl);
2356 	DESC_PRINT(le->sk_opcode);
2357 #undef DESC_PRINT
2358 }
2359 
2360 void
2361 msk_dump_bytes(const char *data, int len)
2362 {
2363 	int c, i, j;
2364 
2365 	for (i = 0; i < len; i += 16) {
2366 		printf("%08x  ", i);
2367 		c = len - i;
2368 		if (c > 16) c = 16;
2369 
2370 		for (j = 0; j < c; j++) {
2371 			printf("%02x ", data[i + j] & 0xff);
2372 			if ((j & 0xf) == 7 && j > 0)
2373 				printf(" ");
2374 		}
2375 
2376 		for (; j < 16; j++)
2377 			printf("   ");
2378 		printf("  ");
2379 
2380 		for (j = 0; j < c; j++) {
2381 			int ch = data[i + j] & 0xff;
2382 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2383 		}
2384 
2385 		printf("\n");
2386 
2387 		if (c < 16)
2388 			break;
2389 	}
2390 }
2391 
2392 void
2393 msk_dump_mbuf(struct mbuf *m)
2394 {
2395 	int count = m->m_pkthdr.len;
2396 
2397 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2398 
2399 	while (count > 0 && m) {
2400 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2401 		       m, m->m_data, m->m_len);
2402 		msk_dump_bytes(mtod(m, char *), m->m_len);
2403 
2404 		count -= m->m_len;
2405 		m = m->m_next;
2406 	}
2407 }
2408 #endif
2409 
2410 static int
2411 msk_sysctl_handler(SYSCTLFN_ARGS)
2412 {
2413 	int error, t;
2414 	struct sysctlnode node;
2415 	struct sk_softc *sc;
2416 
2417 	node = *rnode;
2418 	sc = node.sysctl_data;
2419 	t = sc->sk_int_mod;
2420 	node.sysctl_data = &t;
2421 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2422 	if (error || newp == NULL)
2423 		return error;
2424 
2425 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2426 		return EINVAL;
2427 
2428 	/* update the softc with sysctl-changed value, and mark
2429 	   for hardware update */
2430 	sc->sk_int_mod = t;
2431 	sc->sk_int_mod_pending = 1;
2432 	return 0;
2433 }
2434 
2435 /*
2436  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2437  * set up in skc_attach()
2438  */
2439 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2440 {
2441 	int rc;
2442 	const struct sysctlnode *node;
2443 
2444 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2445 	    0, CTLTYPE_NODE, "msk",
2446 	    SYSCTL_DESCR("msk interface controls"),
2447 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2448 		goto err;
2449 	}
2450 
2451 	msk_root_num = node->sysctl_num;
2452 	return;
2453 
2454 err:
2455 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2456 }
2457