xref: /netbsd-src/sys/dev/pci/if_kse.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: if_kse.c,v 1.1 2006/06/30 17:17:09 nisimura Exp $	*/
2 
3 /*
4  * Copyright (c) 2006 Tohru Nishimura
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Tohru Nishimura.
17  * 4. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.1 2006/06/30 17:17:09 nisimura Exp $");
34 
35 #include "bpfilter.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/ioctl.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/queue.h>
47 
48 #include <machine/endian.h>
49 #include <machine/bus.h>
50 #include <machine/intr.h>
51 
52 #include <net/if.h>
53 #include <net/if_media.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 
57 #if NBPFILTER > 0
58 #include <net/bpf.h>
59 #endif
60 
61 #include <dev/pci/pcivar.h>
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcidevs.h>
64 
65 #define CSR_READ_4(sc, off) \
66 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
67 #define CSR_WRITE_4(sc, off, val) \
68 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
69 #define CSR_READ_2(sc, off) \
70 	    bus_space_read_2(sc->sc_st, sc->sc_sh, off)
71 #define CSR_WRITE_2(sc, off, val) \
72 	    bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
73 
74 #define MDTXC	0x000	/* DMA transmit control */
75 #define MDRXC	0x004	/* DMA receive control */
76 #define MDTSC	0x008	/* DMA transmit start */
77 #define MDRSC	0x00c	/* DMA receive start */
78 #define TDLB	0x010	/* transmit descriptor list base */
79 #define RDLB	0x014	/* receive descriptor list base */
80 #define INTEN	0x028	/* interrupt enable */
81 #define INTST	0x02c	/* interrupt status */
82 #define MARL	0x200	/* MAC address low */
83 #define MARM	0x202	/* MAC address middle */
84 #define MARH	0x204	/* MAC address high */
85 #define GRR	0x216	/* global reset */
86 #define CIDR	0x400	/* chip ID and enable */
87 #define CGCR	0x40a	/* chip global control */
88 #define P1CR4	0x512	/* port 1 control 4 */
89 #define P1SR	0x514	/* port 1 status */
90 
91 #define TXC_BS_MSK	0x3f000000	/* burst size */
92 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
93 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
94 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
95 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
96 #define TXC_FCE		(1U<<9)		/* enable flowcontrol */
97 #define TXC_EP		(1U<<2)		/* enable automatic padding */
98 #define TXC_AC		(1U<<1)		/* add CRC to frame */
99 #define TXC_TEN		(1)		/* enable DMA to run */
100 
101 #define RXC_BS_MSK	0x3f000000	/* burst size */
102 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
103 #define RXC_UCG		(1U<<18)	/* run UDP checksum */
104 #define RXC_TCG		(1U<<17)	/* run TDP checksum */
105 #define RXC_ICG		(1U<<16)	/* run IP checksum */
106 #define RXC_FCE		(1U<<9)		/* enable flowcontrol */
107 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
108 #define RXC_RM		(1U<<5)		/* receive multicast frame */
109 #define RXC_RU		(1U<<4)		/* receive unicast frame */
110 #define RXC_RE		(1U<<3)		/* accept error frame */
111 #define RXC_RA		(1U<<2)		/* receive all frame */
112 #define RXC_MA		(1U<<1)		/* receive through hash filter */
113 #define RXC_REN		(1)		/* enable DMA to run */
114 
115 #define INT_DMLCS	(1U<<31)	/* link status change */
116 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
117 #define INT_DMRS	(1U<<29)	/* frame was received */
118 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
119 
120 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
121 
122 #define R0_OWN		(1U<<31)	/* desc is empty */
123 #define R0_FS		(1U<<30)	/* first segment of frame */
124 #define R0_LS		(1U<<29)	/* last segment of frame */
125 #define R0_IPE		(1U<<28)	/* IP checksum error */
126 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
127 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
128 #define R0_ES		(1U<<25)	/* error summary */
129 #define R0_MF		(1U<<24)	/* multicast frame */
130 #define R0_RE		(1U<<19)	/* framing error */
131 #define R0_TL		(1U<<18)	/* too long frame */
132 #define R0_RF		(1U<<17)	/* damaged runt frame */
133 #define R0_CE		(1U<<16)	/* CRC error */
134 #define R0_FT		(1U<<15)	/* frame type */
135 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
136 
137 #define T1_IC		(1U<<31)	/* post interrupt on complete */
138 #define T1_FS		(1U<<30)	/* first segment of frame */
139 #define T1_LS		(1U<<29)	/* last segment of frame */
140 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
141 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
142 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
143 #define T1_TER		(1U<<25)	/* end of ring */
