xref: /netbsd-src/sys/dev/pci/if_kse.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$NetBSD: if_kse.c,v 1.38 2019/05/29 10:07:29 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Tohru Nishimura.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.38 2019/05/29 10:07:29 msaitoh Exp $");
34 
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/ioctl.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/queue.h>
46 
47 #include <machine/endian.h>
48 #include <sys/bus.h>
49 #include <sys/intr.h>
50 
51 #include <net/if.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 #include <net/bpf.h>
56 
57 #include <dev/pci/pcivar.h>
58 #include <dev/pci/pcireg.h>
59 #include <dev/pci/pcidevs.h>
60 
61 #define CSR_READ_4(sc, off) \
62 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
63 #define CSR_WRITE_4(sc, off, val) \
64 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
65 #define CSR_READ_2(sc, off) \
66 	    bus_space_read_2(sc->sc_st, sc->sc_sh, off)
67 #define CSR_WRITE_2(sc, off, val) \
68 	    bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
69 
70 #define MDTXC	0x000	/* DMA transmit control */
71 #define MDRXC	0x004	/* DMA receive control */
72 #define MDTSC	0x008	/* DMA transmit start */
73 #define MDRSC	0x00c	/* DMA receive start */
74 #define TDLB	0x010	/* transmit descriptor list base */
75 #define RDLB	0x014	/* receive descriptor list base */
76 #define MTR0	0x020	/* multicast table 31:0 */
77 #define MTR1	0x024	/* multicast table 63:32 */
78 #define INTEN	0x028	/* interrupt enable */
79 #define INTST	0x02c	/* interrupt status */
80 #define MARL	0x200	/* MAC address low */
81 #define MARM	0x202	/* MAC address middle */
82 #define MARH	0x204	/* MAC address high */
83 #define GRR	0x216	/* global reset */
84 #define CIDR	0x400	/* chip ID and enable */
85 #define CGCR	0x40a	/* chip global control */
86 #define IACR	0x4a0	/* indirect access control */
87 #define IADR1	0x4a2	/* indirect access data 66:63 */
88 #define IADR2	0x4a4	/* indirect access data 47:32 */
89 #define IADR3	0x4a6	/* indirect access data 63:48 */
90 #define IADR4	0x4a8	/* indirect access data 15:0 */
91 #define IADR5	0x4aa	/* indirect access data 31:16 */
92 #define P1CR4	0x512	/* port 1 control 4 */
93 #define P1SR	0x514	/* port 1 status */
94 #define P2CR4	0x532	/* port 2 control 4 */
95 #define P2SR	0x534	/* port 2 status */
96 
97 #define TXC_BS_MSK	0x3f000000	/* burst size */
98 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
99 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
100 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
101 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
102 #define TXC_FCE		(1U<<9)		/* enable flowcontrol */
103 #define TXC_EP		(1U<<2)		/* enable automatic padding */
104 #define TXC_AC		(1U<<1)		/* add CRC to frame */
105 #define TXC_TEN		(1)		/* enable DMA to run */
106 
107 #define RXC_BS_MSK	0x3f000000	/* burst size */
108 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
109 #define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
110 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
111 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
112 #define RXC_ICC		(1U<<16)	/* run IP checksum */
113 #define RXC_FCE		(1U<<9)		/* enable flowcontrol */
114 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
115 #define RXC_RM		(1U<<5)		/* receive multicast frame */
116 #define RXC_RU		(1U<<4)		/* receive unicast frame */
117 #define RXC_RE		(1U<<3)		/* accept error frame */
118 #define RXC_RA		(1U<<2)		/* receive all frame */
119 #define RXC_MHTE	(1U<<1)		/* use multicast hash table */
120 #define RXC_REN		(1)		/* enable DMA to run */
121 
122 #define INT_DMLCS	(1U<<31)	/* link status change */
123 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
124 #define INT_DMRS	(1U<<29)	/* frame was received */
125 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
126 
127 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
128 
129 #define R0_OWN		(1U<<31)	/* desc is empty */
130 #define R0_FS		(1U<<30)	/* first segment of frame */
131 #define R0_LS		(1U<<29)	/* last segment of frame */
132 #define R0_IPE		(1U<<28)	/* IP checksum error */
133 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
134 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
135 #define R0_ES		(1U<<25)	/* error summary */
136 #define R0_MF		(1U<<24)	/* multicast frame */
137 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
138 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
139 #define R0_RE		(1U<<19)	/* MII reported error */
140 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
141 #define R0_RF		(1U<<17)	/* damaged runt frame */
142 #define R0_CE		(1U<<16)	/* CRC error */
143 #define R0_FT		(1U<<15)	/* frame type */
144 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
145 
146 #define T1_IC		(1U<<31)	/* post interrupt on complete */
147 #define T1_FS		(1U<<30)	/* first segment of frame */
148 #define T1_LS		(1U<<29)	/* last segment of frame */
149 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
150 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
151 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
152 #define T1_TER		(1U<<25)	/* end of ring */
153 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
154 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
155 
156 #define R1_RER		(1U<<25)	/* end of ring */
157 #define R1_RBS_MASK	0x7fc		/* segment size 10:0 */
158 
159 #define KSE_NTXSEGS		16
160 #define KSE_TXQUEUELEN		64
161 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
162 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
163 #define KSE_NTXDESC		256
164 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
165 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
166 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
167 
168 #define KSE_NRXDESC		64
169 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
170 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
171 
172 struct tdes {
173 	uint32_t t0, t1, t2, t3;
174 };
175 
176 struct rdes {
177 	uint32_t r0, r1, r2, r3;
178 };
179 
180 struct kse_control_data {
181 	struct tdes kcd_txdescs[KSE_NTXDESC];
182 	struct rdes kcd_rxdescs[KSE_NRXDESC];
183 };
184 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
185 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
186 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
187 
188 struct kse_txsoft {
189 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
190 	bus_dmamap_t txs_dmamap;	/* our DMA map */
191 	int txs_firstdesc;		/* first descriptor in packet */
