xref: /netbsd-src/sys/dev/pci/if_kse.c (revision 154bfe8e089c1a0a4e9ed8414f08d3da90949162)
1 /*	$NetBSD: if_kse.c,v 1.53 2020/04/01 04:00:14 nisimura Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Tohru Nishimura.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Micrel 8841/8842 10/100 PCI ethernet driver
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.53 2020/04/01 04:00:14 nisimura Exp $");
38 
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/intr.h>
42 #include <sys/device.h>
43 #include <sys/callout.h>
44 #include <sys/ioctl.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/errno.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 
51 #include <net/if.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 #include <dev/mii/mii.h>
56 #include <dev/mii/miivar.h>
57 #include <net/bpf.h>
58 
59 #include <dev/pci/pcivar.h>
60 #include <dev/pci/pcireg.h>
61 #include <dev/pci/pcidevs.h>
62 
63 #define KSE_LINKDEBUG 0
64 
65 #define CSR_READ_4(sc, off) \
66 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
67 #define CSR_WRITE_4(sc, off, val) \
68 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
69 #define CSR_READ_2(sc, off) \
70 	    bus_space_read_2((sc)->sc_st, (sc)->sc_sh, (off))
71 #define CSR_WRITE_2(sc, off, val) \
72 	    bus_space_write_2((sc)->sc_st, (sc)->sc_sh, (off), (val))
73 
74 #define MDTXC	0x000	/* DMA transmit control */
75 #define MDRXC	0x004	/* DMA receive control */
76 #define MDTSC	0x008	/* DMA transmit start */
77 #define MDRSC	0x00c	/* DMA receive start */
78 #define TDLB	0x010	/* transmit descriptor list base */
79 #define RDLB	0x014	/* receive descriptor list base */
80 #define MTR0	0x020	/* multicast table 31:0 */
81 #define MTR1	0x024	/* multicast table 63:32 */
82 #define INTEN	0x028	/* interrupt enable */
83 #define INTST	0x02c	/* interrupt status */
84 #define MAAL0	0x080	/* additional MAC address 0 low */
85 #define MAAH0	0x084	/* additional MAC address 0 high */
86 #define MARL	0x200	/* MAC address low */
87 #define MARM	0x202	/* MAC address middle */
88 #define MARH	0x204	/* MAC address high */
89 #define GRR	0x216	/* global reset */
90 #define SIDER	0x400	/* switch ID and function enable */
91 #define SGCR3	0x406	/* switch function control 3 */
92 #define  CR3_USEHDX	(1U<<6)	/* use half-duplex 8842 host port */
93 #define  CR3_USEFC	(1U<<5) /* use flowcontrol 8842 host port */
94 #define IACR	0x4a0	/* indirect access control */
95 #define IADR1	0x4a2	/* indirect access data 66:63 */
96 #define IADR2	0x4a4	/* indirect access data 47:32 */
97 #define IADR3	0x4a6	/* indirect access data 63:48 */
98 #define IADR4	0x4a8	/* indirect access data 15:0 */
99 #define IADR5	0x4aa	/* indirect access data 31:16 */
100 #define P1CR4	0x512	/* port 1 control 4 */
101 #define P1SR	0x514	/* port 1 status */
102 #define P2CR4	0x532	/* port 2 control 4 */
103 #define P2SR	0x534	/* port 2 status */
104 #define  PxCR_STARTNEG	(1U<<9)		/* restart auto negotiation */
105 #define  PxCR_AUTOEN	(1U<<7)		/* auto negotiation enable */
106 #define  PxCR_SPD100	(1U<<6)		/* force speed 100 */
107 #define  PxCR_USEFDX	(1U<<5)		/* force full duplex */
108 #define  PxCR_USEFC	(1U<<4)		/* advertise pause flow control */
109 #define  PxSR_ACOMP	(1U<<6)		/* auto negotiation completed */
110 #define  PxSR_SPD100	(1U<<10)	/* speed is 100Mbps */
111 #define  PxSR_FDX	(1U<<9)		/* full duplex */
112 #define  PxSR_LINKUP	(1U<<5)		/* link is good */
113 #define  PxSR_RXFLOW	(1U<<12)	/* receive flow control active */
114 #define  PxSR_TXFLOW	(1U<<11)	/* transmit flow control active */
115 #define P1VIDCR	0x504	/* port 1 vtag */
116 #define P2VIDCR	0x524	/* port 2 vtag */
117 #define P3VIDCR	0x544	/* 8842 host vtag */
118 
119 #define TXC_BS_MSK	0x3f000000	/* burst size */
120 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
121 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
122 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
123 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
124 #define TXC_FCE		(1U<<9)		/* generate PAUSE to moderate Rx lvl */
125 #define TXC_EP		(1U<<2)		/* enable automatic padding */
126 #define TXC_AC		(1U<<1)		/* add CRC to frame */
127 #define TXC_TEN		(1)		/* enable DMA to run */
128 
129 #define RXC_BS_MSK	0x3f000000	/* burst size */
130 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
131 #define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
132 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
133 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
134 #define RXC_ICC		(1U<<16)	/* run IP checksum */
135 #define RXC_FCE		(1U<<9)		/* accept PAUSE to throttle Tx */
136 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
137 #define RXC_RM		(1U<<5)		/* receive all multicast (inc. RB) */
138 #define RXC_RU		(1U<<4)		/* receive 16 additional unicasts */
139 #define RXC_RE		(1U<<3)		/* accept error frame */
140 #define RXC_RA		(1U<<2)		/* receive all frame */
141 #define RXC_MHTE	(1U<<1)		/* use multicast hash table */
142 #define RXC_REN		(1)		/* enable DMA to run */
143 
144 #define INT_DMLCS	(1U<<31)	/* link status change */
145 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
146 #define INT_DMRS	(1U<<29)	/* frame was received */
147 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
148 #define INT_DMxPSS	(3U<<25)	/* 26:25 DMA Tx/Rx have stopped */
149 
150 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
151 
152 #define R0_OWN		(1U<<31)	/* desc is empty */
153 #define R0_FS		(1U<<30)	/* first segment of frame */
154 #define R0_LS		(1U<<29)	/* last segment of frame */
155 #define R0_IPE		(1U<<28)	/* IP checksum error */
156 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
157 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
158 #define R0_ES		(1U<<25)	/* error summary */
159 #define R0_MF		(1U<<24)	/* multicast frame */
160 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
161 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
162 #define R0_RE		(1U<<19)	/* MII reported error */
163 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
164 #define R0_RF		(1U<<17)	/* damaged runt frame */
165 #define R0_CE		(1U<<16)	/* CRC error */
166 #define R0_FT		(1U<<15)	/* frame type */
167 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
168 
169 #define T1_IC		(1U<<31)	/* post interrupt on complete */
170 #define T1_FS		(1U<<30)	/* first segment of frame */
171 #define T1_LS		(1U<<29)	/* last segment of frame */
172 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
173 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
174 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
175 #define T1_TER		(1U<<25)	/* end of ring */
176 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
177 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
178 
179 #define R1_RER		(1U<<25)	/* end of ring */
180 #define R1_RBS_MASK	0x7fc		/* segment size 10:0 */
181 
182 #define KSE_NTXSEGS		16
183 #define KSE_TXQUEUELEN		64
184 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
185 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
186 #define KSE_NTXDESC		256
187 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
188 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
189 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
190 
191 #define KSE_NRXDESC		64
192 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
193 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
194 
195 struct tdes {
196 	uint32_t t0, t1, t2, t3;
197 };
198 
199 struct rdes {
200 	uint32_t r0, r1, r2, r3;
201 };
202 
203 struct kse_control_data {
204 	struct tdes kcd_txdescs[KSE_NTXDESC];
205 	struct rdes kcd_rxdescs[KSE_NRXDESC];
206 };
207 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
208 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
209 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
210 
211 struct kse_txsoft {