144 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
145 
146 #define R1_RER		(1U<<25)	/* end of ring */
147 #define R1_RBS_MASK	0x7ff		/* segment size 10:0 */
148 
149 #define KSE_NTXSEGS		16
150 #define KSE_TXQUEUELEN		64
151 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
152 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
153 #define KSE_NTXDESC		256
154 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
155 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
156 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
157 
158 #define KSE_NRXDESC		64
159 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
160 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
161 
162 struct tdes {
163 	unsigned t0, t1, t2, t3;
164 };
165 
166 struct rdes {
167 	unsigned r0, r1, r2, r3;
168 };
169 
170 struct kse_control_data {
171 	struct tdes kcd_txdescs[KSE_NTXDESC];
172 	struct rdes kcd_rxdescs[KSE_NRXDESC];
173 };
174 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
175 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
176 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
177 
178 struct kse_txsoft {
179 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
180 	bus_dmamap_t txs_dmamap;	/* our DMA map */
181 	int txs_firstdesc;		/* first descriptor in packet */
182 	int txs_lastdesc;		/* last descriptor in packet */
183 	int txs_ndesc;			/* # of descriptors used */
184 };
185 
186 struct kse_rxsoft {
187 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
188 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
189 };
190 
191 struct kse_softc {
192 	struct device sc_dev;		/* generic device information */
193 	bus_space_tag_t sc_st;		/* bus space tag */
194 	bus_space_handle_t sc_sh;	/* bus space handle */
195 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
196 	struct ethercom sc_ethercom;	/* Ethernet common data */
197 	void *sc_ih;			/* interrupt cookie */
198 
199 	struct ifmedia sc_media;	/* ifmedia information */
200 	int sc_media_status;		/* PHY */
201 	unsigned sc_media_active;	/* PHY */
202 	struct callout sc_callout;	/* tick callout */
203 
204 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
205 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
206 
207 	struct kse_control_data *sc_control_data;
208 #define sc_txdescs      sc_control_data->kcd_txdescs
209 #define sc_rxdescs      sc_control_data->kcd_rxdescs
210 
211 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
212 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
213 	int sc_txfree;			/* number of free Tx descriptors */
214 	int sc_txnext;			/* next ready Tx descriptor */
215 	int sc_txsfree;			/* number of free Tx jobs */
216 	int sc_txsnext;			/* next ready Tx job */
217 	int sc_txsdirty;		/* dirty Tx jobs */
218 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
219 
220 	unsigned sc_txc, sc_rxc;
221 	unsigned sc_t1csum, sc_mcsum;
222 	unsigned sc_chip;
223 };
224 
225 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
226 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
227 
228 #define KSE_CDTXSYNC(sc, x, n, ops)					\
229 do {									\
230 	int __x, __n;							\
231 									\
232 	__x = (x);							\
233 	__n = (n);							\
234 									\
235 	/* If it will wrap around, sync to the end of the ring. */	\
236 	if ((__x + __n) > KSE_NTXDESC) {				\
237 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
238 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
239 		    (KSE_NTXDESC - __x), (ops));			\
240 		__n -= (KSE_NTXDESC - __x);				\
241 		__x = 0;						\
242 	}								\
243 									\
244 	/* Now sync whatever is left. */				\
245 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
246 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
247 } while (/*CONSTCOND*/0)
248 
249 #define KSE_CDRXSYNC(sc, x, ops)					\
250 do {									\
251 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
252 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
253 } while (/*CONSTCOND*/0)
254 
255 #define KSE_INIT_RXDESC(sc, x)						\
256 do {									\
257 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
258 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
259 	struct mbuf *__m = __rxs->rxs_mbuf;				\
260 									\
261 	/*								\
262 	 * Note: may be able to scoot the packet forward 2 bytes for	\
263 	 * the alignment. Unclear KS8842 Rx DMA really mandates to have	\
264 	 * 32-bit buffer boundary. Tx DMA has no alignment limitation.	\
265 	 */								\
266 	__m->m_data = __m->m_ext.ext_buf;				\
267 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
268 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
