xref: /netbsd-src/sys/dev/pci/if_kse.c (revision eceb233b9bd0dfebb902ed73b531ae6964fa3f9b)
1 /*	$NetBSD: if_kse.c,v 1.55 2020/09/20 20:15:11 nisimura Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Tohru Nishimura.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Micrel 8841/8842 10/100 PCI ethernet driver
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.55 2020/09/20 20:15:11 nisimura Exp $");
38 
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/intr.h>
42 #include <sys/device.h>
43 #include <sys/callout.h>
44 #include <sys/ioctl.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/errno.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 
51 #include <net/if.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 #include <dev/mii/mii.h>
56 #include <dev/mii/miivar.h>
57 #include <net/bpf.h>
58 
59 #include <dev/pci/pcivar.h>
60 #include <dev/pci/pcireg.h>
61 #include <dev/pci/pcidevs.h>
62 
63 #define KSE_LINKDEBUG 0
64 
65 #define CSR_READ_4(sc, off) \
66 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
67 #define CSR_WRITE_4(sc, off, val) \
68 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
69 #define CSR_READ_2(sc, off) \
70 	    bus_space_read_2((sc)->sc_st, (sc)->sc_sh, (off))
71 #define CSR_WRITE_2(sc, off, val) \
72 	    bus_space_write_2((sc)->sc_st, (sc)->sc_sh, (off), (val))
73 
74 #define MDTXC	0x000	/* DMA transmit control */
75 #define MDRXC	0x004	/* DMA receive control */
76 #define MDTSC	0x008	/* DMA transmit start */
77 #define MDRSC	0x00c	/* DMA receive start */
78 #define TDLB	0x010	/* transmit descriptor list base */
79 #define RDLB	0x014	/* receive descriptor list base */
80 #define MTR0	0x020	/* multicast table 31:0 */
81 #define MTR1	0x024	/* multicast table 63:32 */
82 #define INTEN	0x028	/* interrupt enable */
83 #define INTST	0x02c	/* interrupt status */
84 #define MAAL0	0x080	/* additional MAC address 0 low */
85 #define MAAH0	0x084	/* additional MAC address 0 high */
86 #define MARL	0x200	/* MAC address low */
87 #define MARM	0x202	/* MAC address middle */
88 #define MARH	0x204	/* MAC address high */
89 #define GRR	0x216	/* global reset */
90 #define SIDER	0x400	/* switch ID and function enable */
91 #define SGCR3	0x406	/* switch function control 3 */
92 #define  CR3_USEHDX	(1U<<6)	/* use half-duplex 8842 host port */
93 #define  CR3_USEFC	(1U<<5) /* use flowcontrol 8842 host port */
94 #define IACR	0x4a0	/* indirect access control */
95 #define IADR1	0x4a2	/* indirect access data 66:63 */
96 #define IADR2	0x4a4	/* indirect access data 47:32 */
97 #define IADR3	0x4a6	/* indirect access data 63:48 */
98 #define IADR4	0x4a8	/* indirect access data 15:0 */
99 #define IADR5	0x4aa	/* indirect access data 31:16 */
100 #define P1CR4	0x512	/* port 1 control 4 */
101 #define P1SR	0x514	/* port 1 status */
102 #define P2CR4	0x532	/* port 2 control 4 */
103 #define P2SR	0x534	/* port 2 status */
104 #define  PxCR_STARTNEG	(1U<<9)		/* restart auto negotiation */
105 #define  PxCR_AUTOEN	(1U<<7)		/* auto negotiation enable */
106 #define  PxCR_SPD100	(1U<<6)		/* force speed 100 */
107 #define  PxCR_USEFDX	(1U<<5)		/* force full duplex */
108 #define  PxCR_USEFC	(1U<<4)		/* advertise pause flow control */
109 #define  PxSR_ACOMP	(1U<<6)		/* auto negotiation completed */
110 #define  PxSR_SPD100	(1U<<10)	/* speed is 100Mbps */
111 #define  PxSR_FDX	(1U<<9)		/* full duplex */
112 #define  PxSR_LINKUP	(1U<<5)		/* link is good */
113 #define  PxSR_RXFLOW	(1U<<12)	/* receive flow control active */
114 #define  PxSR_TXFLOW	(1U<<11)	/* transmit flow control active */
115 #define P1VIDCR	0x504	/* port 1 vtag */
116 #define P2VIDCR	0x524	/* port 2 vtag */
117 #define P3VIDCR	0x544	/* 8842 host vtag */
118 
119 #define TXC_BS_MSK	0x3f000000	/* burst size */
120 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
121 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
122 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
123 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
124 #define TXC_FCE		(1U<<9)		/* generate PAUSE to moderate Rx lvl */
125 #define TXC_EP		(1U<<2)		/* enable automatic padding */
126 #define TXC_AC		(1U<<1)		/* add CRC to frame */
127 #define TXC_TEN		(1)		/* enable DMA to run */
128 
129 #define RXC_BS_MSK	0x3f000000	/* burst size */
130 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
131 #define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
132 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
133 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
134 #define RXC_ICC		(1U<<16)	/* run IP checksum */
135 #define RXC_FCE		(1U<<9)		/* accept PAUSE to throttle Tx */
136 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
137 #define RXC_RM		(1U<<5)		/* receive all multicast (inc. RB) */
138 #define RXC_RU		(1U<<4)		/* receive 16 additional unicasts */
139 #define RXC_RE		(1U<<3)		/* accept error frame */
140 #define RXC_RA		(1U<<2)		/* receive all frame */
141 #define RXC_MHTE	(1U<<1)		/* use multicast hash table */
142 #define RXC_REN		(1)		/* enable DMA to run */
143 
144 #define INT_DMLCS	(1U<<31)	/* link status change */
145 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
146 #define INT_DMRS	(1U<<29)	/* frame was received */
147 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
148 #define INT_DMxPSS	(3U<<25)	/* 26:25 DMA Tx/Rx have stopped */
149 
150 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
151 
152 #define R0_OWN		(1U<<31)	/* desc is empty */
153 #define R0_FS		(1U<<30)	/* first segment of frame */
154 #define R0_LS		(1U<<29)	/* last segment of frame */
155 #define R0_IPE		(1U<<28)	/* IP checksum error */
156 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
157 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
158 #define R0_ES		(1U<<25)	/* error summary */
159 #define R0_MF		(1U<<24)	/* multicast frame */
160 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
161 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
162 #define R0_RE		(1U<<19)	/* MII reported error */
163 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
164 #define R0_RF		(1U<<17)	/* damaged runt frame */
165 #define R0_CE		(1U<<16)	/* CRC error */
166 #define R0_FT		(1U<<15)	/* frame type */
167 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
168 
169 #define T1_IC		(1U<<31)	/* post interrupt on complete */
170 #define T1_FS		(1U<<30)	/* first segment of frame */
171 #define T1_LS		(1U<<29)	/* last segment of frame */
172 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
173 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
174 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
175 #define T1_TER		(1U<<25)	/* end of ring */
176 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
177 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
178 
179 #define R1_RER		(1U<<25)	/* end of ring */
180 #define R1_RBS_MASK	0x7fc		/* segment size 10:0 */
181 
182 #define KSE_NTXSEGS		16
183 #define KSE_TXQUEUELEN		64
184 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
185 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
186 #define KSE_NTXDESC		256
187 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
188 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
189 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
190 
191 #define KSE_NRXDESC		64
192 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
193 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
194 
195 struct tdes {
196 	uint32_t t0, t1, t2, t3;
197 };
198 
199 struct rdes {
200 	uint32_t r0, r1, r2, r3;
201 };
202 
203 struct kse_control_data {
204 	struct tdes kcd_txdescs[KSE_NTXDESC];
205 	struct rdes kcd_rxdescs[KSE_NRXDESC];
206 };
207 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
208 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
209 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