192 	int txs_lastdesc;		/* last descriptor in packet */
193 	int txs_ndesc;			/* # of descriptors used */
194 };
195 
196 struct kse_rxsoft {
197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
199 };
200 
201 struct kse_softc {
202 	device_t sc_dev;		/* generic device information */
203 	bus_space_tag_t sc_st;		/* bus space tag */
204 	bus_space_handle_t sc_sh;	/* bus space handle */
205 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
206 	struct ethercom sc_ethercom;	/* Ethernet common data */
207 	void *sc_ih;			/* interrupt cookie */
208 
209 	struct ifmedia sc_media;	/* ifmedia information */
210 	int sc_media_status;		/* PHY */
211 	int sc_media_active;		/* PHY */
212 	callout_t  sc_callout;		/* MII tick callout */
213 	callout_t  sc_stat_ch;		/* statistics counter callout */
214 
215 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
216 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
217 
218 	struct kse_control_data *sc_control_data;
219 #define sc_txdescs	sc_control_data->kcd_txdescs
220 #define sc_rxdescs	sc_control_data->kcd_rxdescs
221 
222 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
223 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
224 	int sc_txfree;			/* number of free Tx descriptors */
225 	int sc_txnext;			/* next ready Tx descriptor */
226 	int sc_txsfree;			/* number of free Tx jobs */
227 	int sc_txsnext;			/* next ready Tx job */
228 	int sc_txsdirty;		/* dirty Tx jobs */
229 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
230 
231 	uint32_t sc_txc, sc_rxc;
232 	uint32_t sc_t1csum;
233 	int sc_mcsum;
234 	uint32_t sc_inten;
235 
236 	uint32_t sc_chip;
237 	uint8_t sc_altmac[16][ETHER_ADDR_LEN];
238 	uint16_t sc_vlan[16];
239 
240 #ifdef KSE_EVENT_COUNTERS
241 	struct ksext {
242 		char evcntname[3][8];
243 		struct evcnt pev[3][34];
244 	} sc_ext;			/* switch statistics */
245 #endif
246 };
247 
248 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
249 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
250 
251 #define KSE_CDTXSYNC(sc, x, n, ops)					\
252 do {									\
253 	int __x, __n;							\
254 									\
255 	__x = (x);							\
256 	__n = (n);							\
257 									\
258 	/* If it will wrap around, sync to the end of the ring. */	\
259 	if ((__x + __n) > KSE_NTXDESC) {				\
260 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
261 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
262 		    (KSE_NTXDESC - __x), (ops));			\
263 		__n -= (KSE_NTXDESC - __x);				\
264 		__x = 0;						\
265 	}								\
266 									\
267 	/* Now sync whatever is left. */				\
268 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
269 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
270 } while (/*CONSTCOND*/0)
271 
272 #define KSE_CDRXSYNC(sc, x, ops)					\
273 do {									\
274 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
275 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
276 } while (/*CONSTCOND*/0)
277 
278 #define KSE_INIT_RXDESC(sc, x)						\
279 do {									\
280 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
281 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
282 	struct mbuf *__m = __rxs->rxs_mbuf;				\
283 									\
284 	__m->m_data = __m->m_ext.ext_buf;				\
285 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
286 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
287 	__rxd->r0 = R0_OWN;						\
288 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
289 } while (/*CONSTCOND*/0)
290 
291 u_int kse_burstsize = 8;	/* DMA burst length tuning knob */
292 
293 #ifdef KSEDIAGNOSTIC
294 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
295 #endif
296 
297 static int kse_match(device_t, cfdata_t, void *);
298 static void kse_attach(device_t, device_t, void *);
299 
300 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
301     kse_match, kse_attach, NULL, NULL);
302 
303 static int kse_ioctl(struct ifnet *, u_long, void *);
304 static void kse_start(struct ifnet *);
305 static void kse_watchdog(struct ifnet *);
306 static int kse_init(struct ifnet *);
307 static void kse_stop(struct ifnet *, int);
308 static void kse_reset(struct kse_softc *);
309 static void kse_set_filter(struct kse_softc *);
310 static int add_rxbuf(struct kse_softc *, int);
311 static void rxdrain(struct kse_softc *);
312 static int kse_intr(void *);
313 static void rxintr(struct kse_softc *);
314 static void txreap(struct kse_softc *);
315 static void lnkchg(struct kse_softc *);
316 static int ifmedia_upd(struct ifnet *);
317 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
318 static void phy_tick(void *);
319 static int ifmedia2_upd(struct ifnet *);
320 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
321 #ifdef KSE_EVENT_COUNTERS
322 static void stat_tick(void *);
323 static void zerostats(struct kse_softc *);
324 #endif
325 
326 static int
327 kse_match(device_t parent, cfdata_t match, void *aux)
328 {
329 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
330 
331 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
332 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
333 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
334 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
335 		return 1;
336 
337 	return 0;
338 }
339 
340 static void
341 kse_attach(device_t parent, device_t self, void *aux)
342 {
343 	struct kse_softc *sc = device_private(self);
344 	struct pci_attach_args *pa = aux;
345 	pci_chipset_tag_t pc = pa->pa_pc;
346 	pci_intr_handle_t ih;
347 	const char *intrstr;
348 	struct ifnet *ifp;
349 	struct ifmedia *ifm;
350 	uint8_t enaddr[ETHER_ADDR_LEN];
351 	bus_dma_segment_t seg;
352 	int i, error, nseg;
353 	pcireg_t pmode;
354 	int pmreg;
355 	char intrbuf[PCI_INTRSTR_LEN];
356 
357 	if (pci_mapreg_map(pa, 0x10,
358 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
359 	    0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
360 		printf(": unable to map device registers\n");
361 		return;
362 	}
363 
364 	sc->sc_dev = self;
365 	sc->sc_dmat = pa->pa_dmat;
366 
367 	/* Make sure bus mastering is enabled. */
368 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
369 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
370 	    PCI_COMMAND_MASTER_ENABLE);
371 
372 	/* Get it out of power save mode, if needed. */
373 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
374 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
375 		    PCI_PMCSR_STATE_MASK;
376 		if (pmode == PCI_PMCSR_STATE_D3) {
377 			/*
378 			 * The card has lost all configuration data in
379 			 * this state, so punt.