269 	__rxd->r0 = R0_OWN;						\
270 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
271 } while (/*CONSTCOND*/0)
272 
273 unsigned kse_burstsize = 16;	/* DMA burst length tuning knob */
274 
275 #ifdef KSEDIAGNOSTIC
276 unsigned kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
277 #endif
278 
279 static int kse_match(struct device *, struct cfdata *, void *);
280 static void kse_attach(struct device *, struct device *, void *);
281 
282 CFATTACH_DECL(kse, sizeof(struct kse_softc),
283     kse_match, kse_attach, NULL, NULL);
284 
285 static int kse_ioctl(struct ifnet *, u_long, caddr_t);
286 static void kse_start(struct ifnet *);
287 static void kse_watchdog(struct ifnet *);
288 static int kse_init(struct ifnet *);
289 static void kse_stop(struct ifnet *, int);
290 static void kse_reset(struct kse_softc *);
291 static void kse_set_filter(struct kse_softc *);
292 static int add_rxbuf(struct kse_softc *, int);
293 static void rxdrain(struct kse_softc *);
294 static int kse_intr(void *);
295 static void rxintr(struct kse_softc *);
296 static void txreap(struct kse_softc *);
297 static void lnkchg(struct kse_softc *);
298 static int ifmedia_upd(struct ifnet *);
299 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
300 static void phy_tick(void *);
301 
302 static int
303 kse_match(struct device *parent, struct cfdata *match, void *aux)
304 {
305 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
306 
307 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
308 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
309 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
310 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
311 		return 1;
312 
313 	return 0;
314 }
315 
316 static void
317 kse_attach(struct device *parent, struct device *self, void *aux)
318 {
319 	struct kse_softc *sc = (struct kse_softc *)self;
320 	struct pci_attach_args *pa = aux;
321 	pci_chipset_tag_t pc = pa->pa_pc;
322 	pci_intr_handle_t ih;
323 	const char *intrstr;
324 	struct ifnet *ifp;
325 	uint8_t enaddr[ETHER_ADDR_LEN];
326 	bus_dma_segment_t seg;
327 	int error, i, nseg;
328 	pcireg_t pmode;
329 	int pmreg;
330 
331 	if (pci_mapreg_map(pa, 0x10,
332 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
333 	    0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
334 		printf(": unable to map device registers\n");
335 		return;
336 	}
337 
338 	sc->sc_dmat = pa->pa_dmat;
339 
340 	/* Make sure bus mastering is enabled. */
341 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
342 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
343 	    PCI_COMMAND_MASTER_ENABLE);
344 
345 	/* Get it out of power save mode, if needed. */
346 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
347 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
348 		    PCI_PMCSR_STATE_MASK;
349 		if (pmode == PCI_PMCSR_STATE_D3) {
350 			/*
351 			 * The card has lost all configuration data in
352 			 * this state, so punt.
353 			 */
354 			printf("%s: unable to wake from power state D3\n",
355 			    sc->sc_dev.dv_xname);
356 			return;
357 		}
358 		if (pmode != PCI_PMCSR_STATE_D0) {
359 			printf("%s: waking up from power date D%d\n",
360 			    sc->sc_dev.dv_xname, pmode);
361 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
362 			    PCI_PMCSR_STATE_D0);
363 		}
364 	}
365 
366 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
367 	printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
368 	    sc->sc_chip, PCI_REVISION(pa->pa_class));
369 
370 	/*
371 	 * Read the Ethernet address from the EEPROM.
372 	 */
373 	i = CSR_READ_2(sc, MARL);
374 	enaddr[5] = i; enaddr[4] = i >> 8;
375 	i = CSR_READ_2(sc, MARM);
376 	enaddr[3] = i; enaddr[2] = i >> 8;
377 	i = CSR_READ_2(sc, MARH);
378 	enaddr[1] = i; enaddr[0] = i >> 8;
379 	printf("%s: Ethernet address: %s\n",
380 		sc->sc_dev.dv_xname, ether_sprintf(enaddr));
381 
382 	/*
383 	 * Enable chip function.
384 	 */
385 	CSR_WRITE_2(sc, CIDR, 1);
386 
387 	/*
388 	 * Map and establish our interrupt.
389 	 */
390 	if (pci_intr_map(pa, &ih)) {
391 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
392 		return;
393 	}
394 	intrstr = pci_intr_string(pc, ih);
395 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
396 	if (sc->sc_ih == NULL) {
397 		printf("%s: unable to establish interrupt",
398 		    sc->sc_dev.dv_xname);
399 		if (intrstr != NULL)
400 			printf(" at %s", intrstr);
401 		printf("\n");
402 		return;
403 	}
404 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
405 
406 	/*
407 	 * Allocate the control data structures, and create and load the
408 	 * DMA map for it.