210 
211 struct kse_txsoft {
212 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
213 	bus_dmamap_t txs_dmamap;	/* our DMA map */
214 	int txs_firstdesc;		/* first descriptor in packet */
215 	int txs_lastdesc;		/* last descriptor in packet */
216 	int txs_ndesc;			/* # of descriptors used */
217 };
218 
219 struct kse_rxsoft {
220 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
221 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
222 };
223 
224 struct kse_softc {
225 	device_t sc_dev;		/* generic device information */
226 	bus_space_tag_t sc_st;		/* bus space tag */
227 	bus_space_handle_t sc_sh;	/* bus space handle */
228 	bus_size_t sc_memsize;		/* csr map size */
229 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
230 	pci_chipset_tag_t sc_pc;	/* PCI chipset tag */
231 	struct ethercom sc_ethercom;	/* Ethernet common data */
232 	void *sc_ih;			/* interrupt cookie */
233 
234 	struct mii_data sc_mii;		/* mii 8841 */
235 	struct ifmedia sc_media;	/* ifmedia 8842 */
236 	int sc_flowflags;		/* 802.3x PAUSE flow control */
237 
238 	callout_t  sc_tick_ch;		/* MII tick callout */
239 
240 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
241 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
242 
243 	struct kse_control_data *sc_control_data;
244 #define sc_txdescs	sc_control_data->kcd_txdescs
245 #define sc_rxdescs	sc_control_data->kcd_rxdescs
246 
247 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
248 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
249 	int sc_txfree;			/* number of free Tx descriptors */
250 	int sc_txnext;			/* next ready Tx descriptor */
251 	int sc_txsfree;			/* number of free Tx jobs */
252 	int sc_txsnext;			/* next ready Tx job */
253 	int sc_txsdirty;		/* dirty Tx jobs */
254 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
255 
256 	uint32_t sc_txc, sc_rxc;
257 	uint32_t sc_t1csum;
258 	int sc_mcsum;
259 	uint32_t sc_inten;
260 	uint32_t sc_chip;
261 
262 #ifdef KSE_EVENT_COUNTERS
263 	callout_t  sc_stat_ch;		/* statistics counter callout */
264 	struct ksext {
265 		char evcntname[3][8];
266 		struct evcnt pev[3][34];
267 	} sc_ext;			/* switch statistics */
268 #endif
269 };
270 
271 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
272 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
273 
274 #define KSE_CDTXSYNC(sc, x, n, ops)					\
275 do {									\
276 	int __x, __n;							\
277 									\
278 	__x = (x);							\
279 	__n = (n);							\
280 									\
281 	/* If it will wrap around, sync to the end of the ring. */	\
282 	if ((__x + __n) > KSE_NTXDESC) {				\
283 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
284 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
285 		    (KSE_NTXDESC - __x), (ops));			\
286 		__n -= (KSE_NTXDESC - __x);				\
287 		__x = 0;						\
288 	}								\
289 									\
290 	/* Now sync whatever is left. */				\
291 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
292 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
293 } while (/*CONSTCOND*/0)
294 
295 #define KSE_CDRXSYNC(sc, x, ops)					\
296 do {									\
297 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
298 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
299 } while (/*CONSTCOND*/0)
300 
301 #define KSE_INIT_RXDESC(sc, x)						\
302 do {									\
303 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
304 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
305 	struct mbuf *__m = __rxs->rxs_mbuf;				\
306 									\
307 	__m->m_data = __m->m_ext.ext_buf;				\
308 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
309 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
310 	__rxd->r0 = R0_OWN;						\
311 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
312 } while (/*CONSTCOND*/0)
313 
314 u_int kse_burstsize = 8;	/* DMA burst length tuning knob */
315 
316 #ifdef KSEDIAGNOSTIC
317 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
318 #endif
319 
320 static int kse_match(device_t, cfdata_t, void *);
321 static void kse_attach(device_t, device_t, void *);
322 
323 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
324     kse_match, kse_attach, NULL, NULL);
325 
326 static int kse_ioctl(struct ifnet *, u_long, void *);
327 static void kse_start(struct ifnet *);
328 static void kse_watchdog(struct ifnet *);
329 static int kse_init(struct ifnet *);
330 static void kse_stop(struct ifnet *, int);
331 static void kse_reset(struct kse_softc *);
332 static void kse_set_rcvfilt(struct kse_softc *);
333 static int add_rxbuf(struct kse_softc *, int);
334 static void rxdrain(struct kse_softc *);
335 static int kse_intr(void *);
336 static void rxintr(struct kse_softc *);
337 static void txreap(struct kse_softc *);
338 static void lnkchg(struct kse_softc *);
339 static int kse_ifmedia_upd(struct ifnet *);
340 static void kse_ifmedia_sts(struct ifnet *, struct ifmediareq *);
341 static void nopifmedia_sts(struct ifnet *, struct ifmediareq *);
342 static void phy_tick(void *);
343 int kse_mii_readreg(device_t, int, int, uint16_t *);
344 int kse_mii_writereg(device_t, int, int, uint16_t);
345 void kse_mii_statchg(struct ifnet *);
346 #ifdef KSE_EVENT_COUNTERS
347 static void stat_tick(void *);
348 static void zerostats(struct kse_softc *);
349 #endif
350 
351 static int
352 kse_match(device_t parent, cfdata_t match, void *aux)
353 {
354 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
355 
356 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
357 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
358 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
359 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
360 		return 1;
361 
362 	return 0;
363 }
364 
365 static void
366 kse_attach(device_t parent, device_t self, void *aux)
367 {
368 	struct kse_softc *sc = device_private(self);
369 	struct pci_attach_args *pa = aux;
370 	pci_chipset_tag_t pc = pa->pa_pc;
371 	pci_intr_handle_t ih;
372 	const char *intrstr;
373 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
374 	struct mii_data * const mii = &sc->sc_mii;
375 	struct ifmedia *ifm;
376 	uint8_t enaddr[ETHER_ADDR_LEN];
377 	bus_dma_segment_t seg;
378 	int i, error, nseg;
379 	char intrbuf[PCI_INTRSTR_LEN];
380 
381 	aprint_normal(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
382 	    PCI_PRODUCT(pa->pa_id), PCI_REVISION(pa->pa_class));
383 
384 	if (pci_mapreg_map(pa, 0x10,
385 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
386 	    0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize) != 0) {
387 		aprint_error_dev(self, "unable to map device registers\n");
388 		return;
389 	}
390 
391 	/* Make sure bus mastering is enabled. */
392 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
393 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
394 	    PCI_COMMAND_MASTER_ENABLE);
395 
396 	/* Power up chip if necessary. */
397 	if ((error = pci_activate(pc, pa->pa_tag, self, NULL))
398 	    && error != EOPNOTSUPP) {
399 		aprint_error_dev(self, "cannot activate %d\n", error);
400 		return;
401 	}
402 
403 	/* Map and establish our interrupt. */
404 	if (pci_intr_map(pa, &ih)) {
405 		aprint_error_dev(self, "unable to map interrupt\n");
406 		goto fail;
407 	}
408 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
409 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
410 	    device_xname(self));
411 	if (sc->sc_ih == NULL) {
412 		aprint_error_dev(self, "unable to establish interrupt");
413 		if (intrstr != NULL)
414 			aprint_error(" at %s", intrstr);
415 		aprint_error("\n");
416 		goto fail;
417 	}
418 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
419 
420 	sc->sc_dev = self;
421 	sc->sc_dmat = pa->pa_dmat;
422 	sc->sc_pc = pa->pa_pc;
423 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
424 
425 	/*
426 	 * Read the Ethernet address from the EEPROM.
