1 /* $NetBSD: if_msk.c,v 1.118 2021/09/20 11:27:30 jmcneill Exp $ */ 2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */ 3 4 /* 5 * Copyright (c) 1997, 1998, 1999, 2000 6 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 * 35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $ 36 */ 37 38 /* 39 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 40 * 41 * Permission to use, copy, modify, and distribute this software for any 42 * purpose with or without fee is hereby granted, provided that the above 43 * copyright notice and this permission notice appear in all copies. 44 * 45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 52 */ 53 54 #include <sys/cdefs.h> 55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.118 2021/09/20 11:27:30 jmcneill Exp $"); 56 57 #include <sys/param.h> 58 #include <sys/systm.h> 59 #include <sys/sockio.h> 60 #include <sys/mbuf.h> 61 #include <sys/malloc.h> 62 #include <sys/mutex.h> 63 #include <sys/kernel.h> 64 #include <sys/socket.h> 65 #include <sys/device.h> 66 #include <sys/queue.h> 67 #include <sys/callout.h> 68 #include <sys/sysctl.h> 69 #include <sys/endian.h> 70 #ifdef __NetBSD__ 71 #define letoh16 le16toh 72 #define letoh32 le32toh 73 #endif 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_types.h> 78 79 #include <net/if_media.h> 80 81 #include <net/bpf.h> 82 #include <sys/rndsource.h> 83 84 #include <dev/mii/mii.h> 85 #include <dev/mii/miivar.h> 86 87 #include <dev/pci/pcireg.h> 88 #include <dev/pci/pcivar.h> 89 #include <dev/pci/pcidevs.h> 90 91 #include <dev/pci/if_skreg.h> 92 #include <dev/pci/if_mskvar.h> 93 94 static int mskc_probe(device_t, cfdata_t, void *); 95 static void mskc_attach(device_t, device_t, void *); 96 static int mskc_detach(device_t, int); 97 static void mskc_reset(struct sk_softc *); 98 static bool mskc_suspend(device_t, const pmf_qual_t *); 99 static bool mskc_resume(device_t, const pmf_qual_t *); 100 static int msk_probe(device_t, cfdata_t, void *); 101 static void msk_attach(device_t, device_t, void *); 102 static int msk_detach(device_t, int); 103 static void msk_reset(struct sk_if_softc *); 104 static int mskcprint(void *, const char *); 105 static int msk_intr(void *); 106 static void msk_intr_yukon(struct sk_if_softc *); 107 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t); 108 static void msk_txeof(struct sk_if_softc *); 109 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *); 110 static void msk_start(struct ifnet *); 111 static int msk_ioctl(struct ifnet *, u_long, void *); 112 static int msk_init(struct ifnet *); 113 static void msk_init_yukon(struct sk_if_softc *); 114 static void msk_stop(struct ifnet *, int); 115 static void msk_watchdog(struct ifnet *); 116 static int msk_newbuf(struct sk_if_softc *); 117 static int msk_alloc_jumbo_mem(struct sk_if_softc *); 118 static void *msk_jalloc(struct sk_if_softc *); 119 static void msk_jfree(struct mbuf *, void *, size_t, void *); 120 static int msk_init_rx_ring(struct sk_if_softc *); 121 static int msk_init_tx_ring(struct sk_if_softc *); 122 static void msk_fill_rx_ring(struct sk_if_softc *); 123 124 static void msk_update_int_mod(struct sk_softc *, int); 125 126 static int msk_miibus_readreg(device_t, int, int, uint16_t *); 127 static int msk_miibus_writereg(device_t, int, int, uint16_t); 128 static void msk_miibus_statchg(struct ifnet *); 129 130 static void msk_setmulti(struct sk_if_softc *); 131 static void msk_setpromisc(struct sk_if_softc *); 132 static void msk_tick(void *); 133 static void msk_fill_rx_tick(void *); 134 135 /* #define MSK_DEBUG 1 */ 136 #ifdef MSK_DEBUG 137 #define DPRINTF(x) if (mskdebug) printf x 138 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x 139 int mskdebug = MSK_DEBUG; 140 141 static void msk_dump_txdesc(struct msk_tx_desc *, int); 142 static void msk_dump_mbuf(struct mbuf *); 143 static void msk_dump_bytes(const char *, int); 144 #else 145 #define DPRINTF(x) 146 #define DPRINTFN(n, x) 147 #endif 148 149 static int msk_sysctl_handler(SYSCTLFN_PROTO); 150 static int msk_root_num; 151 152 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL) 153 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32) 154 155 /* supported device vendors */ 156 static const struct device_compatible_entry compat_data[] = { 157 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK, 158 PCI_PRODUCT_DLINK_DGE550SX) }, 159 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK, 160 PCI_PRODUCT_DLINK_DGE550T_B1) }, 161 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK, 162 PCI_PRODUCT_DLINK_DGE560SX) }, 163 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK, 164 PCI_PRODUCT_DLINK_DGE560T) }, 165 166 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 167 PCI_PRODUCT_MARVELL_YUKONII_8021CU) }, 168 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 169 PCI_PRODUCT_MARVELL_YUKONII_8021X) }, 170 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 171 PCI_PRODUCT_MARVELL_YUKONII_8022CU) }, 172 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 173 PCI_PRODUCT_MARVELL_YUKONII_8022X) }, 174 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 175 PCI_PRODUCT_MARVELL_YUKON_8035) }, 176 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 177 PCI_PRODUCT_MARVELL_YUKON_8036) }, 178 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 179 PCI_PRODUCT_MARVELL_YUKON_8038) }, 180 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 181 PCI_PRODUCT_MARVELL_YUKON_8039) }, 182 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 183 PCI_PRODUCT_MARVELL_YUKON_8040) }, 184 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 185 PCI_PRODUCT_MARVELL_YUKON_8040T) }, 186 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 187 PCI_PRODUCT_MARVELL_YUKON_8042) }, 188 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 189 PCI_PRODUCT_MARVELL_YUKON_8048) }, 190 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 191 PCI_PRODUCT_MARVELL_YUKON_8050) }, 192 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 193 PCI_PRODUCT_MARVELL_YUKON_8052) }, 194 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 195 PCI_PRODUCT_MARVELL_YUKON_8053) }, 196 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 197 PCI_PRODUCT_MARVELL_YUKON_8055) }, 198 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 199 PCI_PRODUCT_MARVELL_YUKON_8055_2) }, 200 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 201 PCI_PRODUCT_MARVELL_YUKON_8056) }, 202 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 203 PCI_PRODUCT_MARVELL_YUKON_8057) }, 204 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 205 PCI_PRODUCT_MARVELL_YUKON_8058) }, 206 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 207 PCI_PRODUCT_MARVELL_YUKON_8059) }, 208 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 209 PCI_PRODUCT_MARVELL_YUKONII_8061CU) }, 210 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 211 PCI_PRODUCT_MARVELL_YUKONII_8061X) }, 212 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 213 PCI_PRODUCT_MARVELL_YUKONII_8062CU) }, 214 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 215 PCI_PRODUCT_MARVELL_YUKONII_8062X) }, 216 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 217 PCI_PRODUCT_MARVELL_YUKON_8070) }, 218 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 219 PCI_PRODUCT_MARVELL_YUKON_8071) }, 220 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 221 PCI_PRODUCT_MARVELL_YUKON_8072) }, 222 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 223 PCI_PRODUCT_MARVELL_YUKON_8075) }, 224 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 225 PCI_PRODUCT_MARVELL_YUKON_8079) }, 226 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 227 PCI_PRODUCT_MARVELL_YUKON_C032) }, 228 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 229 PCI_PRODUCT_MARVELL_YUKON_C033) }, 230 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 231 PCI_PRODUCT_MARVELL_YUKON_C034) }, 232 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 233 PCI_PRODUCT_MARVELL_YUKON_C036) }, 234 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 235 PCI_PRODUCT_MARVELL_YUKON_C042) }, 236 237 { .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, 238 PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX) }, 239 { .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, 240 PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21) }, 241 242 PCI_COMPAT_EOL 243 }; 244 245 static inline uint32_t 246 sk_win_read_4(struct sk_softc *sc, uint32_t reg) 247 { 248 return CSR_READ_4(sc, reg); 249 } 250 251 static inline uint16_t 252 sk_win_read_2(struct sk_softc *sc, uint32_t reg) 253 { 254 return CSR_READ_2(sc, reg); 255 } 256 257 static inline uint8_t 258 sk_win_read_1(struct sk_softc *sc, uint32_t reg) 259 { 260 return CSR_READ_1(sc, reg); 261 } 262 263 static inline void 264 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x) 265 { 266 CSR_WRITE_4(sc, reg, x); 267 } 268 269 static inline void 270 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x) 271 { 272 CSR_WRITE_2(sc, reg, x); 273 } 274 275 static inline void 276 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x) 277 { 278 CSR_WRITE_1(sc, reg, x); 279 } 280 281 static int 282 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val) 283 { 284 struct sk_if_softc *sc_if = device_private(dev); 285 uint16_t data; 286 int i; 287 288 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 289 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); 290 291 for (i = 0; i < SK_TIMEOUT; i++) { 292 DELAY(1); 293 data = SK_YU_READ_2(sc_if, YUKON_SMICR); 294 if (data & YU_SMICR_READ_VALID) 295 break; 296 } 297 298 if (i == SK_TIMEOUT) { 299 device_printf(sc_if->sk_dev, "phy failed to come ready\n"); 300 return ETIMEDOUT; 301 } 302 303 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT)); 304 305 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR); 306 307 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n", 308 phy, reg, *val)); 309 310 return 0; 311 } 312 313 static int 314 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val) 315 { 316 struct sk_if_softc *sc_if = device_private(dev); 317 int i; 318 319 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n", 320 phy, reg, val)); 321 322 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); 323 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 324 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); 325 326 for (i = 0; i < SK_TIMEOUT; i++) { 327 DELAY(1); 328 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)) 329 break; 330 } 331 332 if (i == SK_TIMEOUT) { 333 device_printf(sc_if->sk_dev, "phy write timed out\n"); 334 return ETIMEDOUT; 335 } 336 337 return 0; 338 } 339 340 static void 341 msk_miibus_statchg(struct ifnet *ifp) 342 { 343 struct sk_if_softc *sc_if = ifp->if_softc; 344 struct mii_data *mii = &sc_if->sk_mii; 345 struct ifmedia_entry *ife = mii->mii_media.ifm_cur; 346 int gpcr; 347 348 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR); 349 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN); 350 351 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO || 352 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) { 353 /* Set speed. */ 354 gpcr |= YU_GPCR_SPEED_DIS; 355 switch (IFM_SUBTYPE(mii->mii_media_active)) { 356 case IFM_1000_SX: 357 case IFM_1000_LX: 358 case IFM_1000_CX: 359 case IFM_1000_T: 360 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED); 361 break; 362 case IFM_100_TX: 363 gpcr |= YU_GPCR_SPEED; 364 break; 365 } 366 367 /* Set duplex. */ 368 gpcr |= YU_GPCR_DPLX_DIS; 369 if ((mii->mii_media_active & IFM_FDX) != 0) 370 gpcr |= YU_GPCR_DUPLEX; 371 372 /* Disable flow control. */ 373 gpcr |= YU_GPCR_FCTL_DIS; 374 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS); 375 } 376 377 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr); 378 379 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n", 380 SK_YU_READ_2(sc_if, YUKON_GPCR))); 381 } 382 383 static void 384 msk_setmulti(struct sk_if_softc *sc_if) 385 { 386 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if; 387 uint32_t hashes[2] = { 0, 0 }; 388 int h; 389 struct ethercom *ec = &sc_if->sk_ethercom; 390 struct ether_multi *enm; 391 struct ether_multistep step; 392 uint16_t reg; 393 394 /* First, zot all the existing filters. */ 395 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0); 396 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0); 397 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0); 398 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0); 399 400 401 /* Now program new ones. */ 402 reg = SK_YU_READ_2(sc_if, YUKON_RCR); 403 reg |= YU_RCR_UFLEN; 404 allmulti: 405 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 406 if ((ifp->if_flags & IFF_PROMISC) != 0) 407 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN); 408 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 409 hashes[0] = 0xFFFFFFFF; 410 hashes[1] = 0xFFFFFFFF; 411 } 412 } else { 413 /* First find the tail of the list. */ 414 ETHER_LOCK(ec); 415 ETHER_FIRST_MULTI(step, ec, enm); 416 while (enm != NULL) { 417 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 418 ETHER_ADDR_LEN)) { 419 ifp->if_flags |= IFF_ALLMULTI; 420 ETHER_UNLOCK(ec); 421 goto allmulti; 422 } 423 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 424 ((1 << SK_HASH_BITS) - 1); 425 if (h < 32) 426 hashes[0] |= (1 << h); 427 else 428 hashes[1] |= (1 << (h - 32)); 429 430 ETHER_NEXT_MULTI(step, enm); 431 } 432 ETHER_UNLOCK(ec); 433 reg |= YU_RCR_MUFLEN; 434 } 435 436 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); 437 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); 438 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); 439 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); 440 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg); 441 } 442 443 static void 444 msk_setpromisc(struct sk_if_softc *sc_if) 445 { 446 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 447 448 if (ifp->if_flags & IFF_PROMISC) 449 SK_YU_CLRBIT_2(sc_if, YUKON_RCR, 450 YU_RCR_UFLEN | YU_RCR_MUFLEN); 451 else 452 SK_YU_SETBIT_2(sc_if, YUKON_RCR, 453 YU_RCR_UFLEN | YU_RCR_MUFLEN); 454 } 455 456 static int 457 msk_init_rx_ring(struct sk_if_softc *sc_if) 458 { 459 struct msk_chain_data *cd = &sc_if->sk_cdata; 460 struct msk_ring_data *rd = sc_if->sk_rdata; 461 struct msk_rx_desc *r; 462 463 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT); 464 465 sc_if->sk_cdata.sk_rx_prod = 0; 466 sc_if->sk_cdata.sk_rx_cons = 0; 467 sc_if->sk_cdata.sk_rx_cnt = 0; 468 sc_if->sk_cdata.sk_rx_hiaddr = 0; 469 470 /* Mark the first ring element to initialize the high address. */ 471 sc_if->sk_cdata.sk_rx_hiaddr = 0; 472 r = &rd->sk_rx_ring[cd->sk_rx_prod]; 473 r->sk_addr = htole32(cd->sk_rx_hiaddr); 474 r->sk_len = 0; 475 r->sk_ctl = 0; 476 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN; 477 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod, 478 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 479 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT); 480 sc_if->sk_cdata.sk_rx_cnt++; 481 482 msk_fill_rx_ring(sc_if); 483 return 0; 484 } 485 486 static int 487 msk_init_tx_ring(struct sk_if_softc *sc_if) 488 { 489 struct msk_chain_data *cd = &sc_if->sk_cdata; 490 struct msk_ring_data *rd = sc_if->sk_rdata; 491 struct msk_tx_desc *t; 492 493 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT); 494 495 sc_if->sk_cdata.sk_tx_prod = 0; 496 sc_if->sk_cdata.sk_tx_cons = 0; 497 sc_if->sk_cdata.sk_tx_cnt = 0; 498 sc_if->sk_cdata.sk_tx_hiaddr = 0; 499 500 /* Mark the first ring element to initialize the high address. */ 501 sc_if->sk_cdata.sk_tx_hiaddr = 0; 502 t = &rd->sk_tx_ring[cd->sk_tx_prod]; 503 t->sk_addr = htole32(cd->sk_tx_hiaddr); 504 t->sk_len = 0; 505 t->sk_ctl = 0; 506 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN; 507 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT, 508 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 509 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT); 510 sc_if->sk_cdata.sk_tx_cnt++; 511 512 return 0; 513 } 514 515 static int 516 msk_newbuf(struct sk_if_softc *sc_if) 517 { 518 struct sk_softc *sc = sc_if->sk_softc; 519 struct mbuf *m_new = NULL; 520 struct sk_chain *c; 521 struct msk_rx_desc *r; 522 void *buf = NULL; 523 bus_addr_t addr; 524 bus_dmamap_t rxmap; 525 size_t i; 526 uint32_t rxidx, frag, cur, hiaddr, total; 527 uint32_t entries = 0; 528 uint8_t own = 0; 529 530 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 531 if (m_new == NULL) 532 return ENOBUFS; 533 534 /* Allocate the jumbo buffer */ 535 buf = msk_jalloc(sc_if); 536 if (buf == NULL) { 537 m_freem(m_new); 538 DPRINTFN(1, ("%s jumbo allocation failed -- packet " 539 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname)); 540 return ENOBUFS; 541 } 542 543 /* Attach the buffer to the mbuf */ 544 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; 545 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if); 546 547 m_adj(m_new, ETHER_ALIGN); 548 549 rxidx = frag = cur = sc_if->sk_cdata.sk_rx_prod; 550 rxmap = sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap; 551 552 if (bus_dmamap_load_mbuf(sc->sc_dmatag, rxmap, m_new, BUS_DMA_NOWAIT)) { 553 DPRINTFN(2, ("msk_newbuf: dmamap_load failed\n")); 554 m_freem(m_new); 555 return ENOBUFS; 556 } 557 558 /* Count how many rx descriptors needed. */ 559 hiaddr = sc_if->sk_cdata.sk_rx_hiaddr; 560 for (total = i = 0; i < rxmap->dm_nsegs; i++) { 561 if (hiaddr != MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr)) { 562 hiaddr = MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr); 563 total++; 564 } 565 total++; 566 } 567 568 if (total > MSK_RX_RING_CNT - sc_if->sk_cdata.sk_rx_cnt - 1) { 569 DPRINTFN(2, ("msk_newbuf: too few descriptors free\n")); 570 bus_dmamap_unload(sc->sc_dmatag, rxmap); 571 m_freem(m_new); 572 return ENOBUFS; 573 } 574 575 DPRINTFN(2, ("msk_newbuf: dm_nsegs=%d total desc=%u\n", 576 rxmap->dm_nsegs, total)); 577 578 /* Sync the DMA map. */ 579 bus_dmamap_sync(sc->sc_dmatag, rxmap, 0, rxmap->dm_mapsize, 580 BUS_DMASYNC_PREREAD); 581 582 for (i = 0; i < rxmap->dm_nsegs; i++) { 583 addr = rxmap->dm_segs[i].ds_addr; 584 DPRINTFN(2, ("msk_newbuf: addr %llx\n", 585 (unsigned long long)addr)); 586 hiaddr = MSK_ADDR_HI(addr); 587 588 if (sc_if->sk_cdata.sk_rx_hiaddr != hiaddr) { 589 c = &sc_if->sk_cdata.sk_rx_chain[frag]; 590 c->sk_mbuf = NULL; 591 r = &sc_if->sk_rdata->sk_rx_ring[frag]; 592 r->sk_addr = htole32(hiaddr); 593 r->sk_len = 0; 594 r->sk_ctl = 0; 595 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own; 596 own = SK_Y2_RXOPC_OWN; 597 sc_if->sk_cdata.sk_rx_hiaddr = hiaddr; 598 MSK_CDRXSYNC(sc_if, frag, 599 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 600 SK_INC(frag, MSK_RX_RING_CNT); 601 entries++; 602 DPRINTFN(10, ("%s: rx ADDR64: %#x\n", 603 sc_if->sk_ethercom.ec_if.if_xname, hiaddr)); 604 } 605 606 c = &sc_if->sk_cdata.sk_rx_chain[frag]; 607 r = &sc_if->sk_rdata->sk_rx_ring[frag]; 608 r->sk_addr = htole32(MSK_ADDR_LO(addr)); 609 r->sk_len = htole16(rxmap->dm_segs[i].ds_len); 610 r->sk_ctl = 0; 611 if (i == 0) { 612 r->sk_opcode = SK_Y2_RXOPC_PACKET | own; 613 } else 614 r->sk_opcode = SK_Y2_RXOPC_BUFFER | own; 615 own = SK_Y2_RXOPC_OWN; 616 MSK_CDRXSYNC(sc_if, frag, 617 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 618 cur = frag; 619 SK_INC(frag, MSK_RX_RING_CNT); 620 entries++; 621 } 622 KASSERTMSG(entries == total, "entries %u total %u", entries, total); 623 624 sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap = 625 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap; 626 sc_if->sk_cdata.sk_rx_chain[cur].sk_mbuf = m_new; 627 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap = rxmap; 628 629 sc_if->sk_rdata->sk_rx_ring[rxidx].sk_opcode |= SK_Y2_RXOPC_OWN; 630 MSK_CDRXSYNC(sc_if, rxidx, 631 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 632 633 sc_if->sk_cdata.sk_rx_cnt += entries; 634 sc_if->sk_cdata.sk_rx_prod = frag; 635 636 return 0; 637 } 638 639 /* 640 * Memory management for jumbo frames. 641 */ 642 643 static int 644 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if) 645 { 646 struct sk_softc *sc = sc_if->sk_softc; 647 char *ptr, *kva; 648 int i, state, error; 649 struct sk_jpool_entry *entry; 650 651 state = error = 0; 652 653 /* Grab a big chunk o' storage. */ 654 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0, 655 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg, 656 BUS_DMA_NOWAIT)) { 657 aprint_error(": can't alloc rx buffers"); 658 return ENOBUFS; 659 } 660 661 state = 1; 662 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg, 663 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva, 664 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) { 665 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM); 666 error = ENOBUFS; 667 goto out; 668 } 669 670 state = 2; 671 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0, 672 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) { 673 aprint_error(": can't create dma map"); 674 error = ENOBUFS; 675 goto out; 676 } 677 678 state = 3; 679 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map, 680 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) { 681 aprint_error(": can't load dma map"); 682 error = ENOBUFS; 683 goto out; 684 } 685 686 state = 4; 687 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva; 688 DPRINTFN(1,("msk_jumbo_buf = %p\n", 689 (void *)sc_if->sk_cdata.sk_jumbo_buf)); 690 691 LIST_INIT(&sc_if->sk_jfree_listhead); 692 LIST_INIT(&sc_if->sk_jinuse_listhead); 693 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET); 694 695 /* 696 * Now divide it up into 9K pieces and save the addresses 697 * in an array. 