409 	 */
410 	error = bus_dmamem_alloc(sc->sc_dmat,
411 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
412 	if (error != 0) {
413 		printf("%s: unable to allocate control data, error = %d\n",
414 		    sc->sc_dev.dv_xname, error);
415 		goto fail_0;
416 	}
417 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
418 	    sizeof(struct kse_control_data), (caddr_t *)&sc->sc_control_data,
419 	    BUS_DMA_COHERENT);
420 	if (error != 0) {
421 		printf("%s: unable to map control data, error = %d\n",
422 		    sc->sc_dev.dv_xname, error);
423 		goto fail_1;
424 	}
425 	error = bus_dmamap_create(sc->sc_dmat,
426 	    sizeof(struct kse_control_data), 1,
427 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
428 	if (error != 0) {
429 		printf("%s: unable to create control data DMA map, "
430 		    "error = %d\n", sc->sc_dev.dv_xname, error);
431 		goto fail_2;
432 	}
433 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
434 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
435 	if (error != 0) {
436 		printf("%s: unable to load control data DMA map, error = %d\n",
437 		    sc->sc_dev.dv_xname, error);
438 		goto fail_3;
439 	}
440 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
441 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
442 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
443 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
444 			printf("%s: unable to create tx DMA map %d, "
445 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
446 			goto fail_4;
447 		}
448 	}
449 	for (i = 0; i < KSE_NRXDESC; i++) {
450 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
451 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
452 			printf("%s: unable to create rx DMA map %d, "
453 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
454 			goto fail_5;
455 		}
456 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
457 	}
458 
459 	callout_init(&sc->sc_callout);
460 
461 	ifmedia_init(&sc->sc_media, 0, ifmedia_upd, ifmedia_sts);
462 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
463 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
464 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
465 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
466 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
467 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
468 
469 	printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
470 	    sc->sc_dev.dv_xname);
471 
472 	ifp = &sc->sc_ethercom.ec_if;
473 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
474 	ifp->if_softc = sc;
475 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
476 	ifp->if_ioctl = kse_ioctl;
477 	ifp->if_start = kse_start;
478 	ifp->if_watchdog = kse_watchdog;
479 	ifp->if_init = kse_init;
480 	ifp->if_stop = kse_stop;
481 	IFQ_SET_READY(&ifp->if_snd);
482 
483 	/*
484 	 * KSZ8842 can handle 802.1Q VLAN-sized frames,
485 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
486 	 */
487 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
488 	ifp->if_capabilities |=
489 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
490 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
491 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
492 
493 	if_attach(ifp);
494 	ether_ifattach(ifp, enaddr);
495 	return;
496 
497  fail_5:
498 	for (i = 0; i < KSE_NRXDESC; i++) {
499 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
500 			bus_dmamap_destroy(sc->sc_dmat,
501 			    sc->sc_rxsoft[i].rxs_dmamap);
502 	}
503  fail_4:
504 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
505 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
506 			bus_dmamap_destroy(sc->sc_dmat,
507 			    sc->sc_txsoft[i].txs_dmamap);
508 	}
509 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
510  fail_3:
511 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
512  fail_2:
513 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
514 	    sizeof(struct kse_control_data));
515  fail_1:
516 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
517  fail_0:
518 	return;
519 }
520 
521 static int
522 kse_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
523 {
524 	struct kse_softc *sc = ifp->if_softc;
525 	struct ifreq *ifr = (struct ifreq *)data;
526 	int s, error;
527 
528 	s = splnet();
529 
530 	switch (cmd) {
531 	case SIOCSIFMEDIA:
532 	case SIOCGIFMEDIA:
533 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
534 		break;
535 
536 	default:
537 		error = ether_ioctl(ifp, cmd, data);
538 		if (cmd == ENETRESET) {
539 			/*
540 			 * Multicast list has changed; set the hardware filter
541 			 * accordingly.
542 			 */
543 			kse_set_filter(sc);
544 			error = 0;
545 		}
546 		break;
547 	}
548 
549 	kse_start(ifp);
550 
551 	splx(s);
552 	return error;
553 }
554 
555 #define KSE_INTRS (INT_DMLCS|INT_DMTS|INT_DMRS|INT_DMRBUS)
556 
557 static int
558 kse_init(struct ifnet *ifp)
559 {
560 	struct kse_softc *sc = ifp->if_softc;
561 	unsigned paddr;
562 	int i, error = 0;
563 
564 	/* cancel pending I/O */
565 	kse_stop(ifp, 0);
566 
567 	/* reset all registers but PCI configuration */
568 	kse_reset(sc);
569 
570 	/* craft Tx descriptor ring */
571 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
572 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
573 		sc->sc_txdescs[i].t3 = paddr;
574 		paddr += sizeof(struct tdes);