427 	 */
428 	i = CSR_READ_2(sc, MARL);
429 	enaddr[5] = i;
430 	enaddr[4] = i >> 8;
431 	i = CSR_READ_2(sc, MARM);
432 	enaddr[3] = i;
433 	enaddr[2] = i >> 8;
434 	i = CSR_READ_2(sc, MARH);
435 	enaddr[1] = i;
436 	enaddr[0] = i >> 8;
437 	aprint_normal_dev(self,
438 	    "Ethernet address %s\n", ether_sprintf(enaddr));
439 
440 	/*
441 	 * Enable chip function.
442 	 */
443 	CSR_WRITE_2(sc, SIDER, 1);
444 
445 	/*
446 	 * Allocate the control data structures, and create and load the
447 	 * DMA map for it.
448 	 */
449 	error = bus_dmamem_alloc(sc->sc_dmat,
450 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
451 	if (error != 0) {
452 		aprint_error_dev(self,
453 		    "unable to allocate control data, error = %d\n", error);
454 		goto fail_0;
455 	}
456 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
457 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
458 	    BUS_DMA_COHERENT);
459 	if (error != 0) {
460 		aprint_error_dev(self,
461 		    "unable to map control data, error = %d\n", error);
462 		goto fail_1;
463 	}
464 	error = bus_dmamap_create(sc->sc_dmat,
465 	    sizeof(struct kse_control_data), 1,
466 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
467 	if (error != 0) {
468 		aprint_error_dev(self,
469 		    "unable to create control data DMA map, "
470 		    "error = %d\n", error);
471 		goto fail_2;
472 	}
473 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
474 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
475 	if (error != 0) {
476 		aprint_error_dev(self,
477 		    "unable to load control data DMA map, error = %d\n",
478 		    error);
479 		goto fail_3;
480 	}
481 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
482 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
483 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
484 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
485 			aprint_error_dev(self,
486 			    "unable to create tx DMA map %d, error = %d\n",
487 			    i, error);
488 			goto fail_4;
489 		}
490 	}
491 	for (i = 0; i < KSE_NRXDESC; i++) {
492 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
493 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
494 			aprint_error_dev(self,
495 			    "unable to create rx DMA map %d, error = %d\n",
496 			    i, error);
497 			goto fail_5;
498 		}
499 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
500 	}
501 
502 	mii->mii_ifp = ifp;
503 	mii->mii_readreg = kse_mii_readreg;
504 	mii->mii_writereg = kse_mii_writereg;
505 	mii->mii_statchg = kse_mii_statchg;
506 
507 	/* Initialize ifmedia structures. */
508 	sc->sc_flowflags = 0;
509 	if (sc->sc_chip == 0x8841) {
510 		/* use port 1 builtin PHY as index 1 device */
511 		sc->sc_ethercom.ec_mii = mii;
512 		ifm = &mii->mii_media;
513 		ifmedia_init(ifm, 0, kse_ifmedia_upd, kse_ifmedia_sts);
514 		mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY1 */,
515 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
516 		if (LIST_FIRST(&mii->mii_phys) == NULL) {
517 			ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
518 			ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
519 		} else
520 			ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
521 	} else {
522 		/*
523 		 * pretend 100FDX w/ no alternative media selection.
524 		 * 8842 MAC is tied with a builtin 3 port switch. It can do
525 		 * 4 degree priotised rate control over either of tx/rx
526 		 * direction for any of ports, respectively. Tough, this
527 		 * driver leaves the rate unlimited intending 100Mbps maximum.
528 		 * 2 external ports behave in AN mode and this driver provides
529 		 * no mean to manipulate and see their operational details.
530 		 */
531 		sc->sc_ethercom.ec_ifmedia = ifm = &sc->sc_media;
532 		ifmedia_init(ifm, 0, NULL, nopifmedia_sts);
533 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
534 		ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);
535 
536 		aprint_normal_dev(self,
537 		    "10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n");
538 	}
539 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
540 
541 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
542 	ifp->if_softc = sc;
543 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
544 	ifp->if_ioctl = kse_ioctl;
545 	ifp->if_start = kse_start;
546 	ifp->if_watchdog = kse_watchdog;
547 	ifp->if_init = kse_init;
548 	ifp->if_stop = kse_stop;
549 	IFQ_SET_READY(&ifp->if_snd);
550 
551 	/*
552 	 * capable of 802.1Q VLAN-sized frames and hw assisted tagging.