698 */ 699 ptr = sc_if->sk_cdata.sk_jumbo_buf; 700 for (i = 0; i < MSK_JSLOTS; i++) { 701 sc_if->sk_cdata.sk_jslots[i] = ptr; 702 ptr += SK_JLEN; 703 entry = malloc(sizeof(struct sk_jpool_entry), 704 M_DEVBUF, M_WAITOK); 705 entry->slot = i; 706 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, 707 entry, jpool_entries); 708 } 709 out: 710 if (error != 0) { 711 switch (state) { 712 case 4: 713 bus_dmamap_unload(sc->sc_dmatag, 714 sc_if->sk_cdata.sk_rx_jumbo_map); 715 /* FALLTHROUGH */ 716 case 3: 717 bus_dmamap_destroy(sc->sc_dmatag, 718 sc_if->sk_cdata.sk_rx_jumbo_map); 719 /* FALLTHROUGH */ 720 case 2: 721 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM); 722 /* FALLTHROUGH */ 723 case 1: 724 bus_dmamem_free(sc->sc_dmatag, 725 &sc_if->sk_cdata.sk_jumbo_seg, 726 sc_if->sk_cdata.sk_jumbo_nseg); 727 break; 728 default: 729 break; 730 } 731 } 732 733 return error; 734 } 735 736 static void 737 msk_free_jumbo_mem(struct sk_if_softc *sc_if) 738 { 739 struct sk_softc *sc = sc_if->sk_softc; 740 741 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map); 742 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map); 743 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM); 744 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg, 745 sc_if->sk_cdata.sk_jumbo_nseg); 746 } 747 748 /* 749 * Allocate a jumbo buffer. 750 */ 751 static void * 752 msk_jalloc(struct sk_if_softc *sc_if) 753 { 754 struct sk_jpool_entry *entry; 755 756 mutex_enter(&sc_if->sk_jpool_mtx); 757 entry = LIST_FIRST(&sc_if->sk_jfree_listhead); 758 759 if (entry == NULL) { 760 mutex_exit(&sc_if->sk_jpool_mtx); 761 return NULL; 762 } 763 764 LIST_REMOVE(entry, jpool_entries); 765 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); 766 mutex_exit(&sc_if->sk_jpool_mtx); 767 return sc_if->sk_cdata.sk_jslots[entry->slot]; 768 } 769 770 /* 771 * Release a jumbo buffer. 772 */ 773 static void 774 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg) 775 { 776 struct sk_jpool_entry *entry; 777 struct sk_if_softc *sc; 778 int i; 779 780 /* Extract the softc struct pointer. */ 781 sc = (struct sk_if_softc *)arg; 782 783 if (sc == NULL) 784 panic("msk_jfree: can't find softc pointer!"); 785 786 /* calculate the slot this buffer belongs to */ 787 i = ((vaddr_t)buf 788 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN; 789 790 if ((i < 0) || (i >= MSK_JSLOTS)) 791 panic("msk_jfree: asked to free buffer that we don't manage!"); 792 793 mutex_enter(&sc->sk_jpool_mtx); 794 entry = LIST_FIRST(&sc->sk_jinuse_listhead); 795 if (entry == NULL) 796 panic("msk_jfree: buffer not in use!"); 797 entry->slot = i; 798 LIST_REMOVE(entry, jpool_entries); 799 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries); 800 mutex_exit(&sc->sk_jpool_mtx); 801 802 if (__predict_true(m != NULL)) 803 pool_cache_put(mb_cache, m); 804 805 /* Now that we know we have a free RX buffer, refill if running out */ 806 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0 807 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3)) 808 callout_schedule(&sc->sk_tick_rx, 0); 809 } 810 811 static int 812 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data) 813 { 814 struct sk_if_softc *sc = ifp->if_softc; 815 int s, error; 816 817 s = splnet(); 818 819 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd)); 820 switch (cmd) { 821 case SIOCSIFFLAGS: 822 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 823 break; 824 825 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 826 case IFF_RUNNING: 827 msk_stop(ifp, 1); 828 break; 829 case IFF_UP: 830 msk_init(ifp); 831 break; 832 case IFF_UP | IFF_RUNNING: 833 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) { 834 msk_setpromisc(sc); 835 msk_setmulti(sc); 836 } else 837 msk_init(ifp); 838 break; 839 } 840 sc->sk_if_flags = ifp->if_flags; 841 break; 842 default: 843 error = ether_ioctl(ifp, cmd, data); 844 if (error == ENETRESET) { 845 error = 0; 846 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 847 ; 848 else if (ifp->if_flags & IFF_RUNNING) { 849 /* 850 * Multicast list has changed; set the hardware 851 * filter accordingly. 852 */ 853 msk_setmulti(sc); 854 } 855 } 856 break; 857 } 858 859 splx(s); 860 return error; 861 } 862 863 static void 864 msk_update_int_mod(struct sk_softc *sc, int verbose) 865 { 866 uint32_t imtimer_ticks; 867 868 /* 869 * Configure interrupt moderation. The moderation timer 870 * defers interrupts specified in the interrupt moderation 871 * timer mask based on the timeout specified in the interrupt 872 * moderation timer init register. Each bit in the timer 873 * register represents one tick, so to specify a timeout in 874 * microseconds, we have to multiply by the correct number of 875 * ticks-per-microsecond. 876 */ 877 switch (sc->sk_type) { 878 case SK_YUKON_EC: 879 case SK_YUKON_EC_U: 880 case SK_YUKON_EX: 881 case SK_YUKON_SUPR: 882 case SK_YUKON_ULTRA2: 883 case SK_YUKON_OPTIMA: 884 case SK_YUKON_PRM: 885 case SK_YUKON_OPTIMA2: 886 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC; 887 break; 888 case SK_YUKON_FE: 889 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE; 890 break; 891 case SK_YUKON_FE_P: 892 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P; 893 break; 894 case SK_YUKON_XL: 895 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL; 896 break; 897 default: 898 imtimer_ticks = SK_IMTIMER_TICKS_YUKON; 899 } 900 if (verbose) 901 aprint_verbose_dev(sc->sk_dev, 902 "interrupt moderation is %d us\n", sc->sk_int_mod); 903 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod)); 904 sk_win_write_4(sc, SK_IMMR, 0); /* moderate no interrupts */ 905 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 906 sc->sk_int_mod_pending = 0; 907 } 908 909 /* 910 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device 911 * IDs against our list and return a device name if we find a match. 912 */ 913 static int 914 mskc_probe(device_t parent, cfdata_t match, void *aux) 915 { 916 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 917 918 return pci_compatible_match(pa, compat_data); 919 } 920 921 /* 922 * Force the GEnesis into reset, then bring it out of reset. 923 */ 924 static void 925 mskc_reset(struct sk_softc *sc) 926 { 927 uint32_t imtimer_ticks, reg1; 928 uint16_t status; 929 int reg; 930 931 DPRINTFN(2, ("mskc_reset\n")); 932 933 /* Disable ASF */ 934 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) { 935 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0); 936 status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR); 937 /* Clear AHB bridge & microcontroller reset. */ 938 status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST | 939 SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE); 940 /* Clear ASF microcontroller state. */ 941 status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK; 942 status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK; 943 CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status); 944 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0); 945 } else 946 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET); 947 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF); 948 949 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET); 950 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET); 951 952 DELAY(1000); 953 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET); 954 DELAY(2); 955 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 956 sk_win_write_1(sc, SK_TESTCTL1, 2); 957 958 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX || 959 sc->sk_type >= SK_YUKON_FE_P) { 960 uint32_t our; 961 962 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON); 963 964 /* enable all clocks. */ 965 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0); 966 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4)); 967 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST | 968 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN | 969 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY | 970 SK_Y2_REG4_ASPM_CLKRUN_REQUEST); 971 /* Set all bits to 0 except bits 15..12 */ 972 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our); 973 /* Set to default value */ 974 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0); 975 976 /* 977 * Disable status race, workaround for Yukon EC Ultra & 978 * Yukon EX. 979 */ 980 reg1 = sk_win_read_4(sc, SK_GPIO); 981 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS; 982 sk_win_write_4(sc, SK_GPIO, reg1); 983 sk_win_read_4(sc, SK_GPIO); 984 } 985 986 /* release PHY from PowerDown/Coma mode. */ 987 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1)); 988 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1) 989 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA); 990 else 991 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA); 992 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1); 993 994 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1) 995 sk_win_write_1(sc, SK_Y2_CLKGATE, 996 SK_Y2_CLKGATE_LINK1_GATE_DIS | 997 SK_Y2_CLKGATE_LINK2_GATE_DIS | 998 SK_Y2_CLKGATE_LINK1_CORE_DIS | 999 SK_Y2_CLKGATE_LINK2_CORE_DIS | 1000 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS); 1001 else 1002 sk_win_write_1(sc, SK_Y2_CLKGATE, 0); 1003 1004 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); 1005 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET); 1006 DELAY(1000); 1007 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); 1008 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR); 1009 1010 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) { 1011 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX | 1012 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO); 1013 } 1014 1015 sk_win_write_1(sc, SK_TESTCTL1, 1); 1016 1017 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR))); 1018 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n", 1019 CSR_READ_2(sc, SK_LINK_CTRL))); 1020 1021 /* Clear I2C IRQ noise */ 1022 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1); 1023 1024 /* Disable hardware timer */ 1025 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP); 1026 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR); 1027 1028 /* Disable descriptor polling */ 1029 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP); 1030 1031 /* Disable time stamps */ 1032 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP); 1033 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR); 1034 1035 /* Enable RAM interface */ 1036 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1037 for (reg = SK_TO0;reg <= SK_TO11; reg++) 1038 sk_win_write_1(sc, reg, 36); 1039 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET); 1040 for (reg = SK_TO0;reg <= SK_TO11; reg++) 1041 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36); 1042 1043 /* 1044 * Configure interrupt moderation. The moderation timer 1045 * defers interrupts specified in the interrupt moderation 1046 * timer mask based on the timeout specified in the interrupt 1047 * moderation timer init register. Each bit in the timer 1048 * register represents one tick, so to specify a timeout in 1049 * microseconds, we have to multiply by the correct number of 1050 * ticks-per-microsecond. 