380 			 */
381 			printf("%s: unable to wake from power state D3\n",
382 			    device_xname(sc->sc_dev));
383 			return;
384 		}
385 		if (pmode != PCI_PMCSR_STATE_D0) {
386 			printf("%s: waking up from power date D%d\n",
387 			    device_xname(sc->sc_dev), pmode);
388 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
389 			    PCI_PMCSR_STATE_D0);
390 		}
391 	}
392 
393 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
394 	printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
395 	    sc->sc_chip, PCI_REVISION(pa->pa_class));
396 
397 	/*
398 	 * Read the Ethernet address from the EEPROM.
399 	 */
400 	i = CSR_READ_2(sc, MARL);
401 	enaddr[5] = i; enaddr[4] = i >> 8;
402 	i = CSR_READ_2(sc, MARM);
403 	enaddr[3] = i; enaddr[2] = i >> 8;
404 	i = CSR_READ_2(sc, MARH);
405 	enaddr[1] = i; enaddr[0] = i >> 8;
406 	printf("%s: Ethernet address %s\n",
407 		device_xname(sc->sc_dev), ether_sprintf(enaddr));
408 
409 	/*
410 	 * Enable chip function.
411 	 */
412 	CSR_WRITE_2(sc, CIDR, 1);
413 
414 	/*
415 	 * Map and establish our interrupt.
416 	 */
417 	if (pci_intr_map(pa, &ih)) {
418 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
419 		return;
420 	}
421 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
422 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
423 	    device_xname(self));
424 	if (sc->sc_ih == NULL) {
425 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
426 		if (intrstr != NULL)
427 			aprint_error(" at %s", intrstr);
428 		aprint_error("\n");
429 		return;
430 	}
431 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
432 
433 	/*
434 	 * Allocate the control data structures, and create and load the
435 	 * DMA map for it.
436 	 */
437 	error = bus_dmamem_alloc(sc->sc_dmat,
438 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
439 	if (error != 0) {
440 		aprint_error_dev(sc->sc_dev,
441 		    "unable to allocate control data, error = %d\n", error);
442 		goto fail_0;
443 	}
444 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
445 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
446 	    BUS_DMA_COHERENT);
447 	if (error != 0) {
448 		aprint_error_dev(sc->sc_dev,
449 		    "unable to map control data, error = %d\n", error);
450 		goto fail_1;
451 	}
452 	error = bus_dmamap_create(sc->sc_dmat,
453 	    sizeof(struct kse_control_data), 1,
454 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
455 	if (error != 0) {
456 		aprint_error_dev(sc->sc_dev,
457 		    "unable to create control data DMA map, "
458 		    "error = %d\n", error);
459 		goto fail_2;
460 	}
461 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
462 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
463 	if (error != 0) {
464 		aprint_error_dev(sc->sc_dev,
465 		    "unable to load control data DMA map, error = %d\n",
466 		    error);
467 		goto fail_3;
468 	}
469 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
470 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
471 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
472 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
473 			aprint_error_dev(sc->sc_dev,
474 			    "unable to create tx DMA map %d, error = %d\n",
475 			    i, error);
476 			goto fail_4;
477 		}
478 	}
479 	for (i = 0; i < KSE_NRXDESC; i++) {
480 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
481 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
482 			aprint_error_dev(sc->sc_dev,
483 			    "unable to create rx DMA map %d, error = %d\n",
484 			    i, error);
485 			goto fail_5;
486 		}
487 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
488 	}
489 
490 	callout_init(&sc->sc_callout, 0);
491 	callout_init(&sc->sc_stat_ch, 0);
492 
493 	/* Initialize ifmedia structures. */
494 	ifm = &sc->sc_media;
495 	sc->sc_ethercom.ec_ifmedia = ifm;
496 	if (sc->sc_chip == 0x8841) {
497 		ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
498 		ifmedia_add(ifm, IFM_ETHER | IFM_10_T, 0, NULL);
499 		ifmedia_add(ifm, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
500 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX, 0, NULL);
501 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
502 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
503 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
504 	} else {
505 		ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
506 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
507 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
508 	}
509 
510 	printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
511 	    device_xname(sc->sc_dev));
512 
513 	ifp = &sc->sc_ethercom.ec_if;
514 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
515 	ifp->if_softc = sc;
516 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
517 	ifp->if_ioctl = kse_ioctl;
518 	ifp->if_start = kse_start;
519 	ifp->if_watchdog = kse_watchdog;
520 	ifp->if_init = kse_init;
521 	ifp->if_stop = kse_stop;
522 	IFQ_SET_READY(&ifp->if_snd);
523 
524 	/*
525 	 * KSZ8842 can handle 802.1Q VLAN-sized frames,
526 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
527 	 */
528 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
529 	ifp->if_capabilities |=
530 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
531 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
532 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
533 
534 	if_attach(ifp);
535 	ether_ifattach(ifp, enaddr);
536 
537 #ifdef KSE_EVENT_COUNTERS
538 	int p = (sc->sc_chip == 0x8842) ? 3 : 1;
539 	for (i = 0; i < p; i++) {
540 		struct ksext *ee = &sc->sc_ext;
541 		snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
542 		    "%s.%d", device_xname(sc->sc_dev), i+1);
543 		evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
544 		    NULL, ee->evcntname[i], "RxLoPriotyByte");
545 		evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
546 		    NULL, ee->evcntname[i], "RxHiPriotyByte");
547 		evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
548 		    NULL, ee->evcntname[i], "RxUndersizePkt");
549 		evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
550 		    NULL, ee->evcntname[i], "RxFragments");
551 		evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
552 		    NULL, ee->evcntname[i], "RxOversize");
