xref: /netbsd-src/sys/dev/pci/if_msk.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /* $NetBSD: if_msk.c,v 1.31 2010/01/08 19:56:51 dyoung Exp $ */
2 /*	$OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $	*/
3 
4 /*
5  * Copyright (c) 1997, 1998, 1999, 2000
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.31 2010/01/08 19:56:51 dyoung Exp $");
56 
57 #include "bpfilter.h"
58 #include "rnd.h"
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/sockio.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/mutex.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/device.h>
69 #include <sys/queue.h>
70 #include <sys/callout.h>
71 #include <sys/sysctl.h>
72 #include <sys/endian.h>
73 #ifdef __NetBSD__
74  #define letoh16 htole16
75  #define letoh32 htole32
76 #endif
77 
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_types.h>
81 
82 #include <net/if_media.h>
83 
84 #if NBPFILTER > 0
85 #include <net/bpf.h>
86 #endif
87 #if NRND > 0
88 #include <sys/rnd.h>
89 #endif
90 
91 #include <dev/mii/mii.h>
92 #include <dev/mii/miivar.h>
93 #include <dev/mii/brgphyreg.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98 
99 #include <dev/pci/if_skreg.h>
100 #include <dev/pci/if_mskvar.h>
101 
102 int mskc_probe(device_t, cfdata_t, void *);
103 void mskc_attach(device_t, device_t, void *);
104 static bool mskc_suspend(device_t, pmf_qual_t);
105 static bool mskc_resume(device_t, pmf_qual_t);
106 int msk_probe(device_t, cfdata_t, void *);
107 void msk_attach(device_t, device_t, void *);
108 int mskcprint(void *, const char *);
109 int msk_intr(void *);
110 void msk_intr_yukon(struct sk_if_softc *);
111 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
112 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
113 void msk_txeof(struct sk_if_softc *, int);
114 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
115 void msk_start(struct ifnet *);
116 int msk_ioctl(struct ifnet *, u_long, void *);
117 int msk_init(struct ifnet *);
118 void msk_init_yukon(struct sk_if_softc *);
119 void msk_stop(struct ifnet *, int);
120 void msk_watchdog(struct ifnet *);
121 void msk_reset(struct sk_softc *);
122 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
123 int msk_alloc_jumbo_mem(struct sk_if_softc *);
124 void *msk_jalloc(struct sk_if_softc *);
125 void msk_jfree(struct mbuf *, void *, size_t, void *);
126 int msk_init_rx_ring(struct sk_if_softc *);
127 int msk_init_tx_ring(struct sk_if_softc *);
128 
129 void msk_update_int_mod(struct sk_softc *, int);
130 
131 int msk_miibus_readreg(device_t, int, int);
132 void msk_miibus_writereg(device_t, int, int, int);
133 void msk_miibus_statchg(device_t);
134 
135 void msk_setfilt(struct sk_if_softc *, void *, int);
136 void msk_setmulti(struct sk_if_softc *);
137 void msk_setpromisc(struct sk_if_softc *);
138 void msk_tick(void *);
139 
140 /* #define MSK_DEBUG 1 */
141 #ifdef MSK_DEBUG
142 #define DPRINTF(x)	if (mskdebug) printf x
143 #define DPRINTFN(n,x)	if (mskdebug >= (n)) printf x
144 int	mskdebug = MSK_DEBUG;
145 
146 void msk_dump_txdesc(struct msk_tx_desc *, int);
147 void msk_dump_mbuf(struct mbuf *);
148 void msk_dump_bytes(const char *, int);
149 #else
150 #define DPRINTF(x)
151 #define DPRINTFN(n,x)
152 #endif
153 
154 static int msk_sysctl_handler(SYSCTLFN_PROTO);
155 static int msk_root_num;
156 
157 /* supported device vendors */
158 static const struct msk_product {
159         pci_vendor_id_t         msk_vendor;
160         pci_product_id_t        msk_product;
161 } msk_products[] = {
162 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
163 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
164 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
165 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_1 },
166 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
167 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
168 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
169 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
170 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
171 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C055 },
172 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
173 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
174 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
175 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
176 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
177 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
178 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
179 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
180 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
181 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021CU },
182 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021X },
183 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022CU },
184 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022X },
185 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
190 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
191 };
192 
193 static inline u_int32_t
194 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
195 {
196 	return CSR_READ_4(sc, reg);
197 }
198 
199 static inline u_int16_t
200 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
201 {
202 	return CSR_READ_2(sc, reg);
203 }
204 
205 static inline u_int8_t
206 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
207 {
208 	return CSR_READ_1(sc, reg);
209 }
210 
211 static inline void
212 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
213 {
214 	CSR_WRITE_4(sc, reg, x);
215 }
216 
217 static inline void
218 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
219 {
220 	CSR_WRITE_2(sc, reg, x);
221 }
222 
223 static inline void
224 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
225 {
226 	CSR_WRITE_1(sc, reg, x);
227 }
228 
229 int
230 msk_miibus_readreg(device_t dev, int phy, int reg)
231 {
232 	struct sk_if_softc *sc_if = device_private(dev);
233 	u_int16_t val;
234 	int i;
235 
236         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
237 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
238 
239 	for (i = 0; i < SK_TIMEOUT; i++) {
240 		DELAY(1);
241 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
242 		if (val & YU_SMICR_READ_VALID)
243 			break;
244 	}
245 
246 	if (i == SK_TIMEOUT) {
247 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
248 		return (0);
249 	}
250 
251  	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
252 		     SK_TIMEOUT));
253 
254         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
255 
256 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
257 		     phy, reg, val));
258 
259 	return (val);
260 }
261 
262 void
263 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
264 {
265 	struct sk_if_softc *sc_if = device_private(dev);
266 	int i;
267 
268 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
269 		     phy, reg, val));
270 
271 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
272 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
273 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
274 
275 	for (i = 0; i < SK_TIMEOUT; i++) {
276 		DELAY(1);
277 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
278 			break;
279 	}
280 
281 	if (i == SK_TIMEOUT)
282 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
283 }
284 
285 void
286 msk_miibus_statchg(device_t dev)
287 {
288 	struct sk_if_softc *sc_if = device_private(dev);
289 	struct mii_data *mii = &sc_if->sk_mii;
290 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
291 	int gpcr;
292 
293 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
294 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
295 
296 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
297 		/* Set speed. */
298 		gpcr |= YU_GPCR_SPEED_DIS;
299 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
300 		case IFM_1000_SX:
301 		case IFM_1000_LX:
302 		case IFM_1000_CX:
303 		case IFM_1000_T:
304 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
305 			break;
306 		case IFM_100_TX:
307 			gpcr |= YU_GPCR_SPEED;
308 			break;
309 		}
310 
311 		/* Set duplex. */
312 		gpcr |= YU_GPCR_DPLX_DIS;
313 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
314 			gpcr |= YU_GPCR_DUPLEX;
315 
316 		/* Disable flow control. */
317 		gpcr |= YU_GPCR_FCTL_DIS;
318 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
319 	}
320 
321 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
322 
323 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
324 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
325 }
326 
327 #define HASH_BITS	6
328 
329 void
330 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
331 {
332 	char *addr = addrv;
333 	int base = XM_RXFILT_ENTRY(slot);
334 
335 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
336 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
337 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
338 }
339 
340 void
341 msk_setmulti(struct sk_if_softc *sc_if)
342 {
343 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
344 	u_int32_t hashes[2] = { 0, 0 };
345 	int h;
346 	struct ethercom *ec = &sc_if->sk_ethercom;
347 	struct ether_multi *enm;
348 	struct ether_multistep step;
349 	u_int16_t reg;
350 
351 	/* First, zot all the existing filters. */
352 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
353 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
354 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
355 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
356 
357 
358 	/* Now program new ones. */
359 	reg = SK_YU_READ_2(sc_if, YUKON_RCR);
360 	reg |= YU_RCR_UFLEN;
361 allmulti:
362 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
363 		if ((ifp->if_flags & IFF_PROMISC) != 0)
364 			reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
365 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
366 			hashes[0] = 0xFFFFFFFF;
367 			hashes[1] = 0xFFFFFFFF;
368 		}
369 	} else {
370 		/* First find the tail of the list. */
