xref: /netbsd-src/sys/dev/pci/if_msk.c (revision 1921cb5602567cfc8401cc953be22fe9d74238f2)
1 /* $NetBSD: if_msk.c,v 1.1 2006/09/09 16:17:50 riz Exp $ */
2 /*	$OpenBSD: if_msk.c,v 1.11 2006/08/17 22:07:40 brad Exp $	*/
3 
4 /*
5  * Copyright (c) 1997, 1998, 1999, 2000
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 #include "bpfilter.h"
55 #include "rnd.h"
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/kernel.h>
63 #include <sys/socket.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/callout.h>
67 #include <sys/sysctl.h>
68 #include <sys/endian.h>
69 #ifdef __NetBSD__
70  #define letoh16 htole16
71  #define letoh32 htole32
72 #endif
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_types.h>
77 
78 #include <net/if_media.h>
79 
80 #if NBPFILTER > 0
81 #include <net/bpf.h>
82 #endif
83 #if NRND > 0
84 #include <sys/rnd.h>
85 #endif
86 
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 #include <dev/mii/brgphyreg.h>
90 
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcidevs.h>
94 
95 #include <dev/pci/if_skreg.h>
96 #include <dev/pci/if_mskvar.h>
97 
98 int mskc_probe(struct device *, struct cfdata *, void *);
99 void mskc_attach(struct device *, struct device *self, void *aux);
100 void mskc_shutdown(void *);
101 int msk_probe(struct device *, struct cfdata *, void *);
102 void msk_attach(struct device *, struct device *self, void *aux);
103 int mskcprint(void *, const char *);
104 int msk_intr(void *);
105 void msk_intr_yukon(struct sk_if_softc *);
106 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
107 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
108 void msk_txeof(struct sk_if_softc *);
109 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
110 void msk_start(struct ifnet *);
111 int msk_ioctl(struct ifnet *, u_long, caddr_t);
112 int msk_init(struct ifnet *);
113 void msk_init_yukon(struct sk_if_softc *);
114 void msk_stop(struct ifnet *, int);
115 void msk_watchdog(struct ifnet *);
116 int msk_ifmedia_upd(struct ifnet *);
117 void msk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
118 void msk_reset(struct sk_softc *);
119 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
120 int msk_alloc_jumbo_mem(struct sk_if_softc *);
121 void *msk_jalloc(struct sk_if_softc *);
122 void msk_jfree(struct mbuf *, caddr_t, size_t, void *);
123 int msk_init_rx_ring(struct sk_if_softc *);
124 int msk_init_tx_ring(struct sk_if_softc *);
125 
126 void msk_update_int_mod(struct sk_softc *);
127 
128 int msk_marv_miibus_readreg(struct device *, int, int);
129 void msk_marv_miibus_writereg(struct device *, int, int, int);
130 void msk_marv_miibus_statchg(struct device *);
131 
132 u_int32_t msk_yukon_hash(caddr_t);
133 void msk_setfilt(struct sk_if_softc *, caddr_t, int);
134 void msk_setmulti(struct sk_if_softc *);
135 void msk_setpromisc(struct sk_if_softc *);
136 void msk_yukon_tick(void *);
137 
138 /* #define MSK_DEBUG 1 */
139 #ifdef MSK_DEBUG
140 #define DPRINTF(x)	if (mskdebug) printf x
141 #define DPRINTFN(n,x)	if (mskdebug >= (n)) printf x
142 int	mskdebug = MSK_DEBUG;
143 
144 void msk_dump_txdesc(struct msk_tx_desc *, int);
145 void msk_dump_mbuf(struct mbuf *);
146 void msk_dump_bytes(const char *, int);
147 #else
148 #define DPRINTF(x)
149 #define DPRINTFN(n,x)
150 #endif
151 
152 static int msk_sysctl_handler(SYSCTLFN_PROTO);
153 static int msk_root_num;
154 
155 /* supported device vendors */
156 static const struct msk_product {
157         pci_vendor_id_t         msk_vendor;
158         pci_product_id_t        msk_product;
159 } msk_products[] = {
160 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
161 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
162 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
163 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
164 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
165 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
166 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021CU },
167 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8021X },
169 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8022X },
170 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061CU },
171 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062CU },
172 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8061X },
173 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKONII_8062X },
174 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_3 },
175 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
176 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
177 };
178 
179 static inline u_int32_t
180 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
181 {
182 	return CSR_READ_4(sc, reg);
183 }
184 
185 static inline u_int16_t
186 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
187 {
188 	return CSR_READ_2(sc, reg);
189 }
190 
191 static inline u_int8_t
192 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
193 {
194 	return CSR_READ_1(sc, reg);
195 }
196 
197 static inline void
198 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
199 {
200 	CSR_WRITE_4(sc, reg, x);
201 }
202 
203 static inline void
204 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
205 {
206 	CSR_WRITE_2(sc, reg, x);
207 }
208 
209 static inline void
210 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
211 {
212 	CSR_WRITE_1(sc, reg, x);
213 }
214 
215 int
216 msk_marv_miibus_readreg(struct device *dev, int phy, int reg)
217 {
218 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
219 	u_int16_t val;
220 	int i;
221 
222 	if (phy != 0 ||
223 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
224 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
225 		DPRINTFN(9, ("msk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
226 			     phy, reg));
227 		return (0);
228 	}
229 
230         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
231 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
232 
233 	for (i = 0; i < SK_TIMEOUT; i++) {
234 		DELAY(1);
235 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
236 		if (val & YU_SMICR_READ_VALID)
237 			break;
238 	}
239 
240 	if (i == SK_TIMEOUT) {
241 		aprint_error("%s: phy failed to come ready\n",
242 		       sc_if->sk_dev.dv_xname);
243 		return (0);
244 	}
245 
246  	DPRINTFN(9, ("msk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
247 		     SK_TIMEOUT));
248 
249         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
250 
251 	DPRINTFN(9, ("msk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
252 		     phy, reg, val));
253 
254 	return (val);
255 }
256 
257 void
258 msk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
259 {
260 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
261 	int i;
262 
263 	DPRINTFN(9, ("msk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
264 		     phy, reg, val));
265 
266 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
267 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
268 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
269 
270 	for (i = 0; i < SK_TIMEOUT; i++) {
271 		DELAY(1);
272 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
273 			break;
274 	}
275 
276 	if (i == SK_TIMEOUT)
277 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
278 }
279 
280 void
281 msk_marv_miibus_statchg(struct device *dev)
282 {
283 	DPRINTFN(9, ("msk_marv_miibus_statchg: gpcr=%x\n",
284 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
285 }
286 
287 #define HASH_BITS	6
288 
289 u_int32_t
290 msk_yukon_hash(caddr_t addr)
291 {
292 	u_int32_t crc;
293 
294 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
295 	return (crc & ((1 << HASH_BITS) - 1));
296 }
297 
298 void
299 msk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
300 {
301 	int base = XM_RXFILT_ENTRY(slot);
302 
303 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
304 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
305 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
306 }
307 
308 void
309 msk_setmulti(struct sk_if_softc *sc_if)
310 {
311 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
312 	u_int32_t hashes[2] = { 0, 0 };
313 	int h;
314 	struct ethercom *ec = &sc_if->sk_ethercom;
315 	struct ether_multi *enm;
316 	struct ether_multistep step;
317 
318 	/* First, zot all the existing filters. */
319 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
320 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
321 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
322 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
323 
324 
325 	/* Now program new ones. */
326 allmulti:
327 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
328 		hashes[0] = 0xFFFFFFFF;
329 		hashes[1] = 0xFFFFFFFF;
330 	} else {
331 		/* First find the tail of the list. */
332 		ETHER_FIRST_MULTI(step, ec, enm);
333 		while (enm != NULL) {
334 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
335 				 ETHER_ADDR_LEN)) {
336 				ifp->if_flags |= IFF_ALLMULTI;
337 				goto allmulti;
338 			}
339 			h = msk_yukon_hash(enm->enm_addrlo);
