xref: /netbsd-src/sys/dev/pci/if_msk.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /* $NetBSD: if_msk.c,v 1.16 2008/02/07 01:21:56 dyoung Exp $ */
2 /*	$OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $	*/
3 
4 /*
5  * Copyright (c) 1997, 1998, 1999, 2000
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.16 2008/02/07 01:21:56 dyoung Exp $");
56 
57 #include "bpfilter.h"
58 #include "rnd.h"
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/sockio.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/device.h>
68 #include <sys/queue.h>
69 #include <sys/callout.h>
70 #include <sys/sysctl.h>
71 #include <sys/endian.h>
72 #ifdef __NetBSD__
73  #define letoh16 htole16
74  #define letoh32 htole32
75 #endif
76 
77 #include <net/if.h>
78 #include <net/if_dl.h>
79 #include <net/if_types.h>
80 
81 #include <net/if_media.h>
82 
83 #if NBPFILTER > 0
84 #include <net/bpf.h>
85 #endif
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include <dev/mii/brgphyreg.h>
93 
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97 
98 #include <dev/pci/if_skreg.h>
99 #include <dev/pci/if_mskvar.h>
100 
101 int mskc_probe(struct device *, struct cfdata *, void *);
102 void mskc_attach(struct device *, struct device *self, void *aux);
103 void mskc_shutdown(void *);
104 int msk_probe(struct device *, struct cfdata *, void *);
105 void msk_attach(struct device *, struct device *self, void *aux);
106 int mskcprint(void *, const char *);
107 int msk_intr(void *);
108 void msk_intr_yukon(struct sk_if_softc *);
109 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
110 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
111 void msk_txeof(struct sk_if_softc *, int);
112 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
113 void msk_start(struct ifnet *);
114 int msk_ioctl(struct ifnet *, u_long, void *);
115 int msk_init(struct ifnet *);
116 void msk_init_yukon(struct sk_if_softc *);
117 void msk_stop(struct ifnet *, int);
118 void msk_watchdog(struct ifnet *);
119 void msk_reset(struct sk_softc *);
120 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
121 int msk_alloc_jumbo_mem(struct sk_if_softc *);
122 void *msk_jalloc(struct sk_if_softc *);
123 void msk_jfree(struct mbuf *, void *, size_t, void *);
124 int msk_init_rx_ring(struct sk_if_softc *);
125 int msk_init_tx_ring(struct sk_if_softc *);
126 
127 void msk_update_int_mod(struct sk_softc *);
128 
129 int msk_miibus_readreg(struct device *, int, int);
130 void msk_miibus_writereg(struct device *, int, int, int);
131 void msk_miibus_statchg(struct device *);
132 
133 void msk_setfilt(struct sk_if_softc *, void *, int);
134 void msk_setmulti(struct sk_if_softc *);
135 void msk_setpromisc(struct sk_if_softc *);
136 void msk_tick(void *);
137 
138 /* #define MSK_DEBUG 1 */
139 #ifdef MSK_DEBUG
140 #define DPRINTF(x)	if (mskdebug) printf x
141 #define DPRINTFN(n,x)	if (mskdebug >= (n)) printf x
142 int	mskdebug = MSK_DEBUG;
143 
144 void msk_dump_txdesc(struct msk_tx_desc *, int);
145 void msk_dump_mbuf(struct mbuf *);
146 void msk_dump_bytes(const char *, int);
147 #else
148 #define DPRINTF(x)
149 #define DPRINTFN(n,x)
150 #endif
151 
152 static int msk_sysctl_handler(SYSCTLFN_PROTO);
153 static int msk_root_num;
154 
155 /* supported device vendors */
156 static const struct msk_product {
157         pci_vendor_id_t         msk_vendor;
158         pci_product_id_t        msk_product;
159 } msk_products[] = {
160 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
161 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
162 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
163 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_1 },
164 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
165 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
166 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
167 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
168 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
169 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C055 },
170 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
171 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
172 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
173 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
174 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
175 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
176 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
177 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
178 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
179 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021CU },
180 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021X },
181 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022CU },
182 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022X },
183 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061CU },
184 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061X },
185 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062CU },
186 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062X },
187 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
188 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
189 };
190 
191 static inline u_int32_t
192 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
193 {
194 	return CSR_READ_4(sc, reg);
195 }
196 
197 static inline u_int16_t
198 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
199 {
200 	return CSR_READ_2(sc, reg);
201 }
202 
203 static inline u_int8_t
204 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
205 {
206 	return CSR_READ_1(sc, reg);
207 }
208 
209 static inline void
210 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
211 {
212 	CSR_WRITE_4(sc, reg, x);
213 }
214 
215 static inline void
216 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
217 {
218 	CSR_WRITE_2(sc, reg, x);
219 }
220 
221 static inline void
222 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
223 {
224 	CSR_WRITE_1(sc, reg, x);
225 }
226 
227 int
228 msk_miibus_readreg(struct device *dev, int phy, int reg)
229 {
230 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
231 	u_int16_t val;
232 	int i;
233 
234         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
235 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
236 
237 	for (i = 0; i < SK_TIMEOUT; i++) {
238 		DELAY(1);
239 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
240 		if (val & YU_SMICR_READ_VALID)
241 			break;
242 	}
243 
244 	if (i == SK_TIMEOUT) {
245 		aprint_error("%s: phy failed to come ready\n",
246 		       sc_if->sk_dev.dv_xname);
247 		return (0);
248 	}
249 
250  	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
251 		     SK_TIMEOUT));
252 
253         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
254 
255 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
256 		     phy, reg, val));
257 
258 	return (val);
259 }
260 
261 void
262 msk_miibus_writereg(struct device *dev, int phy, int reg, int val)
263 {
264 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
265 	int i;
266 
267 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
268 		     phy, reg, val));
269 
270 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
271 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
272 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
273 
274 	for (i = 0; i < SK_TIMEOUT; i++) {
275 		DELAY(1);
276 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
277 			break;
278 	}
279 
280 	if (i == SK_TIMEOUT)
281 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
282 }
283 
284 void
285 msk_miibus_statchg(struct device *dev)
286 {
287 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
288 	struct mii_data *mii = &sc_if->sk_mii;
289 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
290 	int gpcr;
291 
292 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
293 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
294 
295 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
296 		/* Set speed. */
297 		gpcr |= YU_GPCR_SPEED_DIS;
298 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
299 		case IFM_1000_SX:
300 		case IFM_1000_LX:
301 		case IFM_1000_CX:
302 		case IFM_1000_T:
303 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
304 			break;
305 		case IFM_100_TX:
306 			gpcr |= YU_GPCR_SPEED;
307 			break;
308 		}
309 
310 		/* Set duplex. */
311 		gpcr |= YU_GPCR_DPLX_DIS;
312 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
313 			gpcr |= YU_GPCR_DUPLEX;
314 
315 		/* Disable flow control. */
316 		gpcr |= YU_GPCR_FCTL_DIS;
317 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
318 	}
319 
320 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
321 
322 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
323 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
324 }
325 
326 #define HASH_BITS	6
327 
328 void
329 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
330 {
331 	char *addr = addrv;
332 	int base = XM_RXFILT_ENTRY(slot);
333 
334 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
335 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
336 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
337 }
338 
339 void
340 msk_setmulti(struct sk_if_softc *sc_if)
341 {
342 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