212 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
213 	bus_dmamap_t txs_dmamap;	/* our DMA map */
214 	int txs_firstdesc;		/* first descriptor in packet */
215 	int txs_lastdesc;		/* last descriptor in packet */
216 	int txs_ndesc;			/* # of descriptors used */
217 };
218 
219 struct kse_rxsoft {
220 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
221 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
222 };
223 
224 struct kse_softc {
225 	device_t sc_dev;		/* generic device information */
226 	bus_space_tag_t sc_st;		/* bus space tag */
227 	bus_space_handle_t sc_sh;	/* bus space handle */
228 	bus_size_t sc_memsize;		/* csr map size */
229 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
230 	pci_chipset_tag_t sc_pc;	/* PCI chipset tag */
231 	struct ethercom sc_ethercom;	/* Ethernet common data */
232 	void *sc_ih;			/* interrupt cookie */
233 
234 	struct mii_data sc_mii;		/* mii 8841 */
235 	struct ifmedia sc_media;	/* ifmedia 8842 */
236 	int sc_flowflags;		/* 802.3x PAUSE flow control */
237 
238 	callout_t  sc_tick_ch;		/* MII tick callout */
239 	callout_t  sc_stat_ch;		/* statistics counter callout */
240 
241 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
242 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
243 
244 	struct kse_control_data *sc_control_data;
245 #define sc_txdescs	sc_control_data->kcd_txdescs
246 #define sc_rxdescs	sc_control_data->kcd_rxdescs
247 
248 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
249 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
250 	int sc_txfree;			/* number of free Tx descriptors */
251 	int sc_txnext;			/* next ready Tx descriptor */
252 	int sc_txsfree;			/* number of free Tx jobs */
253 	int sc_txsnext;			/* next ready Tx job */
254 	int sc_txsdirty;		/* dirty Tx jobs */
255 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
256 
257 	uint32_t sc_txc, sc_rxc;
258 	uint32_t sc_t1csum;
259 	int sc_mcsum;
260 	uint32_t sc_inten;
261 
262 	uint32_t sc_chip;
263 	uint8_t sc_altmac[16][ETHER_ADDR_LEN];
264 	uint16_t sc_vlan[16];
265 
266 #ifdef KSE_EVENT_COUNTERS
267 	struct ksext {
268 		char evcntname[3][8];
269 		struct evcnt pev[3][34];
270 	} sc_ext;			/* switch statistics */
271 #endif
272 };
273 
274 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
275 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
276 
277 #define KSE_CDTXSYNC(sc, x, n, ops)					\
278 do {									\
279 	int __x, __n;							\
280 									\
281 	__x = (x);							\
282 	__n = (n);							\
283 									\
284 	/* If it will wrap around, sync to the end of the ring. */	\
285 	if ((__x + __n) > KSE_NTXDESC) {				\
286 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
287 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
288 		    (KSE_NTXDESC - __x), (ops));			\
289 		__n -= (KSE_NTXDESC - __x);				\
290 		__x = 0;						\
291 	}								\
292 									\
293 	/* Now sync whatever is left. */				\
294 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
295 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
296 } while (/*CONSTCOND*/0)
297 
298 #define KSE_CDRXSYNC(sc, x, ops)					\
299 do {									\
300 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
301 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
302 } while (/*CONSTCOND*/0)
303 
304 #define KSE_INIT_RXDESC(sc, x)						\
305 do {									\
306 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
307 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
308 	struct mbuf *__m = __rxs->rxs_mbuf;				\
309 									\
310 	__m->m_data = __m->m_ext.ext_buf;				\
311 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
312 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
313 	__rxd->r0 = R0_OWN;						\
314 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
315 } while (/*CONSTCOND*/0)
316 
317 u_int kse_burstsize = 8;	/* DMA burst length tuning knob */
318 
319 #ifdef KSEDIAGNOSTIC
320 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
321 #endif
322 
323 static int kse_match(device_t, cfdata_t, void *);
324 static void kse_attach(device_t, device_t, void *);
325 
326 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
327     kse_match, kse_attach, NULL, NULL);
328 
329 static int kse_ioctl(struct ifnet *, u_long, void *);
330 static void kse_start(struct ifnet *);
331 static void kse_watchdog(struct ifnet *);
332 static int kse_init(struct ifnet *);
333 static void kse_stop(struct ifnet *, int);
334 static void kse_reset(struct kse_softc *);
335 static void kse_set_rcvfilt(struct kse_softc *);
336 static int add_rxbuf(struct kse_softc *, int);
337 static void rxdrain(struct kse_softc *);
338 static int kse_intr(void *);
339 static void rxintr(struct kse_softc *);
340 static void txreap(struct kse_softc *);
341 static void lnkchg(struct kse_softc *);
342 static int kse_ifmedia_upd(struct ifnet *);
343 static void kse_ifmedia_sts(struct ifnet *, struct ifmediareq *);
344 static void nopifmedia_sts(struct ifnet *, struct ifmediareq *);
345 static void phy_tick(void *);
346 int kse_mii_readreg(device_t, int, int, uint16_t *);
347 int kse_mii_writereg(device_t, int, int, uint16_t);
348 void kse_mii_statchg(struct ifnet *);
349 #ifdef KSE_EVENT_COUNTERS
350 static void stat_tick(void *);
351 static void zerostats(struct kse_softc *);
352 #endif
353 
354 static int
355 kse_match(device_t parent, cfdata_t match, void *aux)
356 {
357 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
358 
359 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
360 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
361 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
362 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
363 		return 1;
364 
365 	return 0;
366 }
367 
368 static void
369 kse_attach(device_t parent, device_t self, void *aux)
370 {
371 	struct kse_softc *sc = device_private(self);
372 	struct pci_attach_args *pa = aux;
373 	pci_chipset_tag_t pc = pa->pa_pc;
374 	pci_intr_handle_t ih;
375 	const char *intrstr;
376 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
377 	struct mii_data * const mii = &sc->sc_mii;
378 	struct ifmedia *ifm;
379 	uint8_t enaddr[ETHER_ADDR_LEN];
380 	bus_dma_segment_t seg;
381 	int i, error, nseg;
382 	char intrbuf[PCI_INTRSTR_LEN];
383 
384 	aprint_normal(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
385 	    PCI_PRODUCT(pa->pa_id), PCI_REVISION(pa->pa_class));
386 
387 	if (pci_mapreg_map(pa, 0x10,
388 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
389 	    0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize) != 0) {
390 		aprint_error_dev(self, "unable to map device registers\n");
391 		return;
392 	}
393 
394 	/* Make sure bus mastering is enabled. */
395 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
396 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
397 	    PCI_COMMAND_MASTER_ENABLE);
398 
399 	/* Power up chip if necessary. */
400 	if ((error = pci_activate(pc, pa->pa_tag, self, NULL))
401 	    && error != EOPNOTSUPP) {
402 		aprint_error_dev(self, "cannot activate %d\n", error);
403 		return;
404 	}
405 
406 	/* Map and establish our interrupt. */
407 	if (pci_intr_map(pa, &ih)) {
408 		aprint_error_dev(self, "unable to map interrupt\n");
409 		return;
410 	}
411 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
412 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
413 	    device_xname(self));
414 	if (sc->sc_ih == NULL) {
415 		aprint_error_dev(self, "unable to establish interrupt");
416 		if (intrstr != NULL)
417 			aprint_error(" at %s", intrstr);
418 		aprint_error("\n");
419 		return;
420 	}
421 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
422 
423 	sc->sc_dev = self;
424 	sc->sc_dmat = pa->pa_dmat;
425 	sc->sc_pc = pa->pa_pc;
426 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
427 
428 	/*
429 	 * Read the Ethernet address from the EEPROM.