340 			if (h < 32)
341 				hashes[0] |= (1 << h);
342 			else
343 				hashes[1] |= (1 << (h - 32));
344 
345 			ETHER_NEXT_MULTI(step, enm);
346 		}
347 	}
348 
349 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
350 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
351 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
352 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
353 }
354 
355 void
356 msk_setpromisc(struct sk_if_softc *sc_if)
357 {
358 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
359 
360 	if (ifp->if_flags & IFF_PROMISC)
361 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
362 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
363 	else
364 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
365 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
366 }
367 
368 int
369 msk_init_rx_ring(struct sk_if_softc *sc_if)
370 {
371 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
372 	struct msk_ring_data	*rd = sc_if->sk_rdata;
373 	int			i, nexti;
374 
375 	bzero((char *)rd->sk_rx_ring,
376 	    sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
377 
378 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
379 		cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
380 		if (i == (MSK_RX_RING_CNT - 1))
381 			nexti = 0;
382 		else
383 			nexti = i + 1;
384 		cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
385 	}
386 
387 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
388 		if (msk_newbuf(sc_if, i, NULL,
389 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
390 			aprint_error("%s: failed alloc of %dth mbuf\n",
391 			    sc_if->sk_dev.dv_xname, i);
392 			return (ENOBUFS);
393 		}
394 	}
395 
396 	sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
397 	sc_if->sk_cdata.sk_rx_cons = 0;
398 
399 	return (0);
400 }
401 
402 int
403 msk_init_tx_ring(struct sk_if_softc *sc_if)
404 {
405 	struct sk_softc		*sc = sc_if->sk_softc;
406 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
407 	struct msk_ring_data	*rd = sc_if->sk_rdata;
408 	bus_dmamap_t		dmamap;
409 	struct sk_txmap_entry	*entry;
410 	int			i, nexti;
411 
412 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
413 	    sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
414 
415 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
416 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
417 		cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
418 		if (i == (MSK_TX_RING_CNT - 1))
419 			nexti = 0;
420 		else
421 			nexti = i + 1;
422 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
423 
424 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
425 		   SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
426 			return (ENOBUFS);
427 
428 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
429 		if (!entry) {
430 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
431 			return (ENOBUFS);
432 		}
433 		entry->dmamap = dmamap;
434 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
435 	}
436 
437 	sc_if->sk_cdata.sk_tx_prod = 0;
438 	sc_if->sk_cdata.sk_tx_cons = 0;
439 	sc_if->sk_cdata.sk_tx_cnt = 0;
440 
441 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
442 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
443 
444 	return (0);
445 }
446 
447 int
448 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
449 	  bus_dmamap_t dmamap)
450 {
451 	struct mbuf		*m_new = NULL;
452 	struct sk_chain		*c;
453 	struct msk_rx_desc	*r;
454 
455 	if (m == NULL) {
456 		caddr_t buf = NULL;
457 
458 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
459 		if (m_new == NULL)
460 			return (ENOBUFS);
461 
462 		/* Allocate the jumbo buffer */
463 		buf = msk_jalloc(sc_if);
464 		if (buf == NULL) {
465 			m_freem(m_new);
466 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
467 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
468 			return (ENOBUFS);
469 		}
470 
471 		/* Attach the buffer to the mbuf */
472 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
473 		MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
474 	} else {
475 		/*
476 	 	 * We're re-using a previously allocated mbuf;
477 		 * be sure to re-init pointers and lengths to
478 		 * default values.
479 		 */
480 		m_new = m;
481 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
482 		m_new->m_data = m_new->m_ext.ext_buf;
483 	}
484 	m_adj(m_new, ETHER_ALIGN);
485 
486 	c = &sc_if->sk_cdata.sk_rx_chain[i];
487 	r = c->sk_le;
488 	c->sk_mbuf = m_new;
489 	r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
490 	    (((vaddr_t)m_new->m_data
491              - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
492 	r->sk_len = htole16(SK_JLEN);
493 	r->sk_ctl = 0;
494 	r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
495 
496 	MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
497 
498 	return (0);
499 }
500 
501 /*
502  * Memory management for jumbo frames.
503  */
504 
505 int
506 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
507 {
508 	struct sk_softc		*sc = sc_if->sk_softc;
509 	caddr_t			ptr, kva;
510 	bus_dma_segment_t	seg;
511 	int		i, rseg, state, error;
512 	struct sk_jpool_entry   *entry;
513 
514 	state = error = 0;
515 
516 	/* Grab a big chunk o' storage. */
517 	if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
518 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
519 		aprint_error(": can't alloc rx buffers");
520 		return (ENOBUFS);
521 	}
522 
523 	state = 1;
524 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, &kva,
525 			   BUS_DMA_NOWAIT)) {
526 		aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
527 		error = ENOBUFS;
528 		goto out;
529 	}
530 
531 	state = 2;
532 	if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
533 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
534 		aprint_error(": can't create dma map");
535 		error = ENOBUFS;
536 		goto out;
537 	}
538 
539 	state = 3;
540 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
541 			    kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
542 		aprint_error(": can't load dma map");
543 		error = ENOBUFS;
544 		goto out;
545 	}
546 
547 	state = 4;
548 	sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
549 	DPRINTFN(1,("msk_jumbo_buf = %p\n", (caddr_t)sc_if->sk_cdata.sk_jumbo_buf));
550 
551 	LIST_INIT(&sc_if->sk_jfree_listhead);
552 	LIST_INIT(&sc_if->sk_jinuse_listhead);
553 
554 	/*
555 	 * Now divide it up into 9K pieces and save the addresses
556 	 * in an array.
557 	 */
558 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
559 	for (i = 0; i < MSK_JSLOTS; i++) {
560 		sc_if->sk_cdata.sk_jslots[i] = ptr;
561 		ptr += SK_JLEN;
562 		entry = malloc(sizeof(struct sk_jpool_entry),
563 		    M_DEVBUF, M_NOWAIT);
564 		if (entry == NULL) {
565 			aprint_error(": no memory for jumbo buffer queue!");
566 			error = ENOBUFS;
567 			goto out;
568 		}
569 		entry->slot = i;
570 		if (i)
571 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
572 				 entry, jpool_entries);
573 		else
574 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
575 				 entry, jpool_entries);
576 	}
577 out:
578 	if (error != 0) {
579 		switch (state) {
580 		case 4:
581 			bus_dmamap_unload(sc->sc_dmatag,
582 			    sc_if->sk_cdata.sk_rx_jumbo_map);
583 		case 3:
584 			bus_dmamap_destroy(sc->sc_dmatag,
585 			    sc_if->sk_cdata.sk_rx_jumbo_map);
586 		case 2:
587 			bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
588 		case 1:
589 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
590 			break;
591 		default:
592 			break;
593 		}
594 	}
595 
596 	return (error);
597 }
598 
599 /*
600  * Allocate a jumbo buffer.
601  */
602 void *
603 msk_jalloc(struct sk_if_softc *sc_if)
604 {
605 	struct sk_jpool_entry   *entry;
606 
607 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
608 
609 	if (entry == NULL)
610 		return (NULL);
611 
612 	LIST_REMOVE(entry, jpool_entries);
613 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
614 	return (sc_if->sk_cdata.sk_jslots[entry->slot]);
615 }
616 
617 /*
618  * Release a jumbo buffer.
619  */
620 void
621 msk_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
622 {
623 	struct sk_jpool_entry *entry;
624 	struct sk_if_softc *sc;
625 	int i, s;
626 
627 	/* Extract the softc struct pointer. */
628 	sc = (struct sk_if_softc *)arg;
629 
630 	if (sc == NULL)
631 		panic("msk_jfree: can't find softc pointer!");
632 
633 	/* calculate the slot this buffer belongs to */
634 
635 	i = ((vaddr_t)buf
636 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
637 
638 	if ((i < 0) || (i >= MSK_JSLOTS))
639 		panic("sk_jfree: asked to free buffer that we don't manage!");
640 
641 	s = splvm();
642 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
643 	if (entry == NULL)
644 		panic("msk_jfree: buffer not in use!");
645 	entry->slot = i;
646 	LIST_REMOVE(entry, jpool_entries);
647 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
648 
649 	if (__predict_true(m != NULL))
650 		pool_cache_put(&mbpool_cache, m);
651 	splx(s);
652 }
653 
654 /*
655  * Set media options.