371 		ETHER_FIRST_MULTI(step, ec, enm);
372 		while (enm != NULL) {
373 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
374 				 ETHER_ADDR_LEN)) {
375 				ifp->if_flags |= IFF_ALLMULTI;
376 				goto allmulti;
377 			}
378 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
379 			    ((1 << HASH_BITS) - 1);
380 			if (h < 32)
381 				hashes[0] |= (1 << h);
382 			else
383 				hashes[1] |= (1 << (h - 32));
384 
385 			ETHER_NEXT_MULTI(step, enm);
386 		}
387 		reg |= YU_RCR_MUFLEN;
388 	}
389 
390 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
391 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
392 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
393 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
394 	SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
395 }
396 
397 void
398 msk_setpromisc(struct sk_if_softc *sc_if)
399 {
400 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
401 
402 	if (ifp->if_flags & IFF_PROMISC)
403 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
404 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
405 	else
406 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
407 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 }
409 
410 int
411 msk_init_rx_ring(struct sk_if_softc *sc_if)
412 {
413 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
414 	struct msk_ring_data	*rd = sc_if->sk_rdata;
415 	int			i, nexti;
416 
417 	memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
418 
419 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
420 		cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
421 		if (i == (MSK_RX_RING_CNT - 1))
422 			nexti = 0;
423 		else
424 			nexti = i + 1;
425 		cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
426 	}
427 
428 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
429 		if (msk_newbuf(sc_if, i, NULL,
430 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
431 			aprint_error_dev(sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
432 			return (ENOBUFS);
433 		}
434 	}
435 
436 	sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
437 	sc_if->sk_cdata.sk_rx_cons = 0;
438 
439 	return (0);
440 }
441 
442 int
443 msk_init_tx_ring(struct sk_if_softc *sc_if)
444 {
445 	struct sk_softc		*sc = sc_if->sk_softc;
446 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
447 	struct msk_ring_data	*rd = sc_if->sk_rdata;
448 	bus_dmamap_t		dmamap;
449 	struct sk_txmap_entry	*entry;
450 	int			i, nexti;
451 
452 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
453 	    sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
454 
455 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
456 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
457 		cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
458 		if (i == (MSK_TX_RING_CNT - 1))
459 			nexti = 0;
460 		else
461 			nexti = i + 1;
462 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
463 
464 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
465 		   SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
466 			return (ENOBUFS);
467 
468 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
469 		if (!entry) {
470 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
471 			return (ENOBUFS);
472 		}
473 		entry->dmamap = dmamap;
474 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
475 	}
476 
477 	sc_if->sk_cdata.sk_tx_prod = 0;
478 	sc_if->sk_cdata.sk_tx_cons = 0;
479 	sc_if->sk_cdata.sk_tx_cnt = 0;
480 
481 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
482 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
483 
484 	return (0);
485 }
486 
487 int
488 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
489 	  bus_dmamap_t dmamap)
490 {
491 	struct mbuf		*m_new = NULL;
492 	struct sk_chain		*c;
493 	struct msk_rx_desc	*r;
494 
495 	if (m == NULL) {
496 		void *buf = NULL;
497 
498 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
499 		if (m_new == NULL)
500 			return (ENOBUFS);
501 
502 		/* Allocate the jumbo buffer */
503 		buf = msk_jalloc(sc_if);
504 		if (buf == NULL) {
505 			m_freem(m_new);
506 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
507 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
508 			return (ENOBUFS);
509 		}
510 
511 		/* Attach the buffer to the mbuf */
512 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
513 		MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
514 	} else {
515 		/*
516 	 	 * We're re-using a previously allocated mbuf;
517 		 * be sure to re-init pointers and lengths to
518 		 * default values.
519 		 */
520 		m_new = m;
521 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
522 		m_new->m_data = m_new->m_ext.ext_buf;
523 	}
524 	m_adj(m_new, ETHER_ALIGN);
525 
526 	c = &sc_if->sk_cdata.sk_rx_chain[i];
527 	r = c->sk_le;
528 	c->sk_mbuf = m_new;
529 	r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
530 	    (((vaddr_t)m_new->m_data
531              - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
532 	r->sk_len = htole16(SK_JLEN);
533 	r->sk_ctl = 0;
534 	r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
535 
536 	MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
537 
538 	return (0);
539 }
540 
541 /*
542  * Memory management for jumbo frames.
543  */
544 
545 int
546 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
547 {
548 	struct sk_softc		*sc = sc_if->sk_softc;
549 	char *ptr, *kva;
550 	bus_dma_segment_t	seg;
551 	int		i, rseg, state, error;
552 	struct sk_jpool_entry   *entry;
553 
554 	state = error = 0;
555 
556 	/* Grab a big chunk o' storage. */
557 	if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
558 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
559 		aprint_error(": can't alloc rx buffers");
560 		return (ENOBUFS);
561 	}
562 
563 	state = 1;
564 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
565 			   BUS_DMA_NOWAIT)) {
566 		aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
567 		error = ENOBUFS;
568 		goto out;
569 	}
570 
571 	state = 2;
572 	if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
573 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
574 		aprint_error(": can't create dma map");
575 		error = ENOBUFS;
576 		goto out;
577 	}
578 
579 	state = 3;
580 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
581 			    kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
582 		aprint_error(": can't load dma map");
583 		error = ENOBUFS;
584 		goto out;
585 	}
586 
587 	state = 4;
588 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
589 	DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
590 
591 	LIST_INIT(&sc_if->sk_jfree_listhead);
592 	LIST_INIT(&sc_if->sk_jinuse_listhead);
593 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
594 
595 	/*
596 	 * Now divide it up into 9K pieces and save the addresses
597 	 * in an array.
598 	 */
599 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
600 	for (i = 0; i < MSK_JSLOTS; i++) {
601 		sc_if->sk_cdata.sk_jslots[i] = ptr;
602 		ptr += SK_JLEN;
603 		entry = malloc(sizeof(struct sk_jpool_entry),
604 		    M_DEVBUF, M_NOWAIT);
605 		if (entry == NULL) {
606 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
607 			aprint_error(": no memory for jumbo buffer queue!");
608 			error = ENOBUFS;
609 			goto out;
610 		}
611 		entry->slot = i;
612 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
613 				 entry, jpool_entries);
614 	}
615 out:
616 	if (error != 0) {
617 		switch (state) {
618 		case 4:
619 			bus_dmamap_unload(sc->sc_dmatag,
620 			    sc_if->sk_cdata.sk_rx_jumbo_map);
621 		case 3:
622 			bus_dmamap_destroy(sc->sc_dmatag,
623 			    sc_if->sk_cdata.sk_rx_jumbo_map);
624 		case 2:
625 			bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
626 		case 1:
627 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
628 			break;
629 		default:
630 			break;
631 		}
632 	}
633 
634 	return (error);
635 }
636 
637 /*
638  * Allocate a jumbo buffer.
639  */
640 void *
641 msk_jalloc(struct sk_if_softc *sc_if)
642 {
643 	struct sk_jpool_entry   *entry;
644 
645 	mutex_enter(&sc_if->sk_jpool_mtx);
646 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
647 
648 	if (entry == NULL) {
649 		mutex_exit(&sc_if->sk_jpool_mtx);
650 		return NULL;
651 	}
652 
653 	LIST_REMOVE(entry, jpool_entries);
654 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
655 	mutex_exit(&sc_if->sk_jpool_mtx);
656 	return (sc_if->sk_cdata.sk_jslots[entry->slot]);
657 }
658 
659 /*
660  * Release a jumbo buffer.
661  */
662 void
663 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
664 {
665 	struct sk_jpool_entry *entry;
666 	struct sk_if_softc *sc;
667 	int i;
668 
669 	/* Extract the softc struct pointer. */
670 	sc = (struct sk_if_softc *)arg;
671 
672 	if (sc == NULL)
673 		panic("msk_jfree: can't find softc pointer!");
674 
675 	/* calculate the slot this buffer belongs to */
676 	i = ((vaddr_t)buf
677 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
678 
679 	if ((i < 0) || (i >= MSK_JSLOTS))
680 		panic("msk_jfree: asked to free buffer that we don't manage!");
681 
682 	mutex_enter(&sc->sk_jpool_mtx);
683 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
684 	if (entry == NULL)
685 		panic("msk_jfree: buffer not in use!");
686 	entry->slot = i;
687 	LIST_REMOVE(entry, jpool_entries);
688 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
689 	mutex_exit(&sc->sk_jpool_mtx);
690 
691 	if (__predict_true(m != NULL))
692 		pool_cache_put(mb_cache, m);
693 }
694 
695 int
696 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
697 {
698 	struct sk_if_softc *sc_if = ifp->if_softc;
699 	int s, error = 0;
700 
701 	s = splnet();
702 
703 	DPRINTFN(2, ("msk_ioctl ETHER\n"));
704 	error = ether_ioctl(ifp, cmd, data);
705 
706 	if (error == ENETRESET) {
707 		error = 0;
708 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
709 			;
710 		else if (ifp->if_flags & IFF_RUNNING) {
711 			/*
712 			 * Multicast list has changed; set the hardware
713 			 * filter accordingly.