1051 */ 1052 switch (sc->sk_type) { 1053 case SK_YUKON_EC: 1054 case SK_YUKON_EC_U: 1055 case SK_YUKON_EX: 1056 case SK_YUKON_SUPR: 1057 case SK_YUKON_ULTRA2: 1058 case SK_YUKON_OPTIMA: 1059 case SK_YUKON_PRM: 1060 case SK_YUKON_OPTIMA2: 1061 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC; 1062 break; 1063 case SK_YUKON_FE: 1064 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE; 1065 break; 1066 case SK_YUKON_FE_P: 1067 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P; 1068 break; 1069 case SK_YUKON_XL: 1070 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL; 1071 break; 1072 default: 1073 imtimer_ticks = SK_IMTIMER_TICKS_YUKON; 1074 break; 1075 } 1076 1077 /* Reset status ring. */ 1078 memset(sc->sk_status_ring, 0, 1079 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); 1080 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0, 1081 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD); 1082 sc->sk_status_idx = 0; 1083 1084 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET); 1085 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET); 1086 1087 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1); 1088 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO, 1089 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr)); 1090 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI, 1091 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr)); 1092 if (sc->sk_type == SK_YUKON_EC && 1093 sc->sk_rev == SK_YUKON_EC_REV_A1) { 1094 /* WA for dev. #4.3 */ 1095 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 1096 SK_STAT_BMU_TXTHIDX_MSK); 1097 /* WA for dev. #4.18 */ 1098 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21); 1099 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07); 1100 } else { 1101 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a); 1102 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10); 1103 if (sc->sk_type == SK_YUKON_XL) 1104 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04); 1105 else 1106 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10); 1107 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */ 1108 } 1109 1110 #if 0 1111 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100)); 1112 #endif 1113 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000)); 1114 1115 /* Enable status unit. */ 1116 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON); 1117 1118 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START); 1119 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START); 1120 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START); 1121 1122 msk_update_int_mod(sc, 0); 1123 } 1124 1125 static int 1126 msk_probe(device_t parent, cfdata_t match, void *aux) 1127 { 1128 struct skc_attach_args *sa = aux; 1129 1130 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B) 1131 return 0; 1132 1133 switch (sa->skc_type) { 1134 case SK_YUKON_XL: 1135 case SK_YUKON_EC_U: 1136 case SK_YUKON_EX: 1137 case SK_YUKON_EC: 1138 case SK_YUKON_FE: 1139 case SK_YUKON_FE_P: 1140 case SK_YUKON_SUPR: 1141 case SK_YUKON_ULTRA2: 1142 case SK_YUKON_OPTIMA: 1143 case SK_YUKON_PRM: 1144 case SK_YUKON_OPTIMA2: 1145 return 1; 1146 } 1147 1148 return 0; 1149 } 1150 1151 static void 1152 msk_reset(struct sk_if_softc *sc_if) 1153 { 1154 /* GMAC and GPHY Reset */ 1155 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 1156 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); 1157 DELAY(1000); 1158 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR); 1159 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | 1160 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); 1161 } 1162 1163 static bool 1164 msk_resume(device_t dv, const pmf_qual_t *qual) 1165 { 1166 struct sk_if_softc *sc_if = device_private(dv); 1167 1168 msk_init_yukon(sc_if); 1169 return true; 1170 } 1171 1172 /* 1173 * Each XMAC chip is attached as a separate logical IP interface. 1174 * Single port cards will have only one logical interface of course. 1175 */ 1176 static void 1177 msk_attach(device_t parent, device_t self, void *aux) 1178 { 1179 struct sk_if_softc *sc_if = device_private(self); 1180 struct sk_softc *sc = device_private(parent); 1181 struct skc_attach_args *sa = aux; 1182 bus_dmamap_t dmamap; 1183 struct ifnet *ifp; 1184 struct mii_data * const mii = &sc_if->sk_mii; 1185 void *kva; 1186 int i; 1187 uint32_t chunk; 1188 int mii_flags; 1189 1190 sc_if->sk_dev = self; 1191 sc_if->sk_port = sa->skc_port; 1192 sc_if->sk_softc = sc; 1193 sc->sk_if[sa->skc_port] = sc_if; 1194 1195 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port)); 1196 1197 /* 1198 * Get station address for this interface. Note that 1199 * dual port cards actually come with three station 1200 * addresses: one for each port, plus an extra. The 1201 * extra one is used by the SysKonnect driver software 1202 * as a 'virtual' station address for when both ports 1203 * are operating in failover mode. Currently we don't 1204 * use this extra address. 1205 */ 1206 for (i = 0; i < ETHER_ADDR_LEN; i++) 1207 sc_if->sk_enaddr[i] = 1208 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i); 1209 1210 aprint_normal(": Ethernet address %s\n", 1211 ether_sprintf(sc_if->sk_enaddr)); 1212 1213 /* 1214 * Set up RAM buffer addresses. The Yukon2 has a small amount 1215 * of SRAM on it, somewhere between 4K and 48K. We need to 1216 * divide this up between the transmitter and receiver. We 1217 * give the receiver 2/3 of the memory (rounded down), and the 1218 * transmitter whatever remains. 1219 */ 1220 if (sc->sk_ramsize) { 1221 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff; 1222 sc_if->sk_rx_ramstart = 0; 1223 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1; 1224 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk; 1225 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1; 1226 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1; 1227 1228 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n" 1229 " tx_ramstart=%#x tx_ramend=%#x\n", 1230 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend, 1231 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend)); 1232 } 1233 1234 /* Allocate the descriptor queues. */ 1235 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data), 1236 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg, 1237 BUS_DMA_NOWAIT)) { 1238 aprint_error(": can't alloc rx buffers\n"); 1239 goto fail; 1240 } 1241 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg, 1242 sc_if->sk_ring_nseg, 1243 sizeof(struct msk_ring_data), &kva, 1244 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) { 1245 aprint_error(": can't map dma buffers (%zu bytes)\n", 1246 sizeof(struct msk_ring_data)); 1247 goto fail_1; 1248 } 1249 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1, 1250 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT, 1251 &sc_if->sk_ring_map)) { 1252 aprint_error(": can't create dma map\n"); 1253 goto fail_2; 1254 } 1255 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva, 1256 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) { 1257 aprint_error(": can't load dma map\n"); 1258 goto fail_3; 1259 } 1260 1261 for (i = 0; i < MSK_TX_RING_CNT; i++) { 1262 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 1263 1264 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG, 1265 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) { 1266 aprint_error_dev(sc_if->sk_dev, 1267 "Can't create TX dmamap\n"); 1268 goto fail_3; 1269 } 1270 1271 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap = dmamap; 1272 } 1273 1274 for (i = 0; i < MSK_RX_RING_CNT; i++) { 1275 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 1276 1277 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, 1278 howmany(SK_JLEN + 1, NBPG), 1279 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) { 1280 aprint_error_dev(sc_if->sk_dev, 1281 "Can't create RX dmamap\n"); 1282 goto fail_3; 1283 } 1284 1285 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap = dmamap; 1286 } 1287 1288 sc_if->sk_rdata = (struct msk_ring_data *)kva; 1289 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data)); 1290 1291 if (sc->sk_type != SK_YUKON_FE && 1292 sc->sk_type != SK_YUKON_FE_P) 1293 sc_if->sk_pktlen = SK_JLEN; 1294 else 1295 sc_if->sk_pktlen = MCLBYTES; 1296 1297 /* Try to allocate memory for jumbo buffers. */ 1298 if (msk_alloc_jumbo_mem(sc_if)) { 1299 aprint_error(": jumbo buffer allocation failed\n"); 1300 goto fail_3; 1301 } 1302 1303 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU; 1304 if (sc->sk_type != SK_YUKON_FE && 1305 sc->sk_type != SK_YUKON_FE_P) 1306 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 1307 1308 ifp = &sc_if->sk_ethercom.ec_if; 1309 ifp->if_softc = sc_if; 1310 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1311 ifp->if_ioctl = msk_ioctl; 1312 ifp->if_start = msk_start; 1313 ifp->if_stop = msk_stop; 1314 ifp->if_init = msk_init; 1315 ifp->if_watchdog = msk_watchdog; 1316 ifp->if_baudrate = 1000000000; 1317 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1); 1318 IFQ_SET_READY(&ifp->if_snd); 1319 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ); 1320 1321 msk_reset(sc_if); 1322 1323 /* 1324 * Do miibus setup. 1325 */ 1326 DPRINTFN(2, ("msk_attach: 1\n")); 1327 1328 mii->mii_ifp = ifp; 1329 mii->mii_readreg = msk_miibus_readreg; 1330 mii->mii_writereg = msk_miibus_writereg; 1331 mii->mii_statchg = msk_miibus_statchg; 1332 1333 sc_if->sk_ethercom.ec_mii = mii; 1334 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); 1335 mii_flags = MIIF_DOPAUSE; 1336 if (sc->sk_fibertype) 1337 mii_flags |= MIIF_HAVEFIBER; 1338 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags); 1339 if (LIST_FIRST(&mii->mii_phys) == NULL) { 1340 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n"); 1341 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 1342 0, NULL); 1343 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL); 1344 } else 1345 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 1346 1347 callout_init(&sc_if->sk_tick_ch, 0); 1348 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if); 1349 callout_schedule(&sc_if->sk_tick_ch, hz); 1350 1351 callout_init(&sc_if->sk_tick_rx, 0); 1352 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if); 1353 1354 /* 1355 * Call MI attach routines. 