xref: /netbsd-src/sys/dev/pci/if_msk.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /* $NetBSD: if_msk.c,v 1.118 2021/09/20 11:27:30 jmcneill Exp $ */
2 /*	$OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $	*/
3 
4 /*
5  * Copyright (c) 1997, 1998, 1999, 2000
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.118 2021/09/20 11:27:30 jmcneill Exp $");
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71  #define letoh16 le16toh
72  #define letoh32 le32toh
73 #endif
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78 
79 #include <net/if_media.h>
80 
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcidevs.h>
90 
91 #include <dev/pci/if_skreg.h>
92 #include <dev/pci/if_mskvar.h>
93 
94 static int mskc_probe(device_t, cfdata_t, void *);
95 static void mskc_attach(device_t, device_t, void *);
96 static int mskc_detach(device_t, int);
97 static void mskc_reset(struct sk_softc *);
98 static bool mskc_suspend(device_t, const pmf_qual_t *);
99 static bool mskc_resume(device_t, const pmf_qual_t *);
100 static int msk_probe(device_t, cfdata_t, void *);
101 static void msk_attach(device_t, device_t, void *);
102 static int msk_detach(device_t, int);
103 static void msk_reset(struct sk_if_softc *);
104 static int mskcprint(void *, const char *);
105 static int msk_intr(void *);
106 static void msk_intr_yukon(struct sk_if_softc *);
107 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
108 static void msk_txeof(struct sk_if_softc *);
109 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
110 static void msk_start(struct ifnet *);
111 static int msk_ioctl(struct ifnet *, u_long, void *);
112 static int msk_init(struct ifnet *);
113 static void msk_init_yukon(struct sk_if_softc *);
114 static void msk_stop(struct ifnet *, int);
115 static void msk_watchdog(struct ifnet *);
116 static int msk_newbuf(struct sk_if_softc *);
117 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
118 static void *msk_jalloc(struct sk_if_softc *);
119 static void msk_jfree(struct mbuf *, void *, size_t, void *);
120 static int msk_init_rx_ring(struct sk_if_softc *);
121 static int msk_init_tx_ring(struct sk_if_softc *);
122 static void msk_fill_rx_ring(struct sk_if_softc *);
123 
124 static void msk_update_int_mod(struct sk_softc *, int);
125 
126 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
127 static int msk_miibus_writereg(device_t, int, int, uint16_t);
128 static void msk_miibus_statchg(struct ifnet *);
129 
130 static void msk_setmulti(struct sk_if_softc *);
131 static void msk_setpromisc(struct sk_if_softc *);
132 static void msk_tick(void *);
133 static void msk_fill_rx_tick(void *);
134 
135 /* #define MSK_DEBUG 1 */
136 #ifdef MSK_DEBUG
137 #define DPRINTF(x)	if (mskdebug) printf x
138 #define DPRINTFN(n, x)	if (mskdebug >= (n)) printf x
139 int	mskdebug = MSK_DEBUG;
140 
141 static void msk_dump_txdesc(struct msk_tx_desc *, int);
142 static void msk_dump_mbuf(struct mbuf *);
143 static void msk_dump_bytes(const char *, int);
144 #else
145 #define DPRINTF(x)
146 #define DPRINTFN(n, x)
147 #endif
148 
149 static int msk_sysctl_handler(SYSCTLFN_PROTO);
150 static int msk_root_num;
151 
152 #define MSK_ADDR_LO(x)	((uint64_t) (x) & 0xffffffffUL)
153 #define MSK_ADDR_HI(x)	((uint64_t) (x) >> 32)
154 
155 /* supported device vendors */
156 static const struct device_compatible_entry compat_data[] = {
157 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
158 		PCI_PRODUCT_DLINK_DGE550SX) },
159 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
160 		PCI_PRODUCT_DLINK_DGE550T_B1) },
161 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
162 		PCI_PRODUCT_DLINK_DGE560SX) },
163 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
164 		PCI_PRODUCT_DLINK_DGE560T) },
165 
166 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
167 		PCI_PRODUCT_MARVELL_YUKONII_8021CU) },
168 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
169 		PCI_PRODUCT_MARVELL_YUKONII_8021X) },
170 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
171 		PCI_PRODUCT_MARVELL_YUKONII_8022CU) },
172 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
173 		PCI_PRODUCT_MARVELL_YUKONII_8022X) },
174 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
175 		PCI_PRODUCT_MARVELL_YUKON_8035) },
176 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
177 		PCI_PRODUCT_MARVELL_YUKON_8036) },
178 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
179 		PCI_PRODUCT_MARVELL_YUKON_8038) },
180 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
181 		PCI_PRODUCT_MARVELL_YUKON_8039) },
182 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
183 		PCI_PRODUCT_MARVELL_YUKON_8040) },
184 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
185 		PCI_PRODUCT_MARVELL_YUKON_8040T) },
186 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
187 		PCI_PRODUCT_MARVELL_YUKON_8042) },
188 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
189 		PCI_PRODUCT_MARVELL_YUKON_8048) },
190 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
191 		PCI_PRODUCT_MARVELL_YUKON_8050) },
192 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
193 		PCI_PRODUCT_MARVELL_YUKON_8052) },
194 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
195 		PCI_PRODUCT_MARVELL_YUKON_8053) },
196 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
197 		PCI_PRODUCT_MARVELL_YUKON_8055) },
198 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
199 		PCI_PRODUCT_MARVELL_YUKON_8055_2) },
200 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
201 		PCI_PRODUCT_MARVELL_YUKON_8056) },
202 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
203 		PCI_PRODUCT_MARVELL_YUKON_8057) },
204 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
205 		PCI_PRODUCT_MARVELL_YUKON_8058) },
206 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
207 		PCI_PRODUCT_MARVELL_YUKON_8059) },
208 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
209 		PCI_PRODUCT_MARVELL_YUKONII_8061CU) },
210 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
211 		PCI_PRODUCT_MARVELL_YUKONII_8061X) },
212 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
213 		PCI_PRODUCT_MARVELL_YUKONII_8062CU) },
214 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
215 		PCI_PRODUCT_MARVELL_YUKONII_8062X) },
216 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
217 		PCI_PRODUCT_MARVELL_YUKON_8070) },
218 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
219 		PCI_PRODUCT_MARVELL_YUKON_8071) },
220 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
221 		PCI_PRODUCT_MARVELL_YUKON_8072) },
222 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
223 		PCI_PRODUCT_MARVELL_YUKON_8075) },
224 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
225 		PCI_PRODUCT_MARVELL_YUKON_8079) },
226 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
227 		PCI_PRODUCT_MARVELL_YUKON_C032) },
228 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
229 		PCI_PRODUCT_MARVELL_YUKON_C033) },
230 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
231 		PCI_PRODUCT_MARVELL_YUKON_C034) },
232 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
233 		PCI_PRODUCT_MARVELL_YUKON_C036) },
234 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
235 		PCI_PRODUCT_MARVELL_YUKON_C042) },
236 
237 	{ .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
238 		PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX) },
239 	{ .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
240 		PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21) },
241 
242 	PCI_COMPAT_EOL
243 };
244 
245 static inline uint32_t
246 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
247 {
248 	return CSR_READ_4(sc, reg);
249 }
250 
251 static inline uint16_t
252 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
253 {
254 	return CSR_READ_2(sc, reg);
255 }
256 
257 static inline uint8_t
258 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
259 {
260 	return CSR_READ_1(sc, reg);
261 }
262 
263 static inline void
264 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
265 {
266 	CSR_WRITE_4(sc, reg, x);
267 }
268 
269 static inline void
270 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
271 {
272 	CSR_WRITE_2(sc, reg, x);
273 }
274 
275 static inline void
276 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
277 {
278 	CSR_WRITE_1(sc, reg, x);
279 }
280 
281 static int
282 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
283 {
284 	struct sk_if_softc *sc_if = device_private(dev);
285 	uint16_t data;
286 	int i;
287 
288 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
289 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
290 
291 	for (i = 0; i < SK_TIMEOUT; i++) {
292 		DELAY(1);
293 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
294 		if (data & YU_SMICR_READ_VALID)
295 			break;
296 	}
297 
298 	if (i == SK_TIMEOUT) {
299 		device_printf(sc_if->sk_dev, "phy failed to come ready\n");
300 		return ETIMEDOUT;
301 	}
302 
303 	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
304 
305 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
306 
307 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
308 		phy, reg, *val));
309 
310 	return 0;
311 }
312 
313 static int
314 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
315 {
316 	struct sk_if_softc *sc_if = device_private(dev);
317 	int i;
318 
319 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
320 		     phy, reg, val));
321 
322 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
323 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
324 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
325 
326 	for (i = 0; i < SK_TIMEOUT; i++) {
327 		DELAY(1);
328 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
329 			break;
330 	}
331 
332 	if (i == SK_TIMEOUT) {
333 		device_printf(sc_if->sk_dev, "phy write timed out\n");
334 		return ETIMEDOUT;
335 	}
336 
337 	return 0;
338 }
339 
340 static void
341 msk_miibus_statchg(struct ifnet *ifp)
342 {
343 	struct sk_if_softc *sc_if = ifp->if_softc;
344 	struct mii_data *mii = &sc_if->sk_mii;
345 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
346 	int gpcr;
347 
348 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
349 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
350 
351 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
352 	    sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
353 		/* Set speed. */
354 		gpcr |= YU_GPCR_SPEED_DIS;
355 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
356 		case IFM_1000_SX:
357 		case IFM_1000_LX:
358 		case IFM_1000_CX:
359 		case IFM_1000_T:
360 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
361 			break;
362 		case IFM_100_TX:
363 			gpcr |= YU_GPCR_SPEED;
364 			break;
365 		}
366 
367 		/* Set duplex. */