714 			 */
715 			msk_setmulti(sc_if);
716 		}
717 	}
718 
719 	splx(s);
720 	return (error);
721 }
722 
723 void
724 msk_update_int_mod(struct sk_softc *sc, int verbose)
725 {
726 	u_int32_t imtimer_ticks;
727 
728 	/*
729  	 * Configure interrupt moderation. The moderation timer
730 	 * defers interrupts specified in the interrupt moderation
731 	 * timer mask based on the timeout specified in the interrupt
732 	 * moderation timer init register. Each bit in the timer
733 	 * register represents one tick, so to specify a timeout in
734 	 * microseconds, we have to multiply by the correct number of
735 	 * ticks-per-microsecond.
736 	 */
737 	switch (sc->sk_type) {
738 	case SK_YUKON_EC:
739 	case SK_YUKON_EC_U:
740 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
741 		break;
742 	case SK_YUKON_FE:
743 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
744 		break;
745 	case SK_YUKON_XL:
746 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
747 		break;
748 	default:
749 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
750 	}
751 	if (verbose)
752 		aprint_verbose_dev(sc->sk_dev,
753 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
754         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
755         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
756 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
757         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
758 	sc->sk_int_mod_pending = 0;
759 }
760 
761 static int
762 msk_lookup(const struct pci_attach_args *pa)
763 {
764 	const struct msk_product *pmsk;
765 
766 	for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
767 		if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
768 		    PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
769 			return 1;
770 	}
771 	return 0;
772 }
773 
774 /*
775  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
776  * IDs against our list and return a device name if we find a match.
777  */
778 int
779 mskc_probe(device_t parent, cfdata_t match, void *aux)
780 {
781 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
782 
783 	return msk_lookup(pa);
784 }
785 
786 /*
787  * Force the GEnesis into reset, then bring it out of reset.
788  */
789 void msk_reset(struct sk_softc *sc)
790 {
791 	u_int32_t imtimer_ticks, reg1;
792 	int reg;
793 
794 	DPRINTFN(2, ("msk_reset\n"));
795 
796 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
797 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
798 
799 	DELAY(1000);
800 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
801 	DELAY(2);
802 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
803 	sk_win_write_1(sc, SK_TESTCTL1, 2);
804 
805 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
806 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
807 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
808 	else
809 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
810 
811 	if (sc->sk_type == SK_YUKON_EC_U) {
812 		uint32_t our;
813 
814 		CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
815 
816 		/* enable all clocks. */
817 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
818 		our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
819 		our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
820 			SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
821 			SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
822 			SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
823 		/* Set all bits to 0 except bits 15..12 */
824 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
825 		/* Set to default value */
826 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
827 	}
828 
829 	/* release PHY from PowerDown/Coma mode. */
830 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
831 
832 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
833 		sk_win_write_1(sc, SK_Y2_CLKGATE,
834 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
835 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
836 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
837 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
838 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
839 	else
840 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
841 
842 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
843 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
844 	DELAY(1000);
845 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
846 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
847 
848 	sk_win_write_1(sc, SK_TESTCTL1, 1);
849 
850 	DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
851 	DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
852 		     CSR_READ_2(sc, SK_LINK_CTRL)));
853 
854 	/* Disable ASF */
855 	CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
856 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
857 
858 	/* Clear I2C IRQ noise */
859 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
860 
861 	/* Disable hardware timer */
862 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
863 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
864 
865 	/* Disable descriptor polling */
866 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
867 
868 	/* Disable time stamps */
869 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
870 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
871 
872 	/* Enable RAM interface */
873 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
874 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
875 		sk_win_write_1(sc, reg, 36);
876 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
877 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
878 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
879 
880 	/*
881 	 * Configure interrupt moderation. The moderation timer
882 	 * defers interrupts specified in the interrupt moderation
883 	 * timer mask based on the timeout specified in the interrupt
884 	 * moderation timer init register. Each bit in the timer
885 	 * register represents one tick, so to specify a timeout in
886 	 * microseconds, we have to multiply by the correct number of
887 	 * ticks-per-microsecond.
888 	 */
889 	switch (sc->sk_type) {
890 	case SK_YUKON_EC:
891 	case SK_YUKON_EC_U:
892 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
893 		break;
894 	case SK_YUKON_FE:
895 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
896 		break;
897 	case SK_YUKON_XL:
898 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
899 		break;
900 	default:
901 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
902 	}
903 
904 	/* Reset status ring. */
905 	memset(sc->sk_status_ring, 0,
906 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
907 	bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
908 	    sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
909 	sc->sk_status_idx = 0;
910 	sc->sk_status_own_idx = 0;
911 
912 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
913 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
914 
915 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
916 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
917 	    sc->sk_status_map->dm_segs[0].ds_addr);
918 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
919 	    (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
920 	if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
921 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
922 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
923 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
924 	} else {
925 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
926 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
927 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
928 		    ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
929 		sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
930 	}
931 
932 #if 0
933 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
934 #endif
935 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
936 
937 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
938 
939 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
940 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
941 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
942 
943 	msk_update_int_mod(sc, 0);
944 }
945 
946 int
947 msk_probe(device_t parent, cfdata_t match, void *aux)
948 {
949 	struct skc_attach_args *sa = aux;
950 
951 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
952 		return (0);
953 
954 	switch (sa->skc_type) {
955 	case SK_YUKON_XL:
956 	case SK_YUKON_EC_U:
957 	case SK_YUKON_EC:
958 	case SK_YUKON_FE:
959 		return (1);
960 	}
961 
962 	return (0);
963 }
964 
965 static bool
966 msk_resume(device_t dv, pmf_qual_t qual)
967 {
968 	struct sk_if_softc *sc_if = device_private(dv);
969 
970 	msk_init_yukon(sc_if);
971 	return true;
972 }
973 
974 /*
975  * Each XMAC chip is attached as a separate logical IP interface.
976  * Single port cards will have only one logical interface of course.
977  */
978 void
979 msk_attach(device_t parent, device_t self, void *aux)
980 {
981 	struct sk_if_softc *sc_if = device_private(self);
982 	struct sk_softc *sc = device_private(parent);
983 	struct skc_attach_args *sa = aux;
984 	struct ifnet *ifp;
985 	void *kva;
986 	bus_dma_segment_t seg;
987 	int i, rseg;
988 	u_int32_t chunk, val;
989 
990 	sc_if->sk_dev = self;
991 	sc_if->sk_port = sa->skc_port;
992 	sc_if->sk_softc = sc;
993 	sc->sk_if[sa->skc_port] = sc_if;
994 
995 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
996 
997 	/*
998 	 * Get station address for this interface. Note that
999 	 * dual port cards actually come with three station
1000 	 * addresses: one for each port, plus an extra. The
1001 	 * extra one is used by the SysKonnect driver software
1002 	 * as a 'virtual' station address for when both ports
1003 	 * are operating in failover mode. Currently we don't
1004 	 * use this extra address.
1005 	 */
1006 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1007 		sc_if->sk_enaddr[i] =
1008 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1009 
1010 	aprint_normal(": Ethernet address %s\n",
1011 	    ether_sprintf(sc_if->sk_enaddr));
1012 
1013 	/*
1014 	 * Set up RAM buffer addresses. The NIC will have a certain
1015 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1016 	 * need to divide this up a) between the transmitter and
1017  	 * receiver and b) between the two XMACs, if this is a
1018 	 * dual port NIC. Our algorithm is to divide up the memory
1019 	 * evenly so that everyone gets a fair share.