553 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
554 	 */
555 	sc->sc_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
556 	ifp->if_capabilities =
557 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
558 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
559 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
560 
561 	if_attach(ifp);
562 	if_deferred_start_init(ifp, NULL);
563 	ether_ifattach(ifp, enaddr);
564 
565 	callout_init(&sc->sc_tick_ch, 0);
566 	callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
567 
568 #ifdef KSE_EVENT_COUNTERS
569 	int p = (sc->sc_chip == 0x8842) ? 3 : 1;
570 	for (i = 0; i < p; i++) {
571 		struct ksext *ee = &sc->sc_ext;
572 		snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
573 		    "%s.%d", device_xname(sc->sc_dev), i+1);
574 		evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
575 		    NULL, ee->evcntname[i], "RxLoPriotyByte");
576 		evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
577 		    NULL, ee->evcntname[i], "RxHiPriotyByte");
578 		evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
579 		    NULL, ee->evcntname[i], "RxUndersizePkt");
580 		evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
581 		    NULL, ee->evcntname[i], "RxFragments");
582 		evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
583 		    NULL, ee->evcntname[i], "RxOversize");
584 		evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
585 		    NULL, ee->evcntname[i], "RxJabbers");
586 		evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
587 		    NULL, ee->evcntname[i], "RxSymbolError");
588 		evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
589 		    NULL, ee->evcntname[i], "RxCRCError");
590 		evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
591 		    NULL, ee->evcntname[i], "RxAlignmentError");
592 		evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
593 		    NULL, ee->evcntname[i], "RxControl8808Pkts");
594 		evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
595 		    NULL, ee->evcntname[i], "RxPausePkts");
596 		evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
597 		    NULL, ee->evcntname[i], "RxBroadcast");
598 		evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
599 		    NULL, ee->evcntname[i], "RxMulticast");
600 		evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
601 		    NULL, ee->evcntname[i], "RxUnicast");
602 		evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
603 		    NULL, ee->evcntname[i], "Rx64Octets");
604 		evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
605 		    NULL, ee->evcntname[i], "Rx65To127Octets");
606 		evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
607 		    NULL, ee->evcntname[i], "Rx128To255Octets");
608 		evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
609 		    NULL, ee->evcntname[i], "Rx255To511Octets");
610 		evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
611 		    NULL, ee->evcntname[i], "Rx512To1023Octets");
612 		evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
613 		    NULL, ee->evcntname[i], "Rx1024To1522Octets");
614 		evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
615 		    NULL, ee->evcntname[i], "TxLoPriotyByte");
616 		evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
617 		    NULL, ee->evcntname[i], "TxHiPriotyByte");
618 		evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
619 		    NULL, ee->evcntname[i], "TxLateCollision");
620 		evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
621 		    NULL, ee->evcntname[i], "TxPausePkts");
622 		evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
623 		    NULL, ee->evcntname[i], "TxBroadcastPkts");
624 		evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
625 		    NULL, ee->evcntname[i], "TxMulticastPkts");
626 		evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
627 		    NULL, ee->evcntname[i], "TxUnicastPkts");
628 		evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
629 		    NULL, ee->evcntname[i], "TxDeferred");
630 		evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
631 		    NULL, ee->evcntname[i], "TxTotalCollision");
632 		evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
633 		    NULL, ee->evcntname[i], "TxExcessiveCollision");
634 		evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
635 		    NULL, ee->evcntname[i], "TxSingleCollision");
636 		evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
637 		    NULL, ee->evcntname[i], "TxMultipleCollision");
638 		evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
639 		    NULL, ee->evcntname[i], "TxDropPkts");
640 		evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
641 		    NULL, ee->evcntname[i], "RxDropPkts");
642 	}
643 	callout_init(&sc->sc_stat_ch, 0);
644 	callout_setfunc(&sc->sc_stat_ch, stat_tick, sc);
645 #endif
646 	return;
647 
648  fail_5:
649 	for (i = 0; i < KSE_NRXDESC; i++) {
650 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
651 			bus_dmamap_destroy(sc->sc_dmat,
652 			    sc->sc_rxsoft[i].rxs_dmamap);
653 	}
654  fail_4:
655 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
656 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
657 			bus_dmamap_destroy(sc->sc_dmat,
658 			    sc->sc_txsoft[i].txs_dmamap);
659 	}
660 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
661  fail_3:
662 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
663  fail_2:
664 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
665 	    sizeof(struct kse_control_data));
666  fail_1:
667 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
668  fail_0:
669 	pci_intr_disestablish(pc, sc->sc_ih);
670  fail:
671 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
672 	return;
673 }
674 
675 static int
676 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
677 {
678 	struct kse_softc *sc = ifp->if_softc;
679 	struct ifreq *ifr = (struct ifreq *)data;
680 	struct ifmedia *ifm;
681 	int s, error;
682 
683 	s = splnet();
684 
685 	switch (cmd) {
686 	case SIOCSIFMEDIA:
687 		/* Flow control requires full-duplex mode. */
688 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
689 		    (ifr->ifr_media & IFM_FDX) == 0)
690 			ifr->ifr_media &= ~IFM_ETH_FMASK;
691 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
692 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
693 				/* We can do both TXPAUSE and RXPAUSE. */
694 				ifr->ifr_media |=
695 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
696 			}
697 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
698 		}
699 		ifm = (sc->sc_chip == 0x8841)
700 		    ? &sc->sc_mii.mii_media : &sc->sc_media;
701 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
702 		break;
703 	default:
704 		error = ether_ioctl(ifp, cmd, data);
705 		if (error != ENETRESET)
706 			break;
707 		error = 0;
708 		if (cmd == SIOCSIFCAP)
709 			error = (*ifp->if_init)(ifp);
710 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
711 			;
712 		else if (ifp->if_flags & IFF_RUNNING) {
713 			/*
714 			 * Multicast list has changed; set the hardware filter
715 			 * accordingly.