343 	u_int32_t hashes[2] = { 0, 0 };
344 	int h;
345 	struct ethercom *ec = &sc_if->sk_ethercom;
346 	struct ether_multi *enm;
347 	struct ether_multistep step;
348 	u_int16_t reg;
349 
350 	/* First, zot all the existing filters. */
351 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
352 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
353 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
354 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
355 
356 
357 	/* Now program new ones. */
358 	reg = SK_YU_READ_2(sc_if, YUKON_RCR);
359 	reg |= YU_RCR_UFLEN;
360 allmulti:
361 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
362 		if ((ifp->if_flags & IFF_PROMISC) != 0)
363 			reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
364 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
365 			hashes[0] = 0xFFFFFFFF;
366 			hashes[1] = 0xFFFFFFFF;
367 		}
368 	} else {
369 		/* First find the tail of the list. */
370 		ETHER_FIRST_MULTI(step, ec, enm);
371 		while (enm != NULL) {
372 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
373 				 ETHER_ADDR_LEN)) {
374 				ifp->if_flags |= IFF_ALLMULTI;
375 				goto allmulti;
376 			}
377 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
378 			    ((1 << HASH_BITS) - 1);
379 			if (h < 32)
380 				hashes[0] |= (1 << h);
381 			else
382 				hashes[1] |= (1 << (h - 32));
383 
384 			ETHER_NEXT_MULTI(step, enm);
385 		}
386 		reg |= YU_RCR_MUFLEN;
387 	}
388 
389 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
390 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
391 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
392 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
393 	SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
394 }
395 
396 void
397 msk_setpromisc(struct sk_if_softc *sc_if)
398 {
399 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
400 
401 	if (ifp->if_flags & IFF_PROMISC)
402 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
403 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
404 	else
405 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
406 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
407 }
408 
409 int
410 msk_init_rx_ring(struct sk_if_softc *sc_if)
411 {
412 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
413 	struct msk_ring_data	*rd = sc_if->sk_rdata;
414 	int			i, nexti;
415 
416 	bzero((char *)rd->sk_rx_ring,
417 	    sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
418 
419 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
420 		cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
421 		if (i == (MSK_RX_RING_CNT - 1))
422 			nexti = 0;
423 		else
424 			nexti = i + 1;
425 		cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
426 	}
427 
428 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
429 		if (msk_newbuf(sc_if, i, NULL,
430 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
431 			aprint_error("%s: failed alloc of %dth mbuf\n",
432 			    sc_if->sk_dev.dv_xname, i);
433 			return (ENOBUFS);
434 		}
435 	}
436 
437 	sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
438 	sc_if->sk_cdata.sk_rx_cons = 0;
439 
440 	return (0);
441 }
442 
443 int
444 msk_init_tx_ring(struct sk_if_softc *sc_if)
445 {
446 	struct sk_softc		*sc = sc_if->sk_softc;
447 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
448 	struct msk_ring_data	*rd = sc_if->sk_rdata;
449 	bus_dmamap_t		dmamap;
450 	struct sk_txmap_entry	*entry;
451 	int			i, nexti;
452 
453 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
454 	    sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
455 
456 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
457 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
458 		cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
459 		if (i == (MSK_TX_RING_CNT - 1))
460 			nexti = 0;
461 		else
462 			nexti = i + 1;
463 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
464 
465 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
466 		   SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
467 			return (ENOBUFS);
468 
469 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
470 		if (!entry) {
471 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
472 			return (ENOBUFS);
473 		}
474 		entry->dmamap = dmamap;
475 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
476 	}
477 
478 	sc_if->sk_cdata.sk_tx_prod = 0;
479 	sc_if->sk_cdata.sk_tx_cons = 0;
480 	sc_if->sk_cdata.sk_tx_cnt = 0;
481 
482 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
483 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
484 
485 	return (0);
486 }
487 
488 int
489 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
490 	  bus_dmamap_t dmamap)
491 {
492 	struct mbuf		*m_new = NULL;
493 	struct sk_chain		*c;
494 	struct msk_rx_desc	*r;
495 
496 	if (m == NULL) {
497 		void *buf = NULL;
498 
499 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
500 		if (m_new == NULL)
501 			return (ENOBUFS);
502 
503 		/* Allocate the jumbo buffer */
504 		buf = msk_jalloc(sc_if);
505 		if (buf == NULL) {
506 			m_freem(m_new);
507 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
508 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
509 			return (ENOBUFS);
510 		}
511 
512 		/* Attach the buffer to the mbuf */
513 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
514 		MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
515 	} else {
516 		/*
517 	 	 * We're re-using a previously allocated mbuf;
518 		 * be sure to re-init pointers and lengths to
519 		 * default values.
520 		 */
521 		m_new = m;
522 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
523 		m_new->m_data = m_new->m_ext.ext_buf;
524 	}
525 	m_adj(m_new, ETHER_ALIGN);
526 
527 	c = &sc_if->sk_cdata.sk_rx_chain[i];
528 	r = c->sk_le;
529 	c->sk_mbuf = m_new;
530 	r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
531 	    (((vaddr_t)m_new->m_data
532              - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
533 	r->sk_len = htole16(SK_JLEN);
534 	r->sk_ctl = 0;
535 	r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
536 
537 	MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
538 
539 	return (0);
540 }
541 
542 /*
543  * Memory management for jumbo frames.
544  */
545 
546 int
547 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
548 {
549 	struct sk_softc		*sc = sc_if->sk_softc;
550 	char *ptr, *kva;
551 	bus_dma_segment_t	seg;
552 	int		i, rseg, state, error;
553 	struct sk_jpool_entry   *entry;
554 
555 	state = error = 0;
556 
557 	/* Grab a big chunk o' storage. */
558 	if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
559 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
560 		aprint_error(": can't alloc rx buffers");
561 		return (ENOBUFS);
562 	}
563 
564 	state = 1;
565 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
566 			   BUS_DMA_NOWAIT)) {
567 		aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
568 		error = ENOBUFS;
569 		goto out;
570 	}
571 
572 	state = 2;
573 	if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
574 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
575 		aprint_error(": can't create dma map");
576 		error = ENOBUFS;
577 		goto out;
578 	}
579 
580 	state = 3;
581 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
582 			    kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
583 		aprint_error(": can't load dma map");
584 		error = ENOBUFS;
585 		goto out;
586 	}
587 
588 	state = 4;
589 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
590 	DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
591 
592 	LIST_INIT(&sc_if->sk_jfree_listhead);
593 	LIST_INIT(&sc_if->sk_jinuse_listhead);
594 
595 	/*
596 	 * Now divide it up into 9K pieces and save the addresses
597 	 * in an array.
598 	 */
599 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
600 	for (i = 0; i < MSK_JSLOTS; i++) {
601 		sc_if->sk_cdata.sk_jslots[i] = ptr;
602 		ptr += SK_JLEN;
603 		entry = malloc(sizeof(struct sk_jpool_entry),
604 		    M_DEVBUF, M_NOWAIT);
605 		if (entry == NULL) {
606 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
607 			aprint_error(": no memory for jumbo buffer queue!");
608 			error = ENOBUFS;
609 			goto out;
610 		}
611 		entry->slot = i;
612 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
613 				 entry, jpool_entries);
614 	}
615 out:
616 	if (error != 0) {
617 		switch (state) {
618 		case 4:
619 			bus_dmamap_unload(sc->sc_dmatag,
620 			    sc_if->sk_cdata.sk_rx_jumbo_map);
621 		case 3:
622 			bus_dmamap_destroy(sc->sc_dmatag,
623 			    sc_if->sk_cdata.sk_rx_jumbo_map);
624 		case 2:
625 			bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
626 		case 1:
627 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
628 			break;
629 		default:
630 			break;
631 		}
632 	}
633 
634 	return (error);
635 }
636 
637 /*
638  * Allocate a jumbo buffer.
639  */
640 void *
641 msk_jalloc(struct sk_if_softc *sc_if)
642 {
643 	struct sk_jpool_entry   *entry;
644 
645 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
646 
647 	if (entry == NULL)
648 		return (NULL);
649 
650 	LIST_REMOVE(entry, jpool_entries);
651 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
652 	return (sc_if->sk_cdata.sk_jslots[entry->slot]);
653 }
654 
655 /*
656  * Release a jumbo buffer.