553 		evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
554 		    NULL, ee->evcntname[i], "RxJabbers");
555 		evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
556 		    NULL, ee->evcntname[i], "RxSymbolError");
557 		evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
558 		    NULL, ee->evcntname[i], "RxCRCError");
559 		evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
560 		    NULL, ee->evcntname[i], "RxAlignmentError");
561 		evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
562 		    NULL, ee->evcntname[i], "RxControl8808Pkts");
563 		evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
564 		    NULL, ee->evcntname[i], "RxPausePkts");
565 		evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
566 		    NULL, ee->evcntname[i], "RxBroadcast");
567 		evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
568 		    NULL, ee->evcntname[i], "RxMulticast");
569 		evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
570 		    NULL, ee->evcntname[i], "RxUnicast");
571 		evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
572 		    NULL, ee->evcntname[i], "Rx64Octets");
573 		evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
574 		    NULL, ee->evcntname[i], "Rx65To127Octets");
575 		evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
576 		    NULL, ee->evcntname[i], "Rx128To255Octets");
577 		evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
578 		    NULL, ee->evcntname[i], "Rx255To511Octets");
579 		evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
580 		    NULL, ee->evcntname[i], "Rx512To1023Octets");
581 		evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
582 		    NULL, ee->evcntname[i], "Rx1024To1522Octets");
583 		evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
584 		    NULL, ee->evcntname[i], "TxLoPriotyByte");
585 		evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
586 		    NULL, ee->evcntname[i], "TxHiPriotyByte");
587 		evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
588 		    NULL, ee->evcntname[i], "TxLateCollision");
589 		evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
590 		    NULL, ee->evcntname[i], "TxPausePkts");
591 		evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
592 		    NULL, ee->evcntname[i], "TxBroadcastPkts");
593 		evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
594 		    NULL, ee->evcntname[i], "TxMulticastPkts");
595 		evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
596 		    NULL, ee->evcntname[i], "TxUnicastPkts");
597 		evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
598 		    NULL, ee->evcntname[i], "TxDeferred");
599 		evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
600 		    NULL, ee->evcntname[i], "TxTotalCollision");
601 		evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
602 		    NULL, ee->evcntname[i], "TxExcessiveCollision");
603 		evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
604 		    NULL, ee->evcntname[i], "TxSingleCollision");
605 		evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
606 		    NULL, ee->evcntname[i], "TxMultipleCollision");
607 		evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
608 		    NULL, ee->evcntname[i], "TxDropPkts");
609 		evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
610 		    NULL, ee->evcntname[i], "RxDropPkts");
611 	}
612 #endif
613 	return;
614 
615  fail_5:
616 	for (i = 0; i < KSE_NRXDESC; i++) {
617 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
618 			bus_dmamap_destroy(sc->sc_dmat,
619 			    sc->sc_rxsoft[i].rxs_dmamap);
620 	}
621  fail_4:
622 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
623 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
624 			bus_dmamap_destroy(sc->sc_dmat,
625 			    sc->sc_txsoft[i].txs_dmamap);
626 	}
627 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
628  fail_3:
629 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
630  fail_2:
631 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
632 	    sizeof(struct kse_control_data));
633  fail_1:
634 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
635  fail_0:
636 	return;
637 }
638 
639 static int
640 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
641 {
642 	struct kse_softc *sc = ifp->if_softc;
643 	int s, error;
644 
645 	s = splnet();
646 
647 	switch (cmd) {
648 	default:
649 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
650 			break;
651 
652 		error = 0;
653 
654 		if (cmd == SIOCSIFCAP)
655 			error = (*ifp->if_init)(ifp);
656 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
657 			;
658 		else if (ifp->if_flags & IFF_RUNNING) {
659 			/*
660 			 * Multicast list has changed; set the hardware filter
661 			 * accordingly.
662 			 */
663 			kse_set_filter(sc);
664 		}
665 		break;
666 	}
667 
668 	kse_start(ifp);
669 
670 	splx(s);
671 	return error;
672 }
673 
674 static int
675 kse_init(struct ifnet *ifp)
676 {
677 	struct kse_softc *sc = ifp->if_softc;
678 	uint32_t paddr;
679 	int i, error = 0;
680 
681 	/* cancel pending I/O */
682 	kse_stop(ifp, 0);
683 
684 	/* reset all registers but PCI configuration */
685 	kse_reset(sc);
686 
687 	/* craft Tx descriptor ring */
688 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
689 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
690 		sc->sc_txdescs[i].t3 = paddr;
691 		paddr += sizeof(struct tdes);
692 	}
693 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
694 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
695 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
696 	sc->sc_txfree = KSE_NTXDESC;
697 	sc->sc_txnext = 0;
698 
699 	for (i = 0; i < KSE_TXQUEUELEN; i++)
700 		sc->sc_txsoft[i].txs_mbuf = NULL;
701 	sc->sc_txsfree = KSE_TXQUEUELEN;
702 	sc->sc_txsnext = 0;
703 	sc->sc_txsdirty = 0;
704 
705 	/* craft Rx descriptor ring */
706 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
707 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
708 		sc->sc_rxdescs[i].r3 = paddr;
709 		paddr += sizeof(struct rdes);
710 	}
711 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
712 	for (i = 0; i < KSE_NRXDESC; i++) {
713 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
714 			if ((error = add_rxbuf(sc, i)) != 0) {
715 				printf("%s: unable to allocate or map rx "