575 	}
576 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
577 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
578 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
579 	sc->sc_txfree = KSE_NTXDESC;
580 	sc->sc_txnext = 0;
581 
582 	for (i = 0; i < KSE_TXQUEUELEN; i++)
583 		sc->sc_txsoft[i].txs_mbuf = NULL;
584 	sc->sc_txsfree = KSE_TXQUEUELEN;
585 	sc->sc_txsnext = 0;
586 	sc->sc_txsdirty = 0;
587 
588 	/* craft Rx descriptor ring */
589 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
590 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
591 		sc->sc_rxdescs[i].r3 = paddr;
592 		paddr += sizeof(struct rdes);
593 	}
594 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
595 	for (i = 0; i < KSE_NRXDESC; i++) {
596 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
597 			if ((error = add_rxbuf(sc, i)) != 0) {
598 				printf("%s: unable to allocate or map rx "
599 				    "buffer %d, error = %d\n",
600 				     sc->sc_dev.dv_xname, i, error);
601 				rxdrain(sc);
602 				goto out;
603 			}
604 		}
605 		else
606 			KSE_INIT_RXDESC(sc, i);
607 	}
608 	sc->sc_rxptr = 0;
609 
610 	/* hand Tx/Rx rings to HW */
611 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
612 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
613 
614 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
615 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
616 	if (ifp->if_flags & IFF_PROMISC)
617 		sc->sc_rxc |= RXC_RA;
618 	if (ifp->if_flags & IFF_BROADCAST)
619 		sc->sc_rxc |= RXC_RB;
620 
621 	sc->sc_t1csum = sc->sc_mcsum = 0;
622 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
623 		sc->sc_rxc |= RXC_ICG;
624 		sc->sc_mcsum |= M_CSUM_IPv4;
625 	}
626 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
627 		sc->sc_txc |= TXC_ICG;
628 		sc->sc_t1csum |= T1_IPCKG;
629 	}
630 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
631 		sc->sc_rxc |= RXC_TCG;
632 		sc->sc_mcsum |= M_CSUM_TCPv4;
633 	}
634 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
635 		sc->sc_txc |= TXC_TCG;
636 		sc->sc_t1csum |= T1_TCPCKG;
637 	}
638 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
639 		sc->sc_rxc |= RXC_UCG;
640 		sc->sc_mcsum |= M_CSUM_UDPv4;
641 	}
642 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
643 		sc->sc_txc |= TXC_UCG;
644 		sc->sc_t1csum |= T1_UDPCKG;
645 	}
646 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
647 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
648 
649 	/* set current media */
650 	(void)ifmedia_upd(ifp);
651 
652 	/* enable transmitter and receiver */
653 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
654 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
655 	CSR_WRITE_4(sc, MDRSC, 1);
656 
657 	/* enable interrupts */
658 	CSR_WRITE_4(sc, INTST, ~0);
659 	CSR_WRITE_4(sc, INTEN, KSE_INTRS);
660 
661 	ifp->if_flags |= IFF_RUNNING;
662 	ifp->if_flags &= ~IFF_OACTIVE;
663 
664 	/* start one second timer */
665 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
666 
667  out:
668 	if (error) {
669 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
670 		ifp->if_timer = 0;
671 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
672 	}
673 	return error;
674 }
675 
676 static void
677 kse_stop(struct ifnet *ifp, int disable)
678 {
679 	struct kse_softc *sc = ifp->if_softc;
680 	struct kse_txsoft *txs;
681 	int i;
682 
683 	callout_stop(&sc->sc_callout);
684 
685 	sc->sc_txc &= ~TXC_TEN;
686 	sc->sc_rxc &= ~RXC_REN;
687 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
688 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
689 
690 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
691 		txs = &sc->sc_txsoft[i];
692 		if (txs->txs_mbuf != NULL) {
693 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
694 			m_freem(txs->txs_mbuf);
695 			txs->txs_mbuf = NULL;
696 		}
697 	}
698 
699 	if (disable)
700 		rxdrain(sc);
701 
702 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
703 	ifp->if_timer = 0;
704 }
705 
706 static void
707 kse_reset(struct kse_softc *sc)
708 {
709 
710 	CSR_WRITE_2(sc, GRR, 1);
711 	delay(1000); /* PDF does not mention the delay amount */
712 	CSR_WRITE_2(sc, GRR, 0);
713 
714 	CSR_WRITE_2(sc, CIDR, 1);
715 }
716 
717 static void
718 kse_watchdog(struct ifnet *ifp)
719 {
720 	struct kse_softc *sc = ifp->if_softc;
721 
722 	/*
723 	 * Since we're not interrupting every packet, sweep
724 	 * up before we report an error.
725 	 */
726 	txreap(sc);
727 
728 	if (sc->sc_txfree != KSE_NTXDESC) {
729 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
730 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
731 		    sc->sc_txnext);
732 		ifp->if_oerrors++;
733 
734 		/* Reset the interface. */
735 		kse_init(ifp);
736 	}
737 	else if (ifp->if_flags & IFF_DEBUG)
738 		printf("%s: recovered from device timeout\n",
739 		    sc->sc_dev.dv_xname);
740 
741 	/* Try to get more packets going. */
742 	kse_start(ifp);
743 }
744 
745 static void
746 kse_start(struct ifnet *ifp)
747 {
748 	struct kse_softc *sc = ifp->if_softc;
749 	struct mbuf *m0;
750 	struct kse_txsoft *txs;
751 	bus_dmamap_t dmamap;
752 	int error, nexttx, lasttx, ofree, seg;
753 
754 	lasttx = -1;
755 
756 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
757 		return;
758 
759 	/*
760 	 * Remember the previous number of free descriptors.