430 	 */
431 	i = CSR_READ_2(sc, MARL);
432 	enaddr[5] = i;
433 	enaddr[4] = i >> 8;
434 	i = CSR_READ_2(sc, MARM);
435 	enaddr[3] = i;
436 	enaddr[2] = i >> 8;
437 	i = CSR_READ_2(sc, MARH);
438 	enaddr[1] = i;
439 	enaddr[0] = i >> 8;
440 	aprint_normal_dev(self,
441 	    "Ethernet address %s\n", ether_sprintf(enaddr));
442 
443 	/*
444 	 * Enable chip function.
445 	 */
446 	CSR_WRITE_2(sc, SIDER, 1);
447 
448 	/*
449 	 * Allocate the control data structures, and create and load the
450 	 * DMA map for it.
451 	 */
452 	error = bus_dmamem_alloc(sc->sc_dmat,
453 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
454 	if (error != 0) {
455 		aprint_error_dev(self,
456 		    "unable to allocate control data, error = %d\n", error);
457 		goto fail_0;
458 	}
459 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
460 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
461 	    BUS_DMA_COHERENT);
462 	if (error != 0) {
463 		aprint_error_dev(self,
464 		    "unable to map control data, error = %d\n", error);
465 		goto fail_1;
466 	}
467 	error = bus_dmamap_create(sc->sc_dmat,
468 	    sizeof(struct kse_control_data), 1,
469 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
470 	if (error != 0) {
471 		aprint_error_dev(self,
472 		    "unable to create control data DMA map, "
473 		    "error = %d\n", error);
474 		goto fail_2;
475 	}
476 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
477 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
478 	if (error != 0) {
479 		aprint_error_dev(self,
480 		    "unable to load control data DMA map, error = %d\n",
481 		    error);
482 		goto fail_3;
483 	}
484 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
485 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
486 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
487 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
488 			aprint_error_dev(self,
489 			    "unable to create tx DMA map %d, error = %d\n",
490 			    i, error);
491 			goto fail_4;
492 		}
493 	}
494 	for (i = 0; i < KSE_NRXDESC; i++) {
495 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
496 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
497 			aprint_error_dev(self,
498 			    "unable to create rx DMA map %d, error = %d\n",
499 			    i, error);
500 			goto fail_5;
501 		}
502 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
503 	}
504 
505 	callout_init(&sc->sc_tick_ch, 0);
506 	callout_init(&sc->sc_stat_ch, 0);
507 	callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
508 #ifdef KSE_EVENT_COUNTERS
509 	callout_setfunc(&sc->sc_stat_ch, stat_tick, sc);
510 #endif
511 
512 	mii->mii_ifp = ifp;
513 	mii->mii_readreg = kse_mii_readreg;
514 	mii->mii_writereg = kse_mii_writereg;
515 	mii->mii_statchg = kse_mii_statchg;
516 
517 	/* Initialize ifmedia structures. */
518 	sc->sc_flowflags = 0;
519 	if (sc->sc_chip == 0x8841) {
520 		/* use port 1 builtin PHY as index 1 device */
521 		sc->sc_ethercom.ec_mii = mii;
522 		ifm = &mii->mii_media;
523 		ifmedia_init(ifm, 0, kse_ifmedia_upd, kse_ifmedia_sts);
524 		mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY1 */,
525 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
526 		if (LIST_FIRST(&mii->mii_phys) == NULL) {
527 			ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
528 			ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
529 		} else
530 			ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
531 	} else {
532 		/*
533 		 * pretend 100FDX w/ no alternative media selection.
534 		 * 8842 MAC is tied with a builtin 3 port switch. It can do
535 		 * 4 degree priotised rate control over either of tx/rx
536 		 * direction for any of ports, respectively. Tough, this
537 		 * driver leaves the rate unlimited intending 100Mbps maximum.
538 		 * 2 external ports behave in AN mode and this driver provides
539 		 * no mean to manipulate and see their operational details.
540 		 */
541 		sc->sc_ethercom.ec_ifmedia = ifm = &sc->sc_media;
542 		ifmedia_init(ifm, 0, NULL, nopifmedia_sts);
543 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
544 		ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);
545 
546 		aprint_normal_dev(self,
547 		    "10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n");
548 	}
549 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
550 
551 
552 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
553 	ifp->if_softc = sc;
554 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
555 	ifp->if_ioctl = kse_ioctl;
556 	ifp->if_start = kse_start;
557 	ifp->if_watchdog = kse_watchdog;
558 	ifp->if_init = kse_init;
559 	ifp->if_stop = kse_stop;
560 	IFQ_SET_READY(&ifp->if_snd);
561 
562 	/*
563 	 * capable of 802.1Q VLAN-sized frames and hw assisted tagging.