656  */
657 int
658 msk_ifmedia_upd(struct ifnet *ifp)
659 {
660 	struct sk_if_softc *sc_if = ifp->if_softc;
661 
662 	msk_init(ifp);
663 	mii_mediachg(&sc_if->sk_mii);
664 	return (0);
665 }
666 
667 /*
668  * Report current media status.
669  */
670 void
671 msk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
672 {
673 	struct sk_if_softc *sc_if = ifp->if_softc;
674 
675 	mii_pollstat(&sc_if->sk_mii);
676 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
677 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
678 }
679 
680 int
681 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
682 {
683 	struct sk_if_softc *sc_if = ifp->if_softc;
684 	struct ifreq *ifr = (struct ifreq *) data;
685 	struct mii_data *mii;
686 	int s, error = 0;
687 
688 	s = splnet();
689 
690 	switch(command) {
691 	case SIOCGIFMEDIA:
692 	case SIOCSIFMEDIA:
693 		DPRINTFN(2,("msk_ioctl: SIOC[GS]IFMEDIA\n"));
694 		mii = &sc_if->sk_mii;
695 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
696 		DPRINTFN(2,("msk_ioctl: SIOC[GS]IFMEDIA done\n"));
697 		break;
698 	default:
699 		DPRINTFN(2, ("msk_ioctl ETHER\n"));
700 		error = ether_ioctl(ifp, command, data);
701 
702 		if (error == ENETRESET) {
703 			/*
704 			 * Multicast list has changed; set the hardware
705 			 * filter accordingly.
706 			 */
707 			if (ifp->if_flags & IFF_RUNNING)
708 				msk_setmulti(sc_if);
709 			error = 0;
710 		}
711 		break;
712 	}
713 
714 	splx(s);
715 	return (error);
716 }
717 
718 void
719 msk_update_int_mod(struct sk_softc *sc)
720 {
721 	u_int32_t sk_imtimer_ticks;
722 
723 	/*
724  	 * Configure interrupt moderation. The moderation timer
725 	 * defers interrupts specified in the interrupt moderation
726 	 * timer mask based on the timeout specified in the interrupt
727 	 * moderation timer init register. Each bit in the timer
728 	 * register represents one tick, so to specify a timeout in
729 	 * microseconds, we have to multiply by the correct number of
730 	 * ticks-per-microsecond.
731 	 */
732 	switch (sc->sk_type) {
733 	case SK_YUKON_EC:
734 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
735 		break;
736 	default:
737 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
738 	}
739 	aprint_verbose("%s: interrupt moderation is %d us\n",
740 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
741         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
742         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
743 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
744         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
745 	sc->sk_int_mod_pending = 0;
746 }
747 
748 static int
749 msk_lookup(const struct pci_attach_args *pa)
750 {
751 	const struct msk_product *pmsk;
752 
753 	for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
754 		if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
755 		    PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
756 			return 1;
757 	}
758 	return 0;
759 }
760 
761 /*
762  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
763  * IDs against our list and return a device name if we find a match.
764  */
765 int
766 mskc_probe(struct device *parent, struct cfdata *match, void *aux)
767 {
768 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
769 
770 	return msk_lookup(pa);
771 }
772 
773 /*
774  * Force the GEnesis into reset, then bring it out of reset.
775  */
776 void msk_reset(struct sk_softc *sc)
777 {
778 	u_int32_t sk_imtimer_ticks;
779 	int reg;
780 
781 	DPRINTFN(2, ("msk_reset\n"));
782 
783 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
784 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
785 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
786 
787 	DELAY(1000);
788 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
789 	DELAY(2);
790 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
791 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
792 
793 	DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
794 	DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
795 		     CSR_READ_2(sc, SK_LINK_CTRL)));
796 
797 	/* Disable ASF */
798 	CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
799 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
800 
801 	/* Clear I2C IRQ noise */
802 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
803 
804 	/* Disable hardware timer */
805 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
806 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
807 
808 	/* Disable descriptor polling */
809 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
810 
811 	/* Disable time stamps */
812 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
813 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
814 
815 	/* Enable RAM interface */
816 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
817 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
818 		sk_win_write_1(sc, reg, 36);
819 
820 	/*
821 	 * Configure interrupt moderation. The moderation timer
822 	 * defers interrupts specified in the interrupt moderation
823 	 * timer mask based on the timeout specified in the interrupt
824 	 * moderation timer init register. Each bit in the timer
825 	 * register represents one tick, so to specify a timeout in
826 	 * microseconds, we have to multiply by the correct number of
827 	 * ticks-per-microsecond.
828 	 */
829 	switch (sc->sk_type) {
830 	case SK_YUKON_EC:
831 	case SK_YUKON_XL:
832 	case SK_YUKON_FE:
833 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
834 		break;
835 	default:
836 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
837 	}
838 
839 	/* Reset status ring. */
840 	bzero((char *)sc->sk_status_ring,
841 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
842 	sc->sk_status_idx = 0;
843 
844 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
845 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
846 
847 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
848 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
849 	    sc->sk_status_map->dm_segs[0].ds_addr);
850 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
851 	    (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
852 	sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 10);
853 	sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 16);
854 	sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 16);
855 
856 #if 0
857 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
858 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
859 
860 	sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(20));
861 #else
862 	sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(4));
863 #endif
864 
865 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
866 
867 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
868 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
869 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
870 
871 	msk_update_int_mod(sc);
872 }
873 
874 int
875 msk_probe(struct device *parent, struct cfdata *match, void *aux)
876 {
877 	struct skc_attach_args *sa = aux;
878 
879 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
880 		return (0);
881 
882 	switch (sa->skc_type) {
883 	case SK_YUKON_XL:
884 	case SK_YUKON_EC_U:
885 	case SK_YUKON_EC:
886 	case SK_YUKON_FE:
887 		return (1);
888 	}
889 
890 	return (0);
891 }
892 
893 /*
894  * Each XMAC chip is attached as a separate logical IP interface.
895  * Single port cards will have only one logical interface of course.
896  */
897 void
898 msk_attach(struct device *parent, struct device *self, void *aux)
899 {
900 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
901 	struct sk_softc *sc = (struct sk_softc *)parent;
902 	struct skc_attach_args *sa = aux;
903 	struct ifnet *ifp;
904 	caddr_t kva;
905 	bus_dma_segment_t seg;
906 	int i, rseg;
907 	u_int32_t chunk, val;
908 
909 	sc_if->sk_port = sa->skc_port;
910 	sc_if->sk_softc = sc;
911 	sc->sk_if[sa->skc_port] = sc_if;
912 
913 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
914 
915 	/*
916 	 * Get station address for this interface. Note that
917 	 * dual port cards actually come with three station
918 	 * addresses: one for each port, plus an extra. The
919 	 * extra one is used by the SysKonnect driver software
920 	 * as a 'virtual' station address for when both ports
921 	 * are operating in failover mode. Currently we don't
922 	 * use this extra address.
923 	 */
924 	for (i = 0; i < ETHER_ADDR_LEN; i++)
925 		sc_if->sk_enaddr[i] =
926 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
927 
928 	aprint_normal(": Ethernet address %s\n",
929 	    ether_sprintf(sc_if->sk_enaddr));
930 
931 	/*
932 	 * Set up RAM buffer addresses. The NIC will have a certain
933 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
934 	 * need to divide this up a) between the transmitter and
935  	 * receiver and b) between the two XMACs, if this is a
936 	 * dual port NIC. Our algorithm is to divide up the memory
937 	 * evenly so that everyone gets a fair share.