716 			 */
717 			kse_set_rcvfilt(sc);
718 		}
719 		break;
720 	}
721 
722 	splx(s);
723 
724 	return error;
725 }
726 
727 static int
728 kse_init(struct ifnet *ifp)
729 {
730 	struct kse_softc *sc = ifp->if_softc;
731 	uint32_t paddr;
732 	int i, error = 0;
733 
734 	/* cancel pending I/O */
735 	kse_stop(ifp, 0);
736 
737 	/* reset all registers but PCI configuration */
738 	kse_reset(sc);
739 
740 	/* craft Tx descriptor ring */
741 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
742 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
743 		sc->sc_txdescs[i].t3 = paddr;
744 		paddr += sizeof(struct tdes);
745 	}
746 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
747 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
748 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
749 	sc->sc_txfree = KSE_NTXDESC;
750 	sc->sc_txnext = 0;
751 
752 	for (i = 0; i < KSE_TXQUEUELEN; i++)
753 		sc->sc_txsoft[i].txs_mbuf = NULL;
754 	sc->sc_txsfree = KSE_TXQUEUELEN;
755 	sc->sc_txsnext = 0;
756 	sc->sc_txsdirty = 0;
757 
758 	/* craft Rx descriptor ring */
759 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
760 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
761 		sc->sc_rxdescs[i].r3 = paddr;
762 		paddr += sizeof(struct rdes);
763 	}
764 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
765 	for (i = 0; i < KSE_NRXDESC; i++) {
766 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
767 			if ((error = add_rxbuf(sc, i)) != 0) {
768 				aprint_error_dev(sc->sc_dev,
769 				    "unable to allocate or map rx "
770 				    "buffer %d, error = %d\n",
771 				    i, error);
772 				rxdrain(sc);
773 				goto out;
774 			}
775 		}
776 		else
777 			KSE_INIT_RXDESC(sc, i);
778 	}
779 	sc->sc_rxptr = 0;
780 
781 	/* hand Tx/Rx rings to HW */
782 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
783 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
784 
785 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC;
786 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_RB;
787 	sc->sc_t1csum = sc->sc_mcsum = 0;
788 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
789 		sc->sc_rxc |= RXC_ICC;
790 		sc->sc_mcsum |= M_CSUM_IPv4;
791 	}
792 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
793 		sc->sc_txc |= TXC_ICG;
794 		sc->sc_t1csum |= T1_IPCKG;
795 	}
796 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
797 		sc->sc_rxc |= RXC_TCC;
798 		sc->sc_mcsum |= M_CSUM_TCPv4;
799 	}
800 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
801 		sc->sc_txc |= TXC_TCG;
802 		sc->sc_t1csum |= T1_TCPCKG;
803 	}
804 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
805 		sc->sc_rxc |= RXC_UCC;
806 		sc->sc_mcsum |= M_CSUM_UDPv4;
807 	}
808 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
809 		sc->sc_txc |= TXC_UCG;
810 		sc->sc_t1csum |= T1_UDPCKG;
811 	}
812 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
813 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
814 
815 	if (sc->sc_chip == 0x8842) {
816 		sc->sc_txc |= TXC_FCE;
817 		sc->sc_rxc |= RXC_FCE;
818 		CSR_WRITE_2(sc, SGCR3,
819 		    CSR_READ_2(sc, SGCR3) | CR3_USEFC);
820 	}
821 
822 	/* accept multicast frame or run promisc mode */
823 	kse_set_rcvfilt(sc);
824 
825 	/* set current media */
826 	if (sc->sc_chip == 0x8841)
827 		(void)kse_ifmedia_upd(ifp);
828 
829 	/* enable transmitter and receiver */
830 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
831 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
832 	CSR_WRITE_4(sc, MDRSC, 1);
833 
834 	/* enable interrupts */
835 	sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
836 	if (sc->sc_chip == 0x8841)
837 		sc->sc_inten |= INT_DMLCS;
838 	CSR_WRITE_4(sc, INTST, ~0);
839 	CSR_WRITE_4(sc, INTEN, sc->sc_inten);
840 
841 	ifp->if_flags |= IFF_RUNNING;
842 	ifp->if_flags &= ~IFF_OACTIVE;
843 
844 	if (sc->sc_chip == 0x8841) {
845 		/* start one second timer */
846 		callout_schedule(&sc->sc_tick_ch, hz);
847 	}
848 #ifdef KSE_EVENT_COUNTERS
849 	/* start statistics gather 1 minute timer. should be tunable */
850 	zerostats(sc);
851 	callout_schedule(&sc->sc_stat_ch, hz * 60);
852 #endif
853 
854  out:
855 	if (error) {
856 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
857 		ifp->if_timer = 0;
858 		aprint_error_dev(sc->sc_dev, "interface not running\n");
859 	}
860 	return error;
861 }
862 
863 static void
864 kse_stop(struct ifnet *ifp, int disable)
865 {
866 	struct kse_softc *sc = ifp->if_softc;
867 	struct kse_txsoft *txs;
868 	int i;
869 
870 	if (sc->sc_chip == 0x8841)
871 		callout_stop(&sc->sc_tick_ch);
872 #ifdef KSE_EVENT_COUNTERS
873 	callout_stop(&sc->sc_stat_ch);
874 #endif
875 	sc->sc_txc &= ~TXC_TEN;
876 	sc->sc_rxc &= ~RXC_REN;
877 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
878 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
879 
880 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
881 		txs = &sc->sc_txsoft[i];
882 		if (txs->txs_mbuf != NULL) {
883 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
884 			m_freem(txs->txs_mbuf);
885 			txs->txs_mbuf = NULL;
886 		}
887 	}
888 
889 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
890 	ifp->if_timer = 0;
891 
892 	if (disable)
893 		rxdrain(sc);
894 }
895 
896 static void
897 kse_reset(struct kse_softc *sc)
898 {
899 
900 	/* software reset */
901 	CSR_WRITE_2(sc, GRR, 1);
902 	delay(1000); /* PDF does not mention the delay amount */
903 	CSR_WRITE_2(sc, GRR, 0);
904 
905 	/* enable switch function */
906 	CSR_WRITE_2(sc, SIDER, 1);
907 }
908 
909 static void
910 kse_watchdog(struct ifnet *ifp)
911 {
912 	struct kse_softc *sc = ifp->if_softc;
913 
914 	/*
915 	 * Since we're not interrupting every packet, sweep
916 	 * up before we report an error.
917 	 */
918 	txreap(sc);
919 
920 	if (sc->sc_txfree != KSE_NTXDESC) {
921 		aprint_error_dev(sc->sc_dev,
922 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
923 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
924 		if_statinc(ifp, if_oerrors);
925 
926 		/* Reset the interface. */
927 		kse_init(ifp);
928 	}
929 	else if (ifp->if_flags & IFF_DEBUG)
930 		aprint_error_dev(sc->sc_dev, "recovered from device timeout\n");
931 
932 	/* Try to get more packets going. */
933 	kse_start(ifp);
934 }
935 
936 static void
937 kse_start(struct ifnet *ifp)
938 {
939 	struct kse_softc *sc = ifp->if_softc;
940 	struct mbuf *m0, *m;
941 	struct kse_txsoft *txs;
942 	bus_dmamap_t dmamap;
943 	int error, nexttx, lasttx, ofree, seg;
944 	uint32_t tdes0;
945 
946 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
947 		return;
948 
949 	/* Remember the previous number of free descriptors. */
950 	ofree = sc->sc_txfree;
951 
952 	/*
953 	 * Loop through the send queue, setting up transmit descriptors
954 	 * until we drain the queue, or use up all available transmit
955 	 * descriptors.
956 	 */
957 	for (;;) {
958 		IFQ_POLL(&ifp->if_snd, m0);
959 		if (m0 == NULL)
960 			break;
961 
962 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
963 			txreap(sc);
964 			if (sc->sc_txsfree == 0)
965 				break;
966 		}
967 		txs = &sc->sc_txsoft[sc->sc_txsnext];
968 		dmamap = txs->txs_dmamap;
969 
970 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
971 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
972 		if (error) {
973 			if (error == EFBIG) {
974 				aprint_error_dev(sc->sc_dev,
975 				    "Tx packet consumes too many "
976 				    "DMA segments, dropping...\n");
977 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
978 				    m_freem(m0);
979 				    continue;
980 			}
981 			/* Short on resources, just stop for now. */
982 			break;
983 		}
984 
985 		if (dmamap->dm_nsegs > sc->sc_txfree) {
986 			/*
987 			 * Not enough free descriptors to transmit this
988 			 * packet.  We haven't committed anything yet,
989 			 * so just unload the DMA map, put the packet
990 			 * back on the queue, and punt.	 Notify the upper
991 			 * layer that there are not more slots left.