368 		gpcr |= YU_GPCR_DPLX_DIS;
369 		if ((mii->mii_media_active & IFM_FDX) != 0)
370 			gpcr |= YU_GPCR_DUPLEX;
371 
372 		/* Disable flow control. */
373 		gpcr |= YU_GPCR_FCTL_DIS;
374 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
375 	}
376 
377 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
378 
379 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
380 		     SK_YU_READ_2(sc_if, YUKON_GPCR)));
381 }
382 
383 static void
384 msk_setmulti(struct sk_if_softc *sc_if)
385 {
386 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
387 	uint32_t hashes[2] = { 0, 0 };
388 	int h;
389 	struct ethercom *ec = &sc_if->sk_ethercom;
390 	struct ether_multi *enm;
391 	struct ether_multistep step;
392 	uint16_t reg;
393 
394 	/* First, zot all the existing filters. */
395 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
396 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
397 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
398 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
399 
400 
401 	/* Now program new ones. */
402 	reg = SK_YU_READ_2(sc_if, YUKON_RCR);
403 	reg |= YU_RCR_UFLEN;
404 allmulti:
405 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
406 		if ((ifp->if_flags & IFF_PROMISC) != 0)
407 			reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
409 			hashes[0] = 0xFFFFFFFF;
410 			hashes[1] = 0xFFFFFFFF;
411 		}
412 	} else {
413 		/* First find the tail of the list. */
414 		ETHER_LOCK(ec);
415 		ETHER_FIRST_MULTI(step, ec, enm);
416 		while (enm != NULL) {
417 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
418 				 ETHER_ADDR_LEN)) {
419 				ifp->if_flags |= IFF_ALLMULTI;
420 				ETHER_UNLOCK(ec);
421 				goto allmulti;
422 			}
423 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
424 			    ((1 << SK_HASH_BITS) - 1);
425 			if (h < 32)
426 				hashes[0] |= (1 << h);
427 			else
428 				hashes[1] |= (1 << (h - 32));
429 
430 			ETHER_NEXT_MULTI(step, enm);
431 		}
432 		ETHER_UNLOCK(ec);
433 		reg |= YU_RCR_MUFLEN;
434 	}
435 
436 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
437 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
438 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
439 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
440 	SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
441 }
442 
443 static void
444 msk_setpromisc(struct sk_if_softc *sc_if)
445 {
446 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
447 
448 	if (ifp->if_flags & IFF_PROMISC)
449 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
450 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
451 	else
452 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
453 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
454 }
455 
456 static int
457 msk_init_rx_ring(struct sk_if_softc *sc_if)
458 {
459 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
460 	struct msk_ring_data	*rd = sc_if->sk_rdata;
461 	struct msk_rx_desc	*r;
462 
463 	memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
464 
465 	sc_if->sk_cdata.sk_rx_prod = 0;
466 	sc_if->sk_cdata.sk_rx_cons = 0;
467 	sc_if->sk_cdata.sk_rx_cnt = 0;
468 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
469 
470 	/* Mark the first ring element to initialize the high address. */
471 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
472 	r = &rd->sk_rx_ring[cd->sk_rx_prod];
473 	r->sk_addr = htole32(cd->sk_rx_hiaddr);
474 	r->sk_len = 0;
475 	r->sk_ctl = 0;
476 	r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
477 	MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
478 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
479 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
480 	sc_if->sk_cdata.sk_rx_cnt++;
481 
482 	msk_fill_rx_ring(sc_if);
483 	return 0;
484 }
485 
486 static int
487 msk_init_tx_ring(struct sk_if_softc *sc_if)
488 {
489 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
490 	struct msk_ring_data	*rd = sc_if->sk_rdata;
491 	struct msk_tx_desc	*t;
492 
493 	memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
494 
495 	sc_if->sk_cdata.sk_tx_prod = 0;
496 	sc_if->sk_cdata.sk_tx_cons = 0;
497 	sc_if->sk_cdata.sk_tx_cnt = 0;
498 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
499 
500 	/* Mark the first ring element to initialize the high address. */
501 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
502 	t = &rd->sk_tx_ring[cd->sk_tx_prod];
503 	t->sk_addr = htole32(cd->sk_tx_hiaddr);
504 	t->sk_len = 0;
505 	t->sk_ctl = 0;
506 	t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
507 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
508 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
509 	SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
510 	sc_if->sk_cdata.sk_tx_cnt++;
511 
512 	return 0;
513 }
514 
515 static int
516 msk_newbuf(struct sk_if_softc *sc_if)
517 {
518 	struct sk_softc		*sc = sc_if->sk_softc;
519 	struct mbuf		*m_new = NULL;
520 	struct sk_chain		*c;
521 	struct msk_rx_desc	*r;
522 	void			*buf = NULL;
523 	bus_addr_t		addr;
524 	bus_dmamap_t		rxmap;
525 	size_t			i;
526 	uint32_t		rxidx, frag, cur, hiaddr, total;
527 	uint32_t		entries = 0;
528 	uint8_t			own = 0;
529 
530 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
531 	if (m_new == NULL)
532 		return ENOBUFS;
533 
534 	/* Allocate the jumbo buffer */
535 	buf = msk_jalloc(sc_if);
536 	if (buf == NULL) {
537 		m_freem(m_new);
538 		DPRINTFN(1, ("%s jumbo allocation failed -- packet "
539 		    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
540 		return ENOBUFS;
541 	}
542 
543 	/* Attach the buffer to the mbuf */
544 	m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
545 	MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
546 
547 	m_adj(m_new, ETHER_ALIGN);
548 
549 	rxidx = frag = cur = sc_if->sk_cdata.sk_rx_prod;
550 	rxmap = sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap;
551 
552 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, rxmap, m_new, BUS_DMA_NOWAIT)) {
553 		DPRINTFN(2, ("msk_newbuf: dmamap_load failed\n"));
554 		m_freem(m_new);
555 		return ENOBUFS;
556 	}
557 
558 	/* Count how many rx descriptors needed. */
559 	hiaddr = sc_if->sk_cdata.sk_rx_hiaddr;
560 	for (total = i = 0; i < rxmap->dm_nsegs; i++) {
561 		if (hiaddr != MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr)) {
562 			hiaddr = MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr);
563 			total++;
564 		}
565 		total++;
566 	}
567 
568 	if (total > MSK_RX_RING_CNT - sc_if->sk_cdata.sk_rx_cnt - 1) {
569 		DPRINTFN(2, ("msk_newbuf: too few descriptors free\n"));
570 		bus_dmamap_unload(sc->sc_dmatag, rxmap);
571 		m_freem(m_new);
572 		return ENOBUFS;
573 	}
574 
575 	DPRINTFN(2, ("msk_newbuf: dm_nsegs=%d total desc=%u\n",
576 	    rxmap->dm_nsegs, total));
577 
578 	/* Sync the DMA map. */
579 	bus_dmamap_sync(sc->sc_dmatag, rxmap, 0, rxmap->dm_mapsize,
580 	    BUS_DMASYNC_PREREAD);
581 
582 	for (i = 0; i < rxmap->dm_nsegs; i++) {
583 		addr = rxmap->dm_segs[i].ds_addr;
584 		DPRINTFN(2, ("msk_newbuf: addr %llx\n",
585 		    (unsigned long long)addr));
586 		hiaddr = MSK_ADDR_HI(addr);
587 
588 		if (sc_if->sk_cdata.sk_rx_hiaddr != hiaddr) {
589 			c = &sc_if->sk_cdata.sk_rx_chain[frag];
590 			c->sk_mbuf = NULL;
591 			r = &sc_if->sk_rdata->sk_rx_ring[frag];
592 			r->sk_addr = htole32(hiaddr);
593 			r->sk_len = 0;
594 			r->sk_ctl = 0;
595 			r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own;
596 			own = SK_Y2_RXOPC_OWN;
597 			sc_if->sk_cdata.sk_rx_hiaddr = hiaddr;
598 			MSK_CDRXSYNC(sc_if, frag,
599 			    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
600 			SK_INC(frag, MSK_RX_RING_CNT);
601 			entries++;
602 			DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
603 			    sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
604 		}
605 
606 		c = &sc_if->sk_cdata.sk_rx_chain[frag];
607 		r = &sc_if->sk_rdata->sk_rx_ring[frag];
608 		r->sk_addr = htole32(MSK_ADDR_LO(addr));
609 		r->sk_len = htole16(rxmap->dm_segs[i].ds_len);
610 		r->sk_ctl = 0;
611 		if (i == 0) {
612 			r->sk_opcode = SK_Y2_RXOPC_PACKET | own;
613 		} else
614 			r->sk_opcode = SK_Y2_RXOPC_BUFFER | own;
615 		own = SK_Y2_RXOPC_OWN;
616 		MSK_CDRXSYNC(sc_if, frag,
617 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
618 		cur = frag;
619 		SK_INC(frag, MSK_RX_RING_CNT);
620 		entries++;
621 	}
622 	KASSERTMSG(entries == total, "entries %u total %u", entries, total);
623 
624 	sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap =
625 	    sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap;
626 	sc_if->sk_cdata.sk_rx_chain[cur].sk_mbuf = m_new;
627 	sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap = rxmap;
628 
629 	sc_if->sk_rdata->sk_rx_ring[rxidx].sk_opcode |= SK_Y2_RXOPC_OWN;
630 	MSK_CDRXSYNC(sc_if, rxidx,
631 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
632 
633 	sc_if->sk_cdata.sk_rx_cnt += entries;
634 	sc_if->sk_cdata.sk_rx_prod = frag;
635 
636 	return 0;
637 }
638 
639 /*
640  * Memory management for jumbo frames.
641  */
642 
643 static int
644 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
645 {
646 	struct sk_softc		*sc = sc_if->sk_softc;
647 	char *ptr, *kva;
648 	int		i, state, error;
649 	struct sk_jpool_entry	*entry;
650 
651 	state = error = 0;
652 
653 	/* Grab a big chunk o' storage. */
654 	if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
655 	     &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
656 	     BUS_DMA_NOWAIT)) {
657 		aprint_error(": can't alloc rx buffers");
658 		return ENOBUFS;
659 	}
660 
661 	state = 1;
662 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
663 	    sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
664 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) {
665 		aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
666 		error = ENOBUFS;
667 		goto out;
668 	}
669 
670 	state = 2;
671 	if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
672 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
673 		aprint_error(": can't create dma map");
674 		error = ENOBUFS;
675 		goto out;
676 	}
677 
678 	state = 3;
679 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
680 			    kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
681 		aprint_error(": can't load dma map");
682 		error = ENOBUFS;
683 		goto out;
684 	}
685 
686 	state = 4;
687 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
688 	DPRINTFN(1,("msk_jumbo_buf = %p\n",
689 		(void *)sc_if->sk_cdata.sk_jumbo_buf));
690 
691 	LIST_INIT(&sc_if->sk_jfree_listhead);
692 	LIST_INIT(&sc_if->sk_jinuse_listhead);
693 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
694 
695 	/*
696 	 * Now divide it up into 9K pieces and save the addresses
697 	 * in an array.