938 	 *
939 	 * Just to be contrary, Yukon2 appears to have separate memory
940 	 * for each MAC.
941 	 */
942 	chunk = sc->sk_ramsize  - (sc->sk_ramsize + 2) / 3;
943 	val = sc->sk_rboff / sizeof(u_int64_t);
944 	sc_if->sk_rx_ramstart = val;
945 	val += (chunk / sizeof(u_int64_t));
946 	sc_if->sk_rx_ramend = val - 1;
947 	chunk = sc->sk_ramsize - chunk;
948 	sc_if->sk_tx_ramstart = val;
949 	val += (chunk / sizeof(u_int64_t));
950 	sc_if->sk_tx_ramend = val - 1;
951 
952 	DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
953 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
954 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
955 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
956 
957 	/* Read and save PHY type */
958 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
959 
960 	/* Set PHY address */
961 	if ((sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
962 	     sc->sk_pmd != 'L' && sc->sk_pmd != 'S')) {
963 		/* not initialized, punt */
964 		sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
965 
966 		sc->sk_coppertype = 1;
967 	}
968 
969 	sc_if->sk_phyaddr = SK_PHYADDR_MARV;
970 
971 	if (!(sc->sk_coppertype))
972 		sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
973 
974 	/* Allocate the descriptor queues. */
975 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
976 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
977 		aprint_error(": can't alloc rx buffers\n");
978 		goto fail;
979 	}
980 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
981 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
982 		aprint_error(": can't map dma buffers (%zu bytes)\n",
983 		       sizeof(struct msk_ring_data));
984 		goto fail_1;
985 	}
986 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
987 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
988             &sc_if->sk_ring_map)) {
989 		aprint_error(": can't create dma map\n");
990 		goto fail_2;
991 	}
992 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
993 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
994 		aprint_error(": can't load dma map\n");
995 		goto fail_3;
996 	}
997         sc_if->sk_rdata = (struct msk_ring_data *)kva;
998 	bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
999 
1000 	ifp = &sc_if->sk_ethercom.ec_if;
1001 	/* Try to allocate memory for jumbo buffers. */
1002 	if (msk_alloc_jumbo_mem(sc_if)) {
1003 		aprint_error(": jumbo buffer allocation failed\n");
1004 		goto fail_3;
1005 	}
1006 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1007 		| ETHERCAP_JUMBO_MTU;
1008 
1009 	ifp->if_softc = sc_if;
1010 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1011 	ifp->if_ioctl = msk_ioctl;
1012 	ifp->if_start = msk_start;
1013 	ifp->if_stop = msk_stop;
1014 	ifp->if_init = msk_init;
1015 	ifp->if_watchdog = msk_watchdog;
1016 	ifp->if_baudrate = 1000000000;
1017 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1018 	IFQ_SET_READY(&ifp->if_snd);
1019 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1020 
1021 	/*
1022 	 * Do miibus setup.
1023 	 */
1024 	msk_init_yukon(sc_if);
1025 
1026  	DPRINTFN(2, ("msk_attach: 1\n"));
1027 
1028 	sc_if->sk_mii.mii_ifp = ifp;
1029 	sc_if->sk_mii.mii_readreg = msk_marv_miibus_readreg;
1030 	sc_if->sk_mii.mii_writereg = msk_marv_miibus_writereg;
1031 	sc_if->sk_mii.mii_statchg = msk_marv_miibus_statchg;
1032 
1033 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1034 	    msk_ifmedia_upd, msk_ifmedia_sts);
1035 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1036 	    MII_OFFSET_ANY, 0);
1037 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1038 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1039 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1040 			    0, NULL);
1041 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1042 	} else
1043 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1044 
1045 	callout_init(&sc_if->sk_tick_ch);
1046 	callout_setfunc(&sc_if->sk_tick_ch, msk_yukon_tick, sc_if);
1047 	callout_schedule(&sc_if->sk_tick_ch, hz);
1048 
1049 	/*
1050 	 * Call MI attach routines.
1051 	 */
1052 	if_attach(ifp);
1053 	ether_ifattach(ifp, sc_if->sk_enaddr);
1054 
1055 	shutdownhook_establish(mskc_shutdown, sc);
1056 
1057 #if NRND > 0
1058 	rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1059 		RND_TYPE_NET, 0);
1060 #endif
1061 
1062 	DPRINTFN(2, ("msk_attach: end\n"));
1063 	return;
1064 
1065 fail_3:
1066 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1067 fail_2:
1068 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1069 fail_1:
1070 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1071 fail:
1072 	sc->sk_if[sa->skc_port] = NULL;
1073 }
1074 
1075 int
1076 mskcprint(void *aux, const char *pnp)
1077 {
1078 	struct skc_attach_args *sa = aux;
1079 
1080 	if (pnp)
1081 		aprint_normal("sk port %c at %s",
1082 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1083 	else
1084 		aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1085 	return (UNCONF);
1086 }
1087 
1088 /*
1089  * Attach the interface. Allocate softc structures, do ifmedia
1090  * setup and ethernet/BPF attach.
1091  */
1092 void
1093 mskc_attach(struct device *parent, struct device *self, void *aux)
1094 {
1095 	struct sk_softc *sc = (struct sk_softc *)self;
1096 	struct pci_attach_args *pa = aux;
1097 	struct skc_attach_args skca;
1098 	pci_chipset_tag_t pc = pa->pa_pc;
1099 	pcireg_t command, memtype;
1100 	pci_intr_handle_t ih;
1101 	const char *intrstr = NULL;
1102 	bus_size_t size;
1103 	int rc, sk_nodenum;
1104 	u_int8_t hw, skrs;
1105 	const char *revstr = NULL;
1106 	const struct sysctlnode *node;
1107 	caddr_t kva;
1108 	bus_dma_segment_t seg;
1109 	int rseg;
1110 
1111 	DPRINTFN(2, ("begin mskc_attach\n"));
1112 
1113 	/*
1114 	 * Handle power management nonsense.
1115 	 */
1116 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1117 
1118 	if (command == 0x01) {
1119 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1120 		if (command & SK_PSTATE_MASK) {
1121 			u_int32_t		iobase, membase, irq;
1122 
1123 			/* Save important PCI config data. */
1124 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1125 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1126 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1127 
1128 			/* Reset the power state. */
1129 			aprint_normal("%s chip is in D%d power mode "
1130 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1131 			    command & SK_PSTATE_MASK);
1132 			command &= 0xFFFFFFFC;
1133 			pci_conf_write(pc, pa->pa_tag,
1134 			    SK_PCI_PWRMGMTCTRL, command);
1135 
1136 			/* Restore PCI config data. */
1137 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1138 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1139 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1140 		}
1141 	}
1142 
1143 	/*
1144 	 * Map control/status registers.