1356 */ 1357 if_attach(ifp); 1358 if_deferred_start_init(ifp, NULL); 1359 ether_ifattach(ifp, sc_if->sk_enaddr); 1360 1361 if (pmf_device_register(self, NULL, msk_resume)) 1362 pmf_class_network_register(self, ifp); 1363 else 1364 aprint_error_dev(self, "couldn't establish power handler\n"); 1365 1366 if (sc->rnd_attached++ == 0) { 1367 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev), 1368 RND_TYPE_NET, RND_FLAG_DEFAULT); 1369 } 1370 1371 DPRINTFN(2, ("msk_attach: end\n")); 1372 return; 1373 1374 fail_3: 1375 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); 1376 fail_2: 1377 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data)); 1378 fail_1: 1379 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg); 1380 fail: 1381 sc->sk_if[sa->skc_port] = NULL; 1382 } 1383 1384 static int 1385 msk_detach(device_t self, int flags) 1386 { 1387 struct sk_if_softc *sc_if = device_private(self); 1388 struct sk_softc *sc = sc_if->sk_softc; 1389 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 1390 int i; 1391 1392 if (sc->sk_if[sc_if->sk_port] == NULL) 1393 return 0; 1394 1395 msk_stop(ifp, 1); 1396 1397 for (i = 0; i < MSK_TX_RING_CNT; i++) { 1398 bus_dmamap_destroy(sc->sc_dmatag, 1399 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap); 1400 } 1401 1402 for (i = 0; i < MSK_RX_RING_CNT; i++) { 1403 bus_dmamap_destroy(sc->sc_dmatag, 1404 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap); 1405 } 1406 1407 if (--sc->rnd_attached == 0) 1408 rnd_detach_source(&sc->rnd_source); 1409 1410 callout_halt(&sc_if->sk_tick_ch, NULL); 1411 callout_destroy(&sc_if->sk_tick_ch); 1412 1413 callout_halt(&sc_if->sk_tick_rx, NULL); 1414 callout_destroy(&sc_if->sk_tick_rx); 1415 1416 /* Detach any PHYs we might have. */ 1417 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL) 1418 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY); 1419 1420 pmf_device_deregister(self); 1421 1422 ether_ifdetach(ifp); 1423 if_detach(ifp); 1424 1425 /* Delete any remaining media. */ 1426 ifmedia_fini(&sc_if->sk_mii.mii_media); 1427 1428 msk_free_jumbo_mem(sc_if); 1429 1430 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata, 1431 sizeof(struct msk_ring_data)); 1432 bus_dmamem_free(sc->sc_dmatag, 1433 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg); 1434 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); 1435 sc->sk_if[sc_if->sk_port] = NULL; 1436 1437 return 0; 1438 } 1439 1440 static int 1441 mskcprint(void *aux, const char *pnp) 1442 { 1443 struct skc_attach_args *sa = aux; 1444 1445 if (pnp) 1446 aprint_normal("msk port %c at %s", 1447 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp); 1448 else 1449 aprint_normal(" port %c", 1450 (sa->skc_port == SK_PORT_A) ? 'A' : 'B'); 1451 return UNCONF; 1452 } 1453 1454 /* 1455 * Attach the interface. Allocate softc structures, do ifmedia 1456 * setup and ethernet/BPF attach. 1457 */ 1458 static void 1459 mskc_attach(device_t parent, device_t self, void *aux) 1460 { 1461 struct sk_softc *sc = device_private(self); 1462 struct pci_attach_args *pa = aux; 1463 struct skc_attach_args skca; 1464 pci_chipset_tag_t pc = pa->pa_pc; 1465 pcireg_t command, memtype; 1466 const char *intrstr = NULL; 1467 int rc, sk_nodenum; 1468 uint8_t hw, pmd; 1469 const char *revstr = NULL; 1470 const struct sysctlnode *node; 1471 void *kva; 1472 char intrbuf[PCI_INTRSTR_LEN]; 1473 1474 DPRINTFN(2, ("begin mskc_attach\n")); 1475 1476 sc->sk_dev = self; 1477 /* 1478 * Handle power management nonsense. 1479 */ 1480 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF; 1481 1482 if (command == 0x01) { 1483 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL); 1484 if (command & SK_PSTATE_MASK) { 1485 uint32_t iobase, membase, irq; 1486 1487 /* Save important PCI config data. */ 1488 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO); 1489 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM); 1490 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE); 1491 1492 /* Reset the power state. */ 1493 aprint_normal_dev(sc->sk_dev, "chip is in D%d power " 1494 "mode -- setting to D0\n", 1495 command & SK_PSTATE_MASK); 1496 command &= 0xFFFFFFFC; 1497 pci_conf_write(pc, pa->pa_tag, 1498 SK_PCI_PWRMGMTCTRL, command); 1499 1500 /* Restore PCI config data. */ 1501 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase); 1502 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase); 1503 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq); 1504 } 1505 } 1506 1507 /* 1508 * Map control/status registers. 1509 */ 1510 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM); 1511 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag, 1512 &sc->sk_bhandle, NULL, &sc->sk_bsize)) { 1513 aprint_error(": can't map mem space\n"); 1514 return; 1515 } 1516 1517 if (pci_dma64_available(pa)) 1518 sc->sc_dmatag = pa->pa_dmat64; 1519 else 1520 sc->sc_dmatag = pa->pa_dmat; 1521 1522 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1523 command |= PCI_COMMAND_MASTER_ENABLE; 1524 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1525 1526 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); 1527 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4); 1528 1529 /* bail out here if chip is not recognized */ 1530 if (!(SK_IS_YUKON2(sc))) { 1531 aprint_error(": unknown chip type: %d\n", sc->sk_type); 1532 goto fail_1; 1533 } 1534 DPRINTFN(2, ("mskc_attach: allocate interrupt\n")); 1535 1536 /* Allocate interrupt */ 1537 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) { 1538 aprint_error(": couldn't map interrupt\n"); 1539 goto fail_1; 1540 } 1541 1542 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf)); 1543 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET, 1544 msk_intr, sc, device_xname(sc->sk_dev)); 1545 if (sc->sk_intrhand == NULL) { 1546 aprint_error(": couldn't establish interrupt"); 1547 if (intrstr != NULL) 1548 aprint_error(" at %s", intrstr); 1549 aprint_error("\n"); 1550 goto fail_1; 1551 } 1552 sc->sk_pc = pc; 1553 1554 if (bus_dmamem_alloc(sc->sc_dmatag, 1555 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1556 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1557 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) { 1558 aprint_error(": can't alloc status buffers\n"); 1559 goto fail_2; 1560 } 1561 1562 if (bus_dmamem_map(sc->sc_dmatag, 1563 &sc->sk_status_seg, sc->sk_status_nseg, 1564 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1565 &kva, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) { 1566 aprint_error(": can't map dma buffers (%zu bytes)\n", 1567 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); 1568 goto fail_3; 1569 } 1570 if (bus_dmamap_create(sc->sc_dmatag, 1571 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1, 1572 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0, 1573 BUS_DMA_NOWAIT, &sc->sk_status_map)) { 1574 aprint_error(": can't create dma map\n"); 1575 goto fail_4; 1576 } 1577 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva, 1578 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1579 NULL, BUS_DMA_NOWAIT)) { 1580 aprint_error(": can't load dma map\n"); 1581 goto fail_5; 1582 } 1583 sc->sk_status_ring = (struct msk_status_desc *)kva; 1584 1585 sc->sk_int_mod = SK_IM_DEFAULT; 1586 sc->sk_int_mod_pending = 0; 1587 1588 /* Reset the adapter. */ 1589 mskc_reset(sc); 1590 1591 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096; 1592 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024)); 1593 1594 pmd = sk_win_read_1(sc, SK_PMDTYPE); 1595 if (pmd == 'L' || pmd == 'S' || pmd == 'P') 1596 sc->sk_fibertype = 1; 1597 1598 switch (sc->sk_type) { 1599 case SK_YUKON_XL: 1600 sc->sk_name = "Yukon-2 XL"; 1601 break; 1602 case SK_YUKON_EC_U: 1603 sc->sk_name = "Yukon-2 EC Ultra"; 1604 break; 1605 case SK_YUKON_EX: 1606 sc->sk_name = "Yukon-2 Extreme"; 1607 break; 1608 case SK_YUKON_EC: 1609 sc->sk_name = "Yukon-2 EC"; 1610 break; 1611 case SK_YUKON_FE: 1612 sc->sk_name = "Yukon-2 FE"; 1613 break; 1614 case SK_YUKON_FE_P: 1615 sc->sk_name = "Yukon-2 FE+"; 1616 break; 1617 case SK_YUKON_SUPR: 1618 sc->sk_name = "Yukon-2 Supreme"; 1619 break; 1620 case SK_YUKON_ULTRA2: 1621 sc->sk_name = "Yukon-2 Ultra 2"; 1622 break; 1623 case SK_YUKON_OPTIMA: 1624 sc->sk_name = "Yukon-2 Optima"; 1625 break; 1626 case SK_YUKON_PRM: 1627 sc->sk_name = "Yukon-2 Optima Prime"; 1628 break; 1629 case SK_YUKON_OPTIMA2: 1630 sc->sk_name = "Yukon-2 Optima 2"; 1631 break; 1632 default: 1633 sc->sk_name = "Yukon (Unknown)"; 1634 } 1635 1636 if (sc->sk_type == SK_YUKON_XL) { 1637 switch (sc->sk_rev) { 1638 case SK_YUKON_XL_REV_A0: 1639 revstr = "A0"; 1640 break; 1641 case SK_YUKON_XL_REV_A1: 1642 revstr = "A1"; 1643 break; 1644 case SK_YUKON_XL_REV_A2: 1645 revstr = "A2"; 1646 break; 1647 case SK_YUKON_XL_REV_A3: 1648 revstr = "A3"; 1649 break; 1650 default: 1651 break; 1652 } 1653 } 1654 1655 if (sc->sk_type == SK_YUKON_EC) { 1656 switch (sc->sk_rev) { 1657 case SK_YUKON_EC_REV_A1: 1658 revstr = "A1"; 1659 break; 1660 case SK_YUKON_EC_REV_A2: 1661 revstr = "A2"; 1662 break; 1663 case SK_YUKON_EC_REV_A3: 1664 revstr = "A3"; 1665 break; 1666 default: 1667 break; 1668 } 1669 } 1670 1671 if (sc->sk_type == SK_YUKON_FE) { 1672 switch (sc->sk_rev) { 1673 case SK_YUKON_FE_REV_A1: 1674 revstr = "A1"; 1675 break; 1676 case SK_YUKON_FE_REV_A2: 1677 revstr = "A2"; 1678 break; 1679 default: 1680 break; 1681 } 1682 } 1683 1684 if (sc->sk_type == SK_YUKON_EC_U) { 1685 switch (sc->sk_rev) { 1686 case SK_YUKON_EC_U_REV_A0: 1687 revstr = "A0"; 1688 break; 1689 case SK_YUKON_EC_U_REV_A1: 1690 revstr = "A1"; 1691 break; 1692 case SK_YUKON_EC_U_REV_B0: 1693 revstr = "B0"; 1694 break; 1695 case SK_YUKON_EC_U_REV_B1: 1696 revstr = "B1"; 1697 break; 1698 default: 1699 break; 1700 } 1701 } 1702 1703 if (sc->sk_type == SK_YUKON_FE) { 1704 switch (sc->sk_rev) { 1705 case SK_YUKON_FE_REV_A1: 1706 revstr = "A1"; 1707 break; 1708 case SK_YUKON_FE_REV_A2: 1709 revstr = "A2"; 1710 break; 1711 default: 1712 ; 1713 } 1714 } 1715 1716 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0) 1717 revstr = "A0"; 1718 1719 if (sc->sk_type == SK_YUKON_EX) { 1720 switch (sc->sk_rev) { 1721 case SK_YUKON_EX_REV_A0: 1722 revstr = "A0"; 1723 break; 1724 case SK_YUKON_EX_REV_B0: 1725 revstr = "B0"; 1726 break; 1727 default: 1728 ; 1729 } 1730 } 1731 1732 if (sc->sk_type == SK_YUKON_SUPR) { 1733 switch (sc->sk_rev) { 1734 case SK_YUKON_SUPR_REV_A0: 1735 revstr = "A0"; 1736 break; 1737 case SK_YUKON_SUPR_REV_B0: 1738 revstr = "B0"; 1739 break; 1740 case SK_YUKON_SUPR_REV_B1: 1741 revstr = "B1"; 1742 break; 1743 default: 1744 ; 1745 } 1746 } 1747 1748 if (sc->sk_type == SK_YUKON_PRM) { 1749 switch (sc->sk_rev) { 1750 case SK_YUKON_PRM_REV_Z1: 1751 revstr = "Z1"; 1752 break; 1753 case SK_YUKON_PRM_REV_A0: 1754 revstr = "A0"; 1755 break; 1756 default: 1757 ; 1758 } 1759 } 1760 1761 /* Announce the product name. */ 1762 aprint_normal(", %s", sc->sk_name); 1763 if (revstr != NULL) 1764 aprint_normal(" rev. %s", revstr); 1765 aprint_normal(" (0x%x)\n", sc->sk_rev); 1766 1767 aprint_normal_dev(sc->sk_dev, "interrupting at %s\n", intrstr); 1768 1769 sc->sk_macs = 1; 1770 1771 hw = sk_win_read_1(sc, SK_Y2_HWRES); 1772 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) { 1773 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) & 1774 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0) 1775 sc->sk_macs++; 1776 } 1777 1778 skca.skc_port = SK_PORT_A; 1779 skca.skc_type = sc->sk_type; 1780 skca.skc_rev = sc->sk_rev; 1781 (void)config_found(sc->sk_dev, &skca, mskcprint, CFARGS_NONE); 1782 1783 if (sc->sk_macs > 1) { 1784 skca.skc_port = SK_PORT_B; 1785 skca.skc_type = sc->sk_type; 1786 skca.skc_rev = sc->sk_rev; 1787 (void)config_found(sc->sk_dev, &skca, mskcprint, CFARGS_NONE); 1788 } 1789 1790 /* Turn on the 'driver is loaded' LED. */ 1791 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1792 1793 /* skc sysctl setup */ 1794 1795 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node, 1796 0, CTLTYPE_NODE, device_xname(sc->sk_dev), 1797 SYSCTL_DESCR("mskc per-controller controls"), 1798 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE, 1799 CTL_EOL)) != 0) { 1800 