761 	 */
762 	ofree = sc->sc_txfree;
763 
764 	/*
765 	 * Loop through the send queue, setting up transmit descriptors
766 	 * until we drain the queue, or use up all available transmit
767 	 * descriptors.
768 	 */
769 	for (;;) {
770 		IFQ_POLL(&ifp->if_snd, m0);
771 		if (m0 == NULL)
772 			break;
773 
774 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
775 			txreap(sc);
776 			if (sc->sc_txsfree == 0)
777 				break;
778 		}
779 		txs = &sc->sc_txsoft[sc->sc_txsnext];
780 		dmamap = txs->txs_dmamap;
781 
782 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
783 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
784 		if (error) {
785 			if (error == EFBIG) {
786 				printf("%s: Tx packet consumes too many "
787 				    "DMA segments, dropping...\n",
788 				    sc->sc_dev.dv_xname);
789 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
790 				    m_freem(m0);
791 				    continue;
792 			}
793 			/* Short on resources, just stop for now. */
794 			break;
795 		}
796 
797 		if (dmamap->dm_nsegs > sc->sc_txfree) {
798 			/*
799 			 * Not enough free descriptors to transmit this
800 			 * packet.  We haven't committed anything yet,
801 			 * so just unload the DMA map, put the packet
802 			 * back on the queue, and punt.	 Notify the upper
803 			 * layer that there are not more slots left.
804 			 */
805 			ifp->if_flags |= IFF_OACTIVE;
806 			bus_dmamap_unload(sc->sc_dmat, dmamap);
807 			break;
808 		}
809 
810 		IFQ_DEQUEUE(&ifp->if_snd, m0);
811 
812 		/*
813 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
814 		 */
815 
816 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
817 		    BUS_DMASYNC_PREWRITE);
818 
819 		for (nexttx = sc->sc_txnext, seg = 0;
820 		     seg < dmamap->dm_nsegs;
821 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
822 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
823 			/*
824 			 * If this is the first descriptor we're
825 			 * enqueueing, don't set the OWN bit just
826 			 * yet.	 That could cause a race condition.
827 			 * We'll do it below.
828 			 */
829 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
830 			tdes->t1 = sc->sc_t1csum
831 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
832 			if (nexttx != sc->sc_txnext)
833 				tdes->t0 = T0_OWN;
834 			lasttx = nexttx;
835 		}
836 #if 0
837 		/*
838 		 * T1_IC bit could schedule Tx frame done interrupt here,
839 		 * but this driver takes a "shoot away" Tx strategy.
840 		 */
841 #else
842     {
843 		/*
844 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
845 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
846 		 * time and NFS stops to proceed until kse_watchdog()
847 		 * calls txreap() to reclaim the unack'ed mbuf.
848 		 * It's painful to tranverse every mbuf chain to determine
849 		 * whether someone is waiting for Tx completion.
850 		 */
851 		struct mbuf *m = m0;
852 		do {
853 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
854 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
855 				break;
856 			}
857 		} while ((m = m->m_next) != NULL);
858     }
859 #endif
860 
861 		/* write last T0_OWN bit of the 1st segment */
862 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
863 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
864 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
865 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
866 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
867 
868 		/* tell DMA start transmit */
869 		CSR_WRITE_4(sc, MDTSC, 1);
870 
871 		txs->txs_mbuf = m0;
872 		txs->txs_firstdesc = sc->sc_txnext;
873 		txs->txs_lastdesc = lasttx;
874 		txs->txs_ndesc = dmamap->dm_nsegs;
875 
876 		sc->sc_txfree -= txs->txs_ndesc;
877 		sc->sc_txnext = nexttx;
878 		sc->sc_txsfree--;
879 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
880 #if NBPFILTER > 0
881 		/*
882 		 * Pass the packet to any BPF listeners.