657  */
658 void
659 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
660 {
661 	struct sk_jpool_entry *entry;
662 	struct sk_if_softc *sc;
663 	int i, s;
664 
665 	/* Extract the softc struct pointer. */
666 	sc = (struct sk_if_softc *)arg;
667 
668 	if (sc == NULL)
669 		panic("msk_jfree: can't find softc pointer!");
670 
671 	/* calculate the slot this buffer belongs to */
672 	i = ((vaddr_t)buf
673 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
674 
675 	if ((i < 0) || (i >= MSK_JSLOTS))
676 		panic("msk_jfree: asked to free buffer that we don't manage!");
677 
678 	s = splvm();
679 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
680 	if (entry == NULL)
681 		panic("msk_jfree: buffer not in use!");
682 	entry->slot = i;
683 	LIST_REMOVE(entry, jpool_entries);
684 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
685 
686 	if (__predict_true(m != NULL))
687 		pool_cache_put(mb_cache, m);
688 	splx(s);
689 }
690 
691 int
692 msk_ioctl(struct ifnet *ifp, u_long command, void *data)
693 {
694 	struct sk_if_softc *sc_if = ifp->if_softc;
695 	struct ifreq *ifr = (struct ifreq *) data;
696 	int s, error = 0;
697 
698 	s = splnet();
699 
700 	switch(command) {
701 	case SIOCSIFMTU:
702 		if (ifr->ifr_mtu < ETHERMIN)
703 			return EINVAL;
704 		else if (sc_if->sk_softc->sk_type != SK_YUKON_FE) {
705 			if (ifr->ifr_mtu > SK_JUMBO_MTU)
706 				error = EINVAL;
707 		} else if (ifr->ifr_mtu > ETHERMTU)
708 			error = EINVAL;
709 		else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET)
710 			error = 0;
711 		break;
712 	default:
713 		DPRINTFN(2, ("msk_ioctl ETHER\n"));
714 		error = ether_ioctl(ifp, command, data);
715 
716 		if (error == ENETRESET) {
717 			/*
718 			 * Multicast list has changed; set the hardware
719 			 * filter accordingly.
720 			 */
721 			if (ifp->if_flags & IFF_RUNNING)
722 				msk_setmulti(sc_if);
723 			error = 0;
724 		}
725 		break;
726 	}
727 
728 	splx(s);
729 	return (error);
730 }
731 
732 void
733 msk_update_int_mod(struct sk_softc *sc)
734 {
735 	u_int32_t imtimer_ticks;
736 
737 	/*
738  	 * Configure interrupt moderation. The moderation timer
739 	 * defers interrupts specified in the interrupt moderation
740 	 * timer mask based on the timeout specified in the interrupt
741 	 * moderation timer init register. Each bit in the timer
742 	 * register represents one tick, so to specify a timeout in
743 	 * microseconds, we have to multiply by the correct number of
744 	 * ticks-per-microsecond.
745 	 */
746 	switch (sc->sk_type) {
747 	case SK_YUKON_EC:
748 	case SK_YUKON_EC_U:
749 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
750 		break;
751 	case SK_YUKON_FE:
752 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
753 		break;
754 	case SK_YUKON_XL:
755 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
756 		break;
757 	default:
758 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
759 	}
760 	aprint_verbose("%s: interrupt moderation is %d us\n",
761 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
762         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
763         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
764 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
765         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
766 	sc->sk_int_mod_pending = 0;
767 }
768 
769 static int
770 msk_lookup(const struct pci_attach_args *pa)
771 {
772 	const struct msk_product *pmsk;
773 
774 	for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
775 		if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
776 		    PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
777 			return 1;
778 	}
779 	return 0;
780 }
781 
782 /*
783  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
784  * IDs against our list and return a device name if we find a match.
785  */
786 int
787 mskc_probe(struct device *parent, struct cfdata *match,
788     void *aux)
789 {
790 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
791 
792 	return msk_lookup(pa);
793 }
794 
795 /*
796  * Force the GEnesis into reset, then bring it out of reset.
797  */
798 void msk_reset(struct sk_softc *sc)
799 {
800 	u_int32_t imtimer_ticks, reg1;
801 	int reg;
802 
803 	DPRINTFN(2, ("msk_reset\n"));
804 
805 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
806 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
807 
808 	DELAY(1000);
809 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
810 	DELAY(2);
811 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
812 	sk_win_write_1(sc, SK_TESTCTL1, 2);
813 
814 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
815 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
816 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
817 	else
818 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
819 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
820 
821 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
822 		sk_win_write_1(sc, SK_Y2_CLKGATE,
823 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
824 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
825 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
826 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
827 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
828 	else
829 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
830 
831 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
832 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
833 	DELAY(1000);
834 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
835 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
836 
837 	sk_win_write_1(sc, SK_TESTCTL1, 1);
838 
839 	DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
840 	DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
841 		     CSR_READ_2(sc, SK_LINK_CTRL)));
842 
843 	/* Disable ASF */
844 	CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
845 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
846 
847 	/* Clear I2C IRQ noise */
848 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
849 
850 	/* Disable hardware timer */
851 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
852 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
853 
854 	/* Disable descriptor polling */
855 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
856 
857 	/* Disable time stamps */
858 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
859 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
860 
861 	/* Enable RAM interface */
862 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
863 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
864 		sk_win_write_1(sc, reg, 36);
865 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
866 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
867 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
868 
869 	/*
870 	 * Configure interrupt moderation. The moderation timer
871 	 * defers interrupts specified in the interrupt moderation
872 	 * timer mask based on the timeout specified in the interrupt
873 	 * moderation timer init register. Each bit in the timer
874 	 * register represents one tick, so to specify a timeout in
875 	 * microseconds, we have to multiply by the correct number of
876 	 * ticks-per-microsecond.
877 	 */
878 	switch (sc->sk_type) {
879 	case SK_YUKON_EC:
880 	case SK_YUKON_EC_U:
881 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
882 		break;
883 	case SK_YUKON_FE:
884 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
885 		break;
886 	case SK_YUKON_XL:
887 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
888 		break;
889 	default:
890 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
891 	}
892 
893 	/* Reset status ring. */
894 	bzero((char *)sc->sk_status_ring,
895 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
896 	sc->sk_status_idx = 0;
897 
898 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
899 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
900 
901 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
902 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
903 	    sc->sk_status_map->dm_segs[0].ds_addr);
904 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
905 	    (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
906 	if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
907 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
908 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
909 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
910 	} else {
911 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
912 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
913 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
914 		    ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
915 		sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
916 	}
917 
918 #if 0
919 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
920 #endif
921 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
922 
923 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
924 
925 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
926 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
927 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
928 
929 	msk_update_int_mod(sc);
930 }
931 
932 int
933 msk_probe(struct device *parent, struct cfdata *match,
934     void *aux)
935 {
936 	struct skc_attach_args *sa = aux;
937 
938 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
939 		return (0);
940 
941 	switch (sa->skc_type) {
942 	case SK_YUKON_XL:
943 	case SK_YUKON_EC_U:
944 	case SK_YUKON_EC:
945 	case SK_YUKON_FE:
946 		return (1);
947 	}
948 
949 	return (0);
950 }
951 
952 /*
953  * Each XMAC chip is attached as a separate logical IP interface.
954  * Single port cards will have only one logical interface of course.
955  */
956 void
957 msk_attach(struct device *parent, struct device *self, void *aux)
958 {
959 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
960 	struct sk_softc *sc = (struct sk_softc *)parent;
961 	struct skc_attach_args *sa = aux;
962 	struct ifnet *ifp;
963 	void *kva;
964 	bus_dma_segment_t seg;
965 	int i, rseg;
966 	u_int32_t chunk, val;
967 
968 	sc_if->sk_port = sa->skc_port;
969 	sc_if->sk_softc = sc;
970 	sc->sk_if[sa->skc_port] = sc_if;
971 
972 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
973 
974 	/*
975 	 * Get station address for this interface. Note that
976 	 * dual port cards actually come with three station
977 	 * addresses: one for each port, plus an extra. The
978 	 * extra one is used by the SysKonnect driver software
979 	 * as a 'virtual' station address for when both ports
980 	 * are operating in failover mode. Currently we don't
981 	 * use this extra address.
982 	 */
983 	for (i = 0; i < ETHER_ADDR_LEN; i++)
984 		sc_if->sk_enaddr[i] =
985 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
986 
987 	aprint_normal(": Ethernet address %s\n",
988 	    ether_sprintf(sc_if->sk_enaddr));
989 
990 	/*
991 	 * Set up RAM buffer addresses. The NIC will have a certain
992 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
993 	 * need to divide this up a) between the transmitter and
994  	 * receiver and b) between the two XMACs, if this is a
995 	 * dual port NIC. Our algorithm is to divide up the memory
996 	 * evenly so that everyone gets a fair share.