716 				    "buffer %d, error = %d\n",
717 				     device_xname(sc->sc_dev), i, error);
718 				rxdrain(sc);
719 				goto out;
720 			}
721 		}
722 		else
723 			KSE_INIT_RXDESC(sc, i);
724 	}
725 	sc->sc_rxptr = 0;
726 
727 	/* hand Tx/Rx rings to HW */
728 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
729 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
730 
731 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
732 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
733 	if (ifp->if_flags & IFF_PROMISC)
734 		sc->sc_rxc |= RXC_RA;
735 	if (ifp->if_flags & IFF_BROADCAST)
736 		sc->sc_rxc |= RXC_RB;
737 	sc->sc_t1csum = sc->sc_mcsum = 0;
738 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
739 		sc->sc_rxc |= RXC_ICC;
740 		sc->sc_mcsum |= M_CSUM_IPv4;
741 	}
742 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
743 		sc->sc_txc |= TXC_ICG;
744 		sc->sc_t1csum |= T1_IPCKG;
745 	}
746 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
747 		sc->sc_rxc |= RXC_TCC;
748 		sc->sc_mcsum |= M_CSUM_TCPv4;
749 	}
750 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
751 		sc->sc_txc |= TXC_TCG;
752 		sc->sc_t1csum |= T1_TCPCKG;
753 	}
754 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
755 		sc->sc_rxc |= RXC_UCC;
756 		sc->sc_mcsum |= M_CSUM_UDPv4;
757 	}
758 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
759 		sc->sc_txc |= TXC_UCG;
760 		sc->sc_t1csum |= T1_UDPCKG;
761 	}
762 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
763 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
764 
765 	/* build multicast hash filter if necessary */
766 	kse_set_filter(sc);
767 
768 	/* set current media */
769 	(void)ifmedia_upd(ifp);
770 
771 	/* enable transmitter and receiver */
772 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
773 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
774 	CSR_WRITE_4(sc, MDRSC, 1);
775 
776 	/* enable interrupts */
777 	sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
778 	if (sc->sc_chip == 0x8841)
779 		sc->sc_inten |= INT_DMLCS;
780 	CSR_WRITE_4(sc, INTST, ~0);
781 	CSR_WRITE_4(sc, INTEN, sc->sc_inten);
782 
783 	ifp->if_flags |= IFF_RUNNING;
784 	ifp->if_flags &= ~IFF_OACTIVE;
785 
786 	if (sc->sc_chip == 0x8841) {
787 		/* start one second timer */
788 		callout_reset(&sc->sc_callout, hz, phy_tick, sc);
789 	}
790 #ifdef KSE_EVENT_COUNTERS
791 	/* start statistics gather 1 minute timer */
792 	zerostats(sc);
793 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
794 #endif
795 
796  out:
797 	if (error) {
798 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
799 		ifp->if_timer = 0;
800 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
801 	}
802 	return error;
803 }
804 
805 static void
806 kse_stop(struct ifnet *ifp, int disable)
807 {
808 	struct kse_softc *sc = ifp->if_softc;
809 	struct kse_txsoft *txs;
810 	int i;
811 
812 	if (sc->sc_chip == 0x8841)
813 		callout_stop(&sc->sc_callout);
814 	callout_stop(&sc->sc_stat_ch);
815 
816 	sc->sc_txc &= ~TXC_TEN;
817 	sc->sc_rxc &= ~RXC_REN;
818 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
819 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
820 
821 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
822 		txs = &sc->sc_txsoft[i];
823 		if (txs->txs_mbuf != NULL) {
824 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
825 			m_freem(txs->txs_mbuf);
826 			txs->txs_mbuf = NULL;
827 		}
828 	}
829 
830 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
831 	ifp->if_timer = 0;
832 
833 	if (disable)
834 		rxdrain(sc);
835 }
836 
837 static void
838 kse_reset(struct kse_softc *sc)
839 {
840 
841 	CSR_WRITE_2(sc, GRR, 1);
842 	delay(1000); /* PDF does not mention the delay amount */
843 	CSR_WRITE_2(sc, GRR, 0);
844 
845 	CSR_WRITE_2(sc, CIDR, 1);
846 }
847 
848 static void
849 kse_watchdog(struct ifnet *ifp)
850 {
851 	struct kse_softc *sc = ifp->if_softc;
852 
853 	/*
854 	 * Since we're not interrupting every packet, sweep
855 	 * up before we report an error.
856 	 */
857 	txreap(sc);
858 
859 	if (sc->sc_txfree != KSE_NTXDESC) {
860 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
861 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
862 		    sc->sc_txnext);
863 		ifp->if_oerrors++;
864 
865 		/* Reset the interface. */
866 		kse_init(ifp);
867 	}
868 	else if (ifp->if_flags & IFF_DEBUG)
869 		printf("%s: recovered from device timeout\n",
870 		    device_xname(sc->sc_dev));
871 
872 	/* Try to get more packets going. */
873 	kse_start(ifp);
874 }
875 
876 static void
877 kse_start(struct ifnet *ifp)
878 {
879 	struct kse_softc *sc = ifp->if_softc;
880 	struct mbuf *m0, *m;
881 	struct kse_txsoft *txs;
882 	bus_dmamap_t dmamap;
883 	int error, nexttx, lasttx, ofree, seg;
884 	uint32_t tdes0;
885 
886 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
887 		return;
888 
889 	/* Remember the previous number of free descriptors. */
890 	ofree = sc->sc_txfree;
891 
892 	/*
893 	 * Loop through the send queue, setting up transmit descriptors
894 	 * until we drain the queue, or use up all available transmit
895 	 * descriptors.
896 	 */
897 	for (;;) {
898 		IFQ_POLL(&ifp->if_snd, m0);
899 		if (m0 == NULL)
900 			break;
901 
902 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
903 			txreap(sc);
904 			if (sc->sc_txsfree == 0)
905 				break;
906 		}
907 		txs = &sc->sc_txsoft[sc->sc_txsnext];
908 		dmamap = txs->txs_dmamap;
909 
910 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
911 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
912 		if (error) {
913 			if (error == EFBIG) {
914 				printf("%s: Tx packet consumes too many "
915 				    "DMA segments, dropping...\n",
916 				    device_xname(sc->sc_dev));
917 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
918 				    m_freem(m0);
919 				    continue;
920 			}
921 			/* Short on resources, just stop for now. */
922 			break;
923 		}
924 
925 		if (dmamap->dm_nsegs > sc->sc_txfree) {
926 			/*
927 			 * Not enough free descriptors to transmit this
928 			 * packet.  We haven't committed anything yet,
929 			 * so just unload the DMA map, put the packet
930 			 * back on the queue, and punt.	 Notify the upper
931 			 * layer that there are not more slots left.