883 		 */
884 		if (ifp->if_bpf)
885 			bpf_mtap(ifp->if_bpf, m0);
886 #endif /* NBPFILTER > 0 */
887 	}
888 
889 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
890 		/* No more slots left; notify upper layer. */
891 		ifp->if_flags |= IFF_OACTIVE;
892 	}
893 	if (sc->sc_txfree != ofree) {
894 		/* Set a watchdog timer in case the chip flakes out. */
895 		ifp->if_timer = 5;
896 	}
897 }
898 
899 static void
900 kse_set_filter(struct kse_softc *sc)
901 {
902 #if 0 /* later */
903 	struct ether_multistep step;
904 	struct ether_multi *enm;
905 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
906 	int cnt = 0;
907 
908 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
909 	while (enm != NULL) {
910 		if (memcmp(enm->enm_addrlo,
911 		    enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
912 			;
913 		}
914 		ETHER_NEXT_MULTI(step, enm);
915 		cnt++;
916 	}
917 	return;
918 #endif
919 }
920 
921 static int
922 add_rxbuf(struct kse_softc *sc, int idx)
923 {
924 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
925 	struct mbuf *m;
926 	int error;
927 
928 	MGETHDR(m, M_DONTWAIT, MT_DATA);
929 	if (m == NULL)
930 		return ENOBUFS;
931 
932 	MCLGET(m, M_DONTWAIT);
933 	if ((m->m_flags & M_EXT) == 0) {
934 		m_freem(m);
935 		return ENOBUFS;
936 	}
937 
938 	if (rxs->rxs_mbuf != NULL)
939 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
940 
941 	rxs->rxs_mbuf = m;
942 
943 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
944 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
945 	if (error) {
946 		printf("%s: can't load rx DMA map %d, error = %d\n",
947 		    sc->sc_dev.dv_xname, idx, error);
948 		panic("kse_add_rxbuf");
949 	}
950 
951 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
952 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
953 
954 	KSE_INIT_RXDESC(sc, idx);
955 
956 	return 0;
957 }
958 
959 static void
960 rxdrain(struct kse_softc *sc)
961 {
962 	struct kse_rxsoft *rxs;
963 	int i;
964 
965 	for (i = 0; i < KSE_NRXDESC; i++) {
966 		rxs = &sc->sc_rxsoft[i];
967 		if (rxs->rxs_mbuf != NULL) {
968 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
969 			m_freem(rxs->rxs_mbuf);
970 			rxs->rxs_mbuf = NULL;
971 		}
972 	}
973 }
974 
975 static int
976 kse_intr(void *arg)
977 {
978 	struct kse_softc *sc = arg;
979 	unsigned isr;
980 
981 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
982 		return 0;
983 
984 	if (isr & INT_DMRS)
985 		rxintr(sc);
986 	if (isr & INT_DMTS)
987 		txreap(sc);
988 	if (isr & INT_DMLCS)
989 		lnkchg(sc);
990 	if (isr & INT_DMRBUS)
991 		printf("%s: Rx descriptor full\n", sc->sc_dev.dv_xname);
992 
993 	CSR_WRITE_4(sc, INTST, isr);
994 	return 1;
995 }
996 
997 static void
998 rxintr(struct kse_softc *sc)
999 {
1000 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1001 	struct kse_rxsoft *rxs;
1002 	struct mbuf *m;
1003 	unsigned rxstat;
1004 	int i, len;
1005 
1006 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1007 		rxs = &sc->sc_rxsoft[i];
1008 
1009 		KSE_CDRXSYNC(sc, i,
1010 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1011 
1012 		rxstat = sc->sc_rxdescs[i].r0;
1013 
1014 		if (rxstat & R0_OWN) /* desc is left empty */
1015 			break;
1016 
1017 		/* R0_FS|R0_LS must have been marked for this desc */
1018 
1019 		if (rxstat & R0_ES) {
1020 			ifp->if_ierrors++;
1021 #define PRINTERR(bit, str)						\
1022 			if (rxstat & (bit))				\
1023 				printf("%s: receive error: %s\n",	\
1024 				    sc->sc_dev.dv_xname, str)
1025 			PRINTERR(R0_TL, "frame too long");
1026 			PRINTERR(R0_RF, "runt frame");
1027 			PRINTERR(R0_CE, "bad FCS");
1028 #undef PRINTERR
1029 			KSE_INIT_RXDESC(sc, i);
1030 			continue;
1031 		}
1032 
1033 		/* HW errata; frame might be too small or too large */
1034 
1035 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1036 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1037 
1038 		len = rxstat & R0_FL_MASK;
1039 		m = rxs->rxs_mbuf;
1040 
1041 		if (add_rxbuf(sc, i) != 0) {
1042 			ifp->if_ierrors++;
1043 			KSE_INIT_RXDESC(sc, i);
1044 			bus_dmamap_sync(sc->sc_dmat,
1045 			    rxs->rxs_dmamap, 0,
1046 			    rxs->rxs_dmamap->dm_mapsize,
1047 			    BUS_DMASYNC_PREREAD);
1048 			continue;
1049 		}
1050 
1051 		ifp->if_ipackets++;
1052 		m->m_flags |= M_HASFCS;
1053 		m->m_pkthdr.rcvif = ifp;
1054 		m->m_pkthdr.len = m->m_len = len;
1055 
1056 		if (sc->sc_mcsum) {
1057 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1058 			if (rxstat & R0_IPE)
1059 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1060 			if (rxstat & (R0_TCPE | R0_UDPE))
1061 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1062 		}