698 	 */
699 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
700 	for (i = 0; i < MSK_JSLOTS; i++) {
701 		sc_if->sk_cdata.sk_jslots[i] = ptr;
702 		ptr += SK_JLEN;
703 		entry = malloc(sizeof(struct sk_jpool_entry),
704 		    M_DEVBUF, M_WAITOK);
705 		entry->slot = i;
706 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
707 				 entry, jpool_entries);
708 	}
709 out:
710 	if (error != 0) {
711 		switch (state) {
712 		case 4:
713 			bus_dmamap_unload(sc->sc_dmatag,
714 			    sc_if->sk_cdata.sk_rx_jumbo_map);
715 			/* FALLTHROUGH */
716 		case 3:
717 			bus_dmamap_destroy(sc->sc_dmatag,
718 			    sc_if->sk_cdata.sk_rx_jumbo_map);
719 			/* FALLTHROUGH */
720 		case 2:
721 			bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
722 			/* FALLTHROUGH */
723 		case 1:
724 			bus_dmamem_free(sc->sc_dmatag,
725 			    &sc_if->sk_cdata.sk_jumbo_seg,
726 			    sc_if->sk_cdata.sk_jumbo_nseg);
727 			break;
728 		default:
729 			break;
730 		}
731 	}
732 
733 	return error;
734 }
735 
736 static void
737 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
738 {
739 	struct sk_softc		*sc = sc_if->sk_softc;
740 
741 	bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
742 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
743 	bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
744 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
745 	    sc_if->sk_cdata.sk_jumbo_nseg);
746 }
747 
748 /*
749  * Allocate a jumbo buffer.
750  */
751 static void *
752 msk_jalloc(struct sk_if_softc *sc_if)
753 {
754 	struct sk_jpool_entry	*entry;
755 
756 	mutex_enter(&sc_if->sk_jpool_mtx);
757 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
758 
759 	if (entry == NULL) {
760 		mutex_exit(&sc_if->sk_jpool_mtx);
761 		return NULL;
762 	}
763 
764 	LIST_REMOVE(entry, jpool_entries);
765 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
766 	mutex_exit(&sc_if->sk_jpool_mtx);
767 	return sc_if->sk_cdata.sk_jslots[entry->slot];
768 }
769 
770 /*
771  * Release a jumbo buffer.
772  */
773 static void
774 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
775 {
776 	struct sk_jpool_entry *entry;
777 	struct sk_if_softc *sc;
778 	int i;
779 
780 	/* Extract the softc struct pointer. */
781 	sc = (struct sk_if_softc *)arg;
782 
783 	if (sc == NULL)
784 		panic("msk_jfree: can't find softc pointer!");
785 
786 	/* calculate the slot this buffer belongs to */
787 	i = ((vaddr_t)buf
788 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
789 
790 	if ((i < 0) || (i >= MSK_JSLOTS))
791 		panic("msk_jfree: asked to free buffer that we don't manage!");
792 
793 	mutex_enter(&sc->sk_jpool_mtx);
794 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
795 	if (entry == NULL)
796 		panic("msk_jfree: buffer not in use!");
797 	entry->slot = i;
798 	LIST_REMOVE(entry, jpool_entries);
799 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
800 	mutex_exit(&sc->sk_jpool_mtx);
801 
802 	if (__predict_true(m != NULL))
803 		pool_cache_put(mb_cache, m);
804 
805 	/* Now that we know we have a free RX buffer, refill if running out */
806 	if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
807 	    && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
808 		callout_schedule(&sc->sk_tick_rx, 0);
809 }
810 
811 static int
812 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
813 {
814 	struct sk_if_softc *sc = ifp->if_softc;
815 	int s, error;
816 
817 	s = splnet();
818 
819 	DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
820 	switch (cmd) {
821 	case SIOCSIFFLAGS:
822 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
823 			break;
824 
825 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
826 		case IFF_RUNNING:
827 			msk_stop(ifp, 1);
828 			break;
829 		case IFF_UP:
830 			msk_init(ifp);
831 			break;
832 		case IFF_UP | IFF_RUNNING:
833 			if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
834 				msk_setpromisc(sc);
835 				msk_setmulti(sc);
836 			} else
837 				msk_init(ifp);
838 			break;
839 		}
840 		sc->sk_if_flags = ifp->if_flags;
841 		break;
842 	default:
843 		error = ether_ioctl(ifp, cmd, data);
844 		if (error == ENETRESET) {
845 			error = 0;
846 			if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
847 				;
848 			else if (ifp->if_flags & IFF_RUNNING) {
849 				/*
850 				 * Multicast list has changed; set the hardware
851 				 * filter accordingly.
852 				 */
853 				msk_setmulti(sc);
854 			}
855 		}
856 		break;
857 	}
858 
859 	splx(s);
860 	return error;
861 }
862 
863 static void
864 msk_update_int_mod(struct sk_softc *sc, int verbose)
865 {
866 	uint32_t imtimer_ticks;
867 
868 	/*
869  	 * Configure interrupt moderation. The moderation timer
870 	 * defers interrupts specified in the interrupt moderation
871 	 * timer mask based on the timeout specified in the interrupt
872 	 * moderation timer init register. Each bit in the timer
873 	 * register represents one tick, so to specify a timeout in
874 	 * microseconds, we have to multiply by the correct number of
875 	 * ticks-per-microsecond.
876 	 */
877 	switch (sc->sk_type) {
878 	case SK_YUKON_EC:
879 	case SK_YUKON_EC_U:
880 	case SK_YUKON_EX:
881 	case SK_YUKON_SUPR:
882 	case SK_YUKON_ULTRA2:
883 	case SK_YUKON_OPTIMA:
884 	case SK_YUKON_PRM:
885 	case SK_YUKON_OPTIMA2:
886 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
887 		break;
888 	case SK_YUKON_FE:
889 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
890 		break;
891 	case SK_YUKON_FE_P:
892 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
893 		break;
894 	case SK_YUKON_XL:
895 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
896 		break;
897 	default:
898 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
899 	}
900 	if (verbose)
901 		aprint_verbose_dev(sc->sk_dev,
902 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
903 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
904 	sk_win_write_4(sc, SK_IMMR, 0); /* moderate no interrupts */
905 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
906 	sc->sk_int_mod_pending = 0;
907 }
908 
909 /*
910  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
911  * IDs against our list and return a device name if we find a match.
912  */
913 static int
914 mskc_probe(device_t parent, cfdata_t match, void *aux)
915 {
916 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
917 
918 	return pci_compatible_match(pa, compat_data);
919 }
920 
921 /*
922  * Force the GEnesis into reset, then bring it out of reset.
923  */
924 static void
925 mskc_reset(struct sk_softc *sc)
926 {
927 	uint32_t imtimer_ticks, reg1;
928 	uint16_t status;
929 	int reg;
930 
931 	DPRINTFN(2, ("mskc_reset\n"));
932 
933 	/* Disable ASF */
934 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
935 		CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
936 		status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
937 		/* Clear AHB bridge & microcontroller reset. */
938 		status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
939 		    SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
940 		/* Clear ASF microcontroller state. */
941 		status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
942 		status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
943 		CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
944 		CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
945 	} else
946 		CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
947 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
948 
949 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
950 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
951 
952 	DELAY(1000);
953 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
954 	DELAY(2);
955 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
956 	sk_win_write_1(sc, SK_TESTCTL1, 2);
957 
958 	if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
959 	    sc->sk_type >= SK_YUKON_FE_P) {
960 		uint32_t our;
961 
962 		CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
963 
964 		/* enable all clocks. */
965 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
966 		our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
967 		our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
968 			SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
969 			SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
970 			SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
971 		/* Set all bits to 0 except bits 15..12 */
972 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
973 		/* Set to default value */
974 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
975 
976 		/*
977 		 * Disable status race, workaround for Yukon EC Ultra &
978 		 * Yukon EX.
979 		 */
980 		reg1 = sk_win_read_4(sc, SK_GPIO);
981 		reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
982 		sk_win_write_4(sc, SK_GPIO, reg1);
983 		sk_win_read_4(sc, SK_GPIO);
984 	}
985 
986 	/* release PHY from PowerDown/Coma mode. */
987 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
988 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
989 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
990 	else
991 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
992 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
993 
994 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
995 		sk_win_write_1(sc, SK_Y2_CLKGATE,
996 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
997 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
998 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
999 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
1000 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
1001 	else
1002 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
1003 
1004 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1005 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
1006 	DELAY(1000);
1007 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1008 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
1009 
1010 	if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
1011 		CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
1012 		    SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
1013 	}
1014 
1015 	sk_win_write_1(sc, SK_TESTCTL1, 1);
1016 
1017 	DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
1018 	DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
1019 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1020 
1021 	/* Clear I2C IRQ noise */
1022 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
1023 
1024 	/* Disable hardware timer */
1025 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
1026 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
1027 
1028 	/* Disable descriptor polling */
1029 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
1030 
1031 	/* Disable time stamps */
1032 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
1033 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
1034 
1035 	/* Enable RAM interface */
1036 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1037 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
1038 		sk_win_write_1(sc, reg, 36);
1039 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
1040 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
1041 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
1042 
1043 	/*
1044 	 * Configure interrupt moderation. The moderation timer
1045 	 * defers interrupts specified in the interrupt moderation
1046 	 * timer mask based on the timeout specified in the interrupt
1047 	 * moderation timer init register. Each bit in the timer
1048 	 * register represents one tick, so to specify a timeout in
1049 	 * microseconds, we have to multiply by the correct number of
1050 	 * ticks-per-microsecond.