932 			 */
933 			ifp->if_flags |= IFF_OACTIVE;
934 			bus_dmamap_unload(sc->sc_dmat, dmamap);
935 			break;
936 		}
937 
938 		IFQ_DEQUEUE(&ifp->if_snd, m0);
939 
940 		/*
941 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
942 		 */
943 
944 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
945 		    BUS_DMASYNC_PREWRITE);
946 
947 		lasttx = -1; tdes0 = 0;
948 		for (nexttx = sc->sc_txnext, seg = 0;
949 		     seg < dmamap->dm_nsegs;
950 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
951 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
952 			/*
953 			 * If this is the first descriptor we're
954 			 * enqueueing, don't set the OWN bit just
955 			 * yet.	 That could cause a race condition.
956 			 * We'll do it below.
957 			 */
958 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
959 			tdes->t1 = sc->sc_t1csum
960 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
961 			tdes->t0 = tdes0;
962 			tdes0 |= T0_OWN;
963 			lasttx = nexttx;
964 		}
965 
966 		/*
967 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
968 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
969 		 * time and NFS stops to proceed until kse_watchdog()
970 		 * calls txreap() to reclaim the unack'ed mbuf.
971 		 * It's painful to traverse every mbuf chain to determine
972 		 * whether someone is waiting for Tx completion.
973 		 */
974 		m = m0;
975 		do {
976 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
977 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
978 				break;
979 			}
980 		} while ((m = m->m_next) != NULL);
981 
982 		/* Write last T0_OWN bit of the 1st segment */
983 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
984 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
985 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
986 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
987 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
988 
989 		/* Tell DMA start transmit */
990 		CSR_WRITE_4(sc, MDTSC, 1);
991 
992 		txs->txs_mbuf = m0;
993 		txs->txs_firstdesc = sc->sc_txnext;
994 		txs->txs_lastdesc = lasttx;
995 		txs->txs_ndesc = dmamap->dm_nsegs;
996 
997 		sc->sc_txfree -= txs->txs_ndesc;
998 		sc->sc_txnext = nexttx;
999 		sc->sc_txsfree--;
1000 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1001 		/*
1002 		 * Pass the packet to any BPF listeners.
1003 		 */
1004 		bpf_mtap(ifp, m0, BPF_D_OUT);
1005 	}
1006 
1007 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1008 		/* No more slots left; notify upper layer. */
1009 		ifp->if_flags |= IFF_OACTIVE;
1010 	}
1011 	if (sc->sc_txfree != ofree) {
1012 		/* Set a watchdog timer in case the chip flakes out. */
1013 		ifp->if_timer = 5;
1014 	}
1015 }
1016 
1017 static void
1018 kse_set_filter(struct kse_softc *sc)
1019 {
1020 	struct ether_multistep step;
1021 	struct ether_multi *enm;
1022 	struct ethercom *ec = &sc->sc_ethercom;
1023 	struct ifnet *ifp = &ec->ec_if;
1024 	uint32_t h, hashes[2];
1025 
1026 	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1027 	ifp->if_flags &= ~IFF_ALLMULTI;
1028 	if (ifp->if_flags & IFF_PROMISC)
1029 		return;
1030 
1031 	ETHER_LOCK(ec);
1032 	ETHER_FIRST_MULTI(step, ec, enm);
1033 	if (enm == NULL) {
1034 		ETHER_UNLOCK(ec);
1035 		return;
1036 	}
1037 	hashes[0] = hashes[1] = 0;
1038 	do {
1039 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1040 			/*
1041 			 * We must listen to a range of multicast addresses.
1042 			 * For now, just accept all multicasts, rather than
1043 			 * trying to set only those filter bits needed to match
1044 			 * the range.  (At this time, the only use of address
1045 			 * ranges is for IP multicast routing, for which the
1046 			 * range is big enough to require all bits set.)
