xref: /netbsd-src/sys/dev/pci/if_kse.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: if_kse.c,v 1.15 2008/05/26 10:31:22 nisimura Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Tohru Nishimura.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.15 2008/05/26 10:31:22 nisimura Exp $");
34 
35 #include "bpfilter.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/ioctl.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/queue.h>
47 
48 #include <machine/endian.h>
49 #include <sys/bus.h>
50 #include <sys/intr.h>
51 
52 #include <net/if.h>
53 #include <net/if_media.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 
57 #if NBPFILTER > 0
58 #include <net/bpf.h>
59 #endif
60 
61 #include <dev/pci/pcivar.h>
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcidevs.h>
64 
65 #define CSR_READ_4(sc, off) \
66 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
67 #define CSR_WRITE_4(sc, off, val) \
68 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
69 #define CSR_READ_2(sc, off) \
70 	    bus_space_read_2(sc->sc_st, sc->sc_sh, off)
71 #define CSR_WRITE_2(sc, off, val) \
72 	    bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
73 
74 #define MDTXC	0x000	/* DMA transmit control */
75 #define MDRXC	0x004	/* DMA receive control */
76 #define MDTSC	0x008	/* DMA transmit start */
77 #define MDRSC	0x00c	/* DMA receive start */
78 #define TDLB	0x010	/* transmit descriptor list base */
79 #define RDLB	0x014	/* receive descriptor list base */
80 #define MTR0	0x020	/* multicast table 31:0 */
81 #define MTR1	0x024	/* multicast table 63:32 */
82 #define INTEN	0x028	/* interrupt enable */
83 #define INTST	0x02c	/* interrupt status */
84 #define MARL	0x200	/* MAC address low */
85 #define MARM	0x202	/* MAC address middle */
86 #define MARH	0x204	/* MAC address high */
87 #define GRR	0x216	/* global reset */
88 #define CIDR	0x400	/* chip ID and enable */
89 #define CGCR	0x40a	/* chip global control */
90 #define IACR	0x4a0	/* indirect access control */
91 #define IADR1	0x4a2	/* indirect access data 66:63 */
92 #define IADR2	0x4a4	/* indirect access data 47:32 */
93 #define IADR3	0x4a6	/* indirect access data 63:48 */
94 #define IADR4	0x4a8	/* indirect access data 15:0 */
95 #define IADR5	0x4aa	/* indirect access data 31:16 */
96 #define P1CR4	0x512	/* port 1 control 4 */
97 #define P1SR	0x514	/* port 1 status */
98 #define P2CR4	0x532	/* port 2 control 4 */
99 #define P2SR	0x534	/* port 2 status */
100 
101 #define TXC_BS_MSK	0x3f000000	/* burst size */
102 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
103 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
104 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
105 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
106 #define TXC_FCE		(1U<<9)		/* enable flowcontrol */
107 #define TXC_EP		(1U<<2)		/* enable automatic padding */
108 #define TXC_AC		(1U<<1)		/* add CRC to frame */
109 #define TXC_TEN		(1)		/* enable DMA to run */
110 
111 #define RXC_BS_MSK	0x3f000000	/* burst size */
112 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
113 #define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
114 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
115 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
116 #define RXC_ICC		(1U<<16)	/* run IP checksum */
117 #define RXC_FCE		(1U<<9)		/* enable flowcontrol */
118 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
119 #define RXC_RM		(1U<<5)		/* receive multicast frame */
120 #define RXC_RU		(1U<<4)		/* receive unicast frame */
121 #define RXC_RE		(1U<<3)		/* accept error frame */
122 #define RXC_RA		(1U<<2)		/* receive all frame */
123 #define RXC_MHTE	(1U<<1)		/* use multicast hash table */
124 #define RXC_REN		(1)		/* enable DMA to run */
125 
126 #define INT_DMLCS	(1U<<31)	/* link status change */
127 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
128 #define INT_DMRS	(1U<<29)	/* frame was received */
129 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
130 
131 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
132 
133 #define R0_OWN		(1U<<31)	/* desc is empty */
134 #define R0_FS		(1U<<30)	/* first segment of frame */
135 #define R0_LS		(1U<<29)	/* last segment of frame */
136 #define R0_IPE		(1U<<28)	/* IP checksum error */
137 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
138 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
139 #define R0_ES		(1U<<25)	/* error summary */
140 #define R0_MF		(1U<<24)	/* multicast frame */
141 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
142 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
143 #define R0_RE		(1U<<19)	/* MII reported error */
144 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
145 #define R0_RF		(1U<<17)	/* damaged runt frame */
146 #define R0_CE		(1U<<16)	/* CRC error */
147 #define R0_FT		(1U<<15)	/* frame type */
148 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
149 
150 #define T1_IC		(1U<<31)	/* post interrupt on complete */
151 #define T1_FS		(1U<<30)	/* first segment of frame */
152 #define T1_LS		(1U<<29)	/* last segment of frame */
153 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
154 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
155 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
156 #define T1_TER		(1U<<25)	/* end of ring */
157 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
158 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
159 
160 #define R1_RER		(1U<<25)	/* end of ring */
161 #define R1_RBS_MASK	0x7fc		/* segment size 10:0 */
162 
163 #define KSE_NTXSEGS		16
164 #define KSE_TXQUEUELEN		64
165 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
166 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
167 #define KSE_NTXDESC		256
168 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
169 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
170 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
171 
172 #define KSE_NRXDESC		64
173 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
174 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
175 
176 struct tdes {
177 	uint32_t t0, t1, t2, t3;
178 };
179 
180 struct rdes {
181 	uint32_t r0, r1, r2, r3;
182 };
183 
184 struct kse_control_data {
185 	struct tdes kcd_txdescs[KSE_NTXDESC];
186 	struct rdes kcd_rxdescs[KSE_NRXDESC];
187 };
188 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
189 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
190 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
191 
192 struct kse_txsoft {
193 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
194 	bus_dmamap_t txs_dmamap;	/* our DMA map */