1020 	 *
1021 	 * Just to be contrary, Yukon2 appears to have separate memory
1022 	 * for each MAC.
1023 	 */
1024 	chunk = sc->sk_ramsize  - (sc->sk_ramsize + 2) / 3;
1025 	val = sc->sk_rboff / sizeof(u_int64_t);
1026 	sc_if->sk_rx_ramstart = val;
1027 	val += (chunk / sizeof(u_int64_t));
1028 	sc_if->sk_rx_ramend = val - 1;
1029 	chunk = sc->sk_ramsize - chunk;
1030 	sc_if->sk_tx_ramstart = val;
1031 	val += (chunk / sizeof(u_int64_t));
1032 	sc_if->sk_tx_ramend = val - 1;
1033 
1034 	DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1035 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1036 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1037 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1038 
1039 	/* Allocate the descriptor queues. */
1040 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1041 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1042 		aprint_error(": can't alloc rx buffers\n");
1043 		goto fail;
1044 	}
1045 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1046 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1047 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1048 		       sizeof(struct msk_ring_data));
1049 		goto fail_1;
1050 	}
1051 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1052 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1053             &sc_if->sk_ring_map)) {
1054 		aprint_error(": can't create dma map\n");
1055 		goto fail_2;
1056 	}
1057 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1058 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1059 		aprint_error(": can't load dma map\n");
1060 		goto fail_3;
1061 	}
1062         sc_if->sk_rdata = (struct msk_ring_data *)kva;
1063 	memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1064 
1065 	ifp = &sc_if->sk_ethercom.ec_if;
1066 	/* Try to allocate memory for jumbo buffers. */
1067 	if (msk_alloc_jumbo_mem(sc_if)) {
1068 		aprint_error(": jumbo buffer allocation failed\n");
1069 		goto fail_3;
1070 	}
1071 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1072 	if (sc->sk_type != SK_YUKON_FE)
1073 		sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1074 
1075 	ifp->if_softc = sc_if;
1076 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1077 	ifp->if_ioctl = msk_ioctl;
1078 	ifp->if_start = msk_start;
1079 	ifp->if_stop = msk_stop;
1080 	ifp->if_init = msk_init;
1081 	ifp->if_watchdog = msk_watchdog;
1082 	ifp->if_baudrate = 1000000000;
1083 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1084 	IFQ_SET_READY(&ifp->if_snd);
1085 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1086 
1087 	/*
1088 	 * Do miibus setup.
1089 	 */
1090 	msk_init_yukon(sc_if);
1091 
1092  	DPRINTFN(2, ("msk_attach: 1\n"));
1093 
1094 	sc_if->sk_mii.mii_ifp = ifp;
1095 	sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1096 	sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1097 	sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1098 
1099 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1100 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1101 	    ether_mediachange, ether_mediastatus);
1102 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1103 	    MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1104 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1105 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1106 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1107 			    0, NULL);
1108 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1109 	} else
1110 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1111 
1112 	callout_init(&sc_if->sk_tick_ch, 0);
1113 	callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1114 	callout_schedule(&sc_if->sk_tick_ch, hz);
1115 
1116 	/*
1117 	 * Call MI attach routines.
1118 	 */
1119 	if_attach(ifp);
1120 	ether_ifattach(ifp, sc_if->sk_enaddr);
1121 
1122 	if (pmf_device_register(self, NULL, msk_resume))
1123 		pmf_class_network_register(self, ifp);
1124 	else
1125 		aprint_error_dev(self, "couldn't establish power handler\n");
1126 
1127 #if NRND > 0
1128 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1129 		RND_TYPE_NET, 0);
1130 #endif
1131 
1132 	DPRINTFN(2, ("msk_attach: end\n"));
1133 	return;
1134 
1135 fail_3:
1136 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1137 fail_2:
1138 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1139 fail_1:
1140 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1141 fail:
1142 	sc->sk_if[sa->skc_port] = NULL;
1143 }
1144 
1145 int
1146 mskcprint(void *aux, const char *pnp)
1147 {
1148 	struct skc_attach_args *sa = aux;
1149 
1150 	if (pnp)
1151 		aprint_normal("sk port %c at %s",
1152 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1153 	else
1154 		aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1155 	return (UNCONF);
1156 }
1157 
1158 /*
1159  * Attach the interface. Allocate softc structures, do ifmedia
1160  * setup and ethernet/BPF attach.
1161  */
1162 void
1163 mskc_attach(device_t parent, device_t self, void *aux)
1164 {
1165 	struct sk_softc *sc = device_private(self);
1166 	struct pci_attach_args *pa = aux;
1167 	struct skc_attach_args skca;
1168 	pci_chipset_tag_t pc = pa->pa_pc;
1169 	pcireg_t command, memtype;
1170 	pci_intr_handle_t ih;
1171 	const char *intrstr = NULL;
1172 	bus_size_t size;
1173 	int rc, sk_nodenum;
1174 	u_int8_t hw, skrs;
1175 	const char *revstr = NULL;
1176 	const struct sysctlnode *node;
1177 	void *kva;
1178 	bus_dma_segment_t seg;
1179 	int rseg;
1180 
1181 	DPRINTFN(2, ("begin mskc_attach\n"));
1182 
1183 	sc->sk_dev = self;
1184 	/*
1185 	 * Handle power management nonsense.
1186 	 */
1187 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1188 
1189 	if (command == 0x01) {
1190 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1191 		if (command & SK_PSTATE_MASK) {
1192 			u_int32_t		iobase, membase, irq;
1193 
1194 			/* Save important PCI config data. */
1195 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1196 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1197 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1198 
1199 			/* Reset the power state. */
1200 			aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1201 			    "mode -- setting to D0\n",
1202 			    command & SK_PSTATE_MASK);
1203 			command &= 0xFFFFFFFC;
1204 			pci_conf_write(pc, pa->pa_tag,
1205 			    SK_PCI_PWRMGMTCTRL, command);
1206 
1207 			/* Restore PCI config data. */
1208 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1209 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1210 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1211 		}
1212 	}
1213 
1214 	/*
1215 	 * Map control/status registers.