992 			 */
993 			ifp->if_flags |= IFF_OACTIVE;
994 			bus_dmamap_unload(sc->sc_dmat, dmamap);
995 			break;
996 		}
997 
998 		IFQ_DEQUEUE(&ifp->if_snd, m0);
999 
1000 		/*
1001 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1002 		 */
1003 
1004 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1005 		    BUS_DMASYNC_PREWRITE);
1006 
1007 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1008 		lasttx = -1;
1009 		for (nexttx = sc->sc_txnext, seg = 0;
1010 		     seg < dmamap->dm_nsegs;
1011 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
1012 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
1013 			/*
1014 			 * If this is the first descriptor we're
1015 			 * enqueueing, don't set the OWN bit just
1016 			 * yet.	 That could cause a race condition.
1017 			 * We'll do it below.
1018 			 */
1019 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
1020 			tdes->t1 = sc->sc_t1csum
1021 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
1022 			tdes->t0 = tdes0;
1023 			tdes0 = T0_OWN; /* 2nd and other segments */
1024 			lasttx = nexttx;
1025 		}
1026 		/*
1027 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
1028 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
1029 		 * time and NFS stops to proceed until kse_watchdog()
1030 		 * calls txreap() to reclaim the unack'ed mbuf.
1031 		 * It's painful to traverse every mbuf chain to determine
1032 		 * whether someone is waiting for Tx completion.
1033 		 */
1034 		m = m0;
1035 		do {
1036 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1037 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
1038 				break;
1039 			}
1040 		} while ((m = m->m_next) != NULL);
1041 
1042 		/* Write deferred 1st segment T0_OWN at the final stage */
1043 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
1044 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
1045 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
1046 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1047 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1048 
1049 		/* Tell DMA start transmit */
1050 		CSR_WRITE_4(sc, MDTSC, 1);
1051 
1052 		txs->txs_mbuf = m0;
1053 		txs->txs_firstdesc = sc->sc_txnext;
1054 		txs->txs_lastdesc = lasttx;
1055 		txs->txs_ndesc = dmamap->dm_nsegs;
1056 
1057 		sc->sc_txfree -= txs->txs_ndesc;
1058 		sc->sc_txnext = nexttx;
1059 		sc->sc_txsfree--;
1060 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1061 		/*
1062 		 * Pass the packet to any BPF listeners.
1063 		 */
1064 		bpf_mtap(ifp, m0, BPF_D_OUT);
1065 	}
1066 
1067 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1068 		/* No more slots left; notify upper layer. */
1069 		ifp->if_flags |= IFF_OACTIVE;
1070 	}
1071 	if (sc->sc_txfree != ofree) {
1072 		/* Set a watchdog timer in case the chip flakes out. */
1073 		ifp->if_timer = 5;
1074 	}
1075 }
1076 
1077 static void
1078 kse_set_rcvfilt(struct kse_softc *sc)
1079 {
1080 	struct ether_multistep step;
1081 	struct ether_multi *enm;
1082 	struct ethercom *ec = &sc->sc_ethercom;
1083 	struct ifnet *ifp = &ec->ec_if;
1084 	uint32_t crc, mchash[2];
1085 	int i;
1086 
1087 	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM | RXC_RA);
1088 
1089 	/* clear perfect match filter and prepare mcast hash table */
1090 	for (i = 0; i < 16; i++)
1091 		 CSR_WRITE_4(sc, MAAH0 + i*8, 0);
1092 	crc = mchash[0] = mchash[1] = 0;
1093 
1094 	ETHER_LOCK(ec);
1095 	if (ifp->if_flags & IFF_PROMISC) {
1096 		ec->ec_flags |= ETHER_F_ALLMULTI;
1097 		ETHER_UNLOCK(ec);
1098 		/* run promisc. mode */
1099 		sc->sc_rxc |= RXC_RA;
1100 		goto update;
1101 	}
1102 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
1103 	ETHER_FIRST_MULTI(step, ec, enm);
1104 	i = 0;
1105 	while (enm != NULL) {
1106 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1107 			/*
1108 			 * We must listen to a range of multicast addresses.
1109 			 * For now, just accept all multicasts, rather than
1110 			 * trying to set only those filter bits needed to match
1111 			 * the range.  (At this time, the only use of address
1112 			 * ranges is for IP multicast routing, for which the
1113 			 * range is big enough to require all bits set.)
1114 			 */
1115 			ec->ec_flags |= ETHER_F_ALLMULTI;
1116 			ETHER_UNLOCK(ec);
1117 			/* accept all multicast */
1118 			sc->sc_rxc |= RXC_RM;
1119 			goto update;
1120 		}
1121 #if KSE_MCASTDEBUG == 1
1122 		printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1123 #endif
1124 		if (i < 16) {
1125 			/* use 16 additional MAC addr to accept mcast */
1126 			uint32_t addr;
1127 			uint8_t *ep = enm->enm_addrlo;
1128 			addr = (ep[3] << 24) | (ep[2] << 16)
1129 			     | (ep[1] << 8)  |  ep[0];
1130 			CSR_WRITE_4(sc, MAAL0 + i*8, addr);
1131 			addr = (ep[5] << 8) | ep[4];
1132 			CSR_WRITE_4(sc, MAAH0 + i*8, addr | (1U << 31));
1133 		} else {
1134 			/* use hash table when too many */
1135 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1136 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1137 		}
1138 		ETHER_NEXT_MULTI(step, enm);
1139 		i++;
1140 	}
1141 	ETHER_UNLOCK(ec);
1142 
1143 	if (crc)
1144 		sc->sc_rxc |= RXC_MHTE;
1145 	CSR_WRITE_4(sc, MTR0, mchash[0]);
1146 	CSR_WRITE_4(sc, MTR1, mchash[1]);
1147  update:
1148 	/* With RA or RM, MHTE/MTR0/MTR1 are never consulted. */
1149 	return;
1150 }
1151 
1152 static int
1153 add_rxbuf(struct kse_softc *sc, int idx)
1154 {
1155 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1156 	struct mbuf *m;
1157 	int error;
1158 
1159 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1160 	if (m == NULL)
1161 		return ENOBUFS;
1162 
1163 	MCLGET(m, M_DONTWAIT);
1164 	if ((m->m_flags & M_EXT) == 0) {
1165 		m_freem(m);
1166 		return ENOBUFS;
1167 	}
1168 
1169 	if (rxs->rxs_mbuf != NULL)
1170 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1171 
1172 	rxs->rxs_mbuf = m;
1173 