195 	int txs_firstdesc;		/* first descriptor in packet */
196 	int txs_lastdesc;		/* last descriptor in packet */
197 	int txs_ndesc;			/* # of descriptors used */
198 };
199 
200 struct kse_rxsoft {
201 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
202 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
203 };
204 
205 struct kse_softc {
206 	struct device sc_dev;		/* generic device information */
207 	bus_space_tag_t sc_st;		/* bus space tag */
208 	bus_space_handle_t sc_sh;	/* bus space handle */
209 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
210 	struct ethercom sc_ethercom;	/* Ethernet common data */
211 	void *sc_ih;			/* interrupt cookie */
212 
213 	struct ifmedia sc_media;	/* ifmedia information */
214 	int sc_media_status;		/* PHY */
215 	int sc_media_active;		/* PHY */
216 	callout_t  sc_callout;		/* MII tick callout */
217 	callout_t  sc_stat_ch;		/* statistics counter callout */
218 
219 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
220 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
221 
222 	struct kse_control_data *sc_control_data;
223 #define sc_txdescs	sc_control_data->kcd_txdescs
224 #define sc_rxdescs	sc_control_data->kcd_rxdescs
225 
226 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
227 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
228 	int sc_txfree;			/* number of free Tx descriptors */
229 	int sc_txnext;			/* next ready Tx descriptor */
230 	int sc_txsfree;			/* number of free Tx jobs */
231 	int sc_txsnext;			/* next ready Tx job */
232 	int sc_txsdirty;		/* dirty Tx jobs */
233 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
234 
235 	uint32_t sc_txc, sc_rxc;
236 	uint32_t sc_t1csum;
237 	int sc_mcsum;
238 	uint32_t sc_inten;
239 
240 	uint32_t sc_chip;
241 	uint8_t sc_altmac[16][ETHER_ADDR_LEN];
242 	uint16_t sc_vlan[16];
243 
244 #ifdef KSE_EVENT_COUNTERS
245 	struct ksext {
246 		char evcntname[3][8];
247 		struct evcnt pev[3][34];
248 	} sc_ext;			/* switch statistics */
249 #endif
250 };
251 
252 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
253 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
254 
255 #define KSE_CDTXSYNC(sc, x, n, ops)					\
256 do {									\
257 	int __x, __n;							\
258 									\
259 	__x = (x);							\
260 	__n = (n);							\
261 									\
262 	/* If it will wrap around, sync to the end of the ring. */	\
263 	if ((__x + __n) > KSE_NTXDESC) {				\
264 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
265 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
266 		    (KSE_NTXDESC - __x), (ops));			\
267 		__n -= (KSE_NTXDESC - __x);				\
268 		__x = 0;						\
269 	}								\
270 									\
271 	/* Now sync whatever is left. */				\
272 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
273 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
274 } while (/*CONSTCOND*/0)
275 
276 #define KSE_CDRXSYNC(sc, x, ops)					\
277 do {									\
278 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
279 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
280 } while (/*CONSTCOND*/0)
281 
282 #define KSE_INIT_RXDESC(sc, x)						\
283 do {									\
284 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
285 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
286 	struct mbuf *__m = __rxs->rxs_mbuf;				\
287 									\
288 	__m->m_data = __m->m_ext.ext_buf;				\
289 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
290 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
291 	__rxd->r0 = R0_OWN;						\
292 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
293 } while (/*CONSTCOND*/0)
294 
295 u_int kse_burstsize = 8;	/* DMA burst length tuning knob */
296 
297 #ifdef KSEDIAGNOSTIC
298 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
299 #endif
300 
301 static int kse_match(struct device *, struct cfdata *, void *);
302 static void kse_attach(struct device *, struct device *, void *);
303 
304 CFATTACH_DECL(kse, sizeof(struct kse_softc),
305     kse_match, kse_attach, NULL, NULL);
306 
307 static int kse_ioctl(struct ifnet *, u_long, void *);
308 static void kse_start(struct ifnet *);
309 static void kse_watchdog(struct ifnet *);
310 static int kse_init(struct ifnet *);
311 static void kse_stop(struct ifnet *, int);
312 static void kse_reset(struct kse_softc *);
313 static void kse_set_filter(struct kse_softc *);
314 static int add_rxbuf(struct kse_softc *, int);
315 static void rxdrain(struct kse_softc *);
316 static int kse_intr(void *);
317 static void rxintr(struct kse_softc *);
318 static void txreap(struct kse_softc *);
319 static void lnkchg(struct kse_softc *);
320 static int ifmedia_upd(struct ifnet *);
321 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
322 static void phy_tick(void *);
323 static int ifmedia2_upd(struct ifnet *);
324 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
325 #ifdef KSE_EVENT_COUNTERS
326 static void stat_tick(void *);
327 static void zerostats(struct kse_softc *);
328 #endif
329 
330 static int
331 kse_match(struct device *parent, struct cfdata *match, void *aux)
332 {
333 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
334 
335 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
336 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
337 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
338 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
339 		return 1;
340 
341 	return 0;
342 }
343 
344 static void
345 kse_attach(struct device *parent, struct device *self, void *aux)
346 {
347 	struct kse_softc *sc = (struct kse_softc *)self;
348 	struct pci_attach_args *pa = aux;
349 	pci_chipset_tag_t pc = pa->pa_pc;
350 	pci_intr_handle_t ih;
351 	const char *intrstr;
352 	struct ifnet *ifp;
353 	struct ifmedia *ifm;
354 	uint8_t enaddr[ETHER_ADDR_LEN];
355 	bus_dma_segment_t seg;
356 	int i, p, error, nseg;
357 	pcireg_t pmode;
358 	int pmreg;
359 
360 	if (pci_mapreg_map(pa, 0x10,
361 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
362 	    0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
363 		printf(": unable to map device registers\n");
364 		return;
365 	}
366 
367 	sc->sc_dmat = pa->pa_dmat;
368 
369 	/* Make sure bus mastering is enabled. */
370 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
371 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
372 	    PCI_COMMAND_MASTER_ENABLE);
373 
374 	/* Get it out of power save mode, if needed. */
375 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
376 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
377 		    PCI_PMCSR_STATE_MASK;
378 		if (pmode == PCI_PMCSR_STATE_D3) {
379 			/*
380 			 * The card has lost all configuration data in
381 			 * this state, so punt.