564 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
565 	 */
566 	sc->sc_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
567 	ifp->if_capabilities =
568 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
569 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
570 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
571 
572 	if_attach(ifp);
573 	if_deferred_start_init(ifp, NULL);
574 	ether_ifattach(ifp, enaddr);
575 
576 #ifdef KSE_EVENT_COUNTERS
577 	int p = (sc->sc_chip == 0x8842) ? 3 : 1;
578 	for (i = 0; i < p; i++) {
579 		struct ksext *ee = &sc->sc_ext;
580 		snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
581 		    "%s.%d", device_xname(sc->sc_dev), i+1);
582 		evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
583 		    NULL, ee->evcntname[i], "RxLoPriotyByte");
584 		evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
585 		    NULL, ee->evcntname[i], "RxHiPriotyByte");
586 		evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
587 		    NULL, ee->evcntname[i], "RxUndersizePkt");
588 		evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
589 		    NULL, ee->evcntname[i], "RxFragments");
590 		evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
591 		    NULL, ee->evcntname[i], "RxOversize");
592 		evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
593 		    NULL, ee->evcntname[i], "RxJabbers");
594 		evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
595 		    NULL, ee->evcntname[i], "RxSymbolError");
596 		evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
597 		    NULL, ee->evcntname[i], "RxCRCError");
598 		evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
599 		    NULL, ee->evcntname[i], "RxAlignmentError");
600 		evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
601 		    NULL, ee->evcntname[i], "RxControl8808Pkts");
602 		evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
603 		    NULL, ee->evcntname[i], "RxPausePkts");
604 		evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
605 		    NULL, ee->evcntname[i], "RxBroadcast");
606 		evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
607 		    NULL, ee->evcntname[i], "RxMulticast");
608 		evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
609 		    NULL, ee->evcntname[i], "RxUnicast");
610 		evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
611 		    NULL, ee->evcntname[i], "Rx64Octets");
612 		evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
613 		    NULL, ee->evcntname[i], "Rx65To127Octets");
614 		evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
615 		    NULL, ee->evcntname[i], "Rx128To255Octets");
616 		evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
617 		    NULL, ee->evcntname[i], "Rx255To511Octets");
618 		evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
619 		    NULL, ee->evcntname[i], "Rx512To1023Octets");
620 		evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
621 		    NULL, ee->evcntname[i], "Rx1024To1522Octets");
622 		evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
623 		    NULL, ee->evcntname[i], "TxLoPriotyByte");
624 		evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
625 		    NULL, ee->evcntname[i], "TxHiPriotyByte");
626 		evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
627 		    NULL, ee->evcntname[i], "TxLateCollision");
628 		evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
629 		    NULL, ee->evcntname[i], "TxPausePkts");
630 		evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
631 		    NULL, ee->evcntname[i], "TxBroadcastPkts");
632 		evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
633 		    NULL, ee->evcntname[i], "TxMulticastPkts");
634 		evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
635 		    NULL, ee->evcntname[i], "TxUnicastPkts");
636 		evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
637 		    NULL, ee->evcntname[i], "TxDeferred");
638 		evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
639 		    NULL, ee->evcntname[i], "TxTotalCollision");
640 		evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
641 		    NULL, ee->evcntname[i], "TxExcessiveCollision");
642 		evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
643 		    NULL, ee->evcntname[i], "TxSingleCollision");
644 		evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
645 		    NULL, ee->evcntname[i], "TxMultipleCollision");
646 		evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
647 		    NULL, ee->evcntname[i], "TxDropPkts");
648 		evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
649 		    NULL, ee->evcntname[i], "RxDropPkts");
650 	}
651 #endif
652 	return;
653 
654  fail_5:
655 	for (i = 0; i < KSE_NRXDESC; i++) {
656 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
657 			bus_dmamap_destroy(sc->sc_dmat,
658 			    sc->sc_rxsoft[i].rxs_dmamap);
659 	}
660  fail_4:
661 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
662 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
663 			bus_dmamap_destroy(sc->sc_dmat,
664 			    sc->sc_txsoft[i].txs_dmamap);
665 	}
666 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
667  fail_3:
668 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
669  fail_2:
670 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
671 	    sizeof(struct kse_control_data));
672  fail_1:
673 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
674  fail_0:
675 	if (sc->sc_ih != NULL) {
676 		pci_intr_disestablish(pc, sc->sc_ih);
677 		sc->sc_ih = NULL;
678 	}
679 	if (sc->sc_memsize) {
680 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
681 		sc->sc_memsize = 0;
682 	}
683 	return;
684 }
685 
686 static int
687 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
688 {
689 	struct kse_softc *sc = ifp->if_softc;
690 	struct ifreq *ifr = (struct ifreq *)data;
691 	struct ifmedia *ifm;
692 	int s, error;
693 
694 	s = splnet();
695 
696 	switch (cmd) {
697 	case SIOCSIFMEDIA:
698 		/* Flow control requires full-duplex mode. */
699 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
700 		    (ifr->ifr_media & IFM_FDX) == 0)
701 			ifr->ifr_media &= ~IFM_ETH_FMASK;
702 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
703 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
704 				/* We can do both TXPAUSE and RXPAUSE. */
705 				ifr->ifr_media |=
706 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
707 			}
708 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
709 		}
710 		ifm = (sc->sc_chip == 0x8841)
711 		    ? &sc->sc_mii.mii_media : &sc->sc_media;
712 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
713 		break;
714 	default:
715 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
716 			break;
717 
718 		error = 0;
719 
720 		if (cmd == SIOCSIFCAP)
721 			error = (*ifp->if_init)(ifp);
722 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
723 			;
724 		else if (ifp->if_flags & IFF_RUNNING) {
725 			/*
726 			 * Multicast list has changed; set the hardware filter
727 			 * accordingly.