1216 	 */
1217 
1218 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1219 	switch (memtype) {
1220 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1221 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1222 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1223 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1224 				   NULL, &size) == 0) {
1225 			break;
1226 		}
1227 	default:
1228 		aprint_error(": can't map mem space\n");
1229 		return;
1230 	}
1231 
1232 	sc->sc_dmatag = pa->pa_dmat;
1233 
1234 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1235 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1236 
1237 	/* bail out here if chip is not recognized */
1238 	if (!(SK_IS_YUKON2(sc))) {
1239 		aprint_error(": unknown chip type: %d\n", sc->sk_type);
1240 		goto fail_1;
1241 	}
1242 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1243 
1244 	/* Allocate interrupt */
1245 	if (pci_intr_map(pa, &ih)) {
1246 		aprint_error(": couldn't map interrupt\n");
1247 		goto fail_1;
1248 	}
1249 
1250 	intrstr = pci_intr_string(pc, ih);
1251 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1252 	if (sc->sk_intrhand == NULL) {
1253 		aprint_error(": couldn't establish interrupt");
1254 		if (intrstr != NULL)
1255 			aprint_error(" at %s", intrstr);
1256 		aprint_error("\n");
1257 		goto fail_1;
1258 	}
1259 
1260 	if (bus_dmamem_alloc(sc->sc_dmatag,
1261 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1262 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1263 		aprint_error(": can't alloc status buffers\n");
1264 		goto fail_2;
1265 	}
1266 
1267 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1268 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1269 	    &kva, BUS_DMA_NOWAIT)) {
1270 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1271 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1272 		goto fail_3;
1273 	}
1274 	if (bus_dmamap_create(sc->sc_dmatag,
1275 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1276 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1277 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1278 		aprint_error(": can't create dma map\n");
1279 		goto fail_4;
1280 	}
1281 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1282 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1283 	    NULL, BUS_DMA_NOWAIT)) {
1284 		aprint_error(": can't load dma map\n");
1285 		goto fail_5;
1286 	}
1287 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1288 
1289 
1290 	sc->sk_int_mod = SK_IM_DEFAULT;
1291 	sc->sk_int_mod_pending = 0;
1292 
1293 	/* Reset the adapter. */
1294 	msk_reset(sc);
1295 
1296 	skrs = sk_win_read_1(sc, SK_EPROM0);
1297 	if (skrs == 0x00)
1298 		sc->sk_ramsize = 0x20000;
1299 	else
1300 		sc->sk_ramsize = skrs * (1<<12);
1301 	sc->sk_rboff = SK_RBOFF_0;
1302 
1303 	DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1304 		     sc->sk_ramsize, sc->sk_ramsize / 1024,
1305 		     sc->sk_rboff));
1306 
1307 	switch (sc->sk_type) {
1308 	case SK_YUKON_XL:
1309 		sc->sk_name = "Yukon-2 XL";
1310 		break;
1311 	case SK_YUKON_EC_U:
1312 		sc->sk_name = "Yukon-2 EC Ultra";
1313 		break;
1314 	case SK_YUKON_EC:
1315 		sc->sk_name = "Yukon-2 EC";
1316 		break;
1317 	case SK_YUKON_FE:
1318 		sc->sk_name = "Yukon-2 FE";
1319 		break;
1320 	default:
1321 		sc->sk_name = "Yukon (Unknown)";
1322 	}
1323 
1324 	if (sc->sk_type == SK_YUKON_XL) {
1325 		switch (sc->sk_rev) {
1326 		case SK_YUKON_XL_REV_A0:
1327 			sc->sk_workaround = 0;
1328 			revstr = "A0";
1329 			break;
1330 		case SK_YUKON_XL_REV_A1:
1331 			sc->sk_workaround = SK_WA_4109;
1332 			revstr = "A1";
1333 			break;
1334 		case SK_YUKON_XL_REV_A2:
1335 			sc->sk_workaround = SK_WA_4109;
1336 			revstr = "A2";
1337 			break;
1338 		case SK_YUKON_XL_REV_A3:
1339 			sc->sk_workaround = SK_WA_4109;
1340 			revstr = "A3";
1341 			break;
1342 		default:
1343 			sc->sk_workaround = 0;
1344 			break;
1345 		}
1346 	}
1347 
1348 	if (sc->sk_type == SK_YUKON_EC) {
1349 		switch (sc->sk_rev) {
1350 		case SK_YUKON_EC_REV_A1:
1351 			sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1352 			revstr = "A1";
1353 			break;
1354 		case SK_YUKON_EC_REV_A2:
1355 			sc->sk_workaround = SK_WA_4109;
1356 			revstr = "A2";
1357 			break;
1358 		case SK_YUKON_EC_REV_A3:
1359 			sc->sk_workaround = SK_WA_4109;
1360 			revstr = "A3";
1361 			break;
1362 		default:
1363 			sc->sk_workaround = 0;
1364 			break;
1365 		}
1366 	}
1367 
1368 	if (sc->sk_type == SK_YUKON_FE) {
1369 		sc->sk_workaround = SK_WA_4109;
1370 		switch (sc->sk_rev) {
1371 		case SK_YUKON_FE_REV_A1:
1372 			revstr = "A1";
1373 			break;
1374 		case SK_YUKON_FE_REV_A2:
1375 			revstr = "A2";
1376 			break;
1377 		default:
1378 			sc->sk_workaround = 0;
1379 			break;
1380 		}
1381 	}
1382 
1383 	if (sc->sk_type == SK_YUKON_EC_U) {
1384 		sc->sk_workaround = SK_WA_4109;
1385 		switch (sc->sk_rev) {
1386 		case SK_YUKON_EC_U_REV_A0:
1387 			revstr = "A0";
1388 			break;
1389 		case SK_YUKON_EC_U_REV_A1:
1390 			revstr = "A1";
1391 			break;
1392 		case SK_YUKON_EC_U_REV_B0:
1393 			revstr = "B0";
1394 			break;
1395 		default:
1396 			sc->sk_workaround = 0;
1397 			break;
1398 		}
1399 	}
1400 
1401 	/* Announce the product name. */
1402 	aprint_normal(", %s", sc->sk_name);
1403 	if (revstr != NULL)
1404 		aprint_normal(" rev. %s", revstr);
1405 	aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1406 
1407 	sc->sk_macs = 1;
1408 
1409 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1410 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1411 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1412 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1413 			sc->sk_macs++;
1414 	}
1415 
1416 	skca.skc_port = SK_PORT_A;
1417 	skca.skc_type = sc->sk_type;
1418 	skca.skc_rev = sc->sk_rev;
1419 	(void)config_found(sc->sk_dev, &skca, mskcprint);
1420 
1421 	if (sc->sk_macs > 1) {
1422 		skca.skc_port = SK_PORT_B;
1423 		skca.skc_type = sc->sk_type;
1424 		skca.skc_rev = sc->sk_rev;
1425 		(void)config_found(sc->sk_dev, &skca, mskcprint);
1426 	}
1427 
1428 	/* Turn on the 'driver is loaded' LED. */
1429 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1430 
1431 	/* skc sysctl setup */
1432 
1433 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1434 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1435 	    SYSCTL_DESCR("mskc per-controller controls"),
1436 	    NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1437 	    CTL_EOL)) != 0) {
1438 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1439 		goto fail_6;
1440 	}
1441 
1442 	sk_nodenum = node->sysctl_num;
1443 
1444 	/* interrupt moderation time in usecs */
1445 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1446 	    CTLFLAG_READWRITE,
1447 	    CTLTYPE_INT, "int_mod",
1448 	    SYSCTL_DESCR("msk interrupt moderation timer"),
1449 	    msk_sysctl_handler, 0, sc,
1450 	    0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1451 	    CTL_EOL)) != 0) {
1452 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1453 		goto fail_6;
1454 	}
1455 
1456 	if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1457 		aprint_error_dev(self, "couldn't establish power handler\n");
1458 
1459 	return;
1460 
1461  fail_6:
1462 	bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1463 fail_5:
1464 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1465 fail_4:
1466 	bus_dmamem_unmap(sc->sc_dmatag, kva,
1467 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1468 fail_3:
1469 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1470 fail_2:
1471 	pci_intr_disestablish(pc, sc->sk_intrhand);
1472 fail_1:
1473 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1474 }
1475 
1476 int
1477 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1478 {
1479 	struct sk_softc		*sc = sc_if->sk_softc;
1480 	struct msk_tx_desc		*f = NULL;
1481 	u_int32_t		frag, cur;
1482 	int			i;
1483 	struct sk_txmap_entry	*entry;
1484 	bus_dmamap_t		txmap;
1485 
1486 	DPRINTFN(2, ("msk_encap\n"));
1487 
1488 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1489 	if (entry == NULL) {
1490 		DPRINTFN(2, ("msk_encap: no txmap available\n"));
1491 		return (ENOBUFS);
1492 	}
1493 	txmap = entry->dmamap;
1494 
1495 	cur = frag = *txidx;
1496 
1497 #ifdef MSK_DEBUG
1498 	if (mskdebug >= 2)
1499 		msk_dump_mbuf(m_head);
1500 #endif
1501 
1502 	/*
1503 	 * Start packing the mbufs in this chain into
1504 	 * the fragment pointers. Stop when we run out
1505 	 * of fragments or hit the end of the mbuf chain.
1506 	 */
1507 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1508 	    BUS_DMA_NOWAIT)) {
1509 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1510 		return (ENOBUFS);
1511 	}
1512 
1513 	if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1514 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1515 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1516 		return (ENOBUFS);
1517 	}
1518 
1519 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1520 
1521 	/* Sync the DMA map. */
1522 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1523 	    BUS_DMASYNC_PREWRITE);
1524 
1525 	for (i = 0; i < txmap->dm_nsegs; i++) {
1526 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1527 		f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1528 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1529 		f->sk_ctl = 0;
1530 		if (i == 0)
1531 			f->sk_opcode = SK_Y2_TXOPC_PACKET;
1532 		else
1533 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1534 		cur = frag;
1535 		SK_INC(frag, MSK_TX_RING_CNT);
1536 	}
1537 
1538 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1539 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1540 
1541 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1542 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1543 
1544 	/* Sync descriptors before handing to chip */
1545 	MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1546             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1547 
1548 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1549 
1550 	/* Sync first descriptor to hand it off */
1551 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1552 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1553 
1554 	sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1555 
1556 #ifdef MSK_DEBUG
1557 	if (mskdebug >= 2) {
1558 		struct msk_tx_desc *le;
1559 		u_int32_t idx;
1560 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1561 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1562 			msk_dump_txdesc(le, idx);
1563 		}
1564 	}
1565 #endif
1566 
1567 	*txidx = frag;
1568 
1569 	DPRINTFN(2, ("msk_encap: completed successfully\n"));
1570 
1571 	return (0);
1572 }
1573 
1574 void
1575 msk_start(struct ifnet *ifp)
1576 {
1577         struct sk_if_softc	*sc_if = ifp->if_softc;
1578         struct mbuf		*m_head = NULL;
1579         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1580 	int			pkts = 0;
1581 
1582 	DPRINTFN(2, ("msk_start\n"));
1583 
1584 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1585 		IFQ_POLL(&ifp->if_snd, m_head);
1586 		if (m_head == NULL)
1587 			break;
1588 
1589 		/*
1590 		 * Pack the data into the transmit ring. If we
1591 		 * don't have room, set the OACTIVE flag and wait
1592 		 * for the NIC to drain the ring.