1051 	 */
1052 	switch (sc->sk_type) {
1053 	case SK_YUKON_EC:
1054 	case SK_YUKON_EC_U:
1055 	case SK_YUKON_EX:
1056 	case SK_YUKON_SUPR:
1057 	case SK_YUKON_ULTRA2:
1058 	case SK_YUKON_OPTIMA:
1059 	case SK_YUKON_PRM:
1060 	case SK_YUKON_OPTIMA2:
1061 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1062 		break;
1063 	case SK_YUKON_FE:
1064 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1065 		break;
1066 	case SK_YUKON_FE_P:
1067 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1068 		break;
1069 	case SK_YUKON_XL:
1070 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1071 		break;
1072 	default:
1073 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1074 		break;
1075 	}
1076 
1077 	/* Reset status ring. */
1078 	memset(sc->sk_status_ring, 0,
1079 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1080 	bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1081 	    sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1082 	sc->sk_status_idx = 0;
1083 
1084 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1085 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1086 
1087 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1088 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1089 	    MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1090 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1091 	    MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1092 	if (sc->sk_type == SK_YUKON_EC &&
1093 	    sc->sk_rev == SK_YUKON_EC_REV_A1) {
1094 		/* WA for dev. #4.3 */
1095 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1096 		    SK_STAT_BMU_TXTHIDX_MSK);
1097 		/* WA for dev. #4.18 */
1098 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1099 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1100 	} else {
1101 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1102 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1103 		if (sc->sk_type == SK_YUKON_XL)
1104 			sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1105 		else
1106 			sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1107 		sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1108 	}
1109 
1110 #if 0
1111 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1112 #endif
1113 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1114 
1115 	/* Enable status unit. */
1116 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1117 
1118 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1119 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1120 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1121 
1122 	msk_update_int_mod(sc, 0);
1123 }
1124 
1125 static int
1126 msk_probe(device_t parent, cfdata_t match, void *aux)
1127 {
1128 	struct skc_attach_args *sa = aux;
1129 
1130 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1131 		return 0;
1132 
1133 	switch (sa->skc_type) {
1134 	case SK_YUKON_XL:
1135 	case SK_YUKON_EC_U:
1136 	case SK_YUKON_EX:
1137 	case SK_YUKON_EC:
1138 	case SK_YUKON_FE:
1139 	case SK_YUKON_FE_P:
1140 	case SK_YUKON_SUPR:
1141 	case SK_YUKON_ULTRA2:
1142 	case SK_YUKON_OPTIMA:
1143 	case SK_YUKON_PRM:
1144 	case SK_YUKON_OPTIMA2:
1145 		return 1;
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 static void
1152 msk_reset(struct sk_if_softc *sc_if)
1153 {
1154 	/* GMAC and GPHY Reset */
1155 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1156 	SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1157 	DELAY(1000);
1158 	SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1159 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1160 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1161 }
1162 
1163 static bool
1164 msk_resume(device_t dv, const pmf_qual_t *qual)
1165 {
1166 	struct sk_if_softc *sc_if = device_private(dv);
1167 
1168 	msk_init_yukon(sc_if);
1169 	return true;
1170 }
1171 
1172 /*
1173  * Each XMAC chip is attached as a separate logical IP interface.
1174  * Single port cards will have only one logical interface of course.
1175  */
1176 static void
1177 msk_attach(device_t parent, device_t self, void *aux)
1178 {
1179 	struct sk_if_softc *sc_if = device_private(self);
1180 	struct sk_softc *sc = device_private(parent);
1181 	struct skc_attach_args *sa = aux;
1182 	bus_dmamap_t dmamap;
1183 	struct ifnet *ifp;
1184 	struct mii_data * const mii = &sc_if->sk_mii;
1185 	void *kva;
1186 	int i;
1187 	uint32_t chunk;
1188 	int mii_flags;
1189 
1190 	sc_if->sk_dev = self;
1191 	sc_if->sk_port = sa->skc_port;
1192 	sc_if->sk_softc = sc;
1193 	sc->sk_if[sa->skc_port] = sc_if;
1194 
1195 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1196 
1197 	/*
1198 	 * Get station address for this interface. Note that
1199 	 * dual port cards actually come with three station
1200 	 * addresses: one for each port, plus an extra. The
1201 	 * extra one is used by the SysKonnect driver software
1202 	 * as a 'virtual' station address for when both ports
1203 	 * are operating in failover mode. Currently we don't
1204 	 * use this extra address.
1205 	 */
1206 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1207 		sc_if->sk_enaddr[i] =
1208 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1209 
1210 	aprint_normal(": Ethernet address %s\n",
1211 	    ether_sprintf(sc_if->sk_enaddr));
1212 
1213 	/*
1214 	 * Set up RAM buffer addresses. The Yukon2 has a small amount
1215 	 * of SRAM on it, somewhere between 4K and 48K.  We need to
1216 	 * divide this up between the transmitter and receiver.  We
1217 	 * give the receiver 2/3 of the memory (rounded down), and the
1218 	 * transmitter whatever remains.
1219 	 */
1220 	if (sc->sk_ramsize) {
1221 		chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1222 		sc_if->sk_rx_ramstart = 0;
1223 		sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1224 		chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1225 		sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1226 		sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1227 
1228 		DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1229 			     "           tx_ramstart=%#x tx_ramend=%#x\n",
1230 			     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1231 			     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1232 	}
1233 
1234 	/* Allocate the descriptor queues. */
1235 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1236 	    PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1237 	    BUS_DMA_NOWAIT)) {
1238 		aprint_error(": can't alloc rx buffers\n");
1239 		goto fail;
1240 	}
1241 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1242 	    sc_if->sk_ring_nseg,
1243 	    sizeof(struct msk_ring_data), &kva,
1244 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) {
1245 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1246 		       sizeof(struct msk_ring_data));
1247 		goto fail_1;
1248 	}
1249 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1250 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1251 	    &sc_if->sk_ring_map)) {
1252 		aprint_error(": can't create dma map\n");
1253 		goto fail_2;
1254 	}
1255 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1256 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1257 		aprint_error(": can't load dma map\n");
1258 		goto fail_3;
1259 	}
1260 
1261 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1262 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1263 
1264 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1265 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1266 			aprint_error_dev(sc_if->sk_dev,
1267 			    "Can't create TX dmamap\n");
1268 			goto fail_3;
1269 		}
1270 
1271 		sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap = dmamap;
1272 	}
1273 
1274 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
1275 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1276 
1277 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN,
1278 		    howmany(SK_JLEN + 1, NBPG),
1279 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1280 			aprint_error_dev(sc_if->sk_dev,
1281 			    "Can't create RX dmamap\n");
1282 			goto fail_3;
1283 		}
1284 
1285 		sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap = dmamap;
1286 	}
1287 
1288 	sc_if->sk_rdata = (struct msk_ring_data *)kva;
1289 	memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1290 
1291 	if (sc->sk_type != SK_YUKON_FE &&
1292 	    sc->sk_type != SK_YUKON_FE_P)
1293 		sc_if->sk_pktlen = SK_JLEN;
1294 	else
1295 		sc_if->sk_pktlen = MCLBYTES;
1296 
1297 	/* Try to allocate memory for jumbo buffers. */
1298 	if (msk_alloc_jumbo_mem(sc_if)) {
1299 		aprint_error(": jumbo buffer allocation failed\n");
1300 		goto fail_3;
1301 	}
1302 
1303 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1304 	if (sc->sk_type != SK_YUKON_FE &&
1305 	    sc->sk_type != SK_YUKON_FE_P)
1306 		sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1307 
1308 	ifp = &sc_if->sk_ethercom.ec_if;
1309 	ifp->if_softc = sc_if;
1310 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1311 	ifp->if_ioctl = msk_ioctl;
1312 	ifp->if_start = msk_start;
1313 	ifp->if_stop = msk_stop;
1314 	ifp->if_init = msk_init;
1315 	ifp->if_watchdog = msk_watchdog;
1316 	ifp->if_baudrate = 1000000000;
1317 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1318 	IFQ_SET_READY(&ifp->if_snd);
1319 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1320 
1321 	msk_reset(sc_if);
1322 
1323 	/*
1324 	 * Do miibus setup.
1325 	 */
1326 	DPRINTFN(2, ("msk_attach: 1\n"));
1327 
1328 	mii->mii_ifp = ifp;
1329 	mii->mii_readreg = msk_miibus_readreg;
1330 	mii->mii_writereg = msk_miibus_writereg;
1331 	mii->mii_statchg = msk_miibus_statchg;
1332 
1333 	sc_if->sk_ethercom.ec_mii = mii;
1334 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1335 	mii_flags = MIIF_DOPAUSE;
1336 	if (sc->sk_fibertype)
1337 		mii_flags |= MIIF_HAVEFIBER;
1338 	mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1339 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
1340 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1341 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1342 			    0, NULL);
1343 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1344 	} else
1345 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1346 
1347 	callout_init(&sc_if->sk_tick_ch, 0);
1348 	callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1349 	callout_schedule(&sc_if->sk_tick_ch, hz);
1350 
1351 	callout_init(&sc_if->sk_tick_rx, 0);
1352 	callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1353 
1354 	/*
1355 	 * Call MI attach routines.
1356 	 */
1357 	if_attach(ifp);
1358 	if_deferred_start_init(ifp, NULL);
1359 	ether_ifattach(ifp, sc_if->sk_enaddr);
1360 
1361 	if (pmf_device_register(self, NULL, msk_resume))
1362 		pmf_class_network_register(self, ifp);
1363 	else
1364 		aprint_error_dev(self, "couldn't establish power handler\n");
1365 
1366 	if (sc->rnd_attached++ == 0) {
1367 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1368 			RND_TYPE_NET, RND_FLAG_DEFAULT);
1369 	}
1370 
1371 	DPRINTFN(2, ("msk_attach: end\n"));
1372 	return;
1373 
1374 fail_3:
1375 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1376 fail_2:
1377 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1378 fail_1:
1379 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1380 fail:
1381 	sc->sk_if[sa->skc_port] = NULL;
1382 }
1383 
1384 static int
1385 msk_detach(device_t self, int flags)
1386 {
1387 	struct sk_if_softc *sc_if = device_private(self);
1388 	struct sk_softc *sc = sc_if->sk_softc;
1389 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1390 	int i;
1391 
1392 	if (sc->sk_if[sc_if->sk_port] == NULL)
1393 		return 0;
1394 
1395 	msk_stop(ifp, 1);
1396 
1397 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1398 		bus_dmamap_destroy(sc->sc_dmatag,
1399 		    sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap);
1400 	}
1401 
1402 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
1403 		bus_dmamap_destroy(sc->sc_dmatag,
1404 		    sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap);
1405 	}
1406 
1407 	if (--sc->rnd_attached == 0)
1408 		rnd_detach_source(&sc->rnd_source);
1409 
1410 	callout_halt(&sc_if->sk_tick_ch, NULL);
1411 	callout_destroy(&sc_if->sk_tick_ch);
1412 
1413 	callout_halt(&sc_if->sk_tick_rx, NULL);
1414 	callout_destroy(&sc_if->sk_tick_rx);
1415 
1416 	/* Detach any PHYs we might have. */
1417 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1418 		mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1419 
1420 	pmf_device_deregister(self);
1421 
1422 	ether_ifdetach(ifp);
1423 	if_detach(ifp);
1424 
1425 	/* Delete any remaining media. */
1426 	ifmedia_fini(&sc_if->sk_mii.mii_media);
1427 
1428 	msk_free_jumbo_mem(sc_if);
1429 
1430 	bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1431 	    sizeof(struct msk_ring_data));
1432 	bus_dmamem_free(sc->sc_dmatag,
1433 	    &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1434 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1435 	sc->sk_if[sc_if->sk_port] = NULL;
1436 
1437 	return 0;
1438 }
1439 
1440 static int
1441 mskcprint(void *aux, const char *pnp)
1442 {
1443 	struct skc_attach_args *sa = aux;
1444 
1445 	if (pnp)
1446 		aprint_normal("msk port %c at %s",
1447 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1448 	else
1449 		aprint_normal(" port %c",
1450 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1451 	return UNCONF;
1452 }
1453 
1454 /*
1455  * Attach the interface. Allocate softc structures, do ifmedia
1456  * setup and ethernet/BPF attach.