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n"); 1801 goto fail_6; 1802 } 1803 1804 sk_nodenum = node->sysctl_num; 1805 1806 /* interrupt moderation time in usecs */ 1807 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node, 1808 CTLFLAG_READWRITE, 1809 CTLTYPE_INT, "int_mod", 1810 SYSCTL_DESCR("msk interrupt moderation timer"), 1811 msk_sysctl_handler, 0, (void *)sc, 1812 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE, 1813 CTL_EOL)) != 0) { 1814 aprint_normal_dev(sc->sk_dev, 1815 "couldn't create int_mod sysctl node\n"); 1816 goto fail_6; 1817 } 1818 1819 if (!pmf_device_register(self, mskc_suspend, mskc_resume)) 1820 aprint_error_dev(self, "couldn't establish power handler\n"); 1821 1822 return; 1823 1824 fail_6: 1825 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map); 1826 fail_4: 1827 bus_dmamem_unmap(sc->sc_dmatag, kva, 1828 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); 1829 fail_3: 1830 bus_dmamem_free(sc->sc_dmatag, 1831 &sc->sk_status_seg, sc->sk_status_nseg); 1832 sc->sk_status_nseg = 0; 1833 fail_5: 1834 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map); 1835 fail_2: 1836 pci_intr_disestablish(pc, sc->sk_intrhand); 1837 sc->sk_intrhand = NULL; 1838 fail_1: 1839 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize); 1840 sc->sk_bsize = 0; 1841 } 1842 1843 static int 1844 mskc_detach(device_t self, int flags) 1845 { 1846 struct sk_softc *sc = device_private(self); 1847 int rv; 1848 1849 if (sc->sk_intrhand) { 1850 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand); 1851 sc->sk_intrhand = NULL; 1852 } 1853 1854 if (sc->sk_pihp != NULL) { 1855 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1); 1856 sc->sk_pihp = NULL; 1857 } 1858 1859 rv = config_detach_children(self, flags); 1860 if (rv != 0) 1861 return rv; 1862 1863 sysctl_teardown(&sc->sk_clog); 1864 1865 if (sc->sk_status_nseg > 0) { 1866 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map); 1867 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring, 1868 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); 1869 bus_dmamem_free(sc->sc_dmatag, 1870 &sc->sk_status_seg, sc->sk_status_nseg); 1871 } 1872 1873 if (sc->sk_bsize > 0) 1874 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize); 1875 1876 return 0; 1877 } 1878 1879 static int 1880 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx) 1881 { 1882 struct sk_softc *sc = sc_if->sk_softc; 1883 struct msk_tx_desc *f = NULL; 1884 uint32_t frag, cur, hiaddr, total; 1885 uint32_t entries = 0; 1886 uint8_t own = 0; 1887 size_t i; 1888 bus_dmamap_t txmap; 1889 bus_addr_t addr; 1890 1891 DPRINTFN(2, ("msk_encap\n")); 1892 1893 txmap = sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap; 1894 1895 cur = frag = *txidx; 1896 1897 #ifdef MSK_DEBUG 1898 if (mskdebug >= 2) 1899 msk_dump_mbuf(m_head); 1900 #endif 1901 1902 /* 1903 * Start packing the mbufs in this chain into 1904 * the fragment pointers. Stop when we run out 1905 * of fragments or hit the end of the mbuf chain. 1906 */ 1907 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head, 1908 BUS_DMA_NOWAIT)) { 1909 DPRINTFN(2, ("msk_encap: dmamap failed\n")); 1910 return ENOBUFS; 1911 } 1912 1913 /* Count how many tx descriptors needed. */ 1914 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr; 1915 for (total = i = 0; i < txmap->dm_nsegs; i++) { 1916 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) { 1917 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr); 1918 total++; 1919 } 1920 total++; 1921 } 1922 1923 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) { 1924 DPRINTFN(2, ("msk_encap: too few descriptors free\n")); 1925 bus_dmamap_unload(sc->sc_dmatag, txmap); 1926 return ENOBUFS; 1927 } 1928 1929 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n", 1930 txmap->dm_nsegs, total)); 1931 1932 /* Sync the DMA map. */ 1933 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize, 1934 BUS_DMASYNC_PREWRITE); 1935 1936 for (i = 0; i < txmap->dm_nsegs; i++) { 1937 addr = txmap->dm_segs[i].ds_addr; 1938 DPRINTFN(2, ("msk_encap: addr %llx\n", 1939 (unsigned long long)addr)); 1940 hiaddr = MSK_ADDR_HI(addr); 1941 1942 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) { 1943 f = &sc_if->sk_rdata->sk_tx_ring[frag]; 1944 f->sk_addr = htole32(hiaddr); 1945 f->sk_len = 0; 1946 f->sk_ctl = 0; 1947 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own; 1948 own = SK_Y2_TXOPC_OWN; 1949 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr; 1950 SK_INC(frag, MSK_TX_RING_CNT); 1951 entries++; 1952 DPRINTFN(10, ("%s: tx ADDR64: %#x\n", 1953 sc_if->sk_ethercom.ec_if.if_xname, hiaddr)); 1954 } 1955 1956 f = &sc_if->sk_rdata->sk_tx_ring[frag]; 1957 f->sk_addr = htole32(MSK_ADDR_LO(addr)); 1958 f->sk_len = htole16(txmap->dm_segs[i].ds_len); 1959 f->sk_ctl = 0; 1960 if (i == 0) { 1961 f->sk_opcode = SK_Y2_TXOPC_PACKET | own; 1962 } else 1963 f->sk_opcode = SK_Y2_TXOPC_BUFFER | own; 1964 own = SK_Y2_TXOPC_OWN; 1965 cur = frag; 1966 SK_INC(frag, MSK_TX_RING_CNT); 1967 entries++; 1968 } 1969 KASSERTMSG(entries == total, "entries %u total %u", entries, total); 1970 1971 sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap = 1972 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap; 1973 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; 1974 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap = txmap; 1975 1976 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG; 1977 1978 /* Sync descriptors before handing to chip */ 1979 MSK_CDTXSYNC(sc_if, *txidx, entries, 1980 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1981 1982 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN; 1983 1984 /* Sync first descriptor to hand it off */ 1985 MSK_CDTXSYNC(sc_if, *txidx, 1, 1986 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1987 1988 sc_if->sk_cdata.sk_tx_cnt += entries; 1989 1990 #ifdef MSK_DEBUG 1991 if (mskdebug >= 2) { 1992 struct msk_tx_desc *le; 1993 uint32_t idx; 1994 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) { 1995 le = &sc_if->sk_rdata->sk_tx_ring[idx]; 1996 msk_dump_txdesc(le, idx); 1997 } 1998 } 1999 #endif 2000 2001 *txidx = frag; 2002 2003 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries)); 2004 2005 return 0; 2006 } 2007 2008 static void 2009 msk_start(struct ifnet *ifp) 2010 { 2011 struct sk_if_softc *sc_if = ifp->if_softc; 2012 struct mbuf *m_head = NULL; 2013 uint32_t idx = sc_if->sk_cdata.sk_tx_prod; 2014 int pkts = 0; 2015 2016 DPRINTFN(2, ("msk_start\n")); 2017 2018 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { 2019 IFQ_POLL(&ifp->if_snd, m_head); 2020 if (m_head == NULL) 2021 break; 2022 2023 /* 2024 * Pack the data into the transmit ring. If we 2025 * don't have room, set the OACTIVE flag and wait 2026 * for the NIC to drain the ring. 2027 */ 2028 if (msk_encap(sc_if, m_head, &idx)) { 2029 ifp->if_flags |= IFF_OACTIVE; 2030 break; 2031 } 2032 2033 /* now we are committed to transmit the packet */ 2034 IFQ_DEQUEUE(&ifp->if_snd, m_head); 2035 pkts++; 2036 2037 /* 2038 * If there's a BPF listener, bounce a copy of this frame 2039 * to him. 2040 */ 2041 bpf_mtap(ifp, m_head, BPF_D_OUT); 2042 } 2043 if (pkts == 0) 2044 return; 2045 2046 /* Transmit */ 2047 if (idx != sc_if->sk_cdata.sk_tx_prod) { 2048 sc_if->sk_cdata.sk_tx_prod = idx; 2049 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx); 2050 2051 /* Set a timeout in case the chip goes out to lunch. */ 2052 ifp->if_timer = 5; 2053 } 2054 } 2055 2056 static void 2057 msk_watchdog(struct ifnet *ifp) 2058 { 2059 struct sk_if_softc *sc_if = ifp->if_softc; 2060 2061 /* 2062 * Reclaim first as there is a possibility of losing Tx completion 2063 * interrupts. 2064 */ 2065 msk_txeof(sc_if); 2066 if (sc_if->sk_cdata.sk_tx_cnt != 0) { 2067 device_printf(sc_if->sk_dev, "watchdog timeout\n"); 2068 2069 if_statinc(ifp, if_oerrors); 2070 2071 /* XXX Resets both ports; we shouldn't do that. */ 2072 mskc_reset(sc_if->sk_softc); 2073 msk_reset(sc_if); 2074 msk_init(ifp); 2075 } 2076 } 2077 2078 static bool 2079 mskc_suspend(device_t dv, const pmf_qual_t *qual) 2080 { 2081 struct sk_softc *sc = device_private(dv); 2082 2083 DPRINTFN(2, ("mskc_suspend\n")); 2084 2085 /* Turn off the 'driver is loaded' LED. */ 2086 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 2087 2088 return true; 2089 } 2090 2091 static bool 2092 mskc_resume(device_t dv, const pmf_qual_t *qual) 2093 { 2094 struct sk_softc *sc = device_private(dv); 2095 2096 DPRINTFN(2, ("mskc_resume\n")); 2097 2098 mskc_reset(sc); 2099 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 2100 2101 return true; 2102 } 2103 2104 static __inline int 2105 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len) 2106 { 2107 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR | 2108 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | 2109 YU_RXSTAT_JABBER)) != 0 || 2110 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK || 2111 YU_RXSTAT_BYTES(stat) != len) 2112 return 0; 2113 2114 return 1; 2115 } 2116 2117 static void 2118 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat) 2119 { 2120 struct sk_softc *sc = sc_if->sk_softc; 2121 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2122 struct mbuf *m; 2123 unsigned cur, prod, tail, total_len = len; 2124 bus_dmamap_t dmamap; 2125 2126 cur = sc_if->sk_cdata.sk_rx_cons; 2127 prod = sc_if->sk_cdata.sk_rx_prod; 2128 2129 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod, 2130 sc_if->sk_cdata.sk_rx_cnt)); 2131 2132 while (prod != cur) { 2133 MSK_CDRXSYNC(sc_if, cur, 2134 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2135 2136 tail = cur; 2137 SK_INC(cur, MSK_RX_RING_CNT); 2138 2139 sc_if->sk_cdata.sk_rx_cnt--; 2140 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf; 2141 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL; 2142 if (m != NULL) 2143 break; /* found it */ 2144 } 2145 sc_if->sk_cdata.sk_rx_cons = cur; 2146 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur, 2147 sc_if->sk_cdata.sk_rx_cnt, m)); 2148 2149 if (m == NULL) 2150 return; 2151 2152 dmamap = sc_if->sk_cdata.sk_rx_chain[tail].sk_dmamap; 2153 2154 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0, 2155 uimin(dmamap->dm_mapsize, total_len), BUS_DMASYNC_POSTREAD); 2156 bus_dmamap_unload(sc->sc_dmatag, dmamap); 2157 2158 if (total_len < SK_MIN_FRAMELEN || 2159 total_len > ETHER_MAX_LEN_JUMBO || 2160 msk_rxvalid(sc, rxstat, total_len) == 0) { 2161 if_statinc(ifp, if_ierrors); 2162 m_freem(m); 2163 return; 2164 } 2165 2166 m_set_rcvif(m, ifp); 2167 m->m_pkthdr.len = m->m_len = total_len; 2168 2169 /* pass it on. */ 2170 if_percpuq_enqueue(ifp->if_percpuq, m); 2171 } 2172 2173 static void 2174 msk_txeof(struct sk_if_softc *sc_if) 2175 { 2176 struct sk_softc *sc = sc_if->sk_softc; 2177 struct msk_tx_desc *cur_tx; 2178 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2179 uint32_t idx, reg, sk_ctl; 2180 bus_dmamap_t dmamap; 2181 2182 DPRINTFN(2, ("msk_txeof\n")); 2183 2184 if (sc_if->sk_port == SK_PORT_A) 2185 reg = SK_STAT_BMU_TXA1_RIDX; 2186 else 2187 reg = SK_STAT_BMU_TXA2_RIDX; 2188 2189 /* 