382 			 */
383 			printf("%s: unable to wake from power state D3\n",
384 			    device_xname(&sc->sc_dev));
385 			return;
386 		}
387 		if (pmode != PCI_PMCSR_STATE_D0) {
388 			printf("%s: waking up from power date D%d\n",
389 			    device_xname(&sc->sc_dev), pmode);
390 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
391 			    PCI_PMCSR_STATE_D0);
392 		}
393 	}
394 
395 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
396 	printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
397 	    sc->sc_chip, PCI_REVISION(pa->pa_class));
398 
399 	/*
400 	 * Read the Ethernet address from the EEPROM.
401 	 */
402 	i = CSR_READ_2(sc, MARL);
403 	enaddr[5] = i; enaddr[4] = i >> 8;
404 	i = CSR_READ_2(sc, MARM);
405 	enaddr[3] = i; enaddr[2] = i >> 8;
406 	i = CSR_READ_2(sc, MARH);
407 	enaddr[1] = i; enaddr[0] = i >> 8;
408 	printf("%s: Ethernet address: %s\n",
409 		device_xname(&sc->sc_dev), ether_sprintf(enaddr));
410 
411 	/*
412 	 * Enable chip function.
413 	 */
414 	CSR_WRITE_2(sc, CIDR, 1);
415 
416 	/*
417 	 * Map and establish our interrupt.
418 	 */
419 	if (pci_intr_map(pa, &ih)) {
420 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
421 		return;
422 	}
423 	intrstr = pci_intr_string(pc, ih);
424 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
425 	if (sc->sc_ih == NULL) {
426 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
427 		if (intrstr != NULL)
428 			printf(" at %s", intrstr);
429 		printf("\n");
430 		return;
431 	}
432 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
433 
434 	/*
435 	 * Allocate the control data structures, and create and load the
436 	 * DMA map for it.
437 	 */
438 	error = bus_dmamem_alloc(sc->sc_dmat,
439 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
440 	if (error != 0) {
441 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n", error);
442 		goto fail_0;
443 	}
444 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
445 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
446 	    BUS_DMA_COHERENT);
447 	if (error != 0) {
448 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n", error);
449 		goto fail_1;
450 	}
451 	error = bus_dmamap_create(sc->sc_dmat,
452 	    sizeof(struct kse_control_data), 1,
453 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
454 	if (error != 0) {
455 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
456 		    "error = %d\n", error);
457 		goto fail_2;
458 	}
459 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
460 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
461 	if (error != 0) {
462 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
463 		    error);
464 		goto fail_3;
465 	}
466 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
467 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
468 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
469 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
470 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
471 			    "error = %d\n", i, error);
472 			goto fail_4;
473 		}
474 	}
475 	for (i = 0; i < KSE_NRXDESC; i++) {
476 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
477 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
478 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
479 			    "error = %d\n", i, error);
480 			goto fail_5;
481 		}
482 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
483 	}
484 
485 	callout_init(&sc->sc_callout, 0);
486 	callout_init(&sc->sc_stat_ch, 0);
487 
488 	ifm = &sc->sc_media;
489 	if (sc->sc_chip == 0x8841) {
490 		ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
491 		ifmedia_add(ifm, IFM_ETHER|IFM_10_T, 0, NULL);
492 		ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
493 		ifmedia_add(ifm, IFM_ETHER|IFM_100_TX, 0, NULL);
494 		ifmedia_add(ifm, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
495 		ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
496 		ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
497 	}
498 	else {
499 		ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
500 		ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
501 		ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
502 	}
503 
504 	printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
505 	    device_xname(&sc->sc_dev));
506 
507 	ifp = &sc->sc_ethercom.ec_if;
508 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
509 	ifp->if_softc = sc;
510 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
511 	ifp->if_ioctl = kse_ioctl;
512 	ifp->if_start = kse_start;
513 	ifp->if_watchdog = kse_watchdog;
514 	ifp->if_init = kse_init;
515 	ifp->if_stop = kse_stop;
516 	IFQ_SET_READY(&ifp->if_snd);
517 
518 	/*
519 	 * KSZ8842 can handle 802.1Q VLAN-sized frames,
520 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
521 	 */
522 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
523 	ifp->if_capabilities |=
524 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
525 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
526 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
527 
528 	if_attach(ifp);
529 	ether_ifattach(ifp, enaddr);
530 
531 	p = (sc->sc_chip == 0x8842) ? 3 : 1;
532 #ifdef KSE_EVENT_COUNTERS
533 	for (i = 0; i < p; i++) {
534 		struct ksext *ee = &sc->sc_ext;
535 		sprintf(ee->evcntname[i], "%s.%d", device_xname(&sc->sc_dev), i+1);
536 		evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
537 		    NULL, ee->evcntname[i], "RxLoPriotyByte");
538 		evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
539 		    NULL, ee->evcntname[i], "RxHiPriotyByte");
540 		evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
541 		    NULL, ee->evcntname[i], "RxUndersizePkt");
542 		evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
543 		    NULL, ee->evcntname[i], "RxFragments");
544 		evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
545 		    NULL, ee->evcntname[i], "RxOversize");
546 		evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
547 		    NULL, ee->evcntname[i], "RxJabbers");
548 		evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
549 		    NULL, ee->evcntname[i], "RxSymbolError");
550 		evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