1457  */
1458 static void
1459 mskc_attach(device_t parent, device_t self, void *aux)
1460 {
1461 	struct sk_softc *sc = device_private(self);
1462 	struct pci_attach_args *pa = aux;
1463 	struct skc_attach_args skca;
1464 	pci_chipset_tag_t pc = pa->pa_pc;
1465 	pcireg_t command, memtype;
1466 	const char *intrstr = NULL;
1467 	int rc, sk_nodenum;
1468 	uint8_t hw, pmd;
1469 	const char *revstr = NULL;
1470 	const struct sysctlnode *node;
1471 	void *kva;
1472 	char intrbuf[PCI_INTRSTR_LEN];
1473 
1474 	DPRINTFN(2, ("begin mskc_attach\n"));
1475 
1476 	sc->sk_dev = self;
1477 	/*
1478 	 * Handle power management nonsense.
1479 	 */
1480 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1481 
1482 	if (command == 0x01) {
1483 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1484 		if (command & SK_PSTATE_MASK) {
1485 			uint32_t		iobase, membase, irq;
1486 
1487 			/* Save important PCI config data. */
1488 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1489 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1490 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1491 
1492 			/* Reset the power state. */
1493 			aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1494 			    "mode -- setting to D0\n",
1495 			    command & SK_PSTATE_MASK);
1496 			command &= 0xFFFFFFFC;
1497 			pci_conf_write(pc, pa->pa_tag,
1498 			    SK_PCI_PWRMGMTCTRL, command);
1499 
1500 			/* Restore PCI config data. */
1501 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1502 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1503 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1504 		}
1505 	}
1506 
1507 	/*
1508 	 * Map control/status registers.
1509 	 */
1510 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1511 	if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1512 	    &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1513 		aprint_error(": can't map mem space\n");
1514 		return;
1515 	}
1516 
1517 	if (pci_dma64_available(pa))
1518 		sc->sc_dmatag = pa->pa_dmat64;
1519 	else
1520 		sc->sc_dmatag = pa->pa_dmat;
1521 
1522 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1523 	command |= PCI_COMMAND_MASTER_ENABLE;
1524 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1525 
1526 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1527 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1528 
1529 	/* bail out here if chip is not recognized */
1530 	if (!(SK_IS_YUKON2(sc))) {
1531 		aprint_error(": unknown chip type: %d\n", sc->sk_type);
1532 		goto fail_1;
1533 	}
1534 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1535 
1536 	/* Allocate interrupt */
1537 	if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1538 		aprint_error(": couldn't map interrupt\n");
1539 		goto fail_1;
1540 	}
1541 
1542 	intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1543 	sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1544 	    msk_intr, sc, device_xname(sc->sk_dev));
1545 	if (sc->sk_intrhand == NULL) {
1546 		aprint_error(": couldn't establish interrupt");
1547 		if (intrstr != NULL)
1548 			aprint_error(" at %s", intrstr);
1549 		aprint_error("\n");
1550 		goto fail_1;
1551 	}
1552 	sc->sk_pc = pc;
1553 
1554 	if (bus_dmamem_alloc(sc->sc_dmatag,
1555 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1556 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1557 	    0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1558 		aprint_error(": can't alloc status buffers\n");
1559 		goto fail_2;
1560 	}
1561 
1562 	if (bus_dmamem_map(sc->sc_dmatag,
1563 	    &sc->sk_status_seg, sc->sk_status_nseg,
1564 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1565 	    &kva, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) {
1566 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1567 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1568 		goto fail_3;
1569 	}
1570 	if (bus_dmamap_create(sc->sc_dmatag,
1571 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1572 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1573 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1574 		aprint_error(": can't create dma map\n");
1575 		goto fail_4;
1576 	}
1577 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1578 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1579 	    NULL, BUS_DMA_NOWAIT)) {
1580 		aprint_error(": can't load dma map\n");
1581 		goto fail_5;
1582 	}
1583 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1584 
1585 	sc->sk_int_mod = SK_IM_DEFAULT;
1586 	sc->sk_int_mod_pending = 0;
1587 
1588 	/* Reset the adapter. */
1589 	mskc_reset(sc);
1590 
1591 	sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1592 	DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1593 
1594 	pmd = sk_win_read_1(sc, SK_PMDTYPE);
1595 	if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1596 		sc->sk_fibertype = 1;
1597 
1598 	switch (sc->sk_type) {
1599 	case SK_YUKON_XL:
1600 		sc->sk_name = "Yukon-2 XL";
1601 		break;
1602 	case SK_YUKON_EC_U:
1603 		sc->sk_name = "Yukon-2 EC Ultra";
1604 		break;
1605 	case SK_YUKON_EX:
1606 		sc->sk_name = "Yukon-2 Extreme";
1607 		break;
1608 	case SK_YUKON_EC:
1609 		sc->sk_name = "Yukon-2 EC";
1610 		break;
1611 	case SK_YUKON_FE:
1612 		sc->sk_name = "Yukon-2 FE";
1613 		break;
1614 	case SK_YUKON_FE_P:
1615 		sc->sk_name = "Yukon-2 FE+";
1616 		break;
1617 	case SK_YUKON_SUPR:
1618 		sc->sk_name = "Yukon-2 Supreme";
1619 		break;
1620 	case SK_YUKON_ULTRA2:
1621 		sc->sk_name = "Yukon-2 Ultra 2";
1622 		break;
1623 	case SK_YUKON_OPTIMA:
1624 		sc->sk_name = "Yukon-2 Optima";
1625 		break;
1626 	case SK_YUKON_PRM:
1627 		sc->sk_name = "Yukon-2 Optima Prime";
1628 		break;
1629 	case SK_YUKON_OPTIMA2:
1630 		sc->sk_name = "Yukon-2 Optima 2";
1631 		break;
1632 	default:
1633 		sc->sk_name = "Yukon (Unknown)";
1634 	}
1635 
1636 	if (sc->sk_type == SK_YUKON_XL) {
1637 		switch (sc->sk_rev) {
1638 		case SK_YUKON_XL_REV_A0:
1639 			revstr = "A0";
1640 			break;
1641 		case SK_YUKON_XL_REV_A1:
1642 			revstr = "A1";
1643 			break;
1644 		case SK_YUKON_XL_REV_A2:
1645 			revstr = "A2";
1646 			break;
1647 		case SK_YUKON_XL_REV_A3:
1648 			revstr = "A3";
1649 			break;
1650 		default:
1651 			break;
1652 		}
1653 	}
1654 
1655 	if (sc->sk_type == SK_YUKON_EC) {
1656 		switch (sc->sk_rev) {
1657 		case SK_YUKON_EC_REV_A1:
1658 			revstr = "A1";
1659 			break;
1660 		case SK_YUKON_EC_REV_A2:
1661 			revstr = "A2";
1662 			break;
1663 		case SK_YUKON_EC_REV_A3:
1664 			revstr = "A3";
1665 			break;
1666 		default:
1667 			break;
1668 		}
1669 	}
1670 
1671 	if (sc->sk_type == SK_YUKON_FE) {
1672 		switch (sc->sk_rev) {
1673 		case SK_YUKON_FE_REV_A1:
1674 			revstr = "A1";
1675 			break;
1676 		case SK_YUKON_FE_REV_A2:
1677 			revstr = "A2";
1678 			break;
1679 		default:
1680 			break;
1681 		}
1682 	}
1683 
1684 	if (sc->sk_type == SK_YUKON_EC_U) {
1685 		switch (sc->sk_rev) {
1686 		case SK_YUKON_EC_U_REV_A0:
1687 			revstr = "A0";
1688 			break;
1689 		case SK_YUKON_EC_U_REV_A1:
1690 			revstr = "A1";
1691 			break;
1692 		case SK_YUKON_EC_U_REV_B0:
1693 			revstr = "B0";
1694 			break;
1695 		case SK_YUKON_EC_U_REV_B1:
1696 			revstr = "B1";
1697 			break;
1698 		default:
1699 			break;
1700 		}
1701 	}
1702 
1703 	if (sc->sk_type == SK_YUKON_FE) {
1704 		switch (sc->sk_rev) {
1705 		case SK_YUKON_FE_REV_A1:
1706 			revstr = "A1";
1707 			break;
1708 		case SK_YUKON_FE_REV_A2:
1709 			revstr = "A2";
1710 			break;
1711 		default:
1712 			;
1713 		}
1714 	}
1715 
1716 	if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1717 		revstr = "A0";
1718 
1719 	if (sc->sk_type == SK_YUKON_EX) {
1720 		switch (sc->sk_rev) {
1721 		case SK_YUKON_EX_REV_A0:
1722 			revstr = "A0";
1723 			break;
1724 		case SK_YUKON_EX_REV_B0:
1725 			revstr = "B0";
1726 			break;
1727 		default:
1728 			;
1729 		}
1730 	}
1731 
1732 	if (sc->sk_type == SK_YUKON_SUPR) {
1733 		switch (sc->sk_rev) {
1734 		case SK_YUKON_SUPR_REV_A0:
1735 			revstr = "A0";
1736 			break;
1737 		case SK_YUKON_SUPR_REV_B0:
1738 			revstr = "B0";
1739 			break;
1740 		case SK_YUKON_SUPR_REV_B1:
1741 			revstr = "B1";
1742 			break;
1743 		default:
1744 			;
1745 		}
1746 	}
1747 
1748 	if (sc->sk_type == SK_YUKON_PRM) {
1749 		switch (sc->sk_rev) {
1750 		case SK_YUKON_PRM_REV_Z1:
1751 			revstr = "Z1";
1752 			break;
1753 		case SK_YUKON_PRM_REV_A0:
1754 			revstr = "A0";
1755 			break;
1756 		default:
1757 			;
1758 		}
1759 	}
1760 
1761 	/* Announce the product name. */
1762 	aprint_normal(", %s", sc->sk_name);
1763 	if (revstr != NULL)
1764 		aprint_normal(" rev. %s", revstr);
1765 	aprint_normal(" (0x%x)\n", sc->sk_rev);
1766 
1767 	aprint_normal_dev(sc->sk_dev, "interrupting at %s\n", intrstr);
1768 
1769 	sc->sk_macs = 1;
1770 
1771 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1772 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1773 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1774 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1775 			sc->sk_macs++;