997 	 *
998 	 * Just to be contrary, Yukon2 appears to have separate memory
999 	 * for each MAC.
1000 	 */
1001 	chunk = sc->sk_ramsize  - (sc->sk_ramsize + 2) / 3;
1002 	val = sc->sk_rboff / sizeof(u_int64_t);
1003 	sc_if->sk_rx_ramstart = val;
1004 	val += (chunk / sizeof(u_int64_t));
1005 	sc_if->sk_rx_ramend = val - 1;
1006 	chunk = sc->sk_ramsize - chunk;
1007 	sc_if->sk_tx_ramstart = val;
1008 	val += (chunk / sizeof(u_int64_t));
1009 	sc_if->sk_tx_ramend = val - 1;
1010 
1011 	DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1012 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1013 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1014 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1015 
1016 	/* Allocate the descriptor queues. */
1017 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1018 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1019 		aprint_error(": can't alloc rx buffers\n");
1020 		goto fail;
1021 	}
1022 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1023 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1024 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1025 		       sizeof(struct msk_ring_data));
1026 		goto fail_1;
1027 	}
1028 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1029 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1030             &sc_if->sk_ring_map)) {
1031 		aprint_error(": can't create dma map\n");
1032 		goto fail_2;
1033 	}
1034 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1035 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1036 		aprint_error(": can't load dma map\n");
1037 		goto fail_3;
1038 	}
1039         sc_if->sk_rdata = (struct msk_ring_data *)kva;
1040 	bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
1041 
1042 	ifp = &sc_if->sk_ethercom.ec_if;
1043 	/* Try to allocate memory for jumbo buffers. */
1044 	if (msk_alloc_jumbo_mem(sc_if)) {
1045 		aprint_error(": jumbo buffer allocation failed\n");
1046 		goto fail_3;
1047 	}
1048 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1049 		| ETHERCAP_JUMBO_MTU;
1050 
1051 	ifp->if_softc = sc_if;
1052 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1053 	ifp->if_ioctl = msk_ioctl;
1054 	ifp->if_start = msk_start;
1055 	ifp->if_stop = msk_stop;
1056 	ifp->if_init = msk_init;
1057 	ifp->if_watchdog = msk_watchdog;
1058 	ifp->if_baudrate = 1000000000;
1059 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1060 	IFQ_SET_READY(&ifp->if_snd);
1061 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1062 
1063 	/*
1064 	 * Do miibus setup.
1065 	 */
1066 	msk_init_yukon(sc_if);
1067 
1068  	DPRINTFN(2, ("msk_attach: 1\n"));
1069 
1070 	sc_if->sk_mii.mii_ifp = ifp;
1071 	sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1072 	sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1073 	sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1074 
1075 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1076 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1077 	    ether_mediachange, ether_mediastatus);
1078 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1079 	    MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1080 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1081 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1082 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1083 			    0, NULL);
1084 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1085 	} else
1086 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1087 
1088 	callout_init(&sc_if->sk_tick_ch, 0);
1089 	callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1090 	callout_schedule(&sc_if->sk_tick_ch, hz);
1091 
1092 	/*
1093 	 * Call MI attach routines.
1094 	 */
1095 	if_attach(ifp);
1096 	ether_ifattach(ifp, sc_if->sk_enaddr);
1097 
1098 	shutdownhook_establish(mskc_shutdown, sc);
1099 
1100 #if NRND > 0
1101 	rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1102 		RND_TYPE_NET, 0);
1103 #endif
1104 
1105 	DPRINTFN(2, ("msk_attach: end\n"));
1106 	return;
1107 
1108 fail_3:
1109 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1110 fail_2:
1111 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1112 fail_1:
1113 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1114 fail:
1115 	sc->sk_if[sa->skc_port] = NULL;
1116 }
1117 
1118 int
1119 mskcprint(void *aux, const char *pnp)
1120 {
1121 	struct skc_attach_args *sa = aux;
1122 
1123 	if (pnp)
1124 		aprint_normal("sk port %c at %s",
1125 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1126 	else
1127 		aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1128 	return (UNCONF);
1129 }
1130 
1131 /*
1132  * Attach the interface. Allocate softc structures, do ifmedia
1133  * setup and ethernet/BPF attach.
1134  */
1135 void
1136 mskc_attach(struct device *parent, struct device *self, void *aux)
1137 {
1138 	struct sk_softc *sc = (struct sk_softc *)self;
1139 	struct pci_attach_args *pa = aux;
1140 	struct skc_attach_args skca;
1141 	pci_chipset_tag_t pc = pa->pa_pc;
1142 	pcireg_t command, memtype;
1143 	pci_intr_handle_t ih;
1144 	const char *intrstr = NULL;
1145 	bus_size_t size;
1146 	int rc, sk_nodenum;
1147 	u_int8_t hw, skrs;
1148 	const char *revstr = NULL;
1149 	const struct sysctlnode *node;
1150 	void *kva;
1151 	bus_dma_segment_t seg;
1152 	int rseg;
1153 
1154 	DPRINTFN(2, ("begin mskc_attach\n"));
1155 
1156 	/*
1157 	 * Handle power management nonsense.
1158 	 */
1159 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1160 
1161 	if (command == 0x01) {
1162 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1163 		if (command & SK_PSTATE_MASK) {
1164 			u_int32_t		iobase, membase, irq;
1165 
1166 			/* Save important PCI config data. */
1167 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1168 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1169 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1170 
1171 			/* Reset the power state. */
1172 			aprint_normal("%s chip is in D%d power mode "
1173 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1174 			    command & SK_PSTATE_MASK);
1175 			command &= 0xFFFFFFFC;
1176 			pci_conf_write(pc, pa->pa_tag,
1177 			    SK_PCI_PWRMGMTCTRL, command);
1178 
1179 			/* Restore PCI config data. */
1180 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1181 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1182 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1183 		}
1184 	}
1185 
1186 	/*
1187 	 * Map control/status registers.