1145 	 */
1146 
1147 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1148 	switch (memtype) {
1149 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1150 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1151 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1152 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1153 				   NULL, &size) == 0)
1154 			break;
1155 	default:
1156 		aprint_error(": can't map mem space\n");
1157 		return;
1158 	}
1159 
1160 	sc->sc_dmatag = pa->pa_dmat;
1161 
1162 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1163 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1164 
1165 	/* bail out here if chip is not recognized */
1166 	if (!(SK_IS_YUKON(sc))) {
1167 		aprint_error(": unknown chip type: %d\n", sc->sk_type);
1168 		goto fail_1;
1169 	}
1170 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1171 
1172 	/* Allocate interrupt */
1173 	if (pci_intr_map(pa, &ih)) {
1174 		aprint_error(": couldn't map interrupt\n");
1175 		goto fail_1;
1176 	}
1177 
1178 	intrstr = pci_intr_string(pc, ih);
1179 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1180 	if (sc->sk_intrhand == NULL) {
1181 		aprint_error(": couldn't establish interrupt");
1182 		if (intrstr != NULL)
1183 			aprint_error(" at %s", intrstr);
1184 		aprint_error("\n");
1185 		goto fail_1;
1186 	}
1187 
1188 	if (bus_dmamem_alloc(sc->sc_dmatag,
1189 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1190 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1191 		aprint_error(": can't alloc status buffers\n");
1192 		goto fail_2;
1193 	}
1194 
1195 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1196 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1197 	    &kva, BUS_DMA_NOWAIT)) {
1198 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1199 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1200 		goto fail_3;
1201 	}
1202 	if (bus_dmamap_create(sc->sc_dmatag,
1203 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1204 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1205 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1206 		aprint_error(": can't create dma map\n");
1207 		goto fail_4;
1208 	}
1209 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1210 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1211 	    NULL, BUS_DMA_NOWAIT)) {
1212 		aprint_error(": can't load dma map\n");
1213 		goto fail_5;
1214 	}
1215 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1216 	bzero(sc->sk_status_ring,
1217 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1218 
1219 	/* Reset the adapter. */
1220 	msk_reset(sc);
1221 
1222 	skrs = sk_win_read_1(sc, SK_EPROM0);
1223 	if (skrs == 0x00)
1224 		sc->sk_ramsize = 0x20000;
1225 	else
1226 		sc->sk_ramsize = skrs * (1<<12);
1227 	sc->sk_rboff = SK_RBOFF_0;
1228 
1229 	DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1230 		     sc->sk_ramsize, sc->sk_ramsize / 1024,
1231 		     sc->sk_rboff));
1232 
1233 	/* Read and save physical media type */
1234 	sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1235 
1236 	if (sc->sk_pmd == 'T' || sc->sk_pmd == '1' ||
1237 	    (SK_IS_YUKON2(sc) && !(sc->sk_pmd == 'L' ||
1238 	    sc->sk_pmd == 'S')))
1239 		sc->sk_coppertype = 1;
1240 	else
1241 		sc->sk_coppertype = 0;
1242 
1243 	switch (sc->sk_type) {
1244 	case SK_YUKON_XL:
1245 		sc->sk_name = "Marvell Yukon-2 XL";
1246 		break;
1247 	case SK_YUKON_EC_U:
1248 		sc->sk_name = "Marvell Yukon-2 EC Ultra";
1249 		break;
1250 	case SK_YUKON_EC:
1251 		sc->sk_name = "Marvell Yukon-2 EC";
1252 		break;
1253 	case SK_YUKON_FE:
1254 		sc->sk_name = "Marvell Yukon-2 FE";
1255 		break;
1256 	default:
1257 		sc->sk_name = "Marvell Yukon (Unknown)";
1258 	}
1259 
1260 	if (sc->sk_type == SK_YUKON_XL) {
1261 		switch (sc->sk_rev) {
1262 		case SK_YUKON_XL_REV_A0:
1263 			revstr = "A0";
1264 			break;
1265 		case SK_YUKON_XL_REV_A1:
1266 			revstr = "A1";
1267 			break;
1268 		case SK_YUKON_XL_REV_A2:
1269 			revstr = "A2";
1270 			break;
1271 		case SK_YUKON_XL_REV_A3:
1272 			revstr = "A3";
1273 			break;
1274 		default:
1275 			;
1276 		}
1277 	}
1278 
1279 	if (sc->sk_type == SK_YUKON_EC) {
1280 		switch (sc->sk_rev) {
1281 		case SK_YUKON_EC_REV_A1:
1282 			revstr = "A1";
1283 			break;
1284 		case SK_YUKON_EC_REV_A2:
1285 			revstr = "A2";
1286 			break;
1287 		case SK_YUKON_EC_REV_A3:
1288 			revstr = "A3";
1289 			break;
1290 		default:
1291 			;
1292 		}
1293 	}
1294 
1295 	if (sc->sk_type == SK_YUKON_EC_U) {
1296 		switch (sc->sk_rev) {
1297 		case SK_YUKON_EC_U_REV_A0:
1298 			revstr = "A0";
1299 			break;
1300 		case SK_YUKON_EC_U_REV_A1:
1301 			revstr = "A1";
1302 			break;
1303 		default:
1304 			;
1305 		}
1306 	}
1307 
1308 	/* Announce the product name. */
1309 	aprint_normal(", %s", sc->sk_name);
1310 	if (revstr != NULL)
1311 		aprint_normal(" rev. %s", revstr);
1312 	aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1313 
1314 
1315 	sc->sk_macs = 1;
1316 
1317 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1318 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1319 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1320 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1321 			sc->sk_macs++;
1322 	}
1323 
1324 	skca.skc_port = SK_PORT_A;
1325 	skca.skc_type = sc->sk_type;
1326 	skca.skc_rev = sc->sk_rev;
1327 	(void)config_found(&sc->sk_dev, &skca, mskcprint);
1328 
1329 	if (sc->sk_macs > 1) {
1330 		skca.skc_port = SK_PORT_B;
1331 		skca.skc_type = sc->sk_type;
1332 		skca.skc_rev = sc->sk_rev;
1333 		(void)config_found(&sc->sk_dev, &skca, mskcprint);
1334 	}
1335 
1336 	/* Turn on the 'driver is loaded' LED. */
1337 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1338 
1339 	/* skc sysctl setup */
1340 
1341 	sc->sk_int_mod = SK_IM_DEFAULT;
1342 	sc->sk_int_mod_pending = 0;
1343 
1344 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1345 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1346 	    SYSCTL_DESCR("mskc per-controller controls"),
1347 	    NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1348 	    CTL_EOL)) != 0) {
1349 		aprint_normal("%s: couldn't create sysctl node\n",
1350 		    sc->sk_dev.dv_xname);
1351 		goto fail_6;
1352 	}
1353 
1354 	sk_nodenum = node->sysctl_num;
1355 
1356 	/* interrupt moderation time in usecs */
1357 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1358 	    CTLFLAG_READWRITE,
1359 	    CTLTYPE_INT, "int_mod",
1360 	    SYSCTL_DESCR("msk interrupt moderation timer"),
1361 	    msk_sysctl_handler, 0, sc,
1362 	    0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1363 	    CTL_EOL)) != 0) {
1364 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
1365 		    sc->sk_dev.dv_xname);
1366 		goto fail_6;
1367 	}
1368 
1369 	return;
1370 
1371  fail_6:
1372 	bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1373 fail_5:
1374 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1375 fail_4:
1376 	bus_dmamem_unmap(sc->sc_dmatag, kva,
1377 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1378 fail_3:
1379 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1380 fail_2:
1381 	pci_intr_disestablish(pc, sc->sk_intrhand);
1382 fail_1:
1383 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1384 }
1385 
1386 int
1387 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1388 {
1389 	struct sk_softc		*sc = sc_if->sk_softc;
1390 	struct msk_tx_desc		*f = NULL;
1391 	u_int32_t		frag, cur, cnt = 0;
1392 	int			i;
1393 	struct sk_txmap_entry	*entry;
1394 	bus_dmamap_t		txmap;
1395 
1396 	DPRINTFN(2, ("msk_encap\n"));
1397 
1398 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1399 	if (entry == NULL) {
1400 		DPRINTFN(2, ("msk_encap: no txmap available\n"));
1401 		return (ENOBUFS);
1402 	}
1403 	txmap = entry->dmamap;
1404 
1405 	cur = frag = *txidx;
1406 
1407 #ifdef MSK_DEBUG
1408 	if (mskdebug >= 2)
1409 		msk_dump_mbuf(m_head);
1410 #endif
1411 
1412 	/*
1413 	 * Start packing the mbufs in this chain into
1414 	 * the fragment pointers. Stop when we run out
1415 	 * of fragments or hit the end of the mbuf chain.