551 		    NULL, ee->evcntname[i], "RxCRCError");
552 		evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
553 		    NULL, ee->evcntname[i], "RxAlignmentError");
554 		evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
555 		    NULL, ee->evcntname[i], "RxControl8808Pkts");
556 		evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
557 		    NULL, ee->evcntname[i], "RxPausePkts");
558 		evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
559 		    NULL, ee->evcntname[i], "RxBroadcast");
560 		evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
561 		    NULL, ee->evcntname[i], "RxMulticast");
562 		evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
563 		    NULL, ee->evcntname[i], "RxUnicast");
564 		evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
565 		    NULL, ee->evcntname[i], "Rx64Octets");
566 		evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
567 		    NULL, ee->evcntname[i], "Rx65To127Octets");
568 		evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
569 		    NULL, ee->evcntname[i], "Rx128To255Octets");
570 		evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
571 		    NULL, ee->evcntname[i], "Rx255To511Octets");
572 		evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
573 		    NULL, ee->evcntname[i], "Rx512To1023Octets");
574 		evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
575 		    NULL, ee->evcntname[i], "Rx1024To1522Octets");
576 		evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
577 		    NULL, ee->evcntname[i], "TxLoPriotyByte");
578 		evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
579 		    NULL, ee->evcntname[i], "TxHiPriotyByte");
580 		evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
581 		    NULL, ee->evcntname[i], "TxLateCollision");
582 		evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
583 		    NULL, ee->evcntname[i], "TxPausePkts");
584 		evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
585 		    NULL, ee->evcntname[i], "TxBroadcastPkts");
586 		evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
587 		    NULL, ee->evcntname[i], "TxMulticastPkts");
588 		evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
589 		    NULL, ee->evcntname[i], "TxUnicastPkts");
590 		evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
591 		    NULL, ee->evcntname[i], "TxDeferred");
592 		evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
593 		    NULL, ee->evcntname[i], "TxTotalCollision");
594 		evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
595 		    NULL, ee->evcntname[i], "TxExcessiveCollision");
596 		evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
597 		    NULL, ee->evcntname[i], "TxSingleCollision");
598 		evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
599 		    NULL, ee->evcntname[i], "TxMultipleCollision");
600 		evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
601 		    NULL, ee->evcntname[i], "TxDropPkts");
602 		evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
603 		    NULL, ee->evcntname[i], "RxDropPkts");
604 	}
605 #endif
606 	return;
607 
608  fail_5:
609 	for (i = 0; i < KSE_NRXDESC; i++) {
610 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
611 			bus_dmamap_destroy(sc->sc_dmat,
612 			    sc->sc_rxsoft[i].rxs_dmamap);
613 	}
614  fail_4:
615 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
616 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
617 			bus_dmamap_destroy(sc->sc_dmat,
618 			    sc->sc_txsoft[i].txs_dmamap);
619 	}
620 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
621  fail_3:
622 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
623  fail_2:
624 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
625 	    sizeof(struct kse_control_data));
626  fail_1:
627 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
628  fail_0:
629 	return;
630 }
631 
632 static int
633 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
634 {
635 	struct kse_softc *sc = ifp->if_softc;
636 	struct ifreq *ifr = (struct ifreq *)data;
637 	int s, error;
638 
639 	s = splnet();
640 
641 	switch (cmd) {
642 	case SIOCSIFMEDIA:
643 	case SIOCGIFMEDIA:
644 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
645 		break;
646 
647 	default:
648 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
649 			break;
650 
651 		error = 0;
652 
653 		if (cmd == SIOCSIFCAP)
654 			error = (*ifp->if_init)(ifp);
655 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
656 			;
657 		else if (ifp->if_flags & IFF_RUNNING) {
658 			/*
659 			 * Multicast list has changed; set the hardware filter
660 			 * accordingly.
661 			 */
662 			kse_set_filter(sc);
663 		}
664 		break;
665 	}
666 
667 	kse_start(ifp);
668 
669 	splx(s);
670 	return error;
671 }
672 
673 static int
674 kse_init(struct ifnet *ifp)
675 {
676 	struct kse_softc *sc = ifp->if_softc;
677 	uint32_t paddr;
678 	int i, error = 0;
679 
680 	/* cancel pending I/O */
681 	kse_stop(ifp, 0);
682 
683 	/* reset all registers but PCI configuration */
684 	kse_reset(sc);
685 
686 	/* craft Tx descriptor ring */
687 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
688 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
689 		sc->sc_txdescs[i].t3 = paddr;
690 		paddr += sizeof(struct tdes);
691 	}
692 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
693 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
694 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
695 	sc->sc_txfree = KSE_NTXDESC;
696 	sc->sc_txnext = 0;
697 
698 	for (i = 0; i < KSE_TXQUEUELEN; i++)
699 		sc->sc_txsoft[i].txs_mbuf = NULL;
700 	sc->sc_txsfree = KSE_TXQUEUELEN;
701 	sc->sc_txsnext = 0;
702 	sc->sc_txsdirty = 0;
703 
704 	/* craft Rx descriptor ring */
705 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
706 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
707 		sc->sc_rxdescs[i].r3 = paddr;
708 		paddr += sizeof(struct rdes);
709 	}
710 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
711 	for (i = 0; i < KSE_NRXDESC; i++) {
712 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
713 			if ((error = add_rxbuf(sc, i)) != 0) {
714 				printf("%s: unable to allocate or map rx "
715 				    "buffer %d, error = %d\n",
716 				     device_xname(&sc->sc_dev), i, error);