1188 	 */
1189 
1190 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1191 	switch (memtype) {
1192 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1193 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1194 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1195 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1196 				   NULL, &size) == 0)
1197 			break;
1198 	default:
1199 		aprint_error(": can't map mem space\n");
1200 		return;
1201 	}
1202 
1203 	sc->sc_dmatag = pa->pa_dmat;
1204 
1205 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1206 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1207 
1208 	/* bail out here if chip is not recognized */
1209 	if (!(SK_IS_YUKON2(sc))) {
1210 		aprint_error(": unknown chip type: %d\n", sc->sk_type);
1211 		goto fail_1;
1212 	}
1213 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1214 
1215 	/* Allocate interrupt */
1216 	if (pci_intr_map(pa, &ih)) {
1217 		aprint_error(": couldn't map interrupt\n");
1218 		goto fail_1;
1219 	}
1220 
1221 	intrstr = pci_intr_string(pc, ih);
1222 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1223 	if (sc->sk_intrhand == NULL) {
1224 		aprint_error(": couldn't establish interrupt");
1225 		if (intrstr != NULL)
1226 			aprint_error(" at %s", intrstr);
1227 		aprint_error("\n");
1228 		goto fail_1;
1229 	}
1230 
1231 	if (bus_dmamem_alloc(sc->sc_dmatag,
1232 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1233 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1234 		aprint_error(": can't alloc status buffers\n");
1235 		goto fail_2;
1236 	}
1237 
1238 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1239 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1240 	    &kva, BUS_DMA_NOWAIT)) {
1241 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1242 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1243 		goto fail_3;
1244 	}
1245 	if (bus_dmamap_create(sc->sc_dmatag,
1246 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1247 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1248 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1249 		aprint_error(": can't create dma map\n");
1250 		goto fail_4;
1251 	}
1252 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1253 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1254 	    NULL, BUS_DMA_NOWAIT)) {
1255 		aprint_error(": can't load dma map\n");
1256 		goto fail_5;
1257 	}
1258 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1259 	bzero(sc->sk_status_ring,
1260 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1261 
1262 	/* Reset the adapter. */
1263 	msk_reset(sc);
1264 
1265 	skrs = sk_win_read_1(sc, SK_EPROM0);
1266 	if (skrs == 0x00)
1267 		sc->sk_ramsize = 0x20000;
1268 	else
1269 		sc->sk_ramsize = skrs * (1<<12);
1270 	sc->sk_rboff = SK_RBOFF_0;
1271 
1272 	DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1273 		     sc->sk_ramsize, sc->sk_ramsize / 1024,
1274 		     sc->sk_rboff));
1275 
1276 	switch (sc->sk_type) {
1277 	case SK_YUKON_XL:
1278 		sc->sk_name = "Yukon-2 XL";
1279 		break;
1280 	case SK_YUKON_EC_U:
1281 		sc->sk_name = "Yukon-2 EC Ultra";
1282 		break;
1283 	case SK_YUKON_EC:
1284 		sc->sk_name = "Yukon-2 EC";
1285 		break;
1286 	case SK_YUKON_FE:
1287 		sc->sk_name = "Yukon-2 FE";
1288 		break;
1289 	default:
1290 		sc->sk_name = "Yukon (Unknown)";
1291 	}
1292 
1293 	if (sc->sk_type == SK_YUKON_XL) {
1294 		switch (sc->sk_rev) {
1295 		case SK_YUKON_XL_REV_A0:
1296 			sc->sk_workaround = 0;
1297 			revstr = "A0";
1298 			break;
1299 		case SK_YUKON_XL_REV_A1:
1300 			sc->sk_workaround = SK_WA_4109;
1301 			revstr = "A1";
1302 			break;
1303 		case SK_YUKON_XL_REV_A2:
1304 			sc->sk_workaround = SK_WA_4109;
1305 			revstr = "A2";
1306 			break;
1307 		case SK_YUKON_XL_REV_A3:
1308 			sc->sk_workaround = SK_WA_4109;
1309 			revstr = "A3";
1310 			break;
1311 		default:
1312 			sc->sk_workaround = 0;
1313 			break;
1314 		}
1315 	}
1316 
1317 	if (sc->sk_type == SK_YUKON_EC) {
1318 		switch (sc->sk_rev) {
1319 		case SK_YUKON_EC_REV_A1:
1320 			sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1321 			revstr = "A1";
1322 			break;
1323 		case SK_YUKON_EC_REV_A2:
1324 			sc->sk_workaround = SK_WA_4109;
1325 			revstr = "A2";
1326 			break;
1327 		case SK_YUKON_EC_REV_A3:
1328 			sc->sk_workaround = SK_WA_4109;
1329 			revstr = "A3";
1330 			break;
1331 		default:
1332 			sc->sk_workaround = 0;
1333 			break;
1334 		}
1335 	}
1336 
1337 	if (sc->sk_type == SK_YUKON_FE) {
1338 		sc->sk_workaround = SK_WA_4109;
1339 		switch (sc->sk_rev) {
1340 		case SK_YUKON_FE_REV_A1:
1341 			revstr = "A1";
1342 			break;
1343 		case SK_YUKON_FE_REV_A2:
1344 			revstr = "A2";
1345 			break;
1346 		default:
1347 			sc->sk_workaround = 0;
1348 			break;
1349 		}
1350 	}
1351 
1352 	if (sc->sk_type == SK_YUKON_EC_U) {
1353 		sc->sk_workaround = SK_WA_4109;
1354 		switch (sc->sk_rev) {
1355 		case SK_YUKON_EC_U_REV_A0:
1356 			revstr = "A0";
1357 			break;
1358 		case SK_YUKON_EC_U_REV_A1:
1359 			revstr = "A1";
1360 			break;
1361 		case SK_YUKON_EC_U_REV_B0:
1362 			revstr = "B0";
1363 			break;
1364 		default:
1365 			sc->sk_workaround = 0;
1366 			break;
1367 		}
1368 	}
1369 
1370 	/* Announce the product name. */
1371 	aprint_normal(", %s", sc->sk_name);
1372 	if (revstr != NULL)
1373 		aprint_normal(" rev. %s", revstr);
1374 	aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1375 
1376 	sc->sk_macs = 1;
1377 
1378 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1379 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1380 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1381 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1382 			sc->sk_macs++;
1383 	}
1384 
1385 	skca.skc_port = SK_PORT_A;
1386 	skca.skc_type = sc->sk_type;
1387 	skca.skc_rev = sc->sk_rev;
1388 	(void)config_found(&sc->sk_dev, &skca, mskcprint);
1389 
1390 	if (sc->sk_macs > 1) {
1391 		skca.skc_port = SK_PORT_B;
1392 		skca.skc_type = sc->sk_type;
1393 		skca.skc_rev = sc->sk_rev;
1394 		(void)config_found(&sc->sk_dev, &skca, mskcprint);
1395 	}
1396 
1397 	/* Turn on the 'driver is loaded' LED. */
1398 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1399 
1400 	/* skc sysctl setup */
1401 
1402 	sc->sk_int_mod = SK_IM_DEFAULT;
1403 	sc->sk_int_mod_pending = 0;
1404 
1405 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1406 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1407 	    SYSCTL_DESCR("mskc per-controller controls"),
1408 	    NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1409 	    CTL_EOL)) != 0) {
1410 		aprint_normal("%s: couldn't create sysctl node\n",
1411 		    sc->sk_dev.dv_xname);
1412 		goto fail_6;
1413 	}
1414 
1415 	sk_nodenum = node->sysctl_num;
1416 
1417 	/* interrupt moderation time in usecs */
1418 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1419 	    CTLFLAG_READWRITE,
1420 	    CTLTYPE_INT, "int_mod",
1421 	    SYSCTL_DESCR("msk interrupt moderation timer"),
1422 	    msk_sysctl_handler, 0, sc,
1423 	    0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1424 	    CTL_EOL)) != 0) {
1425 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
1426 		    sc->sk_dev.dv_xname);
1427 		goto fail_6;
1428 	}
1429 
1430 	return;
1431 
1432  fail_6:
1433 	bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1434 fail_5:
1435 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1436 fail_4:
1437 	bus_dmamem_unmap(sc->sc_dmatag, kva,
1438 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1439 fail_3:
1440 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1441 fail_2:
1442 	pci_intr_disestablish(pc, sc->sk_intrhand);
1443 fail_1:
1444 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1445 }
1446 
1447 int
1448 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1449 {
1450 	struct sk_softc		*sc = sc_if->sk_softc;
1451 	struct msk_tx_desc		*f = NULL;
1452 	u_int32_t		frag, cur;
1453 	int			i;
1454 	struct sk_txmap_entry	*entry;
1455 	bus_dmamap_t		txmap;
1456 
1457 	DPRINTFN(2, ("msk_encap\n"));
1458 
1459 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1460 	if (entry == NULL) {
1461 		DPRINTFN(2, ("msk_encap: no txmap available\n"));
1462 		return (ENOBUFS);
1463 	}
1464 	txmap = entry->dmamap;
1465 
1466 	cur = frag = *txidx;
1467 
1468 #ifdef MSK_DEBUG
1469 	if (mskdebug >= 2)
1470 		msk_dump_mbuf(m_head);
1471 #endif
1472 
1473 	/*
1474 	 * Start packing the mbufs in this chain into
1475 	 * the fragment pointers. Stop when we run out
1476 	 * of fragments or hit the end of the mbuf chain.