1416 	 */
1417 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1418 	    BUS_DMA_NOWAIT)) {
1419 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1420 		return (ENOBUFS);
1421 	}
1422 
1423 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1424 
1425 	/* Sync the DMA map. */
1426 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1427 	    BUS_DMASYNC_PREWRITE);
1428 
1429 	for (i = 0; i < txmap->dm_nsegs; i++) {
1430 		if ((MSK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1431 			DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1432 			return (ENOBUFS);
1433 		}
1434 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1435 		f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1436 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1437 		f->sk_ctl = 0;
1438 		if (cnt == 0)
1439 			f->sk_opcode = SK_Y2_TXOPC_PACKET;
1440 		else
1441 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1442 		cur = frag;
1443 		SK_INC(frag, MSK_TX_RING_CNT);
1444 		cnt++;
1445 	}
1446 
1447 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1448 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1449 
1450 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1451 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1452 
1453 	/* Sync descriptors before handing to chip */
1454 	MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1455             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1456 
1457 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1458 
1459 	/* Sync first descriptor to hand it off */
1460 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1461 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1462 
1463 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1464 
1465 #ifdef MSK_DEBUG
1466 	if (mskdebug >= 2) {
1467 		struct msk_tx_desc *le;
1468 		u_int32_t idx;
1469 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1470 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1471 			msk_dump_txdesc(le, idx);
1472 		}
1473 	}
1474 #endif
1475 
1476 	*txidx = frag;
1477 
1478 	DPRINTFN(2, ("msk_encap: completed successfully\n"));
1479 
1480 	return (0);
1481 }
1482 
1483 void
1484 msk_start(struct ifnet *ifp)
1485 {
1486         struct sk_if_softc	*sc_if = ifp->if_softc;
1487         struct mbuf		*m_head = NULL;
1488         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1489 	int			pkts = 0;
1490 
1491 	DPRINTFN(2, ("msk_start\n"));
1492 
1493 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1494 		IFQ_POLL(&ifp->if_snd, m_head);
1495 		if (m_head == NULL)
1496 			break;
1497 
1498 		/*
1499 		 * Pack the data into the transmit ring. If we
1500 		 * don't have room, set the OACTIVE flag and wait
1501 		 * for the NIC to drain the ring.
1502 		 */
1503 		if (msk_encap(sc_if, m_head, &idx)) {
1504 			ifp->if_flags |= IFF_OACTIVE;
1505 			break;
1506 		}
1507 
1508 		/* now we are committed to transmit the packet */
1509 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1510 		pkts++;
1511 
1512 		/*
1513 		 * If there's a BPF listener, bounce a copy of this frame
1514 		 * to him.
1515 		 */
1516 #if NBPFILTER > 0
1517 		if (ifp->if_bpf)
1518 			bpf_mtap(ifp->if_bpf, m_head);
1519 #endif
1520 	}
1521 	if (pkts == 0)
1522 		return;
1523 
1524 	/* Transmit */
1525 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1526 		sc_if->sk_cdata.sk_tx_prod = idx;
1527 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1528 
1529 		/* Set a timeout in case the chip goes out to lunch. */
1530 		ifp->if_timer = 5;
1531 	}
1532 }
1533 
1534 void
1535 msk_watchdog(struct ifnet *ifp)
1536 {
1537 	struct sk_if_softc *sc_if = ifp->if_softc;
1538 
1539 	/*
1540 	 * Reclaim first as there is a possibility of losing Tx completion
1541 	 * interrupts.
1542 	 */
1543 	msk_txeof(sc_if);
1544 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1545 		aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1546 
1547 		ifp->if_oerrors++;
1548 
1549 		/* XXX Resets both ports; we shouldn't do that. */
1550 		msk_reset(sc_if->sk_softc);
1551 		msk_init(ifp);
1552 	}
1553 }
1554 
1555 void
1556 mskc_shutdown(void *v)
1557 {
1558 	struct sk_softc		*sc = v;
1559 
1560 	DPRINTFN(2, ("msk_shutdown\n"));
1561 
1562 	/* Turn off the 'driver is loaded' LED. */
1563 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1564 
1565 	msk_reset(sc);
1566 }
1567 
1568 __inline int
1569 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1570 {
1571 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1572 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1573 	    YU_RXSTAT_JABBER)) != 0 ||
1574 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1575 	    YU_RXSTAT_BYTES(stat) != len)
1576 		return (0);
1577 
1578 	return (1);
1579 }
1580 
1581 void
1582 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1583 {
1584 	struct sk_softc		*sc = sc_if->sk_softc;
1585 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1586 	struct mbuf		*m;
1587 	struct sk_chain		*cur_rx;
1588 	int			cur, total_len = len;
1589 	bus_dmamap_t		dmamap;
1590 
1591 	DPRINTFN(2, ("msk_rxeof\n"));
1592 
1593 	cur = sc_if->sk_cdata.sk_rx_cons;
1594 	SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1595 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1596 
1597 	/* Sync the descriptor */
1598 	MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1599 
1600 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1601 	dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1602 
1603 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1604 	    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1605 
1606 	m = cur_rx->sk_mbuf;
1607 	cur_rx->sk_mbuf = NULL;
1608 
1609 	if (total_len < SK_MIN_FRAMELEN ||
1610 	    total_len > SK_JUMBO_FRAMELEN ||
1611 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
1612 		ifp->if_ierrors++;
1613 		msk_newbuf(sc_if, cur, m, dmamap);
1614 		return;
1615 	}
1616 
1617 	/*
1618 	 * Try to allocate a new jumbo buffer. If that fails, copy the
1619 	 * packet to mbufs and put the jumbo buffer back in the ring
1620 	 * so it can be re-used. If allocating mbufs fails, then we
1621 	 * have to drop the packet.
1622 	 */
1623 	if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1624 		struct mbuf		*m0;
1625 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1626 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
1627 		msk_newbuf(sc_if, cur, m, dmamap);
1628 		if (m0 == NULL) {
1629 			ifp->if_ierrors++;
1630 			return;
1631 		}
1632 		m_adj(m0, ETHER_ALIGN);
1633 		m = m0;
1634 	} else {
1635 		m->m_pkthdr.rcvif = ifp;
1636 		m->m_pkthdr.len = m->m_len = total_len;
1637 	}
1638 
1639 	ifp->if_ipackets++;
1640 
1641 #if NBPFILTER > 0
1642 	if (ifp->if_bpf)
1643 		bpf_mtap(ifp->if_bpf, m);
1644 #endif
1645 
1646 	/* pass it on. */
1647 	(*ifp->if_input)(ifp, m);
1648 }
1649 
1650 void
1651 msk_txeof(struct sk_if_softc *sc_if)
1652 {
1653 	struct sk_softc		*sc = sc_if->sk_softc;
1654 	struct msk_tx_desc	*cur_tx;
1655 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1656 	u_int32_t		idx, sk_ctl;
1657 	struct sk_txmap_entry	*entry;
1658 
1659 	DPRINTFN(2, ("msk_txeof\n"));
1660 
1661 	/*
1662 	 * Go through our tx ring and free mbufs for those
1663 	 * frames that have been sent.