717 				rxdrain(sc);
718 				goto out;
719 			}
720 		}
721 		else
722 			KSE_INIT_RXDESC(sc, i);
723 	}
724 	sc->sc_rxptr = 0;
725 
726 	/* hand Tx/Rx rings to HW */
727 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
728 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
729 
730 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
731 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
732 	if (ifp->if_flags & IFF_PROMISC)
733 		sc->sc_rxc |= RXC_RA;
734 	if (ifp->if_flags & IFF_BROADCAST)
735 		sc->sc_rxc |= RXC_RB;
736 	sc->sc_t1csum = sc->sc_mcsum = 0;
737 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
738 		sc->sc_rxc |= RXC_ICC;
739 		sc->sc_mcsum |= M_CSUM_IPv4;
740 	}
741 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
742 		sc->sc_txc |= TXC_ICG;
743 		sc->sc_t1csum |= T1_IPCKG;
744 	}
745 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
746 		sc->sc_rxc |= RXC_TCC;
747 		sc->sc_mcsum |= M_CSUM_TCPv4;
748 	}
749 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
750 		sc->sc_txc |= TXC_TCG;
751 		sc->sc_t1csum |= T1_TCPCKG;
752 	}
753 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
754 		sc->sc_rxc |= RXC_UCC;
755 		sc->sc_mcsum |= M_CSUM_UDPv4;
756 	}
757 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
758 		sc->sc_txc |= TXC_UCG;
759 		sc->sc_t1csum |= T1_UDPCKG;
760 	}
761 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
762 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
763 
764 	/* build multicast hash filter if necessary */
765 	kse_set_filter(sc);
766 
767 	/* set current media */
768 	(void)ifmedia_upd(ifp);
769 
770 	/* enable transmitter and receiver */
771 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
772 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
773 	CSR_WRITE_4(sc, MDRSC, 1);
774 
775 	/* enable interrupts */
776 	sc->sc_inten = INT_DMTS|INT_DMRS|INT_DMRBUS;
777 	if (sc->sc_chip == 0x8841)
778 		sc->sc_inten |= INT_DMLCS;
779 	CSR_WRITE_4(sc, INTST, ~0);
780 	CSR_WRITE_4(sc, INTEN, sc->sc_inten);
781 
782 	ifp->if_flags |= IFF_RUNNING;
783 	ifp->if_flags &= ~IFF_OACTIVE;
784 
785 	if (sc->sc_chip == 0x8841) {
786 		/* start one second timer */
787 		callout_reset(&sc->sc_callout, hz, phy_tick, sc);
788 	}
789 #ifdef KSE_EVENT_COUNTERS
790 	/* start statistics gather 1 minute timer */
791 	zerostats(sc);
792 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
793 #endif
794 
795  out:
796 	if (error) {
797 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
798 		ifp->if_timer = 0;
799 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
800 	}
801 	return error;
802 }
803 
804 static void
805 kse_stop(struct ifnet *ifp, int disable)
806 {
807 	struct kse_softc *sc = ifp->if_softc;
808 	struct kse_txsoft *txs;
809 	int i;
810 
811 	if (sc->sc_chip == 0x8841)
812 		callout_stop(&sc->sc_callout);
813 	callout_stop(&sc->sc_stat_ch);
814 
815 	sc->sc_txc &= ~TXC_TEN;
816 	sc->sc_rxc &= ~RXC_REN;
817 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
818 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
819 
820 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
821 		txs = &sc->sc_txsoft[i];
822 		if (txs->txs_mbuf != NULL) {
823 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
824 			m_freem(txs->txs_mbuf);
825 			txs->txs_mbuf = NULL;
826 		}
827 	}
828 
829 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
830 	ifp->if_timer = 0;
831 
832 	if (disable)
833 		rxdrain(sc);
834 }
835 
836 static void
837 kse_reset(struct kse_softc *sc)
838 {
839 
840 	CSR_WRITE_2(sc, GRR, 1);
841 	delay(1000); /* PDF does not mention the delay amount */
842 	CSR_WRITE_2(sc, GRR, 0);
843 
844 	CSR_WRITE_2(sc, CIDR, 1);
845 }
846 
847 static void
848 kse_watchdog(struct ifnet *ifp)
849 {
850 	struct kse_softc *sc = ifp->if_softc;
851 
852 	/*
853 	 * Since we're not interrupting every packet, sweep
854 	 * up before we report an error.
855 	 */
856 	txreap(sc);
857 
858 	if (sc->sc_txfree != KSE_NTXDESC) {
859 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
860 		    device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
861 		    sc->sc_txnext);
862 		ifp->if_oerrors++;
863 
864 		/* Reset the interface. */
865 		kse_init(ifp);
866 	}
867 	else if (ifp->if_flags & IFF_DEBUG)
868 		printf("%s: recovered from device timeout\n",
869 		    device_xname(&sc->sc_dev));
870 
871 	/* Try to get more packets going. */
872 	kse_start(ifp);
873 }
874 
875 static void
876 kse_start(struct ifnet *ifp)
877 {
878 	struct kse_softc *sc = ifp->if_softc;
879 	struct mbuf *m0, *m;
880 	struct kse_txsoft *txs;
881 	bus_dmamap_t dmamap;
882 	int error, nexttx, lasttx, ofree, seg;
883 	uint32_t tdes0;
884 
885 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
886 		return;
887 
888 	/*
889 	 * Remember the previous number of free descriptors.
890 	 */
891 	ofree = sc->sc_txfree;
892 
893 	/*
894 	 * Loop through the send queue, setting up transmit descriptors
895 	 * until we drain the queue, or use up all available transmit
896 	 * descriptors.
897 	 */
898 	for (;;) {
899 		IFQ_POLL(&ifp->if_snd, m0);
900 		if (m0 == NULL)
901 			break;
902 
903 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
904 			txreap(sc);
905 			if (sc->sc_txsfree == 0)
906 				break;
907 		}
908 		txs = &sc->sc_txsoft[sc->sc_txsnext];
909 		dmamap = txs->txs_dmamap;
910 
911 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
912 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
913 		if (error) {
914 			if (error == EFBIG) {
915 				printf("%s: Tx packet consumes too many "
916 				    "DMA segments, dropping...\n",
917 				    device_xname(&sc->sc_dev));
918 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
919 				    m_freem(m0);
920 				    continue;
921 			}
922 			/* Short on resources, just stop for now. */
923 			break;
924 		}
925 
926 		if (dmamap->dm_nsegs > sc->sc_txfree) {
927 			/*
928 			 * Not enough free descriptors to transmit this
929 			 * packet.  We haven't committed anything yet,
930 			 * so just unload the DMA map, put the packet
931 			 * back on the queue, and punt.	 Notify the upper
932 			 * layer that there are not more slots left.