1477 	 */
1478 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1479 	    BUS_DMA_NOWAIT)) {
1480 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1481 		return (ENOBUFS);
1482 	}
1483 
1484 	if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1485 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1486 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1487 		return (ENOBUFS);
1488 	}
1489 
1490 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1491 
1492 	/* Sync the DMA map. */
1493 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1494 	    BUS_DMASYNC_PREWRITE);
1495 
1496 	for (i = 0; i < txmap->dm_nsegs; i++) {
1497 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1498 		f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1499 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1500 		f->sk_ctl = 0;
1501 		if (i == 0)
1502 			f->sk_opcode = SK_Y2_TXOPC_PACKET;
1503 		else
1504 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1505 		cur = frag;
1506 		SK_INC(frag, MSK_TX_RING_CNT);
1507 	}
1508 
1509 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1510 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1511 
1512 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1513 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1514 
1515 	/* Sync descriptors before handing to chip */
1516 	MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1517             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1518 
1519 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1520 
1521 	/* Sync first descriptor to hand it off */
1522 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1523 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1524 
1525 	sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1526 
1527 #ifdef MSK_DEBUG
1528 	if (mskdebug >= 2) {
1529 		struct msk_tx_desc *le;
1530 		u_int32_t idx;
1531 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1532 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1533 			msk_dump_txdesc(le, idx);
1534 		}
1535 	}
1536 #endif
1537 
1538 	*txidx = frag;
1539 
1540 	DPRINTFN(2, ("msk_encap: completed successfully\n"));
1541 
1542 	return (0);
1543 }
1544 
1545 void
1546 msk_start(struct ifnet *ifp)
1547 {
1548         struct sk_if_softc	*sc_if = ifp->if_softc;
1549         struct mbuf		*m_head = NULL;
1550         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1551 	int			pkts = 0;
1552 
1553 	DPRINTFN(2, ("msk_start\n"));
1554 
1555 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1556 		IFQ_POLL(&ifp->if_snd, m_head);
1557 		if (m_head == NULL)
1558 			break;
1559 
1560 		/*
1561 		 * Pack the data into the transmit ring. If we
1562 		 * don't have room, set the OACTIVE flag and wait
1563 		 * for the NIC to drain the ring.
1564 		 */
1565 		if (msk_encap(sc_if, m_head, &idx)) {
1566 			ifp->if_flags |= IFF_OACTIVE;
1567 			break;
1568 		}
1569 
1570 		/* now we are committed to transmit the packet */
1571 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1572 		pkts++;
1573 
1574 		/*
1575 		 * If there's a BPF listener, bounce a copy of this frame
1576 		 * to him.
1577 		 */
1578 #if NBPFILTER > 0
1579 		if (ifp->if_bpf)
1580 			bpf_mtap(ifp->if_bpf, m_head);
1581 #endif
1582 	}
1583 	if (pkts == 0)
1584 		return;
1585 
1586 	/* Transmit */
1587 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1588 		sc_if->sk_cdata.sk_tx_prod = idx;
1589 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1590 
1591 		/* Set a timeout in case the chip goes out to lunch. */
1592 		ifp->if_timer = 5;
1593 	}
1594 }
1595 
1596 void
1597 msk_watchdog(struct ifnet *ifp)
1598 {
1599 	struct sk_if_softc *sc_if = ifp->if_softc;
1600 	u_int32_t reg;
1601 	int idx;
1602 
1603 	/*
1604 	 * Reclaim first as there is a possibility of losing Tx completion
1605 	 * interrupts.
1606 	 */
1607 	if (sc_if->sk_port == SK_PORT_A)
1608 		reg = SK_STAT_BMU_TXA1_RIDX;
1609 	else
1610 		reg = SK_STAT_BMU_TXA2_RIDX;
1611 
1612 	idx = sk_win_read_2(sc_if->sk_softc, reg);
1613 	if (sc_if->sk_cdata.sk_tx_cons != idx) {
1614 		msk_txeof(sc_if, idx);
1615 		if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1616 			aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1617 
1618 			ifp->if_oerrors++;
1619 
1620 			/* XXX Resets both ports; we shouldn't do that. */
1621 			msk_reset(sc_if->sk_softc);
1622 			msk_init(ifp);
1623 		}
1624 	}
1625 }
1626 
1627 void
1628 mskc_shutdown(void *v)
1629 {
1630 	struct sk_softc		*sc = v;
1631 
1632 	DPRINTFN(2, ("msk_shutdown\n"));
1633 
1634 	/* Turn off the 'driver is loaded' LED. */
1635 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1636 
1637 	msk_reset(sc);
1638 }
1639 
1640 __inline int
1641 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1642 {
1643 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1644 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1645 	    YU_RXSTAT_JABBER)) != 0 ||
1646 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1647 	    YU_RXSTAT_BYTES(stat) != len)
1648 		return (0);
1649 
1650 	return (1);
1651 }
1652 
1653 void
1654 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1655 {
1656 	struct sk_softc		*sc = sc_if->sk_softc;
1657 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1658 	struct mbuf		*m;
1659 	struct sk_chain		*cur_rx;
1660 	int			cur, total_len = len;
1661 	bus_dmamap_t		dmamap;
1662 
1663 	DPRINTFN(2, ("msk_rxeof\n"));
1664 
1665 	cur = sc_if->sk_cdata.sk_rx_cons;
1666 	SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1667 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1668 
1669 	/* Sync the descriptor */
1670 	MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1671 
1672 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1673 	dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1674 
1675 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1676 	    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1677 
1678 	m = cur_rx->sk_mbuf;
1679 	cur_rx->sk_mbuf = NULL;
1680 
1681 	if (total_len < SK_MIN_FRAMELEN ||
1682 	    total_len > SK_JUMBO_FRAMELEN ||
1683 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
1684 		ifp->if_ierrors++;
1685 		msk_newbuf(sc_if, cur, m, dmamap);
1686 		return;
1687 	}
1688 
1689 	/*
1690 	 * Try to allocate a new jumbo buffer. If that fails, copy the
1691 	 * packet to mbufs and put the jumbo buffer back in the ring
1692 	 * so it can be re-used. If allocating mbufs fails, then we
1693 	 * have to drop the packet.
1694 	 */
1695 	if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1696 		struct mbuf		*m0;
1697 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1698 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
1699 		msk_newbuf(sc_if, cur, m, dmamap);
1700 		if (m0 == NULL) {
1701 			ifp->if_ierrors++;
1702 			return;
1703 		}
1704 		m_adj(m0, ETHER_ALIGN);
1705 		m = m0;
1706 	} else {
1707 		m->m_pkthdr.rcvif = ifp;
1708 		m->m_pkthdr.len = m->m_len = total_len;
1709 	}
1710 
1711 	ifp->if_ipackets++;
1712 
1713 #if NBPFILTER > 0
1714 	if (ifp->if_bpf)
1715 		bpf_mtap(ifp->if_bpf, m);
1716 #endif
1717 
1718 	/* pass it on. */
1719 	(*ifp->if_input)(ifp, m);
1720 }
1721 
1722 void
1723 msk_txeof(struct sk_if_softc *sc_if, int idx)
1724 {
1725 	struct sk_softc		*sc = sc_if->sk_softc;
1726 	struct msk_tx_desc	*cur_tx;
1727 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1728 	u_int32_t		sk_ctl;
1729 	struct sk_txmap_entry	*entry;
1730 	int			cons, prog;
1731 
1732 	DPRINTFN(2, ("msk_txeof\n"));
1733 
1734 	/*
1735 	 * Go through our tx ring and free mbufs for those
1736 	 * frames that have been sent.