1593 		 */
1594 		if (msk_encap(sc_if, m_head, &idx)) {
1595 			ifp->if_flags |= IFF_OACTIVE;
1596 			break;
1597 		}
1598 
1599 		/* now we are committed to transmit the packet */
1600 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1601 		pkts++;
1602 
1603 		/*
1604 		 * If there's a BPF listener, bounce a copy of this frame
1605 		 * to him.
1606 		 */
1607 #if NBPFILTER > 0
1608 		if (ifp->if_bpf)
1609 			bpf_mtap(ifp->if_bpf, m_head);
1610 #endif
1611 	}
1612 	if (pkts == 0)
1613 		return;
1614 
1615 	/* Transmit */
1616 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1617 		sc_if->sk_cdata.sk_tx_prod = idx;
1618 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1619 
1620 		/* Set a timeout in case the chip goes out to lunch. */
1621 		ifp->if_timer = 5;
1622 	}
1623 }
1624 
1625 void
1626 msk_watchdog(struct ifnet *ifp)
1627 {
1628 	struct sk_if_softc *sc_if = ifp->if_softc;
1629 	u_int32_t reg;
1630 	int idx;
1631 
1632 	/*
1633 	 * Reclaim first as there is a possibility of losing Tx completion
1634 	 * interrupts.
1635 	 */
1636 	if (sc_if->sk_port == SK_PORT_A)
1637 		reg = SK_STAT_BMU_TXA1_RIDX;
1638 	else
1639 		reg = SK_STAT_BMU_TXA2_RIDX;
1640 
1641 	idx = sk_win_read_2(sc_if->sk_softc, reg);
1642 	if (sc_if->sk_cdata.sk_tx_cons != idx) {
1643 		msk_txeof(sc_if, idx);
1644 		if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1645 			aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1646 
1647 			ifp->if_oerrors++;
1648 
1649 			/* XXX Resets both ports; we shouldn't do that. */
1650 			msk_reset(sc_if->sk_softc);
1651 			msk_init(ifp);
1652 		}
1653 	}
1654 }
1655 
1656 static bool
1657 mskc_suspend(device_t dv, pmf_qual_t qual)
1658 {
1659 	struct sk_softc *sc = device_private(dv);
1660 
1661 	DPRINTFN(2, ("mskc_suspend\n"));
1662 
1663 	/* Turn off the 'driver is loaded' LED. */
1664 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1665 
1666 	return true;
1667 }
1668 
1669 static bool
1670 mskc_resume(device_t dv, pmf_qual_t qual)
1671 {
1672 	struct sk_softc *sc = device_private(dv);
1673 
1674 	DPRINTFN(2, ("mskc_resume\n"));
1675 
1676 	msk_reset(sc);
1677 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1678 
1679 	return true;
1680 }
1681 
1682 __inline int
1683 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1684 {
1685 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1686 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1687 	    YU_RXSTAT_JABBER)) != 0 ||
1688 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1689 	    YU_RXSTAT_BYTES(stat) != len)
1690 		return (0);
1691 
1692 	return (1);
1693 }
1694 
1695 void
1696 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1697 {
1698 	struct sk_softc		*sc = sc_if->sk_softc;
1699 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1700 	struct mbuf		*m;
1701 	struct sk_chain		*cur_rx;
1702 	int			cur, total_len = len;
1703 	bus_dmamap_t		dmamap;
1704 
1705 	DPRINTFN(2, ("msk_rxeof\n"));
1706 
1707 	cur = sc_if->sk_cdata.sk_rx_cons;
1708 	SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1709 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1710 
1711 	/* Sync the descriptor */
1712 	MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1713 
1714 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1715 	dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1716 
1717 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1718 	    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1719 
1720 	m = cur_rx->sk_mbuf;
1721 	cur_rx->sk_mbuf = NULL;
1722 
1723 	if (total_len < SK_MIN_FRAMELEN ||
1724 	    total_len > ETHER_MAX_LEN_JUMBO ||
1725 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
1726 		ifp->if_ierrors++;
1727 		msk_newbuf(sc_if, cur, m, dmamap);
1728 		return;
1729 	}
1730 
1731 	/*
1732 	 * Try to allocate a new jumbo buffer. If that fails, copy the
1733 	 * packet to mbufs and put the jumbo buffer back in the ring
1734 	 * so it can be re-used. If allocating mbufs fails, then we
1735 	 * have to drop the packet.
1736 	 */
1737 	if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1738 		struct mbuf		*m0;
1739 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1740 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
1741 		msk_newbuf(sc_if, cur, m, dmamap);
1742 		if (m0 == NULL) {
1743 			ifp->if_ierrors++;
1744 			return;
1745 		}
1746 		m_adj(m0, ETHER_ALIGN);
1747 		m = m0;
1748 	} else {
1749 		m->m_pkthdr.rcvif = ifp;
1750 		m->m_pkthdr.len = m->m_len = total_len;
1751 	}
1752 
1753 	ifp->if_ipackets++;
1754 
1755 #if NBPFILTER > 0
1756 	if (ifp->if_bpf)
1757 		bpf_mtap(ifp->if_bpf, m);
1758 #endif
1759 
1760 	/* pass it on. */
1761 	(*ifp->if_input)(ifp, m);
1762 }
1763 
1764 void
1765 msk_txeof(struct sk_if_softc *sc_if, int idx)
1766 {
1767 	struct sk_softc		*sc = sc_if->sk_softc;
1768 	struct msk_tx_desc	*cur_tx;
1769 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1770 	u_int32_t		sk_ctl;
1771 	struct sk_txmap_entry	*entry;
1772 	int			cons, prog;
1773 
1774 	DPRINTFN(2, ("msk_txeof\n"));
1775 
1776 	/*
1777 	 * Go through our tx ring and free mbufs for those
1778 	 * frames that have been sent.