1664 	 */
1665 	idx = sc_if->sk_cdata.sk_tx_cons;
1666 	while (idx != sk_win_read_2(sc, SK_STAT_BMU_TXA1_RIDX)) {
1667 		MSK_CDTXSYNC(sc_if, idx, 1,
1668 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1669 
1670 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1671 		sk_ctl = letoh32(cur_tx->sk_ctl);
1672 #ifdef MSK_DEBUG
1673 		if (mskdebug >= 2)
1674 			msk_dump_txdesc(cur_tx, idx);
1675 #endif
1676 		if (sk_ctl & SK_TXCTL_LASTFRAG)
1677 			ifp->if_opackets++;
1678 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1679 			entry = sc_if->sk_cdata.sk_tx_map[idx];
1680 
1681 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1682 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1683 
1684 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1685 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1686 
1687 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1688 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1689 					  link);
1690 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1691 		}
1692 		sc_if->sk_cdata.sk_tx_cnt--;
1693 		SK_INC(idx, MSK_TX_RING_CNT);
1694 	}
1695 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1696 
1697 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1698 		ifp->if_flags &= ~IFF_OACTIVE;
1699 
1700 	sc_if->sk_cdata.sk_tx_cons = idx;
1701 }
1702 
1703 void
1704 msk_yukon_tick(void *xsc_if)
1705 {
1706 	struct sk_if_softc *sc_if = xsc_if;
1707 	struct mii_data *mii = &sc_if->sk_mii;
1708 
1709 	mii_tick(mii);
1710 	callout_schedule(&sc_if->sk_tick_ch, hz);
1711 }
1712 
1713 void
1714 msk_intr_yukon(struct sk_if_softc *sc_if)
1715 {
1716 	u_int8_t status;
1717 
1718 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1719 	/* RX overrun */
1720 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1721 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1722 		    SK_RFCTL_RX_FIFO_OVER);
1723 	}
1724 	/* TX underrun */
1725 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1726 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1727 		    SK_TFCTL_TX_FIFO_UNDER);
1728 	}
1729 
1730 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1731 }
1732 
1733 int
1734 msk_intr(void *xsc)
1735 {
1736 	struct sk_softc		*sc = xsc;
1737 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1738 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1739 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1740 	int			claimed = 0;
1741 	u_int32_t		status;
1742 	u_int16_t		idx;
1743 	struct msk_status_desc	*cur_st;
1744 
1745 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
1746 	if (status == 0) {
1747 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1748 		return (0);
1749 	}
1750 
1751 	status = CSR_READ_4(sc, SK_ISR);
1752 
1753 	if (sc_if0 != NULL)
1754 		ifp0 = &sc_if0->sk_ethercom.ec_if;
1755 	if (sc_if1 != NULL)
1756 		ifp1 = &sc_if1->sk_ethercom.ec_if;
1757 
1758 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1759 	    (ifp0->if_flags & IFF_RUNNING)) {
1760 		msk_intr_yukon(sc_if0);
1761 	}
1762 
1763 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1764 	    (ifp1->if_flags & IFF_RUNNING)) {
1765 		msk_intr_yukon(sc_if1);
1766 	}
1767 
1768 	idx = CSR_READ_2(sc, SK_STAT_BMU_PUTIDX);
1769 	while (sc->sk_status_idx != idx) {
1770 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
1771 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1772 
1773 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1774 		switch (cur_st->sk_opcode & ~SK_Y2_STOPC_OWN) {
1775 		case SK_Y2_STOPC_RXSTAT:
1776 			msk_rxeof(sc->sk_if[cur_st->sk_link],
1777 			    letoh16(cur_st->sk_len),
1778 			    letoh32(cur_st->sk_status));
1779 			SK_IF_WRITE_2(sc->sk_if[cur_st->sk_link], 0,
1780 			    SK_RXQ1_Y2_PREF_PUTIDX,
1781 			    sc->sk_if[cur_st->sk_link]->sk_cdata.sk_rx_prod);
1782 			break;
1783 		case SK_Y2_STOPC_TXSTAT:
1784 			msk_txeof(sc->sk_if[cur_st->sk_link]);
1785 			break;
1786 		default:
1787 			aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
1788 			break;
1789 		}
1790 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1791 		idx = CSR_READ_2(sc, SK_STAT_BMU_PUTIDX);
1792 	}
1793 
1794 	if (status & SK_Y2_IMR_BMU) {
1795 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1796 		claimed = 1;
1797 	}
1798 
1799 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1800 
1801 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1802 		msk_start(ifp0);
1803 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1804 		msk_start(ifp1);
1805 
1806 #if NRND > 0
1807 	if (RND_ENABLED(&sc->rnd_source))
1808 		rnd_add_uint32(&sc->rnd_source, status);
1809 #endif
1810 
1811 	if (sc->sk_int_mod_pending)
1812 		msk_update_int_mod(sc);
1813 
1814 	return claimed;
1815 }
1816 
1817 void
1818 msk_init_yukon(struct sk_if_softc *sc_if)
1819 {
1820 	u_int32_t		phy, v;
1821 	u_int16_t		reg;
1822 	struct sk_softc		*sc;
1823 	int			i;
1824 
1825 	sc = sc_if->sk_softc;
1826 
1827 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1828 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1829 
1830 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
1831 
1832 	/* GMAC and GPHY Reset */
1833 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1834 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1835 	DELAY(1000);
1836 
1837 	DPRINTFN(6, ("msk_init_yukon: 2\n"));
1838 
1839 #if 0
1840 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
1841 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
1842 #else
1843 	phy = SK_GPHY_ENA_PAUSE;
1844 #endif
1845 
1846 	if (sc->sk_coppertype)
1847 		phy |= SK_GPHY_COPPER;
1848 	else
1849 		phy |= SK_GPHY_FIBER;
1850 
1851 	DPRINTFN(3, ("msk_init_yukon: phy=%#x\n", phy));
1852 
1853 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
1854 	DELAY(1000);
1855 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
1856 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1857 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1858 
1859 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1860 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1861 
1862 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
1863 
1864 	/* unused read of the interrupt source register */
1865 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
1866 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1867 
1868 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1869 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1870 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1871 
1872 	/* MIB Counter Clear Mode set */
1873         reg |= YU_PAR_MIB_CLR;
1874 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1875 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1876 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1877 
1878 	/* MIB Counter Clear Mode clear */
1879 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
1880         reg &= ~YU_PAR_MIB_CLR;
1881 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1882 
1883 	/* receive control reg */
1884 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
1885 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1886 
1887 	/* transmit parameter register */
1888 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
1889 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
1890 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
1891 
1892 	/* serial mode register */
1893 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
1894 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
1895 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
1896 		      YU_SMR_IPG_DATA(0x1e));
1897 
1898 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
1899 	/* Setup Yukon's address */
1900 	for (i = 0; i < 3; i++) {
1901 		/* Write Source Address 1 (unicast filter) */
1902 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
1903 			      sc_if->sk_enaddr[i * 2] |
1904 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
1905 	}
1906 
1907 	for (i = 0; i < 3; i++) {
1908 		reg = sk_win_read_2(sc_if->sk_softc,
1909 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
1910 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
1911 	}
1912 
1913 	/* Set promiscuous mode */
1914 	msk_setpromisc(sc_if);
1915 
1916 	/* Set multicast filter */
1917 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
1918 	msk_setmulti(sc_if);
1919 
1920 	/* enable interrupt mask for counter overflows */
1921 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
1922 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
1923 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
1924 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
1925 
1926 	/* Configure RX MAC FIFO Flush Mask */
1927 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
1928 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
1929 	    YU_RXSTAT_JABBER;
1930 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
1931 
1932 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
1933 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
1934 		v = SK_TFCTL_OPERATION_ON;
1935 	else
1936 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
1937 	/* Configure RX MAC FIFO */
1938 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
1939 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
1940 
1941 	/* Increase flush threshould to 64 bytes */
1942 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
1943 	    SK_RFCTL_FIFO_THRESHOLD + 1);
1944 
1945 	/* Configure TX MAC FIFO */
1946 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
1947 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
1948 
1949 #if 1
1950 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
1951 #endif
1952 	DPRINTFN(6, ("msk_init_yukon: end\n"));
1953 }
1954 
1955 /*
1956  * Note that to properly initialize any part of the GEnesis chip,
1957  * you first have to take it out of reset mode.