933 			 */
934 			ifp->if_flags |= IFF_OACTIVE;
935 			bus_dmamap_unload(sc->sc_dmat, dmamap);
936 			break;
937 		}
938 
939 		IFQ_DEQUEUE(&ifp->if_snd, m0);
940 
941 		/*
942 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
943 		 */
944 
945 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
946 		    BUS_DMASYNC_PREWRITE);
947 
948 		lasttx = -1; tdes0 = 0;
949 		for (nexttx = sc->sc_txnext, seg = 0;
950 		     seg < dmamap->dm_nsegs;
951 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
952 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
953 			/*
954 			 * If this is the first descriptor we're
955 			 * enqueueing, don't set the OWN bit just
956 			 * yet.	 That could cause a race condition.
957 			 * We'll do it below.
958 			 */
959 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
960 			tdes->t1 = sc->sc_t1csum
961 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
962 			tdes->t0 = tdes0;
963 			tdes0 |= T0_OWN;
964 			lasttx = nexttx;
965 		}
966 
967 		/*
968 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
969 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
970 		 * time and NFS stops to proceed until kse_watchdog()
971 		 * calls txreap() to reclaim the unack'ed mbuf.
972 		 * It's painful to traverse every mbuf chain to determine
973 		 * whether someone is waiting for Tx completion.
974 		 */
975 		m = m0;
976 		do {
977 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
978 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
979 				break;
980 			}
981 		} while ((m = m->m_next) != NULL);
982 
983 		/* write last T0_OWN bit of the 1st segment */
984 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
985 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
986 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
987 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
988 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
989 
990 		/* tell DMA start transmit */
991 		CSR_WRITE_4(sc, MDTSC, 1);
992 
993 		txs->txs_mbuf = m0;
994 		txs->txs_firstdesc = sc->sc_txnext;
995 		txs->txs_lastdesc = lasttx;
996 		txs->txs_ndesc = dmamap->dm_nsegs;
997 
998 		sc->sc_txfree -= txs->txs_ndesc;
999 		sc->sc_txnext = nexttx;
1000 		sc->sc_txsfree--;
1001 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1002 #if NBPFILTER > 0
1003 		/*
1004 		 * Pass the packet to any BPF listeners.
1005 		 */
1006 		if (ifp->if_bpf)
1007 			bpf_mtap(ifp->if_bpf, m0);
1008 #endif /* NBPFILTER > 0 */
1009 	}
1010 
1011 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1012 		/* No more slots left; notify upper layer. */
1013 		ifp->if_flags |= IFF_OACTIVE;
1014 	}
1015 	if (sc->sc_txfree != ofree) {
1016 		/* Set a watchdog timer in case the chip flakes out. */
1017 		ifp->if_timer = 5;
1018 	}
1019 }
1020 
1021 static void
1022 kse_set_filter(struct kse_softc *sc)
1023 {
1024 	struct ether_multistep step;
1025 	struct ether_multi *enm;
1026 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1027 	uint32_t h, hashes[2];
1028 
1029 	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1030 	ifp->if_flags &= ~IFF_ALLMULTI;
1031 	if (ifp->if_flags & IFF_PROMISC)
1032 		return;
1033 
1034 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1035 	if (enm == NULL)
1036 		return;
1037 	hashes[0] = hashes[1] = 0;
1038 	do {
1039 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1040 			/*
1041 			 * We must listen to a range of multicast addresses.
1042 			 * For now, just accept all multicasts, rather than
1043 			 * trying to set only those filter bits needed to match
1044 			 * the range.  (At this time, the only use of address
1045 			 * ranges is for IP multicast routing, for which the
1046 			 * range is big enough to require all bits set.)