1779 	 */
1780 	cons = sc_if->sk_cdata.sk_tx_cons;
1781 	prog = 0;
1782 	while (cons != idx) {
1783 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1784 			break;
1785 		prog++;
1786 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1787 
1788 		MSK_CDTXSYNC(sc_if, cons, 1,
1789 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1790 		sk_ctl = cur_tx->sk_ctl;
1791 		MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1792 #ifdef MSK_DEBUG
1793 		if (mskdebug >= 2)
1794 			msk_dump_txdesc(cur_tx, cons);
1795 #endif
1796 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1797 			ifp->if_opackets++;
1798 		if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1799 			entry = sc_if->sk_cdata.sk_tx_map[cons];
1800 
1801 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1802 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1803 
1804 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1805 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1806 					  link);
1807 			sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1808 			m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1809 			sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1810 		}
1811 		sc_if->sk_cdata.sk_tx_cnt--;
1812 		SK_INC(cons, MSK_TX_RING_CNT);
1813 	}
1814 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1815 
1816 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1817 		ifp->if_flags &= ~IFF_OACTIVE;
1818 
1819 	if (prog > 0)
1820 		sc_if->sk_cdata.sk_tx_cons = cons;
1821 }
1822 
1823 void
1824 msk_tick(void *xsc_if)
1825 {
1826 	struct sk_if_softc *sc_if = xsc_if;
1827 	struct mii_data *mii = &sc_if->sk_mii;
1828 	uint16_t gpsr;
1829 	int s;
1830 
1831 	s = splnet();
1832 	gpsr = SK_YU_READ_2(sc_if, YUKON_GPSR);
1833 	if ((gpsr & YU_GPSR_MII_PHY_STC) != 0) {
1834 		SK_YU_WRITE_2(sc_if, YUKON_GPSR, YU_GPSR_MII_PHY_STC);
1835 		mii_tick(mii);
1836 	}
1837 	splx(s);
1838 
1839 	callout_schedule(&sc_if->sk_tick_ch, hz);
1840 }
1841 
1842 void
1843 msk_intr_yukon(struct sk_if_softc *sc_if)
1844 {
1845 	u_int8_t status;
1846 
1847 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1848 	/* RX overrun */
1849 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1850 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1851 		    SK_RFCTL_RX_FIFO_OVER);
1852 	}
1853 	/* TX underrun */
1854 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1855 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1856 		    SK_TFCTL_TX_FIFO_UNDER);
1857 	}
1858 
1859 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1860 }
1861 
1862 int
1863 msk_intr(void *xsc)
1864 {
1865 	struct sk_softc		*sc = xsc;
1866 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1867 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1868 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1869 	int			claimed = 0;
1870 	u_int32_t		status;
1871 	uint32_t		st_status;
1872 	uint16_t		st_len;
1873 	uint8_t			st_opcode, st_link;
1874 	struct msk_status_desc	*cur_st;
1875 
1876 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
1877 	if (status == 0) {
1878 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1879 		return (0);
1880 	}
1881 
1882 	status = CSR_READ_4(sc, SK_ISR);
1883 
1884 	if (sc_if0 != NULL)
1885 		ifp0 = &sc_if0->sk_ethercom.ec_if;
1886 	if (sc_if1 != NULL)
1887 		ifp1 = &sc_if1->sk_ethercom.ec_if;
1888 
1889 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1890 	    (ifp0->if_flags & IFF_RUNNING)) {
1891 		msk_intr_yukon(sc_if0);
1892 	}
1893 
1894 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1895 	    (ifp1->if_flags & IFF_RUNNING)) {
1896 		msk_intr_yukon(sc_if1);
1897 	}
1898 
1899 	for (;;) {
1900 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1901 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
1902 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1903 		st_opcode = cur_st->sk_opcode;
1904 		if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1905 			MSK_CDSTSYNC(sc, sc->sk_status_idx,
1906 			    BUS_DMASYNC_PREREAD);
1907 			break;
1908 		}
1909 		st_status = le32toh(cur_st->sk_status);
1910 		st_len = le16toh(cur_st->sk_len);
1911 		st_link = cur_st->sk_link;
1912 		st_opcode &= ~SK_Y2_STOPC_OWN;
1913 
1914 		switch (st_opcode) {
1915 		case SK_Y2_STOPC_RXSTAT:
1916 			msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1917 			SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1918 			    SK_RXQ1_Y2_PREF_PUTIDX,
1919 			    sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1920 			break;
1921 		case SK_Y2_STOPC_TXSTAT:
1922 			if (sc_if0)
1923 				msk_txeof(sc_if0, st_status
1924 				    & SK_Y2_ST_TXA1_MSKL);
1925 			if (sc_if1)
1926 				msk_txeof(sc_if1,
1927 				    ((st_status & SK_Y2_ST_TXA2_MSKL)
1928 					>> SK_Y2_ST_TXA2_SHIFTL)
1929 				    | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1930 			break;
1931 		default:
1932 			aprint_error("opcode=0x%x\n", st_opcode);
1933 			break;
1934 		}
1935 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1936 	}
1937 
1938 #define MSK_STATUS_RING_OWN_CNT(sc)			\
1939 	(((sc)->sk_status_idx + MSK_STATUS_RING_CNT -	\
1940 	    (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1941 
1942 	while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1943 		cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1944 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1945 		MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1946 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1947 
1948 		SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1949 	}
1950 
1951 	if (status & SK_Y2_IMR_BMU) {
1952 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1953 		claimed = 1;
1954 	}
1955 
1956 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1957 
1958 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1959 		msk_start(ifp0);
1960 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1961 		msk_start(ifp1);
1962 
1963 #if NRND > 0
1964 	if (RND_ENABLED(&sc->rnd_source))
1965 		rnd_add_uint32(&sc->rnd_source, status);
1966 #endif
1967 
1968 	if (sc->sk_int_mod_pending)
1969 		msk_update_int_mod(sc, 1);
1970 
1971 	return claimed;
1972 }
1973 
1974 void
1975 msk_init_yukon(struct sk_if_softc *sc_if)
1976 {
1977 	u_int32_t		v;
1978 	u_int16_t		reg;
1979 	struct sk_softc		*sc;
1980 	int			i;
1981 
1982 	sc = sc_if->sk_softc;
1983 
1984 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1985 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1986 
1987 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
1988 
1989 	/* GMAC and GPHY Reset */
1990 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1991 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1992 	DELAY(1000);
1993 
1994 	DPRINTFN(6, ("msk_init_yukon: 2\n"));
1995 
1996 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1997 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1998 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1999 
2000 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2001 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2002 
2003 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
2004 
2005 	/* unused read of the interrupt source register */
2006 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
2007 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2008 
2009 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2010 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2011 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2012 
2013 	/* MIB Counter Clear Mode set */
2014         reg |= YU_PAR_MIB_CLR;
2015 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2016 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2017 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2018 
2019 	/* MIB Counter Clear Mode clear */
2020 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
2021         reg &= ~YU_PAR_MIB_CLR;
2022 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2023 
2024 	/* receive control reg */
2025 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
2026 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2027 
2028 	/* transmit control register */
2029 	SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2030 
2031 	/* transmit flow control register */
2032 	SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2033 
2034 	/* transmit parameter register */
2035 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
2036 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2037 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2038 
2039 	/* serial mode register */
2040 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
2041 	reg = YU_SMR_DATA_BLIND(0x1c) |
2042 	      YU_SMR_MFL_VLAN |
2043 	      YU_SMR_IPG_DATA(0x1e);
2044 
2045 	if (sc->sk_type != SK_YUKON_FE)
2046 		reg |= YU_SMR_MFL_JUMBO;
2047 
2048 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2049 
2050 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
2051 	/* Setup Yukon's address */
2052 	for (i = 0; i < 3; i++) {
2053 		/* Write Source Address 1 (unicast filter) */
2054 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2055 			      sc_if->sk_enaddr[i * 2] |
2056 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2057 	}
2058 
2059 	for (i = 0; i < 3; i++) {
2060 		reg = sk_win_read_2(sc_if->sk_softc,
2061 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2062 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2063 	}
2064 
2065 	/* Set promiscuous mode */
2066 	msk_setpromisc(sc_if);
2067 
2068 	/* Set multicast filter */
2069 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
2070 	msk_setmulti(sc_if);
2071 
2072 	/* enable interrupt mask for counter overflows */
2073 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
2074 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2075 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2076 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2077 
2078 	/* Configure RX MAC FIFO Flush Mask */
2079 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2080 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2081 	    YU_RXSTAT_JABBER;
2082 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2083 
2084 	/* Configure RX MAC FIFO */
2085 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2086 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2087 	    SK_RFCTL_FIFO_FLUSH_ON);
2088 
2089 	/* Increase flush threshould to 64 bytes */
2090 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2091 	    SK_RFCTL_FIFO_THRESHOLD + 1);
2092 
2093 	/* Configure TX MAC FIFO */
2094 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2095 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2096 
2097 #if 1
2098 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2099 #endif
2100 	DPRINTFN(6, ("msk_init_yukon: end\n"));
2101 }
2102 
2103 /*
2104  * Note that to properly initialize any part of the GEnesis chip,
2105  * you first have to take it out of reset mode.