1063 #if NBPFILTER > 0
1064 		if (ifp->if_bpf)
1065 			bpf_mtap(ifp->if_bpf, m);
1066 #endif /* NBPFILTER > 0 */
1067 		(*ifp->if_input)(ifp, m);
1068 #ifdef KSEDIAGNOSTIC
1069 		if (kse_monitor_rxintr > 0) {
1070 			printf("m stat %x data %p len %d\n",
1071 			    rxstat, m->m_data, m->m_len);
1072 		}
1073 #endif
1074 	}
1075 	sc->sc_rxptr = i;
1076 }
1077 
1078 static void
1079 txreap(struct kse_softc *sc)
1080 {
1081 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1082 	struct kse_txsoft *txs;
1083 	unsigned txstat;
1084 	int i;
1085 
1086 	ifp->if_flags &= ~IFF_OACTIVE;
1087 
1088 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1089 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1090 		txs = &sc->sc_txsoft[i];
1091 
1092 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1093 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1094 
1095 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1096 
1097 		if (txstat & T0_OWN) /* desc is still in use */
1098 			break;
1099 
1100 		/* there is no way to tell transmission status per frame */
1101 
1102 		ifp->if_opackets++;
1103 
1104 		sc->sc_txfree += txs->txs_ndesc;
1105 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1106 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1107 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1108 		m_freem(txs->txs_mbuf);
1109 		txs->txs_mbuf = NULL;
1110 	}
1111 	sc->sc_txsdirty = i;
1112 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
1113 		ifp->if_timer = 0;
1114 }
1115 
1116 static void
1117 lnkchg(struct kse_softc *sc)
1118 {
1119 	struct ifmediareq ifmr;
1120 
1121 #if 0 /* rambling link status */
1122 	printf("%s: link %s\n", sc->sc_dev.dv_xname,
1123 	    (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1124 #endif
1125 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1126 }
1127 
1128 static int
1129 ifmedia_upd(struct ifnet *ifp)
1130 {
1131 	struct kse_softc *sc = ifp->if_softc;
1132 	struct ifmedia *ifm = &sc->sc_media;
1133 	unsigned ctl;
1134 
1135 	ctl = 0;
1136 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1137 		ctl |= (1U << 13); /* restart AN */
1138 		ctl |= (1U << 7);  /* enable AN */
1139 		ctl |= (1U << 4);  /* advertise flow control pause */
1140 		ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1141 	}
1142 	else {
1143 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1144 			ctl |= (1U << 6);
1145 		if (ifm->ifm_media & IFM_FDX)
1146 			ctl |= (1U << 5);
1147 	}
1148 	CSR_WRITE_2(sc, P1CR4, ctl);
1149 
1150 	sc->sc_media_active = IFM_NONE;
1151 	sc->sc_media_status = IFM_AVALID;
1152 
1153 	return 0;
1154 }
1155 
1156 static void
1157 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1158 {
1159 	struct kse_softc *sc = ifp->if_softc;
1160 	struct ifmedia *ifm = &sc->sc_media;
1161 	unsigned ctl, sts, result;
1162 
1163 	ifmr->ifm_status = IFM_AVALID;
1164 	ifmr->ifm_active = IFM_ETHER;
1165 
1166 	ctl = CSR_READ_2(sc, P1CR4);
1167 	sts = CSR_READ_2(sc, P1SR);
1168 	if ((sts & (1U << 5)) == 0) {
1169 		ifmr->ifm_active |= IFM_NONE;
1170 		goto out; /* link is down */
1171 	}
1172 	ifmr->ifm_status |= IFM_ACTIVE;
1173 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1174 		if ((sts & (1U << 6)) == 0) {
1175 			ifmr->ifm_active |= IFM_NONE;
1176 			goto out; /* negotiation in progress */
1177 		}
1178 		result = ctl & sts & 017;
1179 		if (result & (1U << 3))
1180 			ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1181 		else if (result & (1U << 2))
1182 			ifmr->ifm_active |= IFM_100_TX;
1183 		else if (result & (1U << 1))
1184 			ifmr->ifm_active |= IFM_10_T|IFM_FDX;
1185 		else if (result & (1U << 0))
1186 			ifmr->ifm_active |= IFM_10_T;
1187 		else
1188 			ifmr->ifm_active |= IFM_NONE;
1189 		if (ctl & (1U << 4))
1190 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1191 		if (sts & (1U << 4))
1192 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1193 	}
1194 	else {
1195 		ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1196 		if (sts & (1U << 9))
1197 			ifmr->ifm_active |= IFM_FDX;
1198 		if (sts & (1U << 12))
1199 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1200 		if (sts & (1U << 11))
1201 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1202 	}
1203 
1204   out:
1205 	sc->sc_media_status = ifmr->ifm_status;
1206 	sc->sc_media_active = ifmr->ifm_active;
1207 }
1208 
1209 static void
1210 phy_tick(void *arg)
1211 {
1212 	struct kse_softc *sc = arg;
1213 	struct ifmediareq ifmr;
1214 	int s;
1215 
1216 	s = splnet();
1217 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1218 	splx(s);
1219 
1220 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1221 }
1222