1737 	 */
1738 	cons = sc_if->sk_cdata.sk_tx_cons;
1739 	prog = 0;
1740 	while (cons != idx) {
1741 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1742 			break;
1743 		prog++;
1744 		MSK_CDTXSYNC(sc_if, cons, 1,
1745 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1746 
1747 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1748 		sk_ctl = cur_tx->sk_ctl;
1749 #ifdef MSK_DEBUG
1750 		if (mskdebug >= 2)
1751 			msk_dump_txdesc(cur_tx, cons);
1752 #endif
1753 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1754 			ifp->if_opackets++;
1755 		if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1756 			entry = sc_if->sk_cdata.sk_tx_map[cons];
1757 
1758 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1759 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1760 
1761 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1762 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1763 					  link);
1764 			sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1765 			m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1766 			sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1767 		}
1768 		sc_if->sk_cdata.sk_tx_cnt--;
1769 		SK_INC(cons, MSK_TX_RING_CNT);
1770 	}
1771 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1772 
1773 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1774 		ifp->if_flags &= ~IFF_OACTIVE;
1775 
1776 	if (prog > 0)
1777 		sc_if->sk_cdata.sk_tx_cons = cons;
1778 }
1779 
1780 void
1781 msk_tick(void *xsc_if)
1782 {
1783 	struct sk_if_softc *sc_if = xsc_if;
1784 	struct mii_data *mii = &sc_if->sk_mii;
1785 
1786 	mii_tick(mii);
1787 	callout_schedule(&sc_if->sk_tick_ch, hz);
1788 }
1789 
1790 void
1791 msk_intr_yukon(struct sk_if_softc *sc_if)
1792 {
1793 	u_int8_t status;
1794 
1795 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1796 	/* RX overrun */
1797 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1798 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1799 		    SK_RFCTL_RX_FIFO_OVER);
1800 	}
1801 	/* TX underrun */
1802 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1803 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1804 		    SK_TFCTL_TX_FIFO_UNDER);
1805 	}
1806 
1807 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1808 }
1809 
1810 int
1811 msk_intr(void *xsc)
1812 {
1813 	struct sk_softc		*sc = xsc;
1814 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1815 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1816 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1817 	int			claimed = 0;
1818 	u_int32_t		status;
1819 	struct msk_status_desc	*cur_st;
1820 
1821 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
1822 	if (status == 0) {
1823 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1824 		return (0);
1825 	}
1826 
1827 	status = CSR_READ_4(sc, SK_ISR);
1828 
1829 	if (sc_if0 != NULL)
1830 		ifp0 = &sc_if0->sk_ethercom.ec_if;
1831 	if (sc_if1 != NULL)
1832 		ifp1 = &sc_if1->sk_ethercom.ec_if;
1833 
1834 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1835 	    (ifp0->if_flags & IFF_RUNNING)) {
1836 		msk_intr_yukon(sc_if0);
1837 	}
1838 
1839 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1840 	    (ifp1->if_flags & IFF_RUNNING)) {
1841 		msk_intr_yukon(sc_if1);
1842 	}
1843 
1844 	MSK_CDSTSYNC(sc, sc->sk_status_idx,
1845 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1846 	cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1847 
1848 	while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
1849 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1850 		switch (cur_st->sk_opcode) {
1851 		case SK_Y2_STOPC_RXSTAT:
1852 			msk_rxeof(sc->sk_if[cur_st->sk_link],
1853 			    letoh16(cur_st->sk_len),
1854 			    letoh32(cur_st->sk_status));
1855 			SK_IF_WRITE_2(sc->sk_if[cur_st->sk_link], 0,
1856 			    SK_RXQ1_Y2_PREF_PUTIDX,
1857 			    sc->sk_if[cur_st->sk_link]->sk_cdata.sk_rx_prod);
1858 			break;
1859 		case SK_Y2_STOPC_TXSTAT:
1860 			if (sc_if0)
1861 				msk_txeof(sc_if0,
1862 				    letoh32(cur_st->sk_status)
1863 				    & SK_Y2_ST_TXA1_MSKL);
1864 			if (sc_if1)
1865 				msk_txeof(sc_if1,
1866 				    ((letoh32(cur_st->sk_status)
1867 					& SK_Y2_ST_TXA2_MSKL)
1868 					>> SK_Y2_ST_TXA2_SHIFTL)
1869 				    | ((letoh16(cur_st->sk_len) & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1870 			break;
1871 		default:
1872 			aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
1873 			break;
1874 		}
1875 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1876 
1877 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
1878 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1879 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1880 	}
1881 
1882 	if (status & SK_Y2_IMR_BMU) {
1883 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1884 		claimed = 1;
1885 	}
1886 
1887 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1888 
1889 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1890 		msk_start(ifp0);
1891 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1892 		msk_start(ifp1);
1893 
1894 #if NRND > 0
1895 	if (RND_ENABLED(&sc->rnd_source))
1896 		rnd_add_uint32(&sc->rnd_source, status);
1897 #endif
1898 
1899 	if (sc->sk_int_mod_pending)
1900 		msk_update_int_mod(sc);
1901 
1902 	return claimed;
1903 }
1904 
1905 void
1906 msk_init_yukon(struct sk_if_softc *sc_if)
1907 {
1908 	u_int32_t		v;
1909 	u_int16_t		reg;
1910 	struct sk_softc		*sc;
1911 	int			i;
1912 
1913 	sc = sc_if->sk_softc;
1914 
1915 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1916 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1917 
1918 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
1919 
1920 	/* GMAC and GPHY Reset */
1921 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1922 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1923 	DELAY(1000);
1924 
1925 	DPRINTFN(6, ("msk_init_yukon: 2\n"));
1926 
1927 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1928 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1929 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1930 
1931 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1932 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1933 
1934 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
1935 
1936 	/* unused read of the interrupt source register */
1937 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
1938 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1939 
1940 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1941 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1942 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1943 
1944 	/* MIB Counter Clear Mode set */
1945         reg |= YU_PAR_MIB_CLR;
1946 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1947 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1948 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1949 
1950 	/* MIB Counter Clear Mode clear */
1951 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
1952         reg &= ~YU_PAR_MIB_CLR;
1953 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1954 
1955 	/* receive control reg */
1956 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
1957 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1958 
1959 	/* transmit control register */
1960 	SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
1961 
1962 	/* transmit flow control register */
1963 	SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
1964 
1965 	/* transmit parameter register */
1966 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
1967 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
1968 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
1969 
1970 	/* serial mode register */
1971 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
1972 	reg = YU_SMR_DATA_BLIND(0x1c) |
1973 	      YU_SMR_MFL_VLAN |
1974 	      YU_SMR_IPG_DATA(0x1e);
1975 
1976 	if (sc->sk_type != SK_YUKON_FE)
1977 		reg |= YU_SMR_MFL_JUMBO;
1978 
1979 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
1980 
1981 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
1982 	/* Setup Yukon's address */
1983 	for (i = 0; i < 3; i++) {
1984 		/* Write Source Address 1 (unicast filter) */
1985 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
1986 			      sc_if->sk_enaddr[i * 2] |
1987 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
1988 	}
1989 
1990 	for (i = 0; i < 3; i++) {
1991 		reg = sk_win_read_2(sc_if->sk_softc,
1992 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
1993 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
1994 	}
1995 
1996 	/* Set promiscuous mode */
1997 	msk_setpromisc(sc_if);
1998 
1999 	/* Set multicast filter */
2000 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
2001 	msk_setmulti(sc_if);
2002 
2003 	/* enable interrupt mask for counter overflows */
2004 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
2005 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2006 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2007 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2008 
2009 	/* Configure RX MAC FIFO Flush Mask */
2010 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2011 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2012 	    YU_RXSTAT_JABBER;
2013 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2014 
2015 	/* Configure RX MAC FIFO */
2016 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2017 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2018 	    SK_RFCTL_FIFO_FLUSH_ON);
2019 
2020 	/* Increase flush threshould to 64 bytes */
2021 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2022 	    SK_RFCTL_FIFO_THRESHOLD + 1);
2023 
2024 	/* Configure TX MAC FIFO */
2025 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2026 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2027 
2028 #if 1
2029 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2030 #endif
2031 	DPRINTFN(6, ("msk_init_yukon: end\n"));
2032 }
2033 
2034 /*
2035  * Note that to properly initialize any part of the GEnesis chip,
2036  * you first have to take it out of reset mode.