1776 	}
1777 
1778 	skca.skc_port = SK_PORT_A;
1779 	skca.skc_type = sc->sk_type;
1780 	skca.skc_rev = sc->sk_rev;
1781 	(void)config_found(sc->sk_dev, &skca, mskcprint, CFARGS_NONE);
1782 
1783 	if (sc->sk_macs > 1) {
1784 		skca.skc_port = SK_PORT_B;
1785 		skca.skc_type = sc->sk_type;
1786 		skca.skc_rev = sc->sk_rev;
1787 		(void)config_found(sc->sk_dev, &skca, mskcprint, CFARGS_NONE);
1788 	}
1789 
1790 	/* Turn on the 'driver is loaded' LED. */
1791 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1792 
1793 	/* skc sysctl setup */
1794 
1795 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1796 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1797 	    SYSCTL_DESCR("mskc per-controller controls"),
1798 	    NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1799 	    CTL_EOL)) != 0) {
1800 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1801 		goto fail_6;
1802 	}
1803 
1804 	sk_nodenum = node->sysctl_num;
1805 
1806 	/* interrupt moderation time in usecs */
1807 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1808 	    CTLFLAG_READWRITE,
1809 	    CTLTYPE_INT, "int_mod",
1810 	    SYSCTL_DESCR("msk interrupt moderation timer"),
1811 	    msk_sysctl_handler, 0, (void *)sc,
1812 	    0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1813 	    CTL_EOL)) != 0) {
1814 		aprint_normal_dev(sc->sk_dev,
1815 		    "couldn't create int_mod sysctl node\n");
1816 		goto fail_6;
1817 	}
1818 
1819 	if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1820 		aprint_error_dev(self, "couldn't establish power handler\n");
1821 
1822 	return;
1823 
1824 fail_6:
1825 	bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1826 fail_4:
1827 	bus_dmamem_unmap(sc->sc_dmatag, kva,
1828 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1829 fail_3:
1830 	bus_dmamem_free(sc->sc_dmatag,
1831 	    &sc->sk_status_seg, sc->sk_status_nseg);
1832 	sc->sk_status_nseg = 0;
1833 fail_5:
1834 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1835 fail_2:
1836 	pci_intr_disestablish(pc, sc->sk_intrhand);
1837 	sc->sk_intrhand = NULL;
1838 fail_1:
1839 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1840 	sc->sk_bsize = 0;
1841 }
1842 
1843 static int
1844 mskc_detach(device_t self, int flags)
1845 {
1846 	struct sk_softc *sc = device_private(self);
1847 	int rv;
1848 
1849 	if (sc->sk_intrhand) {
1850 		pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1851 		sc->sk_intrhand = NULL;
1852 	}
1853 
1854 	if (sc->sk_pihp != NULL) {
1855 		pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1856 		sc->sk_pihp = NULL;
1857 	}
1858 
1859 	rv = config_detach_children(self, flags);
1860 	if (rv != 0)
1861 		return rv;
1862 
1863 	sysctl_teardown(&sc->sk_clog);
1864 
1865 	if (sc->sk_status_nseg > 0) {
1866 		bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1867 		bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1868 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1869 		bus_dmamem_free(sc->sc_dmatag,
1870 		    &sc->sk_status_seg, sc->sk_status_nseg);
1871 	}
1872 
1873 	if (sc->sk_bsize > 0)
1874 		bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1875 
1876 	return 0;
1877 }
1878 
1879 static int
1880 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1881 {
1882 	struct sk_softc		*sc = sc_if->sk_softc;
1883 	struct msk_tx_desc		*f = NULL;
1884 	uint32_t		frag, cur, hiaddr, total;
1885 	uint32_t		entries = 0;
1886 	uint8_t			own = 0;
1887 	size_t			i;
1888 	bus_dmamap_t		txmap;
1889 	bus_addr_t		addr;
1890 
1891 	DPRINTFN(2, ("msk_encap\n"));
1892 
1893 	txmap = sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap;
1894 
1895 	cur = frag = *txidx;
1896 
1897 #ifdef MSK_DEBUG
1898 	if (mskdebug >= 2)
1899 		msk_dump_mbuf(m_head);
1900 #endif
1901 
1902 	/*
1903 	 * Start packing the mbufs in this chain into
1904 	 * the fragment pointers. Stop when we run out
1905 	 * of fragments or hit the end of the mbuf chain.
1906 	 */
1907 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1908 	    BUS_DMA_NOWAIT)) {
1909 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1910 		return ENOBUFS;
1911 	}
1912 
1913 	/* Count how many tx descriptors needed. */
1914 	hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1915 	for (total = i = 0; i < txmap->dm_nsegs; i++) {
1916 		if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1917 			hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1918 			total++;
1919 		}
1920 		total++;
1921 	}
1922 
1923 	if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1924 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1925 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1926 		return ENOBUFS;
1927 	}
1928 
1929 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1930 	    txmap->dm_nsegs, total));
1931 
1932 	/* Sync the DMA map. */
1933 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1934 	    BUS_DMASYNC_PREWRITE);
1935 
1936 	for (i = 0; i < txmap->dm_nsegs; i++) {
1937 		addr = txmap->dm_segs[i].ds_addr;
1938 		DPRINTFN(2, ("msk_encap: addr %llx\n",
1939 		    (unsigned long long)addr));
1940 		hiaddr = MSK_ADDR_HI(addr);
1941 
1942 		if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1943 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1944 			f->sk_addr = htole32(hiaddr);
1945 			f->sk_len = 0;
1946 			f->sk_ctl = 0;
1947 			f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own;
1948 			own = SK_Y2_TXOPC_OWN;
1949 			sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1950 			SK_INC(frag, MSK_TX_RING_CNT);
1951 			entries++;
1952 			DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1953 			    sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1954 		}
1955 
1956 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1957 		f->sk_addr = htole32(MSK_ADDR_LO(addr));
1958 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1959 		f->sk_ctl = 0;
1960 		if (i == 0) {
1961 			f->sk_opcode = SK_Y2_TXOPC_PACKET | own;
1962 		} else
1963 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | own;
1964 		own = SK_Y2_TXOPC_OWN;
1965 		cur = frag;
1966 		SK_INC(frag, MSK_TX_RING_CNT);
1967 		entries++;
1968 	}
1969 	KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1970 
1971 	sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap =
1972 		sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap;
1973 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1974 	sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap = txmap;
1975 
1976 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1977 
1978 	/* Sync descriptors before handing to chip */
1979 	MSK_CDTXSYNC(sc_if, *txidx, entries,
1980 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1981 
1982 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1983 
1984 	/* Sync first descriptor to hand it off */
1985 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1986 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1987 
1988 	sc_if->sk_cdata.sk_tx_cnt += entries;
1989 
1990 #ifdef MSK_DEBUG
1991 	if (mskdebug >= 2) {
1992 		struct msk_tx_desc *le;
1993 		uint32_t idx;
1994 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1995 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1996 			msk_dump_txdesc(le, idx);
1997 		}
1998 	}
1999 #endif
2000 
2001 	*txidx = frag;
2002 
2003 	DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
2004 
2005 	return 0;
2006 }
2007 
2008 static void
2009 msk_start(struct ifnet *ifp)
2010 {
2011 	struct sk_if_softc	*sc_if = ifp->if_softc;
2012 	struct mbuf		*m_head = NULL;
2013 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
2014 	int			pkts = 0;
2015 
2016 	DPRINTFN(2, ("msk_start\n"));
2017 
2018 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
2019 		IFQ_POLL(&ifp->if_snd, m_head);
2020 		if (m_head == NULL)
2021 			break;
2022 
2023 		/*
2024 		 * Pack the data into the transmit ring. If we
2025 		 * don't have room, set the OACTIVE flag and wait
2026 		 * for the NIC to drain the ring.
2027 		 */
2028 		if (msk_encap(sc_if, m_head, &idx)) {
2029 			ifp->if_flags |= IFF_OACTIVE;
2030 			break;
2031 		}
2032 
2033 		/* now we are committed to transmit the packet */
2034 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2035 		pkts++;
2036 
2037 		/*
2038 		 * If there's a BPF listener, bounce a copy of this frame
2039 		 * to him.
2040 		 */
2041 		bpf_mtap(ifp, m_head, BPF_D_OUT);
2042 	}
2043 	if (pkts == 0)
2044 		return;
2045 
2046 	/* Transmit */
2047 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
2048 		sc_if->sk_cdata.sk_tx_prod = idx;
2049 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
2050 
2051 		/* Set a timeout in case the chip goes out to lunch. */
2052 		ifp->if_timer = 5;
2053 	}
2054 }
2055 
2056 static void
2057 msk_watchdog(struct ifnet *ifp)
2058 {
2059 	struct sk_if_softc *sc_if = ifp->if_softc;
2060 
2061 	/*
2062 	 * Reclaim first as there is a possibility of losing Tx completion
2063 	 * interrupts.