728 			 */
729 			kse_set_rcvfilt(sc);
730 		}
731 		break;
732 	}
733 
734 	splx(s);
735 	return error;
736 }
737 
738 static int
739 kse_init(struct ifnet *ifp)
740 {
741 	struct kse_softc *sc = ifp->if_softc;
742 	uint32_t paddr;
743 	int i, error = 0;
744 
745 	/* cancel pending I/O */
746 	kse_stop(ifp, 0);
747 
748 	/* reset all registers but PCI configuration */
749 	kse_reset(sc);
750 
751 	/* craft Tx descriptor ring */
752 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
753 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
754 		sc->sc_txdescs[i].t3 = paddr;
755 		paddr += sizeof(struct tdes);
756 	}
757 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
758 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
759 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
760 	sc->sc_txfree = KSE_NTXDESC;
761 	sc->sc_txnext = 0;
762 
763 	for (i = 0; i < KSE_TXQUEUELEN; i++)
764 		sc->sc_txsoft[i].txs_mbuf = NULL;
765 	sc->sc_txsfree = KSE_TXQUEUELEN;
766 	sc->sc_txsnext = 0;
767 	sc->sc_txsdirty = 0;
768 
769 	/* craft Rx descriptor ring */
770 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
771 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
772 		sc->sc_rxdescs[i].r3 = paddr;
773 		paddr += sizeof(struct rdes);
774 	}
775 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
776 	for (i = 0; i < KSE_NRXDESC; i++) {
777 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
778 			if ((error = add_rxbuf(sc, i)) != 0) {
779 				aprint_error_dev(sc->sc_dev,
780 				    "unable to allocate or map rx "
781 				    "buffer %d, error = %d\n",
782 				    i, error);
783 				rxdrain(sc);
784 				goto out;
785 			}
786 		}
787 		else
788 			KSE_INIT_RXDESC(sc, i);
789 	}
790 	sc->sc_rxptr = 0;
791 
792 	/* hand Tx/Rx rings to HW */
793 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
794 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
795 
796 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC;
797 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_RB;
798 	sc->sc_t1csum = sc->sc_mcsum = 0;
799 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
800 		sc->sc_rxc |= RXC_ICC;
801 		sc->sc_mcsum |= M_CSUM_IPv4;
802 	}
803 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
804 		sc->sc_txc |= TXC_ICG;
805 		sc->sc_t1csum |= T1_IPCKG;
806 	}
807 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
808 		sc->sc_rxc |= RXC_TCC;
809 		sc->sc_mcsum |= M_CSUM_TCPv4;
810 	}
811 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
812 		sc->sc_txc |= TXC_TCG;
813 		sc->sc_t1csum |= T1_TCPCKG;
814 	}
815 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
816 		sc->sc_rxc |= RXC_UCC;
817 		sc->sc_mcsum |= M_CSUM_UDPv4;
818 	}
819 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
820 		sc->sc_txc |= TXC_UCG;
821 		sc->sc_t1csum |= T1_UDPCKG;
822 	}
823 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
824 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
825 
826 	if (sc->sc_chip == 0x8842) {
827 		sc->sc_txc |= TXC_FCE;
828 		sc->sc_rxc |= RXC_FCE;
829 		CSR_WRITE_2(sc, SGCR3,
830 		    CSR_READ_2(sc, SGCR3) | CR3_USEFC);
831 	}
832 
833 	/* accept multicast frame or run promisc mode */
834 	kse_set_rcvfilt(sc);
835 
836 	/* set current media */
837 	if (sc->sc_chip == 0x8841)
838 		(void)kse_ifmedia_upd(ifp);
839 
840 	/* enable transmitter and receiver */
841 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
842 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
843 	CSR_WRITE_4(sc, MDRSC, 1);
844 
845 	/* enable interrupts */
846 	sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
847 	if (sc->sc_chip == 0x8841)
848 		sc->sc_inten |= INT_DMLCS;
849 	CSR_WRITE_4(sc, INTST, ~0);
850 	CSR_WRITE_4(sc, INTEN, sc->sc_inten);
851 
852 	ifp->if_flags |= IFF_RUNNING;
853 	ifp->if_flags &= ~IFF_OACTIVE;
854 
855 	if (sc->sc_chip == 0x8841) {
856 		/* start one second timer */
857 		callout_schedule(&sc->sc_tick_ch, hz);
858 	}
859 #ifdef KSE_EVENT_COUNTERS
860 	/* start statistics gather 1 minute timer. should be tunable */
861 	zerostats(sc);
862 	callout_schedule(&sc->sc_stat_ch, hz * 60);
863 #endif
864 
865  out:
866 	if (error) {
867 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
868 		ifp->if_timer = 0;
869 		aprint_error_dev(sc->sc_dev, "interface not running\n");
870 	}
871 	return error;
872 }
873 
874 static void
875 kse_stop(struct ifnet *ifp, int disable)
876 {
877 	struct kse_softc *sc = ifp->if_softc;
878 	struct kse_txsoft *txs;
879 	int i;
880 
881 	if (sc->sc_chip == 0x8841)
882 		callout_stop(&sc->sc_tick_ch);
883 	callout_stop(&sc->sc_stat_ch);
884 
885 	sc->sc_txc &= ~TXC_TEN;
886 	sc->sc_rxc &= ~RXC_REN;
887 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
888 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
889 
890 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
891 		txs = &sc->sc_txsoft[i];
892 		if (txs->txs_mbuf != NULL) {
893 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
894 			m_freem(txs->txs_mbuf);
895 			txs->txs_mbuf = NULL;
896 		}
897 	}
898 
899 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
900 	ifp->if_timer = 0;
901 
902 	if (disable)
903 		rxdrain(sc);
904 }
905 
906 static void
907 kse_reset(struct kse_softc *sc)
908 {
909 
910 	/* software reset */
911 	CSR_WRITE_2(sc, GRR, 1);
912 	delay(1000); /* PDF does not mention the delay amount */
913 	CSR_WRITE_2(sc, GRR, 0);
914 
915 	/* enable switch function */
916 	CSR_WRITE_2(sc, SIDER, 1);
917 }
918 
919 static void
920 kse_watchdog(struct ifnet *ifp)
921 {
922 	struct kse_softc *sc = ifp->if_softc;
923 
924 	/*
925 	 * Since we're not interrupting every packet, sweep
926 	 * up before we report an error.
927 	 */
928 	txreap(sc);
929 
930 	if (sc->sc_txfree != KSE_NTXDESC) {
931 		aprint_error_dev(sc->sc_dev,
932 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
933 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
934 		if_statinc(ifp, if_oerrors);
935 
936 		/* Reset the interface. */
937 		kse_init(ifp);
938 	}
939 	else if (ifp->if_flags & IFF_DEBUG)
940 		aprint_error_dev(sc->sc_dev, "recovered from device timeout\n");
941 
942 	/* Try to get more packets going. */
943 	kse_start(ifp);
944 }
945 
946 static void
947 kse_start(struct ifnet *ifp)
948 {
949 	struct kse_softc *sc = ifp->if_softc;
950 	struct mbuf *m0, *m;
951 	struct kse_txsoft *txs;
952 	bus_dmamap_t dmamap;
953 	int error, nexttx, lasttx, ofree, seg;
954 	uint32_t tdes0;
955 
956 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
957 		return;
958 
959 	/* Remember the previous number of free descriptors. */
960 	ofree = sc->sc_txfree;
961 
962 	/*
963 	 * Loop through the send queue, setting up transmit descriptors
964 	 * until we drain the queue, or use up all available transmit
965 	 * descriptors.
966 	 */
967 	for (;;) {
968 		IFQ_POLL(&ifp->if_snd, m0);
969 		if (m0 == NULL)
970 			break;
971 
972 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
973 			txreap(sc);
974 			if (sc->sc_txsfree == 0)
975 				break;
976 		}
977 		txs = &sc->sc_txsoft[sc->sc_txsnext];
978 		dmamap = txs->txs_dmamap;
979 
980 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
981 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
982 		if (error) {
983 			if (error == EFBIG) {
984 				aprint_error_dev(sc->sc_dev,
985 				    "Tx packet consumes too many "
986 				    "DMA segments, dropping...\n");
987 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
988 				    m_freem(m0);
989 				    continue;
990 			}
991 			/* Short on resources, just stop for now. */
992 			break;
993 		}
994 
995 		if (dmamap->dm_nsegs > sc->sc_txfree) {
996 			/*
997 			 * Not enough free descriptors to transmit this
998 			 * packet.  We haven't committed anything yet,
999 			 * so just unload the DMA map, put the packet
1000 			 * back on the queue, and punt.	 Notify the upper
1001 			 * layer that there are not more slots left.