1047 			 */
1048 			ETHER_UNLOCK(ec);
1049 			goto allmulti;
1050 		}
1051 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1052 		hashes[h >> 5] |= 1 << (h & 0x1f);
1053 		ETHER_NEXT_MULTI(step, enm);
1054 	} while (enm != NULL);
1055 	ETHER_UNLOCK(ec);
1056 	sc->sc_rxc |= RXC_MHTE;
1057 	CSR_WRITE_4(sc, MTR0, hashes[0]);
1058 	CSR_WRITE_4(sc, MTR1, hashes[1]);
1059 	return;
1060  allmulti:
1061 	sc->sc_rxc |= RXC_RM;
1062 	ifp->if_flags |= IFF_ALLMULTI;
1063 }
1064 
1065 static int
1066 add_rxbuf(struct kse_softc *sc, int idx)
1067 {
1068 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1069 	struct mbuf *m;
1070 	int error;
1071 
1072 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1073 	if (m == NULL)
1074 		return ENOBUFS;
1075 
1076 	MCLGET(m, M_DONTWAIT);
1077 	if ((m->m_flags & M_EXT) == 0) {
1078 		m_freem(m);
1079 		return ENOBUFS;
1080 	}
1081 
1082 	if (rxs->rxs_mbuf != NULL)
1083 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1084 
1085 	rxs->rxs_mbuf = m;
1086 
1087 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1088 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1089 	if (error) {
1090 		printf("%s: can't load rx DMA map %d, error = %d\n",
1091 		    device_xname(sc->sc_dev), idx, error);
1092 		panic("kse_add_rxbuf");
1093 	}
1094 
1095 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1096 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1097 
1098 	KSE_INIT_RXDESC(sc, idx);
1099 
1100 	return 0;
1101 }
1102 
1103 static void
1104 rxdrain(struct kse_softc *sc)
1105 {
1106 	struct kse_rxsoft *rxs;
1107 	int i;
1108 
1109 	for (i = 0; i < KSE_NRXDESC; i++) {
1110 		rxs = &sc->sc_rxsoft[i];
1111 		if (rxs->rxs_mbuf != NULL) {
1112 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1113 			m_freem(rxs->rxs_mbuf);
1114 			rxs->rxs_mbuf = NULL;
1115 		}
1116 	}
1117 }
1118 
1119 static int
1120 kse_intr(void *arg)
1121 {
1122 	struct kse_softc *sc = arg;
1123 	uint32_t isr;
1124 
1125 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
1126 		return 0;
1127 
1128 	if (isr & INT_DMRS)
1129 		rxintr(sc);
1130 	if (isr & INT_DMTS)
1131 		txreap(sc);
1132 	if (isr & INT_DMLCS)
1133 		lnkchg(sc);
1134 	if (isr & INT_DMRBUS)
1135 		printf("%s: Rx descriptor full\n", device_xname(sc->sc_dev));
1136 
1137 	CSR_WRITE_4(sc, INTST, isr);
1138 	return 1;
1139 }
1140 
1141 static void
1142 rxintr(struct kse_softc *sc)
1143 {
1144 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1145 	struct kse_rxsoft *rxs;
1146 	struct mbuf *m;
1147 	uint32_t rxstat;
1148 	int i, len;
1149 
1150 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1151 		rxs = &sc->sc_rxsoft[i];
1152 
1153 		KSE_CDRXSYNC(sc, i,
1154 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1155 
1156 		rxstat = sc->sc_rxdescs[i].r0;
1157 
1158 		if (rxstat & R0_OWN) /* desc is left empty */
1159 			break;
1160 
1161 		/* R0_FS | R0_LS must have been marked for this desc */
1162 
1163 		if (rxstat & R0_ES) {
1164 			ifp->if_ierrors++;
1165 #define PRINTERR(bit, str)						\
1166 			if (rxstat & (bit))				\
1167 				printf("%s: receive error: %s\n",	\
1168 				    device_xname(sc->sc_dev), str)
1169 			PRINTERR(R0_TL, "frame too long");
1170 			PRINTERR(R0_RF, "runt frame");
1171 			PRINTERR(R0_CE, "bad FCS");
1172 #undef PRINTERR
1173 			KSE_INIT_RXDESC(sc, i);
1174 			continue;
1175 		}
1176 
1177 		/* HW errata; frame might be too small or too large */
1178 
1179 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1180 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1181 
1182 		len = rxstat & R0_FL_MASK;
1183 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
1184 		m = rxs->rxs_mbuf;
1185 
1186 		if (add_rxbuf(sc, i) != 0) {
1187 			ifp->if_ierrors++;
1188 			KSE_INIT_RXDESC(sc, i);
1189 			bus_dmamap_sync(sc->sc_dmat,
1190 			    rxs->rxs_dmamap, 0,
1191 			    rxs->rxs_dmamap->dm_mapsize,
1192 			    BUS_DMASYNC_PREREAD);
1193 			continue;
1194 		}
1195 
1196 		m_set_rcvif(m, ifp);
1197 		m->m_pkthdr.len = m->m_len = len;
1198 
1199 		if (sc->sc_mcsum) {
1200 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1201 			if (rxstat & R0_IPE)
1202 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1203 			if (rxstat & (R0_TCPE | R0_UDPE))
1204 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1205 		}
1206 		if_percpuq_enqueue(ifp->if_percpuq, m);
1207 #ifdef KSEDIAGNOSTIC
1208 		if (kse_monitor_rxintr > 0) {
1209 			printf("m stat %x data %p len %d\n",
1210 			    rxstat, m->m_data, m->m_len);
1211 		}
1212 #endif
1213 	}
1214 	sc->sc_rxptr = i;
1215 }
1216 
1217 static void
1218 txreap(struct kse_softc *sc)
1219 {
1220 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1221 	struct kse_txsoft *txs;
1222 	uint32_t txstat;
1223 	int i;
1224 
1225 	ifp->if_flags &= ~IFF_OACTIVE;
1226 
1227 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1228 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1229 		txs = &sc->sc_txsoft[i];
1230 
1231 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1232 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1233 
1234 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1235 
1236 		if (txstat & T0_OWN) /* desc is still in use */
1237 			break;
1238 
1239 		/* There is no way to tell transmission status per frame */
1240 
1241 		ifp->if_opackets++;
1242 
1243 		sc->sc_txfree += txs->txs_ndesc;
1244 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1245 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1246 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1247 		m_freem(txs->txs_mbuf);
1248 		txs->txs_mbuf = NULL;
1249 	}
1250 	sc->sc_txsdirty = i;
1251 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
1252 		ifp->if_timer = 0;
1253 }
1254 
1255 static void
1256 lnkchg(struct kse_softc *sc)
1257 {