1047 			 */
1048 			goto allmulti;
1049 		}
1050 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1051 		hashes[h >> 5] |= 1 << (h & 0x1f);
1052 		ETHER_NEXT_MULTI(step, enm);
1053 	} while (enm != NULL);
1054 	sc->sc_rxc |= RXC_MHTE;
1055 	CSR_WRITE_4(sc, MTR0, hashes[0]);
1056 	CSR_WRITE_4(sc, MTR1, hashes[1]);
1057 	return;
1058  allmulti:
1059 	sc->sc_rxc |= RXC_RM;
1060 	ifp->if_flags |= IFF_ALLMULTI;
1061 }
1062 
1063 static int
1064 add_rxbuf(struct kse_softc *sc, int idx)
1065 {
1066 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1067 	struct mbuf *m;
1068 	int error;
1069 
1070 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1071 	if (m == NULL)
1072 		return ENOBUFS;
1073 
1074 	MCLGET(m, M_DONTWAIT);
1075 	if ((m->m_flags & M_EXT) == 0) {
1076 		m_freem(m);
1077 		return ENOBUFS;
1078 	}
1079 
1080 	if (rxs->rxs_mbuf != NULL)
1081 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1082 
1083 	rxs->rxs_mbuf = m;
1084 
1085 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1086 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1087 	if (error) {
1088 		printf("%s: can't load rx DMA map %d, error = %d\n",
1089 		    device_xname(&sc->sc_dev), idx, error);
1090 		panic("kse_add_rxbuf");
1091 	}
1092 
1093 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1094 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1095 
1096 	KSE_INIT_RXDESC(sc, idx);
1097 
1098 	return 0;
1099 }
1100 
1101 static void
1102 rxdrain(struct kse_softc *sc)
1103 {
1104 	struct kse_rxsoft *rxs;
1105 	int i;
1106 
1107 	for (i = 0; i < KSE_NRXDESC; i++) {
1108 		rxs = &sc->sc_rxsoft[i];
1109 		if (rxs->rxs_mbuf != NULL) {
1110 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1111 			m_freem(rxs->rxs_mbuf);
1112 			rxs->rxs_mbuf = NULL;
1113 		}
1114 	}
1115 }
1116 
1117 static int
1118 kse_intr(void *arg)
1119 {
1120 	struct kse_softc *sc = arg;
1121 	uint32_t isr;
1122 
1123 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
1124 		return 0;
1125 
1126 	if (isr & INT_DMRS)
1127 		rxintr(sc);
1128 	if (isr & INT_DMTS)
1129 		txreap(sc);
1130 	if (isr & INT_DMLCS)
1131 		lnkchg(sc);
1132 	if (isr & INT_DMRBUS)
1133 		printf("%s: Rx descriptor full\n", device_xname(&sc->sc_dev));
1134 
1135 	CSR_WRITE_4(sc, INTST, isr);
1136 	return 1;
1137 }
1138 
1139 static void
1140 rxintr(struct kse_softc *sc)
1141 {
1142 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1143 	struct kse_rxsoft *rxs;
1144 	struct mbuf *m;
1145 	uint32_t rxstat;
1146 	int i, len;
1147 
1148 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1149 		rxs = &sc->sc_rxsoft[i];
1150 
1151 		KSE_CDRXSYNC(sc, i,
1152 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1153 
1154 		rxstat = sc->sc_rxdescs[i].r0;
1155 
1156 		if (rxstat & R0_OWN) /* desc is left empty */
1157 			break;
1158 
1159 		/* R0_FS|R0_LS must have been marked for this desc */
1160 
1161 		if (rxstat & R0_ES) {
1162 			ifp->if_ierrors++;
1163 #define PRINTERR(bit, str)						\
1164 			if (rxstat & (bit))				\
1165 				printf("%s: receive error: %s\n",	\
1166 				    device_xname(&sc->sc_dev), str)
1167 			PRINTERR(R0_TL, "frame too long");
1168 			PRINTERR(R0_RF, "runt frame");
1169 			PRINTERR(R0_CE, "bad FCS");
1170 #undef PRINTERR
1171 			KSE_INIT_RXDESC(sc, i);
1172 			continue;
1173 		}
1174 
1175 		/* HW errata; frame might be too small or too large */
1176 
1177 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1178 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1179 
1180 		len = rxstat & R0_FL_MASK;
1181 		len -= ETHER_CRC_LEN;	/* trim CRC off */
1182 		m = rxs->rxs_mbuf;
1183 
1184 		if (add_rxbuf(sc, i) != 0) {
1185 			ifp->if_ierrors++;
1186 			KSE_INIT_RXDESC(sc, i);
1187 			bus_dmamap_sync(sc->sc_dmat,
1188 			    rxs->rxs_dmamap, 0,
1189 			    rxs->rxs_dmamap->dm_mapsize,
1190 			    BUS_DMASYNC_PREREAD);
1191 			continue;
1192 		}
1193 
1194 		ifp->if_ipackets++;
1195 		m->m_pkthdr.rcvif = ifp;
1196 		m->m_pkthdr.len = m->m_len = len;
1197 
1198 		if (sc->sc_mcsum) {
1199 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1200 			if (rxstat & R0_IPE)
1201 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1202 			if (rxstat & (R0_TCPE | R0_UDPE))
1203 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1204 		}
1205 #if NBPFILTER > 0
1206 		if (ifp->if_bpf)
1207 			bpf_mtap(ifp->if_bpf, m);
1208 #endif /* NBPFILTER > 0 */
1209 		(*ifp->if_input)(ifp, m);
1210 #ifdef KSEDIAGNOSTIC
1211 		if (kse_monitor_rxintr > 0) {
1212 			printf("m stat %x data %p len %d\n",
1213 			    rxstat, m->m_data, m->m_len);
1214 		}
1215 #endif
1216 	}
1217 	sc->sc_rxptr = i;
1218 }
1219 
1220 static void
1221 txreap(struct kse_softc *sc)
1222 {
1223 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1224 	struct kse_txsoft *txs;
1225 	uint32_t txstat;
1226 	int i;
1227 
1228 	ifp->if_flags &= ~IFF_OACTIVE;
1229 
1230 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1231 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1232 		txs = &sc->sc_txsoft[i];
1233 
1234 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1235 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1236 
1237 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1238 
1239 		if (txstat & T0_OWN) /* desc is still in use */
1240 			break;
1241 
1242 		/* there is no way to tell transmission status per frame */
1243 
1244 		ifp->if_opackets++;
1245 
1246 		sc->sc_txfree += txs->txs_ndesc;
1247 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1248 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1249 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1250 		m_freem(txs->txs_mbuf);
1251 		txs->txs_mbuf = NULL;
1252 	}
1253 	sc->sc_txsdirty = i;
1254 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
1255 		ifp->if_timer = 0;
1256 }