1002 			 */
1003 			ifp->if_flags |= IFF_OACTIVE;
1004 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1005 			break;
1006 		}
1007 
1008 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1009 
1010 		/*
1011 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1012 		 */
1013 
1014 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1015 		    BUS_DMASYNC_PREWRITE);
1016 
1017 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1018 		lasttx = -1;
1019 		for (nexttx = sc->sc_txnext, seg = 0;
1020 		     seg < dmamap->dm_nsegs;
1021 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
1022 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
1023 			/*
1024 			 * If this is the first descriptor we're
1025 			 * enqueueing, don't set the OWN bit just
1026 			 * yet.	 That could cause a race condition.
1027 			 * We'll do it below.
1028 			 */
1029 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
1030 			tdes->t1 = sc->sc_t1csum
1031 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
1032 			tdes->t0 = tdes0;
1033 			tdes0 = T0_OWN; /* 2nd and other segments */
1034 			lasttx = nexttx;
1035 		}
1036 		/*
1037 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
1038 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
1039 		 * time and NFS stops to proceed until kse_watchdog()
1040 		 * calls txreap() to reclaim the unack'ed mbuf.
1041 		 * It's painful to traverse every mbuf chain to determine
1042 		 * whether someone is waiting for Tx completion.
1043 		 */
1044 		m = m0;
1045 		do {
1046 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1047 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
1048 				break;
1049 			}
1050 		} while ((m = m->m_next) != NULL);
1051 
1052 		/* Write deferred 1st segment T0_OWN at the final stage */
1053 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
1054 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
1055 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
1056 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1057 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1058 
1059 		/* Tell DMA start transmit */
1060 		CSR_WRITE_4(sc, MDTSC, 1);
1061 
1062 		txs->txs_mbuf = m0;
1063 		txs->txs_firstdesc = sc->sc_txnext;
1064 		txs->txs_lastdesc = lasttx;
1065 		txs->txs_ndesc = dmamap->dm_nsegs;
1066 
1067 		sc->sc_txfree -= txs->txs_ndesc;
1068 		sc->sc_txnext = nexttx;
1069 		sc->sc_txsfree--;
1070 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1071 		/*
1072 		 * Pass the packet to any BPF listeners.
1073 		 */
1074 		bpf_mtap(ifp, m0, BPF_D_OUT);
1075 	}
1076 
1077 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1078 		/* No more slots left; notify upper layer. */
1079 		ifp->if_flags |= IFF_OACTIVE;
1080 	}
1081 	if (sc->sc_txfree != ofree) {
1082 		/* Set a watchdog timer in case the chip flakes out. */
1083 		ifp->if_timer = 5;
1084 	}
1085 }
1086 
1087 static void
1088 kse_set_rcvfilt(struct kse_softc *sc)
1089 {
1090 	struct ether_multistep step;
1091 	struct ether_multi *enm;
1092 	struct ethercom *ec = &sc->sc_ethercom;
1093 	struct ifnet *ifp = &ec->ec_if;
1094 	uint32_t crc, mchash[2];
1095 	int i;
1096 
1097 	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM | RXC_RA);
1098 
1099 	/* clear perfect match filter and prepare mcast hash table */
1100 	for (i = 0; i < 16; i++)
1101 		 CSR_WRITE_4(sc, MAAH0 + i*8, 0);
1102 	crc = mchash[0] = mchash[1] = 0;
1103 
1104 	ETHER_LOCK(ec);
1105 	if (ifp->if_flags & IFF_PROMISC) {
1106 		ec->ec_flags |= ETHER_F_ALLMULTI;
1107 		ETHER_UNLOCK(ec);
1108 		/* run promisc. mode */
1109 		sc->sc_rxc |= RXC_RA;
1110 		goto update;
1111 	}
1112 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
1113 	ETHER_FIRST_MULTI(step, ec, enm);
1114 	i = 0;
1115 	while (enm != NULL) {
1116 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1117 			/*
1118 			 * We must listen to a range of multicast addresses.
1119 			 * For now, just accept all multicasts, rather than
1120 			 * trying to set only those filter bits needed to match
1121 			 * the range.  (At this time, the only use of address
1122 			 * ranges is for IP multicast routing, for which the
1123 			 * range is big enough to require all bits set.)
1124 			 */
1125 			ec->ec_flags |= ETHER_F_ALLMULTI;
1126 			ETHER_UNLOCK(ec);
1127 			/* accept all multicast */
1128 			sc->sc_rxc |= RXC_RM;
1129 			goto update;
1130 		}
1131 #if KSE_MCASTDEBUG == 1
1132 		printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1133 #endif
1134 		if (i < 16) {
1135 			/* use 16 additional MAC addr to accept mcast */
1136 			uint32_t addr;
1137 			uint8_t *ep = enm->enm_addrlo;
1138 			addr = (ep[3] << 24) | (ep[2] << 16)
1139 			     | (ep[1] << 8)  |  ep[0];
1140 			CSR_WRITE_4(sc, MAAL0 + i*8, addr);
1141 			addr = (ep[5] << 8) | ep[4];
1142 			CSR_WRITE_4(sc, MAAH0 + i*8, addr | (1U << 31));
1143 		} else {
1144 			/* use hash table when too many */
1145 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1146 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1147 		}
1148 		ETHER_NEXT_MULTI(step, enm);
1149 		i++;
1150 	}
1151 	ETHER_UNLOCK(ec);
1152 
1153 	if (crc)
1154 		sc->sc_rxc |= RXC_MHTE;
1155 	CSR_WRITE_4(sc, MTR0, mchash[0]);
1156 	CSR_WRITE_4(sc, MTR1, mchash[1]);
1157  update:
1158 	/* With RA or RM, MHTE/MTR0/MTR1 are never consulted. */
1159 	return;
1160 }
1161 
1162 static int
1163 add_rxbuf(struct kse_softc *sc, int idx)
1164 {
1165 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1166 	struct mbuf *m;
1167 	int error;
1168 
1169 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1170 	if (m == NULL)
1171 		return ENOBUFS;
1172 
1173 	MCLGET(m, M_DONTWAIT);
1174 	if ((m->m_flags & M_EXT) == 0) {
1175 		m_freem(m);
1176 		return ENOBUFS;
1177 	}
1178 
1179 	if (rxs->rxs_mbuf != NULL)
1180 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1181 