1174 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1175 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1176 	if (error) {
1177 		aprint_error_dev(sc->sc_dev,
1178 		    "can't load rx DMA map %d, error = %d\n", idx, error);
1179 		panic("kse_add_rxbuf");
1180 	}
1181 
1182 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1183 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1184 
1185 	KSE_INIT_RXDESC(sc, idx);
1186 
1187 	return 0;
1188 }
1189 
1190 static void
1191 rxdrain(struct kse_softc *sc)
1192 {
1193 	struct kse_rxsoft *rxs;
1194 	int i;
1195 
1196 	for (i = 0; i < KSE_NRXDESC; i++) {
1197 		rxs = &sc->sc_rxsoft[i];
1198 		if (rxs->rxs_mbuf != NULL) {
1199 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1200 			m_freem(rxs->rxs_mbuf);
1201 			rxs->rxs_mbuf = NULL;
1202 		}
1203 	}
1204 }
1205 
1206 static int
1207 kse_intr(void *arg)
1208 {
1209 	struct kse_softc *sc = arg;
1210 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1211 	uint32_t isr;
1212 
1213 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
1214 		return 0;
1215 
1216 	if (isr & INT_DMRS)
1217 		rxintr(sc);
1218 	if (isr & INT_DMTS)
1219 		txreap(sc);
1220 	if (isr & INT_DMLCS)
1221 		lnkchg(sc);
1222 	if (isr & INT_DMRBUS)
1223 		aprint_error_dev(sc->sc_dev, "Rx descriptor full\n");
1224 
1225 	CSR_WRITE_4(sc, INTST, isr);
1226 
1227 	if (ifp->if_flags & IFF_RUNNING)
1228 		if_schedule_deferred_start(ifp);
1229 
1230 	return 1;
1231 }
1232 
1233 static void
1234 rxintr(struct kse_softc *sc)
1235 {
1236 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1237 	struct kse_rxsoft *rxs;
1238 	struct mbuf *m;
1239 	uint32_t rxstat;
1240 	int i, len;
1241 
1242 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1243 		rxs = &sc->sc_rxsoft[i];
1244 
1245 		KSE_CDRXSYNC(sc, i,
1246 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1247 
1248 		rxstat = sc->sc_rxdescs[i].r0;
1249 
1250 		if (rxstat & R0_OWN) /* desc is left empty */
1251 			break;
1252 
1253 		/* R0_FS | R0_LS must have been marked for this desc */
1254 
1255 		if (rxstat & R0_ES) {
1256 			if_statinc(ifp, if_ierrors);
1257 #define PRINTERR(bit, str)						\
1258 			if (rxstat & (bit))				\
1259 				aprint_error_dev(sc->sc_dev,		\
1260 				    "%s\n", str)
1261 			PRINTERR(R0_TL, "frame too long");
1262 			PRINTERR(R0_RF, "runt frame");
1263 			PRINTERR(R0_CE, "bad FCS");
1264 #undef PRINTERR
1265 			KSE_INIT_RXDESC(sc, i);
1266 			continue;
1267 		}
1268 
1269 		/* HW errata; frame might be too small or too large */
1270 
1271 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1272 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1273 
1274 		len = rxstat & R0_FL_MASK;
1275 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
1276 		m = rxs->rxs_mbuf;
1277 
1278 		if (add_rxbuf(sc, i) != 0) {
1279 			if_statinc(ifp, if_ierrors);
1280 			KSE_INIT_RXDESC(sc, i);
1281 			bus_dmamap_sync(sc->sc_dmat,
1282 			    rxs->rxs_dmamap, 0,
1283 			    rxs->rxs_dmamap->dm_mapsize,
1284 			    BUS_DMASYNC_PREREAD);
1285 			continue;
1286 		}
1287 
1288 		m_set_rcvif(m, ifp);
1289 		m->m_pkthdr.len = m->m_len = len;
1290 
1291 		if (sc->sc_mcsum) {
1292 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1293 			if (rxstat & R0_IPE)
1294 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1295 			if (rxstat & (R0_TCPE | R0_UDPE))
1296 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1297 		}
1298 		if_percpuq_enqueue(ifp->if_percpuq, m);
1299 #ifdef KSEDIAGNOSTIC
1300 		if (kse_monitor_rxintr > 0) {
1301 			aprint_error_dev(sc->sc_dev,
1302 			    "m stat %x data %p len %d\n",
1303 			    rxstat, m->m_data, m->m_len);
1304 		}
1305 #endif
1306 	}
1307 	sc->sc_rxptr = i;
1308 }
1309 
1310 static void
1311 txreap(struct kse_softc *sc)
1312 {
1313 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1314 	struct kse_txsoft *txs;
1315 	uint32_t txstat;
1316 	int i;
1317 
1318 	ifp->if_flags &= ~IFF_OACTIVE;
1319 
1320 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1321 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1322 		txs = &sc->sc_txsoft[i];
1323 
1324 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1325 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1326 
1327 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1328 
1329 		if (txstat & T0_OWN) /* desc is still in use */
1330 			break;
1331 
1332 		/* There is no way to tell transmission status per frame */
1333 
1334 		if_statinc(ifp, if_opackets);
1335 
1336 		sc->sc_txfree += txs->txs_ndesc;
1337 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1338 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1339 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1340 		m_freem(txs->txs_mbuf);
1341 		txs->txs_mbuf = NULL;
1342 	}
1343 	sc->sc_txsdirty = i;
1344 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
1345 		ifp->if_timer = 0;
1346 }
1347 
1348 static void
1349 lnkchg(struct kse_softc *sc)
1350 {
1351 	struct ifmediareq ifmr;
1352 
1353 #if KSE_LINKDEBUG == 1
1354 	uint16_t p1sr = CSR_READ_2(sc, P1SR);
1355 printf("link %s detected\n", (p1sr & PxSR_LINKUP) ? "up" : "down");
1356 #endif
1357 	kse_ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1358 }
1359 
1360 static int
1361 kse_ifmedia_upd(struct ifnet *ifp)
1362 {
1363 	struct kse_softc *sc = ifp->if_softc;
1364 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
1365 	uint16_t p1cr4;
1366 
1367 	p1cr4 = 0;
1368 	if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
1369 		p1cr4 |= PxCR_STARTNEG;	/* restart AN */
1370 		p1cr4 |= PxCR_AUTOEN;	/* enable AN */
1371 		p1cr4 |= PxCR_USEFC;	/* advertise flow control pause */
1372 		p1cr4 |= 0xf;		/* adv. 100FDX,100HDX,10FDX,10HDX */
1373 	} else {
1374 		if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
1375 			p1cr4 |= PxCR_SPD100;
1376 		if (ifm->ifm_media & IFM_FDX)