1257 
1258 static void
1259 lnkchg(struct kse_softc *sc)
1260 {
1261 	struct ifmediareq ifmr;
1262 
1263 #if 0 /* rambling link status */
1264 	printf("%s: link %s\n", device_xname(&sc->sc_dev),
1265 	    (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1266 #endif
1267 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1268 }
1269 
1270 static int
1271 ifmedia_upd(struct ifnet *ifp)
1272 {
1273 	struct kse_softc *sc = ifp->if_softc;
1274 	struct ifmedia *ifm = &sc->sc_media;
1275 	uint16_t ctl;
1276 
1277 	ctl = 0;
1278 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1279 		ctl |= (1U << 13); /* restart AN */
1280 		ctl |= (1U << 7);  /* enable AN */
1281 		ctl |= (1U << 4);  /* advertise flow control pause */
1282 		ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1283 	}
1284 	else {
1285 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1286 			ctl |= (1U << 6);
1287 		if (ifm->ifm_media & IFM_FDX)
1288 			ctl |= (1U << 5);
1289 	}
1290 	CSR_WRITE_2(sc, P1CR4, ctl);
1291 
1292 	sc->sc_media_active = IFM_NONE;
1293 	sc->sc_media_status = IFM_AVALID;
1294 
1295 	return 0;
1296 }
1297 
1298 static void
1299 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1300 {
1301 	struct kse_softc *sc = ifp->if_softc;
1302 	struct ifmedia *ifm = &sc->sc_media;
1303 	uint16_t ctl, sts, result;
1304 
1305 	ifmr->ifm_status = IFM_AVALID;
1306 	ifmr->ifm_active = IFM_ETHER;
1307 
1308 	ctl = CSR_READ_2(sc, P1CR4);
1309 	sts = CSR_READ_2(sc, P1SR);
1310 	if ((sts & (1U << 5)) == 0) {
1311 		ifmr->ifm_active |= IFM_NONE;
1312 		goto out; /* link is down */
1313 	}
1314 	ifmr->ifm_status |= IFM_ACTIVE;
1315 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1316 		if ((sts & (1U << 6)) == 0) {
1317 			ifmr->ifm_active |= IFM_NONE;
1318 			goto out; /* negotiation in progress */
1319 		}
1320 		result = ctl & sts & 017;
1321 		if (result & (1U << 3))
1322 			ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1323 		else if (result & (1U << 2))
1324 			ifmr->ifm_active |= IFM_100_TX;
1325 		else if (result & (1U << 1))
1326 			ifmr->ifm_active |= IFM_10_T|IFM_FDX;
1327 		else if (result & (1U << 0))
1328 			ifmr->ifm_active |= IFM_10_T;
1329 		else
1330 			ifmr->ifm_active |= IFM_NONE;
1331 		if (ctl & (1U << 4))
1332 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1333 		if (sts & (1U << 4))
1334 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1335 	}
1336 	else {
1337 		ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1338 		if (sts & (1U << 9))
1339 			ifmr->ifm_active |= IFM_FDX;
1340 		if (sts & (1U << 12))
1341 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1342 		if (sts & (1U << 11))
1343 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1344 	}
1345 
1346   out:
1347 	sc->sc_media_status = ifmr->ifm_status;
1348 	sc->sc_media_active = ifmr->ifm_active;
1349 }
1350 
1351 static void
1352 phy_tick(void *arg)
1353 {
1354 	struct kse_softc *sc = arg;
1355 	struct ifmediareq ifmr;
1356 	int s;
1357 
1358 	s = splnet();
1359 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1360 	splx(s);
1361 
1362 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1363 }
1364 
1365 static int
1366 ifmedia2_upd(struct ifnet *ifp)
1367 {
1368 	struct kse_softc *sc = ifp->if_softc;
1369 
1370 	sc->sc_media_status = IFM_AVALID;
1371 	sc->sc_media_active = IFM_NONE;
1372 	return 0;
1373 }
1374 
1375 static void
1376 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1377 {
1378 	struct kse_softc *sc = ifp->if_softc;
1379 	int p1sts, p2sts;
1380 
1381 	ifmr->ifm_status = IFM_AVALID;
1382 	ifmr->ifm_active = IFM_ETHER;
1383 	p1sts = CSR_READ_2(sc, P1SR);
1384 	p2sts = CSR_READ_2(sc, P2SR);
1385 	if (((p1sts | p2sts) & (1U << 5)) == 0)
1386 		ifmr->ifm_active |= IFM_NONE;
1387 	else {
1388 		ifmr->ifm_status |= IFM_ACTIVE;
1389 		ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1390 		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE;
1391 	}
1392 	sc->sc_media_status = ifmr->ifm_status;
1393 	sc->sc_media_active = ifmr->ifm_active;
1394 }
1395 
1396 #ifdef KSE_EVENT_COUNTERS
1397 static void
1398 stat_tick(arg)
1399 	void *arg;
1400 {
1401 	struct kse_softc *sc = arg;
1402 	struct ksext *ee = &sc->sc_ext;
1403 	int nport, p, i, val;
1404 
1405 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1406 	for (p = 0; p < nport; p++) {
1407 		for (i = 0; i < 32; i++) {
1408 			val = 0x1c00 | (p * 0x20 + i);
1409 			CSR_WRITE_2(sc, IACR, val);
1410 			do {
1411 				val = CSR_READ_2(sc, IADR5) << 16;
1412 			} while ((val & (1U << 30)) == 0);
1413 			if (val & (1U << 31)) {
1414 				(void)CSR_READ_2(sc, IADR4);
1415 				val = 0x3fffffff; /* has made overflow */
1416 			}
1417 			else {
1418 				val &= 0x3fff0000;		/* 29:16 */
1419 				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
1420 			}
1421 			ee->pev[p][i].ev_count += val; /* i (0-31) */
1422 		}
1423 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1424 		ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1425 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1426 		ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1427 	}
1428 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
1429 }
1430 
1431 static void
1432 zerostats(struct kse_softc *sc)
1433 {
1434 	struct ksext *ee = &sc->sc_ext;
1435 	int nport, p, i, val;
1436 
1437 	/* make sure all the HW counters get zero */
1438 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1439 	for (p = 0; p < nport; p++) {
1440 		for (i = 0; i < 31; i++) {
1441 			val = 0x1c00 | (p * 0x20 + i);
1442 			CSR_WRITE_2(sc, IACR, val);
1443 			do {
1444 				val = CSR_READ_2(sc, IADR5) << 16;
1445 			} while ((val & (1U << 30)) == 0);
1446 			(void)CSR_READ_2(sc, IADR4);
1447 			ee->pev[p][i].ev_count = 0;
1448 		}
1449 	}
1450 }
1451 #endif
1452