1182 	rxs->rxs_mbuf = m;
1183 
1184 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1185 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1186 	if (error) {
1187 		aprint_error_dev(sc->sc_dev,
1188 		    "can't load rx DMA map %d, error = %d\n", idx, error);
1189 		panic("kse_add_rxbuf");
1190 	}
1191 
1192 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1193 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1194 
1195 	KSE_INIT_RXDESC(sc, idx);
1196 
1197 	return 0;
1198 }
1199 
1200 static void
1201 rxdrain(struct kse_softc *sc)
1202 {
1203 	struct kse_rxsoft *rxs;
1204 	int i;
1205 
1206 	for (i = 0; i < KSE_NRXDESC; i++) {
1207 		rxs = &sc->sc_rxsoft[i];
1208 		if (rxs->rxs_mbuf != NULL) {
1209 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1210 			m_freem(rxs->rxs_mbuf);
1211 			rxs->rxs_mbuf = NULL;
1212 		}
1213 	}
1214 }
1215 
1216 static int
1217 kse_intr(void *arg)
1218 {
1219 	struct kse_softc *sc = arg;
1220 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1221 	uint32_t isr;
1222 
1223 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
1224 		return 0;
1225 
1226 	if (isr & INT_DMRS)
1227 		rxintr(sc);
1228 	if (isr & INT_DMTS)
1229 		txreap(sc);
1230 	if (isr & INT_DMLCS)
1231 		lnkchg(sc);
1232 	if (isr & INT_DMRBUS)
1233 		aprint_error_dev(sc->sc_dev, "Rx descriptor full\n");
1234 
1235 	CSR_WRITE_4(sc, INTST, isr);
1236 
1237 	if (ifp->if_flags & IFF_RUNNING)
1238 		if_schedule_deferred_start(ifp);
1239 
1240 	return 1;
1241 }
1242 
1243 static void
1244 rxintr(struct kse_softc *sc)
1245 {
1246 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1247 	struct kse_rxsoft *rxs;
1248 	struct mbuf *m;
1249 	uint32_t rxstat;
1250 	int i, len;
1251 
1252 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1253 		rxs = &sc->sc_rxsoft[i];
1254 
1255 		KSE_CDRXSYNC(sc, i,
1256 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1257 
1258 		rxstat = sc->sc_rxdescs[i].r0;
1259 
1260 		if (rxstat & R0_OWN) /* desc is left empty */
1261 			break;
1262 
1263 		/* R0_FS | R0_LS must have been marked for this desc */
1264 
1265 		if (rxstat & R0_ES) {
1266 			if_statinc(ifp, if_ierrors);
1267 #define PRINTERR(bit, str)						\
1268 			if (rxstat & (bit))				\
1269 				aprint_error_dev(sc->sc_dev,		\
1270 				    "%s\n", str)
1271 			PRINTERR(R0_TL, "frame too long");
1272 			PRINTERR(R0_RF, "runt frame");
1273 			PRINTERR(R0_CE, "bad FCS");
1274 #undef PRINTERR
1275 			KSE_INIT_RXDESC(sc, i);
1276 			continue;
1277 		}
1278 
1279 		/* HW errata; frame might be too small or too large */
1280 
1281 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1282 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1283 
1284 		len = rxstat & R0_FL_MASK;
1285 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
1286 		m = rxs->rxs_mbuf;
1287 
1288 		if (add_rxbuf(sc, i) != 0) {
1289 			if_statinc(ifp, if_ierrors);
1290 			KSE_INIT_RXDESC(sc, i);
1291 			bus_dmamap_sync(sc->sc_dmat,
1292 			    rxs->rxs_dmamap, 0,
1293 			    rxs->rxs_dmamap->dm_mapsize,
1294 			    BUS_DMASYNC_PREREAD);
1295 			continue;
1296 		}
1297 
1298 		m_set_rcvif(m, ifp);
1299 		m->m_pkthdr.len = m->m_len = len;
1300 
1301 		if (sc->sc_mcsum) {
1302 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1303 			if (rxstat & R0_IPE)
1304 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1305 			if (rxstat & (R0_TCPE | R0_UDPE))
1306 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1307 		}
1308 		if_percpuq_enqueue(ifp->if_percpuq, m);
1309 #ifdef KSEDIAGNOSTIC
1310 		if (kse_monitor_rxintr > 0) {
1311 			aprint_error_dev(sc->sc_dev,
1312 			    "m stat %x data %p len %d\n",
1313 			    rxstat, m->m_data, m->m_len);
1314 		}
1315 #endif
1316 	}
1317 	sc->sc_rxptr = i;
1318 }
1319 
1320 static void
1321 txreap(struct kse_softc *sc)
1322 {
1323 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1324 	struct kse_txsoft *txs;
1325 	uint32_t txstat;
1326 	int i;
1327 
1328 	ifp->if_flags &= ~IFF_OACTIVE;
1329 
1330 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1331 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1332 		txs = &sc->sc_txsoft[i];
1333 
1334 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1335 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1336 
1337 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1338 
1339 		if (txstat & T0_OWN) /* desc is still in use */
1340 			break;
1341 
1342 		/* There is no way to tell transmission status per frame */
1343 
1344 		if_statinc(ifp, if_opackets);
1345 
1346 		sc->sc_txfree += txs->txs_ndesc;
1347 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1348 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1349 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1350 		m_freem(txs->txs_mbuf);
1351 		txs->txs_mbuf = NULL;
1352 	}
1353 	sc->sc_txsdirty = i;
1354 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
1355 		ifp->if_timer = 0;
1356 }
1357 
1358 static void
1359 lnkchg(struct kse_softc *sc)
1360 {
1361 	struct ifmediareq ifmr;
1362 
1363 #if KSE_LINKDEBUG == 1
1364 	uint16_t p1sr = CSR_READ_2(sc, P1SR);
1365 printf("link %s detected\n", (p1sr & PxSR_LINKUP) ? "up" : "down");
1366 #endif
1367 	kse_ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1368 }
1369 
1370 static int
1371 kse_ifmedia_upd(struct ifnet *ifp)
1372 {
1373 	struct kse_softc *sc = ifp->if_softc;
1374 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
1375 	uint16_t p1cr4;
1376 
1377 	p1cr4 = 0;
1378 	if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
1379 		p1cr4 |= PxCR_STARTNEG;	/* restart AN */
1380 		p1cr4 |= PxCR_AUTOEN;	/* enable AN */
1381 		p1cr4 |= PxCR_USEFC;	/* advertise flow control pause */
1382 		p1cr4 |= 0xf;		/* adv. 100FDX,100HDX,10FDX,10HDX */
1383 	} else {
1384 		if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
1385 			p1cr4 |= PxCR_SPD100;
1386 		if (ifm->ifm_media & IFM_FDX)