1958  */
1959 int
1960 msk_init(struct ifnet *ifp)
1961 {
1962 	struct sk_if_softc	*sc_if = ifp->if_softc;
1963 	struct sk_softc		*sc = sc_if->sk_softc;
1964 	struct mii_data		*mii = &sc_if->sk_mii;
1965 	int			s;
1966 	uint32_t		imr, sk_imtimer_ticks;
1967 
1968 
1969 	DPRINTFN(2, ("msk_init\n"));
1970 
1971 	s = splnet();
1972 
1973 	/* Cancel pending I/O and free all RX/TX buffers. */
1974 	msk_stop(ifp,0);
1975 
1976 	/* Configure I2C registers */
1977 
1978 	/* Configure XMAC(s) */
1979 	msk_init_yukon(sc_if);
1980 	mii_mediachg(mii);
1981 
1982 	/* Configure transmit arbiter(s) */
1983 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
1984 #if 0
1985 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
1986 #endif
1987 
1988 	/* Configure RAMbuffers */
1989 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
1990 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
1991 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
1992 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
1993 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
1994 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
1995 
1996 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
1997 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
1998 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
1999 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2000 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2001 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2002 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2003 
2004 	/* Configure BMUs */
2005 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2006 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2007 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2008 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_WATERMARK, 0x00000600);
2009 
2010 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2011 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2012 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2013 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_WATERMARK, 0x00000600);
2014 
2015 	/* Make sure the sync transmit queue is disabled. */
2016 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2017 
2018 	/* Init descriptors */
2019 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2020 		aprint_error("%s: initialization failed: no "
2021 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2022 		msk_stop(ifp,0);
2023 		splx(s);
2024 		return ENOBUFS;
2025 	}
2026 
2027 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2028 		aprint_error("%s: initialization failed: no "
2029 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2030 		msk_stop(ifp,0);
2031 		splx(s);
2032 		return ENOBUFS;
2033 	}
2034 
2035 	/* Set interrupt moderation if changed via sysctl. */
2036 	switch (sc->sk_type) {
2037 	case SK_YUKON_EC:
2038 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2039 		break;
2040 	default:
2041 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2042 	}
2043 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2044 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2045 		sk_win_write_4(sc, SK_IMTIMERINIT,
2046 		    SK_IM_USECS(sc->sk_int_mod));
2047 		aprint_verbose("%s: interrupt moderation is %d us\n",
2048 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
2049 	}
2050 
2051 	/* Initialize prefetch engine. */
2052 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2053 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2054 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2055 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2056 	    MSK_RX_RING_ADDR(sc_if, 0));
2057 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2058 	    (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2059 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2060 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2061 
2062 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2063 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2064 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2065 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2066 	    MSK_TX_RING_ADDR(sc_if, 0));
2067 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2068 	    (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2069 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2070 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2071 
2072 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2073 	    sc_if->sk_cdata.sk_rx_prod);
2074 
2075 	/* Configure interrupt handling */
2076 	if (sc_if->sk_port == SK_PORT_A)
2077 		sc->sk_intrmask |= SK_Y2_INTRS1;
2078 	else
2079 		sc->sk_intrmask |= SK_Y2_INTRS2;
2080 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2081 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2082 
2083 	ifp->if_flags |= IFF_RUNNING;
2084 	ifp->if_flags &= ~IFF_OACTIVE;
2085 
2086 	callout_schedule(&sc_if->sk_tick_ch, hz);
2087 
2088 	splx(s);
2089 	return 0;
2090 }
2091 
2092 void
2093 msk_stop(struct ifnet *ifp, int disable)
2094 {
2095 	struct sk_if_softc	*sc_if = ifp->if_softc;
2096 	struct sk_softc		*sc = sc_if->sk_softc;
2097 	struct sk_txmap_entry	*dma;
2098 	int			i;
2099 
2100 	DPRINTFN(2, ("msk_stop\n"));
2101 
2102 	callout_stop(&sc_if->sk_tick_ch);
2103 
2104 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2105 
2106 	/* Stop transfer of Tx descriptors */
2107 
2108 	/* Stop transfer of Rx descriptors */
2109 
2110 	/* Turn off various components of this interface. */
2111 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2112 	SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2113 	SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2114 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2115 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2116 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2117 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2118 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2119 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2120 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2121 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2122 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2123 
2124 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2125 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2126 
2127 	/* Disable interrupts */
2128 	if (sc_if->sk_port == SK_PORT_A)
2129 		sc->sk_intrmask &= ~SK_Y2_INTRS1;
2130 	else
2131 		sc->sk_intrmask &= ~SK_Y2_INTRS2;
2132 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2133 
2134 	SK_XM_READ_2(sc_if, XM_ISR);
2135 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2136 
2137 	/* Free RX and TX mbufs still in the queues. */
2138 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2139 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2140 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2141 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2142 		}
2143 	}
2144 
2145 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2146 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2147 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2148 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2149 #if 1
2150 			SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2151 			    sc_if->sk_cdata.sk_tx_map[i], link);
2152 			sc_if->sk_cdata.sk_tx_map[i] = 0;
2153 #endif
2154 		}
2155 	}
2156 
2157 #if 1
2158 	while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2159 		SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2160 		bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2161 		free(dma, M_DEVBUF);
2162 	}
2163 #endif
2164 }
2165 
2166 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2167 	NULL, NULL);
2168 
2169 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2170 	NULL, NULL);
2171 
2172 #ifdef MSK_DEBUG
2173 void
2174 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2175 {
2176 #define DESC_PRINT(X)					\
2177 	if (X)					\
2178 		printf("txdesc[%d]." #X "=%#x\n",	\
2179 		       idx, X);
2180 
2181 	DESC_PRINT(letoh32(le->sk_addr));
2182 	DESC_PRINT(letoh16(le->sk_len));
2183 	DESC_PRINT(le->sk_ctl);
2184 	DESC_PRINT(le->sk_opcode);
2185 #undef DESC_PRINT
2186 }
2187 
2188 void
2189 msk_dump_bytes(const char *data, int len)
2190 {
2191 	int c, i, j;
2192 
2193 	for (i = 0; i < len; i += 16) {
2194 		printf("%08x  ", i);
2195 		c = len - i;
2196 		if (c > 16) c = 16;
2197 
2198 		for (j = 0; j < c; j++) {
2199 			printf("%02x ", data[i + j] & 0xff);
2200 			if ((j & 0xf) == 7 && j > 0)
2201 				printf(" ");
2202 		}
2203 
2204 		for (; j < 16; j++)
2205 			printf("   ");
2206 		printf("  ");
2207 
2208 		for (j = 0; j < c; j++) {
2209 			int ch = data[i + j] & 0xff;
2210 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2211 		}
2212 
2213 		printf("\n");
2214 
2215 		if (c < 16)
2216 			break;
2217 	}
2218 }
2219 
2220 void
2221 msk_dump_mbuf(struct mbuf *m)
2222 {
2223 	int count = m->m_pkthdr.len;
2224 
2225 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2226 
2227 	while (count > 0 && m) {
2228 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2229 		       m, m->m_data, m->m_len);
2230 		msk_dump_bytes(mtod(m, char *), m->m_len);
2231 
2232 		count -= m->m_len;
2233 		m = m->m_next;
2234 	}
2235 }
2236 #endif
2237 
2238 static int
2239 msk_sysctl_handler(SYSCTLFN_ARGS)
2240 {
2241 	int error, t;
2242 	struct sysctlnode node;
2243 	struct sk_softc *sc;
2244 
2245 	node = *rnode;
2246 	sc = node.sysctl_data;
2247 	t = sc->sk_int_mod;
2248 	node.sysctl_data = &t;
2249 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2250 	if (error || newp == NULL)
2251 		return error;
2252 
2253 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2254 		return EINVAL;
2255 
2256 	/* update the softc with sysctl-changed value, and mark
2257 	   for hardware update */
2258 	sc->sk_int_mod = t;
2259 	sc->sk_int_mod_pending = 1;
2260 	return 0;
2261 }
2262 
2263 /*
2264  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2265  * set up in skc_attach()
2266  */
2267 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2268 {
2269 	int rc;
2270 	const struct sysctlnode *node;
2271 
2272 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2273 	    0, CTLTYPE_NODE, "hw", NULL,
2274 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2275 		goto err;
2276 	}
2277 
2278 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2279 	    0, CTLTYPE_NODE, "msk",
2280 	    SYSCTL_DESCR("msk interface controls"),
2281 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2282 		goto err;
2283 	}
2284 
2285 	msk_root_num = node->sysctl_num;
2286 	return;
2287 
2288 err:
2289 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2290 }
2291