2064 	 */
2065 	msk_txeof(sc_if);
2066 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2067 		device_printf(sc_if->sk_dev, "watchdog timeout\n");
2068 
2069 		if_statinc(ifp, if_oerrors);
2070 
2071 		/* XXX Resets both ports; we shouldn't do that. */
2072 		mskc_reset(sc_if->sk_softc);
2073 		msk_reset(sc_if);
2074 		msk_init(ifp);
2075 	}
2076 }
2077 
2078 static bool
2079 mskc_suspend(device_t dv, const pmf_qual_t *qual)
2080 {
2081 	struct sk_softc *sc = device_private(dv);
2082 
2083 	DPRINTFN(2, ("mskc_suspend\n"));
2084 
2085 	/* Turn off the 'driver is loaded' LED. */
2086 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2087 
2088 	return true;
2089 }
2090 
2091 static bool
2092 mskc_resume(device_t dv, const pmf_qual_t *qual)
2093 {
2094 	struct sk_softc *sc = device_private(dv);
2095 
2096 	DPRINTFN(2, ("mskc_resume\n"));
2097 
2098 	mskc_reset(sc);
2099 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2100 
2101 	return true;
2102 }
2103 
2104 static __inline int
2105 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2106 {
2107 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2108 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2109 	    YU_RXSTAT_JABBER)) != 0 ||
2110 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2111 	    YU_RXSTAT_BYTES(stat) != len)
2112 		return 0;
2113 
2114 	return 1;
2115 }
2116 
2117 static void
2118 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2119 {
2120 	struct sk_softc		*sc = sc_if->sk_softc;
2121 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2122 	struct mbuf		*m;
2123 	unsigned		cur, prod, tail, total_len = len;
2124 	bus_dmamap_t		dmamap;
2125 
2126 	cur = sc_if->sk_cdata.sk_rx_cons;
2127 	prod = sc_if->sk_cdata.sk_rx_prod;
2128 
2129 	DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2130 		sc_if->sk_cdata.sk_rx_cnt));
2131 
2132 	while (prod != cur) {
2133 		MSK_CDRXSYNC(sc_if, cur,
2134 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2135 
2136 		tail = cur;
2137 		SK_INC(cur, MSK_RX_RING_CNT);
2138 
2139 		sc_if->sk_cdata.sk_rx_cnt--;
2140 		m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2141 		sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2142 		if (m != NULL)
2143 			break;	/* found it */
2144 	}
2145 	sc_if->sk_cdata.sk_rx_cons = cur;
2146 	DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2147 		sc_if->sk_cdata.sk_rx_cnt, m));
2148 
2149 	if (m == NULL)
2150 		return;
2151 
2152 	dmamap = sc_if->sk_cdata.sk_rx_chain[tail].sk_dmamap;
2153 
2154 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2155 	    uimin(dmamap->dm_mapsize, total_len), BUS_DMASYNC_POSTREAD);
2156 	bus_dmamap_unload(sc->sc_dmatag, dmamap);
2157 
2158 	if (total_len < SK_MIN_FRAMELEN ||
2159 	    total_len > ETHER_MAX_LEN_JUMBO ||
2160 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
2161 		if_statinc(ifp, if_ierrors);
2162 		m_freem(m);
2163 		return;
2164 	}
2165 
2166 	m_set_rcvif(m, ifp);
2167 	m->m_pkthdr.len = m->m_len = total_len;
2168 
2169 	/* pass it on. */
2170 	if_percpuq_enqueue(ifp->if_percpuq, m);
2171 }
2172 
2173 static void
2174 msk_txeof(struct sk_if_softc *sc_if)
2175 {
2176 	struct sk_softc		*sc = sc_if->sk_softc;
2177 	struct msk_tx_desc	*cur_tx;
2178 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2179 	uint32_t		idx, reg, sk_ctl;
2180 	bus_dmamap_t		dmamap;
2181 
2182 	DPRINTFN(2, ("msk_txeof\n"));
2183 
2184 	if (sc_if->sk_port == SK_PORT_A)
2185 		reg = SK_STAT_BMU_TXA1_RIDX;
2186 	else
2187 		reg = SK_STAT_BMU_TXA2_RIDX;
2188 
2189 	/*
2190 	 * Go through our tx ring and free mbufs for those
2191 	 * frames that have been sent.
2192 	 */
2193 	idx = sc_if->sk_cdata.sk_tx_cons;
2194 	while (idx != sk_win_read_2(sc, reg)) {
2195 		MSK_CDTXSYNC(sc_if, idx, 1,
2196 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2197 
2198 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2199 		sk_ctl = cur_tx->sk_ctl;
2200 #ifdef MSK_DEBUG
2201 		if (mskdebug >= 2)
2202 			msk_dump_txdesc(cur_tx, idx);
2203 #endif
2204 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2205 			if_statinc(ifp, if_opackets);
2206 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2207 			dmamap = sc_if->sk_cdata.sk_tx_chain[idx].sk_dmamap;
2208 
2209 			bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2210 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2211 
2212 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
2213 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2214 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2215 		}
2216 		sc_if->sk_cdata.sk_tx_cnt--;
2217 		SK_INC(idx, MSK_TX_RING_CNT);
2218 	}
2219 	if (idx == sc_if->sk_cdata.sk_tx_cons)
2220 		return;
2221 
2222 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2223 
2224 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2225 		ifp->if_flags &= ~IFF_OACTIVE;
2226 
2227 	sc_if->sk_cdata.sk_tx_cons = idx;
2228 }
2229 
2230 static void
2231 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2232 {
2233 	/* Make sure to not completely wrap around */
2234 	while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2235 		if (msk_newbuf(sc_if) == ENOBUFS) {
2236 			goto schedretry;
2237 		}
2238 	}
2239 
2240 	return;
2241 
2242 schedretry:
2243 	/* Try later */
2244 	callout_schedule(&sc_if->sk_tick_rx, hz/2);
2245 }
2246 
2247 static void
2248 msk_fill_rx_tick(void *xsc_if)
2249 {
2250 	struct sk_if_softc *sc_if = xsc_if;
2251 	int s, rx_prod;
2252 
2253 	KASSERT(KERNEL_LOCKED_P());	/* XXXSMP */
2254 
2255 	s = splnet();
2256 	rx_prod = sc_if->sk_cdata.sk_rx_prod;
2257 	msk_fill_rx_ring(sc_if);
2258 	if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2259 		SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2260 		    sc_if->sk_cdata.sk_rx_prod);
2261 	}
2262 	splx(s);
2263 }
2264 
2265 static void
2266 msk_tick(void *xsc_if)
2267 {
2268 	struct sk_if_softc *sc_if = xsc_if;
2269 	struct mii_data *mii = &sc_if->sk_mii;
2270 	int s;
2271 
2272 	s = splnet();
2273 	mii_tick(mii);
2274 	splx(s);
2275 
2276 	callout_schedule(&sc_if->sk_tick_ch, hz);
2277 }
2278 
2279 static void
2280 msk_intr_yukon(struct sk_if_softc *sc_if)
2281 {
2282 	uint8_t status;
2283 
2284 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2285 	/* RX overrun */
2286 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2287 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2288 		    SK_RFCTL_RX_FIFO_OVER);
2289 	}
2290 	/* TX underrun */
2291 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2292 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2293 		    SK_TFCTL_TX_FIFO_UNDER);
2294 	}
2295 
2296 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2297 }
2298 
2299 static int
2300 msk_intr(void *xsc)
2301 {
2302 	struct sk_softc		*sc = xsc;
2303 	struct sk_if_softc	*sc_if;
2304 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2305 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2306 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2307 	uint32_t		status;
2308 	struct msk_status_desc	*cur_st;
2309 	bool			retried = false;
2310 
2311 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
2312 	if (status == 0xffffffff)
2313 		return 0;
2314 	if (status == 0) {
2315 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2316 		return 0;
2317 	}
2318 
2319 	status = CSR_READ_4(sc, SK_ISR);
2320 
2321 	if (sc_if0 != NULL)
2322 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2323 	if (sc_if1 != NULL)
2324 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2325 
2326 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2327 	    (ifp0->if_flags & IFF_RUNNING)) {
2328 		msk_intr_yukon(sc_if0);
2329 	}
2330 
2331 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2332 	    (ifp1->if_flags & IFF_RUNNING)) {
2333 		msk_intr_yukon(sc_if1);
2334 	}
2335 
2336 again:
2337 	MSK_CDSTSYNC(sc, sc->sk_status_idx,
2338 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2339 	cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2340 
2341 	while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2342 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2343 		switch (cur_st->sk_opcode) {
2344 		case SK_Y2_STOPC_RXSTAT:
2345 			sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2346 			if (sc_if) {
2347 				msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2348 				    letoh32(cur_st->sk_status));
2349 				if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2350 					msk_fill_rx_tick(sc_if);
2351 			}
2352 			break;
2353 		case SK_Y2_STOPC_TXSTAT:
2354 			if (sc_if0)
2355 				msk_txeof(sc_if0);
2356 			if (sc_if1)
2357 				msk_txeof(sc_if1);
2358 			break;
2359 		default:
2360 			aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2361 			break;
2362 		}
2363 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2364 
2365 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
2366 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2367 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2368 	}
2369 
2370 	if (CSR_READ_2(sc, SK_STAT_BMU_PUTIDX) == sc->sk_status_idx) {
2371 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2372 	} else if (!retried) {
2373 		retried = true;
2374 		goto again;
2375 	}
2376 
2377 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2378 
2379 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2380 		if_schedule_deferred_start(ifp0);
2381 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2382 		if_schedule_deferred_start(ifp1);
2383 
2384 	KASSERT(sc->rnd_attached > 0);
2385 	rnd_add_uint32(&sc->rnd_source, status);
2386 
2387 	if (sc->sk_int_mod_pending)
2388 		msk_update_int_mod(sc, 1);
2389 
2390 	return (status & sc->sk_intrmask) != 0;
2391 }
2392 
2393 static void
2394 msk_init_yukon(struct sk_if_softc *sc_if)
2395 {
2396 	uint32_t		v;
2397 	uint16_t		reg;
2398 	struct sk_softc		*sc;
2399 	int			i;
2400 
2401 	sc = sc_if->sk_softc;
2402 
2403 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2404 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2405 
2406 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
2407 
2408 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2409 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2410 
2411 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
2412 
2413 	/* unused read of the interrupt source register */
2414 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
2415 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2416 
2417 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2418 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2419 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2420 
2421 	/* MIB Counter Clear Mode set */
2422 	reg |= YU_PAR_MIB_CLR;
2423 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2424 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2425 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2426 
2427 	/* MIB Counter Clear Mode clear */
2428 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
2429 	reg &= ~YU_PAR_MIB_CLR;
2430 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2431 
2432 	/* receive control reg */
2433 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
2434 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2435 
2436 	/* transmit control register */
2437 	SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2438 
2439 	/* transmit flow control register */
2440 	SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2441 
2442 	/* transmit parameter register */
2443 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
2444 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2445 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2446 
2447 	/* serial mode register */
2448 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
2449 	reg = YU_SMR_DATA_BLIND(0x1c) |
2450 	      YU_SMR_MFL_VLAN |
2451 	      YU_SMR_IPG_DATA(0x1e);
2452 
2453 	if (sc->sk_type != SK_YUKON_FE &&
2454 	    sc->sk_type != SK_YUKON_FE_P)
2455 		reg |= YU_SMR_MFL_JUMBO;
2456 
2457 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2458 
2459 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
2460 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2461 	/* msk_attach calls me before ether_ifattach so check null */
2462 	if (ifp != NULL && ifp->if_sadl != NULL)
2463 		memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2464 		    sizeof(sc_if->sk_enaddr));
2465 	/* Setup Yukon's address */
2466 	for (i = 0; i < 3; i++) {
2467 		/* Write Source Address 1 (unicast filter) */
2468 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2469 			      sc_if->sk_enaddr[i * 2] |
2470 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2471 	}
2472 
2473 	for (i = 0; i < 3; i++) {
2474 		reg = sk_win_read_2(sc_if->sk_softc,
2475 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2476 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2477 	}
2478 
2479 	/* Set promiscuous mode */
2480 	msk_setpromisc(sc_if);
2481 
2482 	/* Set multicast filter */
2483 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
2484 	msk_setmulti(sc_if);
2485 
2486 	/* enable interrupt mask for counter overflows */
2487 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
2488 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2489 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2490 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2491 
2492 	/* Configure RX MAC FIFO Flush Mask */
2493 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2494 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2495 	    YU_RXSTAT_JABBER;
2496 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2497 
2498 	/* Configure RX MAC FIFO */
2499 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2500 	v =  SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2501 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2502 		v |= SK_RFCTL_RX_OVER_ON;
2503 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2504 
2505 	if ((sc->sk_type == SK_YUKON_FE_P) &&
2506 	    (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2507 		v = 0x178; /* Magic value */
2508 	else {
2509 		/* Increase flush threshold to 64 bytes */
2510 		v = SK_RFCTL_FIFO_THRESHOLD + 1;
2511 	}
2512 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2513 
2514 	/* Configure TX MAC FIFO */
2515 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2516 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2517 
2518 	if ((sc->sk_type == SK_YUKON_FE_P) &&
2519 	    (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2520 		v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2521 		v &= ~SK_TXEND_WM_ON;
2522 		SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2523 	}
2524 
2525 #if 1
2526 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2527 #endif
2528 	DPRINTFN(6, ("msk_init_yukon: end\n"));
2529 }
2530 
2531 /*
2532  * Note that to properly initialize any part of the GEnesis chip,
2533  * you first have to take it out of reset mode.