1387 			p1cr4 |= PxCR_USEFDX;
1388 	}
1389 	CSR_WRITE_2(sc, P1CR4, p1cr4);
1390 #if KSE_LINKDEBUG == 1
1391 printf("P1CR4: %04x\n", p1cr4);
1392 #endif
1393 	return 0;
1394 }
1395 
1396 static void
1397 kse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1398 {
1399 	struct kse_softc *sc = ifp->if_softc;
1400 	struct mii_data *mii = &sc->sc_mii;
1401 
1402 	mii_pollstat(mii);
1403 	ifmr->ifm_status = mii->mii_media_status;
1404 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
1405 	    sc->sc_flowflags;
1406 }
1407 
1408 static void
1409 nopifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1410 {
1411 	struct kse_softc *sc = ifp->if_softc;
1412 	struct ifmedia *ifm = &sc->sc_media;
1413 
1414 #if KSE_LINKDEBUG == 2
1415 printf("p1sr: %04x, p2sr: %04x\n", CSR_READ_2(sc, P1SR), CSR_READ_2(sc, P2SR));
1416 #endif
1417 
1418 	/* 8842 MAC pretends 100FDX all the time */
1419 	ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
1420 	ifmr->ifm_active = ifm->ifm_cur->ifm_media |
1421 	    IFM_FLOW | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
1422 }
1423 
1424 static void
1425 phy_tick(void *arg)
1426 {
1427 	struct kse_softc *sc = arg;
1428 	struct mii_data *mii = &sc->sc_mii;
1429 	int s;
1430 
1431 	s = splnet();
1432 	mii_tick(mii);
1433 	splx(s);
1434 
1435 	callout_schedule(&sc->sc_tick_ch, hz);
1436 }
1437 
1438 static const uint16_t phy1csr[] = {
1439 	/* 0 BMCR */	0x4d0,
1440 	/* 1 BMSR */	0x4d2,
1441 	/* 2 PHYID1 */	0x4d6,	/* 0x0022 - PHY1HR */
1442 	/* 3 PHYID2 */	0x4d4,	/* 0x1430 - PHY1LR */
1443 	/* 4 ANAR */	0x4d8,
1444 	/* 5 ANLPAR */	0x4da,
1445 };
1446 
1447 int
1448 kse_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1449 {
1450 	struct kse_softc *sc = device_private(self);
1451 
1452 	if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1453 		return EINVAL;
1454 	*val = CSR_READ_2(sc, phy1csr[reg]);
1455 	return 0;
1456 }
1457 
1458 int
1459 kse_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1460 {
1461 	struct kse_softc *sc = device_private(self);
1462 
1463 	if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1464 		return EINVAL;
1465 	CSR_WRITE_2(sc, phy1csr[reg], val);
1466 	return 0;
1467 }
1468 
1469 void
1470 kse_mii_statchg(struct ifnet *ifp)
1471 {
1472 	struct kse_softc *sc = ifp->if_softc;
1473 	struct mii_data *mii = &sc->sc_mii;
1474 
1475 #if KSE_LINKDEBUG == 1
1476 	/* decode P1SR register value */
1477 	uint16_t p1sr = CSR_READ_2(sc, P1SR);
1478 	printf("P1SR %04x, spd%d", p1sr, (p1sr & PxSR_SPD100) ? 100 : 10);
1479 	if (p1sr & PxSR_FDX)
1480 		printf(",full-duplex");
1481 	if (p1sr & PxSR_RXFLOW)
1482 		printf(",rxpause");
1483 	if (p1sr & PxSR_TXFLOW)
1484 		printf(",txpause");
1485 	printf("\n");
1486 	/* show resolved mii(4) parameters to compare against above */
1487 	printf("MII spd%d",
1488 	    (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
1489 	if (mii->mii_media_active & IFM_FDX)
1490 		printf(",full-duplex");
1491 	if (mii->mii_media_active & IFM_FLOW) {
1492 		printf(",flowcontrol");
1493 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
1494 			printf(",rxpause");
1495 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
1496 			printf(",txpause");
1497 	}
1498 	printf("\n");
1499 #endif
1500 	/* Get flow control negotiation result. */
1501 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1502 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1503 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1504 
1505 	/* Adjust MAC PAUSE flow control. */
1506 	if ((mii->mii_media_active & IFM_FDX)
1507 	    && (sc->sc_flowflags & IFM_ETH_TXPAUSE))
1508 		sc->sc_txc |= TXC_FCE;
1509 	else
1510 		sc->sc_txc &= ~TXC_FCE;
1511 	if ((mii->mii_media_active & IFM_FDX)
1512 	    && (sc->sc_flowflags & IFM_ETH_RXPAUSE))
1513 		sc->sc_rxc |= RXC_FCE;
1514 	else
1515 		sc->sc_rxc &= ~RXC_FCE;
1516 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
1517 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
1518 #if KSE_LINKDEBUG == 1
1519 	printf("%ctxfce, %crxfce\n",
1520 	    (sc->sc_txc & TXC_FCE) ? '+' : '-',
1521 	    (sc->sc_rxc & RXC_FCE) ? '+' : '-');
1522 #endif
1523 }
1524 
1525 #ifdef KSE_EVENT_COUNTERS
1526 static void
1527 stat_tick(void *arg)
1528 {
1529 	struct kse_softc *sc = arg;
1530 	struct ksext *ee = &sc->sc_ext;
1531 	int nport, p, i, val;
1532 
1533 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1534 	for (p = 0; p < nport; p++) {
1535 		for (i = 0; i < 32; i++) {
1536 			val = 0x1c00 | (p * 0x20 + i);
1537 			CSR_WRITE_2(sc, IACR, val);
1538 			do {
1539 				val = CSR_READ_2(sc, IADR5) << 16;
1540 			} while ((val & (1U << 30)) == 0);
1541 			if (val & (1U << 31)) {
1542 				(void)CSR_READ_2(sc, IADR4);
1543 				val = 0x3fffffff; /* has made overflow */
1544 			}
1545 			else {
1546 				val &= 0x3fff0000;		/* 29:16 */
1547 				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
1548 			}
1549 			ee->pev[p][i].ev_count += val; /* i (0-31) */
1550 		}
1551 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1552 		ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1553 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1554 		ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1555 	}
1556 	callout_schedule(&sc->sc_stat_ch, hz * 60);
1557 }
1558 
1559 static void
1560 zerostats(struct kse_softc *sc)
1561 {
1562 	struct ksext *ee = &sc->sc_ext;
1563 	int nport, p, i, val;
1564 
1565 	/* Make sure all the HW counters get zero */
1566 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1567 	for (p = 0; p < nport; p++) {
1568 		for (i = 0; i < 31; i++) {
1569 			val = 0x1c00 | (p * 0x20 + i);
1570 			CSR_WRITE_2(sc, IACR, val);
1571 			do {
1572 				val = CSR_READ_2(sc, IADR5) << 16;
1573 			} while ((val & (1U << 30)) == 0);
1574 			(void)CSR_READ_2(sc, IADR4);
1575 			ee->pev[p][i].ev_count = 0;
1576 		}
1577 	}
1578 }
1579 #endif
1580