2190 * Go through our tx ring and free mbufs for those 2191 * frames that have been sent. 2192 */ 2193 idx = sc_if->sk_cdata.sk_tx_cons; 2194 while (idx != sk_win_read_2(sc, reg)) { 2195 MSK_CDTXSYNC(sc_if, idx, 1, 2196 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2197 2198 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; 2199 sk_ctl = cur_tx->sk_ctl; 2200 #ifdef MSK_DEBUG 2201 if (mskdebug >= 2) 2202 msk_dump_txdesc(cur_tx, idx); 2203 #endif 2204 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG) 2205 if_statinc(ifp, if_opackets); 2206 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { 2207 dmamap = sc_if->sk_cdata.sk_tx_chain[idx].sk_dmamap; 2208 2209 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, 2210 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2211 2212 bus_dmamap_unload(sc->sc_dmatag, dmamap); 2213 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); 2214 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; 2215 } 2216 sc_if->sk_cdata.sk_tx_cnt--; 2217 SK_INC(idx, MSK_TX_RING_CNT); 2218 } 2219 if (idx == sc_if->sk_cdata.sk_tx_cons) 2220 return; 2221 2222 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0; 2223 2224 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2) 2225 ifp->if_flags &= ~IFF_OACTIVE; 2226 2227 sc_if->sk_cdata.sk_tx_cons = idx; 2228 } 2229 2230 static void 2231 msk_fill_rx_ring(struct sk_if_softc *sc_if) 2232 { 2233 /* Make sure to not completely wrap around */ 2234 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) { 2235 if (msk_newbuf(sc_if) == ENOBUFS) { 2236 goto schedretry; 2237 } 2238 } 2239 2240 return; 2241 2242 schedretry: 2243 /* Try later */ 2244 callout_schedule(&sc_if->sk_tick_rx, hz/2); 2245 } 2246 2247 static void 2248 msk_fill_rx_tick(void *xsc_if) 2249 { 2250 struct sk_if_softc *sc_if = xsc_if; 2251 int s, rx_prod; 2252 2253 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */ 2254 2255 s = splnet(); 2256 rx_prod = sc_if->sk_cdata.sk_rx_prod; 2257 msk_fill_rx_ring(sc_if); 2258 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) { 2259 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX, 2260 sc_if->sk_cdata.sk_rx_prod); 2261 } 2262 splx(s); 2263 } 2264 2265 static void 2266 msk_tick(void *xsc_if) 2267 { 2268 struct sk_if_softc *sc_if = xsc_if; 2269 struct mii_data *mii = &sc_if->sk_mii; 2270 int s; 2271 2272 s = splnet(); 2273 mii_tick(mii); 2274 splx(s); 2275 2276 callout_schedule(&sc_if->sk_tick_ch, hz); 2277 } 2278 2279 static void 2280 msk_intr_yukon(struct sk_if_softc *sc_if) 2281 { 2282 uint8_t status; 2283 2284 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR); 2285 /* RX overrun */ 2286 if ((status & SK_GMAC_INT_RX_OVER) != 0) { 2287 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 2288 SK_RFCTL_RX_FIFO_OVER); 2289 } 2290 /* TX underrun */ 2291 if ((status & SK_GMAC_INT_TX_UNDER) != 0) { 2292 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, 2293 SK_TFCTL_TX_FIFO_UNDER); 2294 } 2295 2296 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status)); 2297 } 2298 2299 static int 2300 msk_intr(void *xsc) 2301 { 2302 struct sk_softc *sc = xsc; 2303 struct sk_if_softc *sc_if; 2304 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A]; 2305 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B]; 2306 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2307 uint32_t status; 2308 struct msk_status_desc *cur_st; 2309 bool retried = false; 2310 2311 status = CSR_READ_4(sc, SK_Y2_ISSR2); 2312 if (status == 0xffffffff) 2313 return 0; 2314 if (status == 0) { 2315 CSR_WRITE_4(sc, SK_Y2_ICR, 2); 2316 return 0; 2317 } 2318 2319 status = CSR_READ_4(sc, SK_ISR); 2320 2321 if (sc_if0 != NULL) 2322 ifp0 = &sc_if0->sk_ethercom.ec_if; 2323 if (sc_if1 != NULL) 2324 ifp1 = &sc_if1->sk_ethercom.ec_if; 2325 2326 if (sc_if0 && (status & SK_Y2_IMR_MAC1) && 2327 (ifp0->if_flags & IFF_RUNNING)) { 2328 msk_intr_yukon(sc_if0); 2329 } 2330 2331 if (sc_if1 && (status & SK_Y2_IMR_MAC2) && 2332 (ifp1->if_flags & IFF_RUNNING)) { 2333 msk_intr_yukon(sc_if1); 2334 } 2335 2336 again: 2337 MSK_CDSTSYNC(sc, sc->sk_status_idx, 2338 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2339 cur_st = &sc->sk_status_ring[sc->sk_status_idx]; 2340 2341 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) { 2342 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN; 2343 switch (cur_st->sk_opcode) { 2344 case SK_Y2_STOPC_RXSTAT: 2345 sc_if = sc->sk_if[cur_st->sk_link & 0x01]; 2346 if (sc_if) { 2347 msk_rxeof(sc_if, letoh16(cur_st->sk_len), 2348 letoh32(cur_st->sk_status)); 2349 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3)) 2350 msk_fill_rx_tick(sc_if); 2351 } 2352 break; 2353 case SK_Y2_STOPC_TXSTAT: 2354 if (sc_if0) 2355 msk_txeof(sc_if0); 2356 if (sc_if1) 2357 msk_txeof(sc_if1); 2358 break; 2359 default: 2360 aprint_error("opcode=0x%x\n", cur_st->sk_opcode); 2361 break; 2362 } 2363 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT); 2364 2365 MSK_CDSTSYNC(sc, sc->sk_status_idx, 2366 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2367 cur_st = &sc->sk_status_ring[sc->sk_status_idx]; 2368 } 2369 2370 if (CSR_READ_2(sc, SK_STAT_BMU_PUTIDX) == sc->sk_status_idx) { 2371 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR); 2372 } else if (!retried) { 2373 retried = true; 2374 goto again; 2375 } 2376 2377 CSR_WRITE_4(sc, SK_Y2_ICR, 2); 2378 2379 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd)) 2380 if_schedule_deferred_start(ifp0); 2381 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd)) 2382 if_schedule_deferred_start(ifp1); 2383 2384 KASSERT(sc->rnd_attached > 0); 2385 rnd_add_uint32(&sc->rnd_source, status); 2386 2387 if (sc->sk_int_mod_pending) 2388 msk_update_int_mod(sc, 1); 2389 2390 return (status & sc->sk_intrmask) != 0; 2391 } 2392 2393 static void 2394 msk_init_yukon(struct sk_if_softc *sc_if) 2395 { 2396 uint32_t v; 2397 uint16_t reg; 2398 struct sk_softc *sc; 2399 int i; 2400 2401 sc = sc_if->sk_softc; 2402 2403 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n", 2404 CSR_READ_4(sc_if->sk_softc, SK_CSR))); 2405 2406 DPRINTFN(6, ("msk_init_yukon: 1\n")); 2407 2408 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n", 2409 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL))); 2410 2411 DPRINTFN(6, ("msk_init_yukon: 3\n")); 2412 2413 /* unused read of the interrupt source register */ 2414 DPRINTFN(6, ("msk_init_yukon: 4\n")); 2415 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 2416 2417 DPRINTFN(6, ("msk_init_yukon: 4a\n")); 2418 reg = SK_YU_READ_2(sc_if, YUKON_PAR); 2419 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg)); 2420 2421 /* MIB Counter Clear Mode set */ 2422 reg |= YU_PAR_MIB_CLR; 2423 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg)); 2424 DPRINTFN(6, ("msk_init_yukon: 4b\n")); 2425 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2426 2427 /* MIB Counter Clear Mode clear */ 2428 DPRINTFN(6, ("msk_init_yukon: 5\n")); 2429 reg &= ~YU_PAR_MIB_CLR; 2430 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2431 2432 /* receive control reg */ 2433 DPRINTFN(6, ("msk_init_yukon: 7\n")); 2434 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); 2435 2436 /* transmit control register */ 2437 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10)); 2438 2439 /* transmit flow control register */ 2440 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff); 2441 2442 /* transmit parameter register */ 2443 DPRINTFN(6, ("msk_init_yukon: 8\n")); 2444 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | 2445 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04); 2446 2447 /* serial mode register */ 2448 DPRINTFN(6, ("msk_init_yukon: 9\n")); 2449 reg = YU_SMR_DATA_BLIND(0x1c) | 2450 YU_SMR_MFL_VLAN | 2451 YU_SMR_IPG_DATA(0x1e); 2452 2453 if (sc->sk_type != SK_YUKON_FE && 2454 sc->sk_type != SK_YUKON_FE_P) 2455 reg |= YU_SMR_MFL_JUMBO; 2456 2457 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg); 2458 2459 DPRINTFN(6, ("msk_init_yukon: 10\n")); 2460 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2461 /* msk_attach calls me before ether_ifattach so check null */ 2462 if (ifp != NULL && ifp->if_sadl != NULL) 2463 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl), 2464 sizeof(sc_if->sk_enaddr)); 2465 /* Setup Yukon's address */ 2466 for (i = 0; i < 3; i++) { 2467 /* Write Source Address 1 (unicast filter) */ 2468 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 2469 sc_if->sk_enaddr[i * 2] | 2470 sc_if->sk_enaddr[i * 2 + 1] << 8); 2471 } 2472 2473 for (i = 0; i < 3; i++) { 2474 reg = sk_win_read_2(sc_if->sk_softc, 2475 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8); 2476 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg); 2477 } 2478 2479 /* Set promiscuous mode */ 2480 msk_setpromisc(sc_if); 2481 2482 /* Set multicast filter */ 2483 DPRINTFN(6, ("msk_init_yukon: 11\n")); 2484 msk_setmulti(sc_if); 2485 2486 /* enable interrupt mask for counter overflows */ 2487 DPRINTFN(6, ("msk_init_yukon: 12\n")); 2488 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); 2489 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); 2490 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); 2491 2492 /* Configure RX MAC FIFO Flush Mask */ 2493 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR | 2494 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT | 2495 YU_RXSTAT_JABBER; 2496 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v); 2497 2498 /* Configure RX MAC FIFO */ 2499 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); 2500 v = SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON; 2501 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P)) 2502 v |= SK_RFCTL_RX_OVER_ON; 2503 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v); 2504 2505 if ((sc->sk_type == SK_YUKON_FE_P) && 2506 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) 2507 v = 0x178; /* Magic value */ 2508 else { 2509 /* Increase flush threshold to 64 bytes */ 2510 v = SK_RFCTL_FIFO_THRESHOLD + 1; 2511 } 2512 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v); 2513 2514 /* Configure TX MAC FIFO */ 2515 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); 2516 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); 2517 2518 if ((sc->sk_type == SK_YUKON_FE_P) && 2519 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) { 2520 v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END); 2521 v &= ~SK_TXEND_WM_ON; 2522 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v); 2523 } 2524 2525 #if 1 2526 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN); 2527 #endif 2528 DPRINTFN(6, ("msk_init_yukon: end\n")); 2529 } 2530 2531 /* 2532 * Note that to properly initialize any part of the GEnesis chip, 2533 * you first have to take it out of reset mode. 2534 */ 2535 static int 2536 msk_init(struct ifnet *ifp) 2537 { 2538 struct sk_if_softc *sc_if = ifp->if_softc; 2539 struct sk_softc *sc = sc_if->sk_softc; 2540 int rc = 0, s; 2541 uint32_t imr, imtimer_ticks; 2542 2543 2544 DPRINTFN(2, ("msk_init\n")); 2545 2546 s = splnet(); 2547 2548 /* Cancel pending I/O and