1258 	struct ifmediareq ifmr;
1259 
1260 #if 0 /* rambling link status */
1261 	printf("%s: link %s\n", device_xname(sc->sc_dev),
1262 	    (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1263 #endif
1264 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1265 }
1266 
1267 static int
1268 ifmedia_upd(struct ifnet *ifp)
1269 {
1270 	struct kse_softc *sc = ifp->if_softc;
1271 	struct ifmedia *ifm = &sc->sc_media;
1272 	uint16_t ctl;
1273 
1274 	ctl = 0;
1275 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1276 		ctl |= (1U << 13); /* Restart AN */
1277 		ctl |= (1U << 7);  /* Enable AN */
1278 		ctl |= (1U << 4);  /* Advertise flow control pause */
1279 		ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1280 	}
1281 	else {
1282 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1283 			ctl |= (1U << 6);
1284 		if (ifm->ifm_media & IFM_FDX)
1285 			ctl |= (1U << 5);
1286 	}
1287 	CSR_WRITE_2(sc, P1CR4, ctl);
1288 
1289 	sc->sc_media_active = IFM_NONE;
1290 	sc->sc_media_status = IFM_AVALID;
1291 
1292 	return 0;
1293 }
1294 
1295 static void
1296 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1297 {
1298 	struct kse_softc *sc = ifp->if_softc;
1299 	struct ifmedia *ifm = &sc->sc_media;
1300 	uint16_t ctl, sts, result;
1301 
1302 	ifmr->ifm_status = IFM_AVALID;
1303 	ifmr->ifm_active = IFM_ETHER;
1304 
1305 	ctl = CSR_READ_2(sc, P1CR4);
1306 	sts = CSR_READ_2(sc, P1SR);
1307 	if ((sts & (1U << 5)) == 0) {
1308 		ifmr->ifm_active |= IFM_NONE;
1309 		goto out; /* Link is down */
1310 	}
1311 	ifmr->ifm_status |= IFM_ACTIVE;
1312 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1313 		if ((sts & (1U << 6)) == 0) {
1314 			ifmr->ifm_active |= IFM_NONE;
1315 			goto out; /* Negotiation in progress */
1316 		}
1317 		result = ctl & sts & 017;
1318 		if (result & (1U << 3))
1319 			ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
1320 		else if (result & (1U << 2))
1321 			ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
1322 		else if (result & (1U << 1))
1323 			ifmr->ifm_active |= IFM_10_T | IFM_FDX;
1324 		else if (result & (1U << 0))
1325 			ifmr->ifm_active |= IFM_10_T | IFM_HDX;
1326 		else
1327 			ifmr->ifm_active |= IFM_NONE;
1328 		if (ctl & (1U << 4))
1329 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1330 		if (sts & (1U << 4))
1331 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1332 	}
1333 	else {
1334 		ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1335 		if (sts & (1U << 9))
1336 			ifmr->ifm_active |= IFM_FDX;
1337 		if (sts & (1U << 12))
1338 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1339 		if (sts & (1U << 11))
1340 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1341 	}
1342 
1343   out:
1344 	sc->sc_media_status = ifmr->ifm_status;
1345 	sc->sc_media_active = ifmr->ifm_active;
1346 }
1347 
1348 static void
1349 phy_tick(void *arg)
1350 {
1351 	struct kse_softc *sc = arg;
1352 	struct ifmediareq ifmr;
1353 	int s;
1354 
1355 	s = splnet();
1356 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1357 	splx(s);
1358 
1359 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1360 }
1361 
1362 static int
1363 ifmedia2_upd(struct ifnet *ifp)
1364 {
1365 	struct kse_softc *sc = ifp->if_softc;
1366 
1367 	sc->sc_media_status = IFM_AVALID;
1368 	sc->sc_media_active = IFM_NONE;
1369 	return 0;
1370 }
1371 
1372 static void
1373 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1374 {
1375 	struct kse_softc *sc = ifp->if_softc;
1376 	int p1sts, p2sts;
1377 
1378 	ifmr->ifm_status = IFM_AVALID;
1379 	ifmr->ifm_active = IFM_ETHER;
1380 	p1sts = CSR_READ_2(sc, P1SR);
1381 	p2sts = CSR_READ_2(sc, P2SR);
1382 	if (((p1sts | p2sts) & (1U << 5)) == 0)
1383 		ifmr->ifm_active |= IFM_NONE;
1384 	else {
1385 		ifmr->ifm_status |= IFM_ACTIVE;
1386 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
1387 		ifmr->ifm_active |= IFM_FLOW
1388 		    | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
1389 	}
1390 	sc->sc_media_status = ifmr->ifm_status;
1391 	sc->sc_media_active = ifmr->ifm_active;
1392 }
1393 
1394 #ifdef KSE_EVENT_COUNTERS
1395 static void
1396 stat_tick(void *arg)
1397 {
1398 	struct kse_softc *sc = arg;
1399 	struct ksext *ee = &sc->sc_ext;
1400 	int nport, p, i, val;
1401 
1402 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1403 	for (p = 0; p < nport; p++) {
1404 		for (i = 0; i < 32; i++) {
1405 			val = 0x1c00 | (p * 0x20 + i);
1406 			CSR_WRITE_2(sc, IACR, val);
1407 			do {
1408 				val = CSR_READ_2(sc, IADR5) << 16;
1409 			} while ((val & (1U << 30)) == 0);
1410 			if (val & (1U << 31)) {
1411 				(void)CSR_READ_2(sc, IADR4);
1412 				val = 0x3fffffff; /* has made overflow */
1413 			}
1414 			else {
1415 				val &= 0x3fff0000;		/* 29:16 */
1416 				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
1417 			}
1418 			ee->pev[p][i].ev_count += val; /* i (0-31) */
1419 		}
1420 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1421 		ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1422 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1423 		ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1424 	}
1425 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
1426 }
1427 
1428 static void
1429 zerostats(struct kse_softc *sc)
1430 {
1431 	struct ksext *ee = &sc->sc_ext;
1432 	int nport, p, i, val;
1433 
1434 	/* Make sure all the HW counters get zero */
1435 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1436 	for (p = 0; p < nport; p++) {
1437 		for (i = 0; i < 31; i++) {
1438 			val = 0x1c00 | (p * 0x20 + i);
1439 			CSR_WRITE_2(sc, IACR, val);
1440 			do {
1441 				val = CSR_READ_2(sc, IADR5) << 16;
1442 			} while ((val & (1U << 30)) == 0);
1443 			(void)CSR_READ_2(sc, IADR4);
1444 			ee->pev[p][i].ev_count = 0;
1445 		}
1446 	}
1447 }
1448 #endif
1449