1377 			p1cr4 |= PxCR_USEFDX;
1378 	}
1379 	CSR_WRITE_2(sc, P1CR4, p1cr4);
1380 #if KSE_LINKDEBUG == 1
1381 printf("P1CR4: %04x\n", p1cr4);
1382 #endif
1383 	return 0;
1384 }
1385 
1386 static void
1387 kse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1388 {
1389 	struct kse_softc *sc = ifp->if_softc;
1390 	struct mii_data *mii = &sc->sc_mii;
1391 
1392 	mii_pollstat(mii);
1393 	ifmr->ifm_status = mii->mii_media_status;
1394 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
1395 	    sc->sc_flowflags;
1396 }
1397 
1398 static void
1399 nopifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1400 {
1401 	struct kse_softc *sc = ifp->if_softc;
1402 	struct ifmedia *ifm = &sc->sc_media;
1403 
1404 #if KSE_LINKDEBUG == 2
1405 printf("p1sr: %04x, p2sr: %04x\n", CSR_READ_2(sc, P1SR), CSR_READ_2(sc, P2SR));
1406 #endif
1407 
1408 	/* 8842 MAC pretends 100FDX all the time */
1409 	ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
1410 	ifmr->ifm_active = ifm->ifm_cur->ifm_media |
1411 	    IFM_FLOW | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
1412 }
1413 
1414 static void
1415 phy_tick(void *arg)
1416 {
1417 	struct kse_softc *sc = arg;
1418 	struct mii_data *mii = &sc->sc_mii;
1419 	int s;
1420 
1421 	s = splnet();
1422 	mii_tick(mii);
1423 	splx(s);
1424 
1425 	callout_schedule(&sc->sc_tick_ch, hz);
1426 }
1427 
1428 static const uint16_t phy1csr[] = {
1429 	/* 0 BMCR */	0x4d0,
1430 	/* 1 BMSR */	0x4d2,
1431 	/* 2 PHYID1 */	0x4d6,	/* 0x0022 - PHY1HR */
1432 	/* 3 PHYID2 */	0x4d4,	/* 0x1430 - PHY1LR */
1433 	/* 4 ANAR */	0x4d8,
1434 	/* 5 ANLPAR */	0x4da,
1435 };
1436 
1437 int
1438 kse_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1439 {
1440 	struct kse_softc *sc = device_private(self);
1441 
1442 	if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1443 		return EINVAL;
1444 	*val = CSR_READ_2(sc, phy1csr[reg]);
1445 	return 0;
1446 }
1447 
1448 int
1449 kse_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1450 {
1451 	struct kse_softc *sc = device_private(self);
1452 
1453 	if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1454 		return EINVAL;
1455 	CSR_WRITE_2(sc, phy1csr[reg], val);
1456 	return 0;
1457 }
1458 
1459 void
1460 kse_mii_statchg(struct ifnet *ifp)
1461 {
1462 	struct kse_softc *sc = ifp->if_softc;
1463 	struct mii_data *mii = &sc->sc_mii;
1464 
1465 #if KSE_LINKDEBUG == 1
1466 	/* decode P1SR register value */
1467 	uint16_t p1sr = CSR_READ_2(sc, P1SR);
1468 	printf("P1SR %04x, spd%d", p1sr, (p1sr & PxSR_SPD100) ? 100 : 10);
1469 	if (p1sr & PxSR_FDX)
1470 		printf(",full-duplex");
1471 	if (p1sr & PxSR_RXFLOW)
1472 		printf(",rxpause");
1473 	if (p1sr & PxSR_TXFLOW)
1474 		printf(",txpause");
1475 	printf("\n");
1476 	/* show resolved mii(4) parameters to compare against above */
1477 	printf("MII spd%d",
1478 	    (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
1479 	if (mii->mii_media_active & IFM_FDX)
1480 		printf(",full-duplex");
1481 	if (mii->mii_media_active & IFM_FLOW) {
1482 		printf(",flowcontrol");
1483 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
1484 			printf(",rxpause");
1485 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
1486 			printf(",txpause");
1487 	}
1488 	printf("\n");
1489 #endif
1490 	/* Get flow control negotiation result. */
1491 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1492 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1493 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1494 
1495 	/* Adjust MAC PAUSE flow control. */
1496 	if ((mii->mii_media_active & IFM_FDX)
1497 	    && (sc->sc_flowflags & IFM_ETH_TXPAUSE))
1498 		sc->sc_txc |= TXC_FCE;
1499 	else
1500 		sc->sc_txc &= ~TXC_FCE;
1501 	if ((mii->mii_media_active & IFM_FDX)
1502 	    && (sc->sc_flowflags & IFM_ETH_RXPAUSE))
1503 		sc->sc_rxc |= RXC_FCE;
1504 	else
1505 		sc->sc_rxc &= ~RXC_FCE;
1506 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
1507 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
1508 #if KSE_LINKDEBUG == 1
1509 	printf("%ctxfce, %crxfce\n",
1510 	    (sc->sc_txc & TXC_FCE) ? '+' : '-',
1511 	    (sc->sc_rxc & RXC_FCE) ? '+' : '-');
1512 #endif
1513 }
1514 
1515 #ifdef KSE_EVENT_COUNTERS
1516 static void
1517 stat_tick(void *arg)
1518 {
1519 	struct kse_softc *sc = arg;
1520 	struct ksext *ee = &sc->sc_ext;
1521 	int nport, p, i, val;
1522 
1523 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1524 	for (p = 0; p < nport; p++) {
1525 		for (i = 0; i < 32; i++) {
1526 			val = 0x1c00 | (p * 0x20 + i);
1527 			CSR_WRITE_2(sc, IACR, val);
1528 			do {
1529 				val = CSR_READ_2(sc, IADR5) << 16;
1530 			} while ((val & (1U << 30)) == 0);
1531 			if (val & (1U << 31)) {
1532 				(void)CSR_READ_2(sc, IADR4);
1533 				val = 0x3fffffff; /* has made overflow */
1534 			}
1535 			else {
1536 				val &= 0x3fff0000;		/* 29:16 */
1537 				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
1538 			}
1539 			ee->pev[p][i].ev_count += val; /* i (0-31) */
1540 		}
1541 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1542 		ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1543 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1544 		ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1545 	}
1546 	callout_schedule(&sc->sc_stat_ch, hz * 60);
1547 }
1548 
1549 static void
1550 zerostats(struct kse_softc *sc)
1551 {
1552 	struct ksext *ee = &sc->sc_ext;
1553 	int nport, p, i, val;
1554 
1555 	/* Make sure all the HW counters get zero */
1556 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1557 	for (p = 0; p < nport; p++) {
1558 		for (i = 0; i < 31; i++) {
1559 			val = 0x1c00 | (p * 0x20 + i);
1560 			CSR_WRITE_2(sc, IACR, val);
1561 			do {
1562 				val = CSR_READ_2(sc, IADR5) << 16;
1563 			} while ((val & (1U << 30)) == 0);
1564 			(void)CSR_READ_2(sc, IADR4);
1565 			ee->pev[p][i].ev_count = 0;
1566 		}
1567 	}
1568 }
1569 #endif
1570