2534  */
2535 static int
2536 msk_init(struct ifnet *ifp)
2537 {
2538 	struct sk_if_softc	*sc_if = ifp->if_softc;
2539 	struct sk_softc		*sc = sc_if->sk_softc;
2540 	int			rc = 0, s;
2541 	uint32_t		imr, imtimer_ticks;
2542 
2543 
2544 	DPRINTFN(2, ("msk_init\n"));
2545 
2546 	s = splnet();
2547 
2548 	/* Cancel pending I/O and free all RX/TX buffers. */
2549 	msk_stop(ifp, 1);
2550 
2551 	/* Configure I2C registers */
2552 
2553 	/* Configure XMAC(s) */
2554 	msk_init_yukon(sc_if);
2555 	if ((rc = ether_mediachange(ifp)) != 0)
2556 		goto out;
2557 
2558 	/* Configure transmit arbiter(s) */
2559 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2560 #if 0
2561 /*	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2562 #endif
2563 
2564 	if (sc->sk_ramsize) {
2565 		/* Configure RAMbuffers */
2566 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2567 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2568 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2569 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2570 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2571 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2572 
2573 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2574 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2575 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2576 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2577 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2578 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2579 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2580 	}
2581 
2582 	/* Configure BMUs */
2583 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2584 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2585 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2586 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600);	/* XXX ??? */
2587 
2588 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2589 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2590 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2591 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600);	/* XXX ??? */
2592 
2593 	/* Make sure the sync transmit queue is disabled. */
2594 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2595 
2596 	/* Init descriptors */
2597 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2598 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2599 		    "memory for rx buffers\n");
2600 		msk_stop(ifp, 1);
2601 		splx(s);
2602 		return ENOBUFS;
2603 	}
2604 
2605 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2606 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2607 		    "memory for tx buffers\n");
2608 		msk_stop(ifp, 1);
2609 		splx(s);
2610 		return ENOBUFS;
2611 	}
2612 
2613 	/* Set interrupt moderation if changed via sysctl. */
2614 	switch (sc->sk_type) {
2615 	case SK_YUKON_EC:
2616 	case SK_YUKON_EC_U:
2617 	case SK_YUKON_EX:
2618 	case SK_YUKON_SUPR:
2619 	case SK_YUKON_ULTRA2:
2620 	case SK_YUKON_OPTIMA:
2621 	case SK_YUKON_PRM:
2622 	case SK_YUKON_OPTIMA2:
2623 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2624 		break;
2625 	case SK_YUKON_FE:
2626 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2627 		break;
2628 	case SK_YUKON_FE_P:
2629 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2630 		break;
2631 	case SK_YUKON_XL:
2632 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2633 		break;
2634 	default:
2635 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2636 	}
2637 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2638 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2639 		sk_win_write_4(sc, SK_IMTIMERINIT,
2640 		    SK_IM_USECS(sc->sk_int_mod));
2641 		aprint_verbose_dev(sc->sk_dev,
2642 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2643 	}
2644 
2645 	/* Initialize prefetch engine. */
2646 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2647 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2648 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2649 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2650 	    MSK_RX_RING_ADDR(sc_if, 0));
2651 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2652 	    (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2653 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2654 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2655 
2656 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2657 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2658 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2659 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2660 	    MSK_TX_RING_ADDR(sc_if, 0));
2661 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2662 	    (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2663 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2664 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2665 
2666 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2667 	    sc_if->sk_cdata.sk_rx_prod);
2668 
2669 
2670 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2671 		/* Disable flushing of non-ASF packets. */
2672 		SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2673 		    SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2674 	}
2675 
2676 	/* Configure interrupt handling */
2677 	if (sc_if->sk_port == SK_PORT_A)
2678 		sc->sk_intrmask |= SK_Y2_INTRS1;
2679 	else
2680 		sc->sk_intrmask |= SK_Y2_INTRS2;
2681 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2682 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2683 
2684 	ifp->if_flags |= IFF_RUNNING;
2685 	ifp->if_flags &= ~IFF_OACTIVE;
2686 
2687 	callout_schedule(&sc_if->sk_tick_ch, hz);
2688 
2689 out:
2690 	splx(s);
2691 	return rc;
2692 }
2693 
2694 /*
2695  * Note: the logic of second parameter is inverted compared to OpenBSD
2696  * code, since this code uses the function as if_stop hook too.
2697  */
2698 static void
2699 msk_stop(struct ifnet *ifp, int disable)
2700 {
2701 	struct sk_if_softc	*sc_if = ifp->if_softc;
2702 	struct sk_softc		*sc = sc_if->sk_softc;
2703 	bus_dmamap_t		dmamap;
2704 	int			i;
2705 
2706 	DPRINTFN(2, ("msk_stop\n"));
2707 
2708 	callout_stop(&sc_if->sk_tick_ch);
2709 	callout_stop(&sc_if->sk_tick_rx);
2710 
2711 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2712 
2713 	/* Stop transfer of Tx descriptors */
2714 
2715 	/* Stop transfer of Rx descriptors */
2716 
2717 	if (disable) {
2718 		/* Turn off various components of this interface. */
2719 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2720 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2721 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2722 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2723 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2724 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2725 		SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2726 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2727 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2728 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2729 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2730 
2731 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2732 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2733 
2734 		/* Disable interrupts */
2735 		if (sc_if->sk_port == SK_PORT_A)
2736 			sc->sk_intrmask &= ~SK_Y2_INTRS1;
2737 		else
2738 			sc->sk_intrmask &= ~SK_Y2_INTRS2;
2739 		CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2740 	}
2741 
2742 	/* Free RX and TX mbufs still in the queues. */
2743 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2744 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2745 			dmamap = sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap;
2746 
2747 			bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2748 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2749 
2750 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
2751 
2752 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2753 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2754 		}
2755 	}
2756 
2757 	sc_if->sk_cdata.sk_rx_prod = 0;
2758 	sc_if->sk_cdata.sk_rx_cons = 0;
2759 	sc_if->sk_cdata.sk_rx_cnt = 0;
2760 
2761 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2762 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2763 			dmamap = sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap;
2764 
2765 			bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2766 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2767 
2768 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
2769 
2770 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2771 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2772 		}
2773 	}
2774 }
2775 
2776 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2777 	mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2778 
2779 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2780 	msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2781 
2782 #ifdef MSK_DEBUG
2783 static void
2784 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2785 {
2786 #define DESC_PRINT(X)					\
2787 	if (X)						\
2788 		printf("txdesc[%d]." #X "=%#x\n",	\
2789 		       idx, X);
2790 
2791 	DESC_PRINT(letoh32(le->sk_addr));
2792 	DESC_PRINT(letoh16(le->sk_len));
2793 	DESC_PRINT(le->sk_ctl);
2794 	DESC_PRINT(le->sk_opcode);
2795 #undef DESC_PRINT
2796 }
2797 
2798 static void
2799 msk_dump_bytes(const char *data, int len)
2800 {
2801 	int c, i, j;
2802 
2803 	for (i = 0; i < len; i += 16) {
2804 		printf("%08x  ", i);
2805 		c = len - i;
2806 		if (c > 16) c = 16;
2807 
2808 		for (j = 0; j < c; j++) {
2809 			printf("%02x ", data[i + j] & 0xff);
2810 			if ((j & 0xf) == 7 && j > 0)
2811 				printf(" ");
2812 		}
2813 
2814 		for (; j < 16; j++)
2815 			printf("   ");
2816 		printf("  ");
2817 
2818 		for (j = 0; j < c; j++) {
2819 			int ch = data[i + j] & 0xff;
2820 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2821 		}
2822 
2823 		printf("\n");
2824 
2825 		if (c < 16)
2826 			break;
2827 	}
2828 }
2829 
2830 static void
2831 msk_dump_mbuf(struct mbuf *m)
2832 {
2833 	int count = m->m_pkthdr.len;
2834 
2835 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2836 
2837 	while (count > 0 && m) {
2838 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2839 		       m, m->m_data, m->m_len);
2840 		if (mskdebug >= 4)
2841 			msk_dump_bytes(mtod(m, char *), m->m_len);
2842 
2843 		count -= m->m_len;
2844 		m = m->m_next;
2845 	}
2846 }
2847 #endif
2848 
2849 static int
2850 msk_sysctl_handler(SYSCTLFN_ARGS)
2851 {
2852 	int error, t;
2853 	struct sysctlnode node;
2854 	struct sk_softc *sc;
2855 
2856 	node = *rnode;
2857 	sc = node.sysctl_data;
2858 	t = sc->sk_int_mod;
2859 	node.sysctl_data = &t;
2860 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2861 	if (error || newp == NULL)
2862 		return error;
2863 
2864 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2865 		return EINVAL;
2866 
2867 	/* update the softc with sysctl-changed value, and mark
2868 	   for hardware update */
2869 	sc->sk_int_mod = t;
2870 	sc->sk_int_mod_pending = 1;
2871 	return 0;
2872 }
2873 
2874 /*
2875  * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2876  * set up in mskc_attach()
2877  */
2878 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2879 {
2880 	int rc;
2881 	const struct sysctlnode *node;
2882 
2883 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2884 	    0, CTLTYPE_NODE, "msk",
2885 	    SYSCTL_DESCR("msk interface controls"),
2886 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2887 		goto err;
2888 	}
2889 
2890 	msk_root_num = node->sysctl_num;
2891 	return;
2892 
2893 err:
2894 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2895 }
2896