2106  */
2107 int
2108 msk_init(struct ifnet *ifp)
2109 {
2110 	struct sk_if_softc	*sc_if = ifp->if_softc;
2111 	struct sk_softc		*sc = sc_if->sk_softc;
2112 	int			rc = 0, s;
2113 	uint32_t		imr, imtimer_ticks;
2114 
2115 
2116 	DPRINTFN(2, ("msk_init\n"));
2117 
2118 	s = splnet();
2119 
2120 	/* Cancel pending I/O and free all RX/TX buffers. */
2121 	msk_stop(ifp,0);
2122 
2123 	/* Configure I2C registers */
2124 
2125 	/* Configure XMAC(s) */
2126 	msk_init_yukon(sc_if);
2127 	if ((rc = ether_mediachange(ifp)) != 0)
2128 		goto out;
2129 
2130 	/* Configure transmit arbiter(s) */
2131 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2132 #if 0
2133 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2134 #endif
2135 
2136 	/* Configure RAMbuffers */
2137 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2138 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2139 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2140 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2141 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2142 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2143 
2144 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2145 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2146 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2147 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2148 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2149 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2150 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2151 
2152 	/* Configure BMUs */
2153 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2154 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2155 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2156 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600);	/* XXX ??? */
2157 
2158 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2159 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2160 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2161 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600);	/* XXX ??? */
2162 
2163 	/* Make sure the sync transmit queue is disabled. */
2164 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2165 
2166 	/* Init descriptors */
2167 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2168 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2169 		    "memory for rx buffers\n");
2170 		msk_stop(ifp,0);
2171 		splx(s);
2172 		return ENOBUFS;
2173 	}
2174 
2175 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2176 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2177 		    "memory for tx buffers\n");
2178 		msk_stop(ifp,0);
2179 		splx(s);
2180 		return ENOBUFS;
2181 	}
2182 
2183 	/* Set interrupt moderation if changed via sysctl. */
2184 	switch (sc->sk_type) {
2185 	case SK_YUKON_EC:
2186 	case SK_YUKON_EC_U:
2187 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2188 		break;
2189 	case SK_YUKON_FE:
2190 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2191 		break;
2192 	case SK_YUKON_XL:
2193 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2194 		break;
2195 	default:
2196 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2197 	}
2198 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2199 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2200 		sk_win_write_4(sc, SK_IMTIMERINIT,
2201 		    SK_IM_USECS(sc->sk_int_mod));
2202 		aprint_verbose_dev(sc->sk_dev,
2203 		    "yinterrupt moderation is %d us\n", sc->sk_int_mod);
2204 	}
2205 
2206 	/* Initialize prefetch engine. */
2207 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2208 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2209 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2210 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2211 	    MSK_RX_RING_ADDR(sc_if, 0));
2212 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2213 	    (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2214 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2215 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2216 
2217 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2218 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2219 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2220 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2221 	    MSK_TX_RING_ADDR(sc_if, 0));
2222 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2223 	    (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2224 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2225 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2226 
2227 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2228 	    sc_if->sk_cdata.sk_rx_prod);
2229 
2230 	/* Configure interrupt handling */
2231 	if (sc_if->sk_port == SK_PORT_A)
2232 		sc->sk_intrmask |= SK_Y2_INTRS1;
2233 	else
2234 		sc->sk_intrmask |= SK_Y2_INTRS2;
2235 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2236 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2237 
2238 	ifp->if_flags |= IFF_RUNNING;
2239 	ifp->if_flags &= ~IFF_OACTIVE;
2240 
2241 	callout_schedule(&sc_if->sk_tick_ch, hz);
2242 
2243 out:
2244 	splx(s);
2245 	return rc;
2246 }
2247 
2248 void
2249 msk_stop(struct ifnet *ifp, int disable)
2250 {
2251 	struct sk_if_softc	*sc_if = ifp->if_softc;
2252 	struct sk_softc		*sc = sc_if->sk_softc;
2253 	struct sk_txmap_entry	*dma;
2254 	int			i;
2255 
2256 	DPRINTFN(2, ("msk_stop\n"));
2257 
2258 	callout_stop(&sc_if->sk_tick_ch);
2259 
2260 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2261 
2262 	/* Stop transfer of Tx descriptors */
2263 
2264 	/* Stop transfer of Rx descriptors */
2265 
2266 	/* Turn off various components of this interface. */
2267 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2268 	SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2269 	SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2270 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2271 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2272 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2273 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2274 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2275 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2276 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2277 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2278 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2279 
2280 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2281 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2282 
2283 	/* Disable interrupts */
2284 	if (sc_if->sk_port == SK_PORT_A)
2285 		sc->sk_intrmask &= ~SK_Y2_INTRS1;
2286 	else
2287 		sc->sk_intrmask &= ~SK_Y2_INTRS2;
2288 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2289 
2290 	SK_XM_READ_2(sc_if, XM_ISR);
2291 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2292 
2293 	/* Free RX and TX mbufs still in the queues. */
2294 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2295 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2296 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2297 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2298 		}
2299 	}
2300 
2301 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2302 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2303 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2304 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2305 #if 1
2306 			SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2307 			    sc_if->sk_cdata.sk_tx_map[i], link);
2308 			sc_if->sk_cdata.sk_tx_map[i] = 0;
2309 #endif
2310 		}
2311 	}
2312 
2313 #if 1
2314 	while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2315 		SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2316 		bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2317 		free(dma, M_DEVBUF);
2318 	}
2319 #endif
2320 }
2321 
2322 CFATTACH_DECL_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2323 	NULL, NULL);
2324 
2325 CFATTACH_DECL_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2326 	NULL, NULL);
2327 
2328 #ifdef MSK_DEBUG
2329 void
2330 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2331 {
2332 #define DESC_PRINT(X)					\
2333 	if (X)					\
2334 		printf("txdesc[%d]." #X "=%#x\n",	\
2335 		       idx, X);
2336 
2337 	DESC_PRINT(letoh32(le->sk_addr));
2338 	DESC_PRINT(letoh16(le->sk_len));
2339 	DESC_PRINT(le->sk_ctl);
2340 	DESC_PRINT(le->sk_opcode);
2341 #undef DESC_PRINT
2342 }
2343 
2344 void
2345 msk_dump_bytes(const char *data, int len)
2346 {
2347 	int c, i, j;
2348 
2349 	for (i = 0; i < len; i += 16) {
2350 		printf("%08x  ", i);
2351 		c = len - i;
2352 		if (c > 16) c = 16;
2353 
2354 		for (j = 0; j < c; j++) {
2355 			printf("%02x ", data[i + j] & 0xff);
2356 			if ((j & 0xf) == 7 && j > 0)
2357 				printf(" ");
2358 		}
2359 
2360 		for (; j < 16; j++)
2361 			printf("   ");
2362 		printf("  ");
2363 
2364 		for (j = 0; j < c; j++) {
2365 			int ch = data[i + j] & 0xff;
2366 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2367 		}
2368 
2369 		printf("\n");
2370 
2371 		if (c < 16)
2372 			break;
2373 	}
2374 }
2375 
2376 void
2377 msk_dump_mbuf(struct mbuf *m)
2378 {
2379 	int count = m->m_pkthdr.len;
2380 
2381 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2382 
2383 	while (count > 0 && m) {
2384 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2385 		       m, m->m_data, m->m_len);
2386 		msk_dump_bytes(mtod(m, char *), m->m_len);
2387 
2388 		count -= m->m_len;
2389 		m = m->m_next;
2390 	}
2391 }
2392 #endif
2393 
2394 static int
2395 msk_sysctl_handler(SYSCTLFN_ARGS)
2396 {
2397 	int error, t;
2398 	struct sysctlnode node;
2399 	struct sk_softc *sc;
2400 
2401 	node = *rnode;
2402 	sc = node.sysctl_data;
2403 	t = sc->sk_int_mod;
2404 	node.sysctl_data = &t;
2405 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2406 	if (error || newp == NULL)
2407 		return error;
2408 
2409 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2410 		return EINVAL;
2411 
2412 	/* update the softc with sysctl-changed value, and mark
2413 	   for hardware update */
2414 	sc->sk_int_mod = t;
2415 	sc->sk_int_mod_pending = 1;
2416 	return 0;
2417 }
2418 
2419 /*
2420  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2421  * set up in skc_attach()
2422  */
2423 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2424 {
2425 	int rc;
2426 	const struct sysctlnode *node;
2427 
2428 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2429 	    0, CTLTYPE_NODE, "hw", NULL,
2430 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2431 		goto err;
2432 	}
2433 
2434 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2435 	    0, CTLTYPE_NODE, "msk",
2436 	    SYSCTL_DESCR("msk interface controls"),
2437 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2438 		goto err;
2439 	}
2440 
2441 	msk_root_num = node->sysctl_num;
2442 	return;
2443 
2444 err:
2445 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2446 }
2447