free all RX/TX buffers. */ 2549 msk_stop(ifp, 1); 2550 2551 /* Configure I2C registers */ 2552 2553 /* Configure XMAC(s) */ 2554 msk_init_yukon(sc_if); 2555 if ((rc = ether_mediachange(ifp)) != 0) 2556 goto out; 2557 2558 /* Configure transmit arbiter(s) */ 2559 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON); 2560 #if 0 2561 /* SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */ 2562 #endif 2563 2564 if (sc->sk_ramsize) { 2565 /* Configure RAMbuffers */ 2566 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 2567 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 2568 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 2569 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 2570 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 2571 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 2572 2573 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET); 2574 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON); 2575 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart); 2576 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart); 2577 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart); 2578 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend); 2579 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON); 2580 } 2581 2582 /* Configure BMUs */ 2583 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016); 2584 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28); 2585 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080); 2586 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */ 2587 2588 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016); 2589 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28); 2590 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080); 2591 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */ 2592 2593 /* Make sure the sync transmit queue is disabled. */ 2594 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET); 2595 2596 /* Init descriptors */ 2597 if (msk_init_rx_ring(sc_if) == ENOBUFS) { 2598 aprint_error_dev(sc_if->sk_dev, "initialization failed: no " 2599 "memory for rx buffers\n"); 2600 msk_stop(ifp, 1); 2601 splx(s); 2602 return ENOBUFS; 2603 } 2604 2605 if (msk_init_tx_ring(sc_if) == ENOBUFS) { 2606 aprint_error_dev(sc_if->sk_dev, "initialization failed: no " 2607 "memory for tx buffers\n"); 2608 msk_stop(ifp, 1); 2609 splx(s); 2610 return ENOBUFS; 2611 } 2612 2613 /* Set interrupt moderation if changed via sysctl. */ 2614 switch (sc->sk_type) { 2615 case SK_YUKON_EC: 2616 case SK_YUKON_EC_U: 2617 case SK_YUKON_EX: 2618 case SK_YUKON_SUPR: 2619 case SK_YUKON_ULTRA2: 2620 case SK_YUKON_OPTIMA: 2621 case SK_YUKON_PRM: 2622 case SK_YUKON_OPTIMA2: 2623 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC; 2624 break; 2625 case SK_YUKON_FE: 2626 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE; 2627 break; 2628 case SK_YUKON_FE_P: 2629 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P; 2630 break; 2631 case SK_YUKON_XL: 2632 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL; 2633 break; 2634 default: 2635 imtimer_ticks = SK_IMTIMER_TICKS_YUKON; 2636 } 2637 imr = sk_win_read_4(sc, SK_IMTIMERINIT); 2638 if (imr != SK_IM_USECS(sc->sk_int_mod)) { 2639 sk_win_write_4(sc, SK_IMTIMERINIT, 2640 SK_IM_USECS(sc->sk_int_mod)); 2641 aprint_verbose_dev(sc->sk_dev, 2642 "interrupt moderation is %d us\n", sc->sk_int_mod); 2643 } 2644 2645 /* Initialize prefetch engine. */ 2646 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001); 2647 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002); 2648 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1); 2649 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO, 2650 MSK_RX_RING_ADDR(sc_if, 0)); 2651 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI, 2652 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32); 2653 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008); 2654 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR); 2655 2656 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001); 2657 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002); 2658 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1); 2659 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO, 2660 MSK_TX_RING_ADDR(sc_if, 0)); 2661 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI, 2662 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32); 2663 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008); 2664 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR); 2665 2666 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX, 2667 sc_if->sk_cdata.sk_rx_prod); 2668 2669 2670 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) { 2671 /* Disable flushing of non-ASF packets. */ 2672 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, 2673 SK_RFCTL_RX_MACSEC_FLUSH_OFF); 2674 } 2675 2676 /* Configure interrupt handling */ 2677 if (sc_if->sk_port == SK_PORT_A) 2678 sc->sk_intrmask |= SK_Y2_INTRS1; 2679 else 2680 sc->sk_intrmask |= SK_Y2_INTRS2; 2681 sc->sk_intrmask |= SK_Y2_IMR_BMU; 2682 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2683 2684 ifp->if_flags |= IFF_RUNNING; 2685 ifp->if_flags &= ~IFF_OACTIVE; 2686 2687 callout_schedule(&sc_if->sk_tick_ch, hz); 2688 2689 out: 2690 splx(s); 2691 return rc; 2692 } 2693 2694 /* 2695 * Note: the logic of second parameter is inverted compared to OpenBSD 2696 * code, since this code uses the function as if_stop hook too. 2697 */ 2698 static void 2699 msk_stop(struct ifnet *ifp, int disable) 2700 { 2701 struct sk_if_softc *sc_if = ifp->if_softc; 2702 struct sk_softc *sc = sc_if->sk_softc; 2703 bus_dmamap_t dmamap; 2704 int i; 2705 2706 DPRINTFN(2, ("msk_stop\n")); 2707 2708 callout_stop(&sc_if->sk_tick_ch); 2709 callout_stop(&sc_if->sk_tick_rx); 2710 2711 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2712 2713 /* Stop transfer of Tx descriptors */ 2714 2715 /* Stop transfer of Rx descriptors */ 2716 2717 if (disable) { 2718 /* Turn off various components of this interface. */ 2719 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); 2720 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); 2721 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 2722 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF); 2723 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE); 2724 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF); 2725 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 2726 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2727 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP); 2728 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 2729 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 2730 2731 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001); 2732 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001); 2733 2734 /* Disable interrupts */ 2735 if (sc_if->sk_port == SK_PORT_A) 2736 sc->sk_intrmask &= ~SK_Y2_INTRS1; 2737 else 2738 sc->sk_intrmask &= ~SK_Y2_INTRS2; 2739 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2740 } 2741 2742 /* Free RX and TX mbufs still in the queues. */ 2743 for (i = 0; i < MSK_RX_RING_CNT; i++) { 2744 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { 2745 dmamap = sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap; 2746 2747 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, 2748 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2749 2750 bus_dmamap_unload(sc->sc_dmatag, dmamap); 2751 2752 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); 2753 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 2754 } 2755 } 2756 2757 sc_if->sk_cdata.sk_rx_prod = 0; 2758 sc_if->sk_cdata.sk_rx_cons = 0; 2759 sc_if->sk_cdata.sk_rx_cnt = 0; 2760 2761 for (i = 0; i < MSK_TX_RING_CNT; i++) { 2762 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { 2763 dmamap = sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap; 2764 2765 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, 2766 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2767 2768 bus_dmamap_unload(sc->sc_dmatag, dmamap); 2769 2770 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); 2771 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 2772 } 2773 } 2774 } 2775 2776 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach, 2777 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 2778 2779 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach, 2780 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 2781 2782 #ifdef MSK_DEBUG 2783 static void 2784 msk_dump_txdesc(struct msk_tx_desc *le, int idx) 2785 { 2786 #define DESC_PRINT(X) \ 2787 if (X) \ 2788 printf("txdesc[%d]." #X "=%#x\n", \ 2789 idx, X); 2790 2791 DESC_PRINT(letoh32(le->sk_addr)); 2792 DESC_PRINT(letoh16(le->sk_len)); 2793 DESC_PRINT(le->sk_ctl); 2794 DESC_PRINT(le->sk_opcode); 2795 #undef DESC_PRINT 2796 } 2797 2798 static void 2799 msk_dump_bytes(const char *data, int len) 2800 { 2801 int c, i, j; 2802 2803 for (i = 0; i < len; i += 16) { 2804 printf("%08x ", i); 2805 c = len - i; 2806 if (c > 16) c = 16; 2807 2808 for (j = 0; j < c; j++) { 2809 printf("%02x ", data[i + j] & 0xff); 2810 if ((j & 0xf) == 7 && j > 0) 2811 printf(" "); 2812 } 2813 2814 for (; j < 16; j++) 2815 printf(" "); 2816 printf(" "); 2817 2818 for (j = 0; j < c; j++) { 2819 int ch = data[i + j] & 0xff; 2820 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' '); 2821 } 2822 2823 printf("\n"); 2824 2825 if (c < 16) 2826 break; 2827 } 2828 } 2829 2830 static void 2831 msk_dump_mbuf(struct mbuf *m) 2832 { 2833 int count = m->m_pkthdr.len; 2834 2835 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len); 2836 2837 while (count > 0 && m) { 2838 printf("m=%p, m->m_data=%p, m->m_len=%d\n", 2839 m, m->m_data, m->m_len); 2840 if (mskdebug >= 4) 2841 msk_dump_bytes(mtod(m, char *), m->m_len); 2842 2843 count -= m->m_len; 2844 m = m->m_next; 2845 } 2846 } 2847 #endif 2848 2849 static int 2850 msk_sysctl_handler(SYSCTLFN_ARGS) 2851 { 2852 int error, t; 2853 struct sysctlnode node; 2854 struct sk_softc *sc; 2855 2856 node = *rnode; 2857 sc = node.sysctl_data; 2858 t = sc->sk_int_mod; 2859 node.sysctl_data = &t; 2860 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2861 if (error || newp == NULL) 2862 return error; 2863 2864 if (t < SK_IM_MIN || t > SK_IM_MAX) 2865 return EINVAL; 2866 2867 /* update the softc with sysctl-changed value, and mark 2868 for hardware update */ 2869 sc->sk_int_mod = t; 2870 sc->sk_int_mod_pending = 1; 2871 return 0; 2872 } 2873 2874 /* 2875 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be 2876 * set up in mskc_attach() 2877 */ 2878 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup") 2879 { 2880 int rc; 2881 const struct sysctlnode *node; 2882 2883 if ((rc = sysctl_createv(clog, 0, NULL, &node, 2884 0, CTLTYPE_NODE, "msk", 2885 SYSCTL_DESCR("msk interface controls"), 2886 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 2887 goto err; 2888 } 2889 2890 msk_root_num = node->sysctl_num; 2891 return; 2892 2893 err: 2894 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc); 2895 } 2896