2037  */
2038 int
2039 msk_init(struct ifnet *ifp)
2040 {
2041 	struct sk_if_softc	*sc_if = ifp->if_softc;
2042 	struct sk_softc		*sc = sc_if->sk_softc;
2043 	int			rc = 0, s;
2044 	uint32_t		imr, imtimer_ticks;
2045 
2046 
2047 	DPRINTFN(2, ("msk_init\n"));
2048 
2049 	s = splnet();
2050 
2051 	/* Cancel pending I/O and free all RX/TX buffers. */
2052 	msk_stop(ifp,0);
2053 
2054 	/* Configure I2C registers */
2055 
2056 	/* Configure XMAC(s) */
2057 	msk_init_yukon(sc_if);
2058 	if ((rc = ether_mediachange(ifp)) != 0)
2059 		goto out;
2060 
2061 	/* Configure transmit arbiter(s) */
2062 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2063 #if 0
2064 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2065 #endif
2066 
2067 	/* Configure RAMbuffers */
2068 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2069 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2070 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2071 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2072 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2073 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2074 
2075 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2076 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2077 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2078 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2079 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2080 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2081 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2082 
2083 	/* Configure BMUs */
2084 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2085 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2086 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2087 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600);	/* XXX ??? */
2088 
2089 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2090 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2091 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2092 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600);	/* XXX ??? */
2093 
2094 	/* Make sure the sync transmit queue is disabled. */
2095 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2096 
2097 	/* Init descriptors */
2098 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2099 		aprint_error("%s: initialization failed: no "
2100 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2101 		msk_stop(ifp,0);
2102 		splx(s);
2103 		return ENOBUFS;
2104 	}
2105 
2106 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2107 		aprint_error("%s: initialization failed: no "
2108 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2109 		msk_stop(ifp,0);
2110 		splx(s);
2111 		return ENOBUFS;
2112 	}
2113 
2114 	/* Set interrupt moderation if changed via sysctl. */
2115 	switch (sc->sk_type) {
2116 	case SK_YUKON_EC:
2117 	case SK_YUKON_EC_U:
2118 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2119 		break;
2120 	case SK_YUKON_FE:
2121 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2122 		break;
2123 	case SK_YUKON_XL:
2124 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2125 		break;
2126 	default:
2127 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2128 	}
2129 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2130 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2131 		sk_win_write_4(sc, SK_IMTIMERINIT,
2132 		    SK_IM_USECS(sc->sk_int_mod));
2133 		aprint_verbose("%s: interrupt moderation is %d us\n",
2134 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
2135 	}
2136 
2137 	/* Initialize prefetch engine. */
2138 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2139 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2140 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2141 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2142 	    MSK_RX_RING_ADDR(sc_if, 0));
2143 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2144 	    (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2145 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2146 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2147 
2148 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2149 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2150 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2151 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2152 	    MSK_TX_RING_ADDR(sc_if, 0));
2153 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2154 	    (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2155 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2156 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2157 
2158 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2159 	    sc_if->sk_cdata.sk_rx_prod);
2160 
2161 	/* Configure interrupt handling */
2162 	if (sc_if->sk_port == SK_PORT_A)
2163 		sc->sk_intrmask |= SK_Y2_INTRS1;
2164 	else
2165 		sc->sk_intrmask |= SK_Y2_INTRS2;
2166 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2167 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2168 
2169 	ifp->if_flags |= IFF_RUNNING;
2170 	ifp->if_flags &= ~IFF_OACTIVE;
2171 
2172 	callout_schedule(&sc_if->sk_tick_ch, hz);
2173 
2174 out:
2175 	splx(s);
2176 	return rc;
2177 }
2178 
2179 void
2180 msk_stop(struct ifnet *ifp, int disable)
2181 {
2182 	struct sk_if_softc	*sc_if = ifp->if_softc;
2183 	struct sk_softc		*sc = sc_if->sk_softc;
2184 	struct sk_txmap_entry	*dma;
2185 	int			i;
2186 
2187 	DPRINTFN(2, ("msk_stop\n"));
2188 
2189 	callout_stop(&sc_if->sk_tick_ch);
2190 
2191 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2192 
2193 	/* Stop transfer of Tx descriptors */
2194 
2195 	/* Stop transfer of Rx descriptors */
2196 
2197 	/* Turn off various components of this interface. */
2198 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2199 	SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2200 	SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2201 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2202 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2203 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2204 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2205 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2206 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2207 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2208 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2209 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2210 
2211 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2212 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2213 
2214 	/* Disable interrupts */
2215 	if (sc_if->sk_port == SK_PORT_A)
2216 		sc->sk_intrmask &= ~SK_Y2_INTRS1;
2217 	else
2218 		sc->sk_intrmask &= ~SK_Y2_INTRS2;
2219 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2220 
2221 	SK_XM_READ_2(sc_if, XM_ISR);
2222 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2223 
2224 	/* Free RX and TX mbufs still in the queues. */
2225 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2226 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2227 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2228 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2229 		}
2230 	}
2231 
2232 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2233 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2234 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2235 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2236 #if 1
2237 			SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2238 			    sc_if->sk_cdata.sk_tx_map[i], link);
2239 			sc_if->sk_cdata.sk_tx_map[i] = 0;
2240 #endif
2241 		}
2242 	}
2243 
2244 #if 1
2245 	while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2246 		SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2247 		bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2248 		free(dma, M_DEVBUF);
2249 	}
2250 #endif
2251 }
2252 
2253 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2254 	NULL, NULL);
2255 
2256 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2257 	NULL, NULL);
2258 
2259 #ifdef MSK_DEBUG
2260 void
2261 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2262 {
2263 #define DESC_PRINT(X)					\
2264 	if (X)					\
2265 		printf("txdesc[%d]." #X "=%#x\n",	\
2266 		       idx, X);
2267 
2268 	DESC_PRINT(letoh32(le->sk_addr));
2269 	DESC_PRINT(letoh16(le->sk_len));
2270 	DESC_PRINT(le->sk_ctl);
2271 	DESC_PRINT(le->sk_opcode);
2272 #undef DESC_PRINT
2273 }
2274 
2275 void
2276 msk_dump_bytes(const char *data, int len)
2277 {
2278 	int c, i, j;
2279 
2280 	for (i = 0; i < len; i += 16) {
2281 		printf("%08x  ", i);
2282 		c = len - i;
2283 		if (c > 16) c = 16;
2284 
2285 		for (j = 0; j < c; j++) {
2286 			printf("%02x ", data[i + j] & 0xff);
2287 			if ((j & 0xf) == 7 && j > 0)
2288 				printf(" ");
2289 		}
2290 
2291 		for (; j < 16; j++)
2292 			printf("   ");
2293 		printf("  ");
2294 
2295 		for (j = 0; j < c; j++) {
2296 			int ch = data[i + j] & 0xff;
2297 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2298 		}
2299 
2300 		printf("\n");
2301 
2302 		if (c < 16)
2303 			break;
2304 	}
2305 }
2306 
2307 void
2308 msk_dump_mbuf(struct mbuf *m)
2309 {
2310 	int count = m->m_pkthdr.len;
2311 
2312 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2313 
2314 	while (count > 0 && m) {
2315 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2316 		       m, m->m_data, m->m_len);
2317 		msk_dump_bytes(mtod(m, char *), m->m_len);
2318 
2319 		count -= m->m_len;
2320 		m = m->m_next;
2321 	}
2322 }
2323 #endif
2324 
2325 static int
2326 msk_sysctl_handler(SYSCTLFN_ARGS)
2327 {
2328 	int error, t;
2329 	struct sysctlnode node;
2330 	struct sk_softc *sc;
2331 
2332 	node = *rnode;
2333 	sc = node.sysctl_data;
2334 	t = sc->sk_int_mod;
2335 	node.sysctl_data = &t;
2336 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2337 	if (error || newp == NULL)
2338 		return error;
2339 
2340 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2341 		return EINVAL;
2342 
2343 	/* update the softc with sysctl-changed value, and mark
2344 	   for hardware update */
2345 	sc->sk_int_mod = t;
2346 	sc->sk_int_mod_pending = 1;
2347 	return 0;
2348 }
2349 
2350 /*
2351  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2352  * set up in skc_attach()
2353  */
2354 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2355 {
2356 	int rc;
2357 	const struct sysctlnode *node;
2358 
2359 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2360 	    0, CTLTYPE_NODE, "hw", NULL,
2361 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2362 		goto err;
2363 	}
2364 
2365 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2366 	    0, CTLTYPE_NODE, "msk",
2367 	    SYSCTL_DESCR("msk interface controls"),
2368 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2369 		goto err;
2370 	}
2371 
2372 	msk_root_num = node->sysctl_num;
2373 	return;
2374 
2375 err:
2376 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2377 }
2378