1 /* $NetBSD: if_jme.c,v 1.31 2016/12/15 09:28:05 ozaki-r Exp $ */ 2 3 /* 4 * Copyright (c) 2008 Manuel Bouyer. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /*- 28 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 29 * All rights reserved. 30 * 31 * Redistribution and use in source and binary forms, with or without 32 * modification, are permitted provided that the following conditions 33 * are met: 34 * 1. Redistributions of source code must retain the above copyright 35 * notice unmodified, this list of conditions, and the following 36 * disclaimer. 37 * 2. Redistributions in binary form must reproduce the above copyright 38 * notice, this list of conditions and the following disclaimer in the 39 * documentation and/or other materials provided with the distribution. 40 * 41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 */ 53 54 55 /* 56 * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast) 57 * Ethernet Controllers. 58 */ 59 60 #include <sys/cdefs.h> 61 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.31 2016/12/15 09:28:05 ozaki-r Exp $"); 62 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/mbuf.h> 67 #include <sys/protosw.h> 68 #include <sys/socket.h> 69 #include <sys/ioctl.h> 70 #include <sys/errno.h> 71 #include <sys/malloc.h> 72 #include <sys/kernel.h> 73 #include <sys/proc.h> /* only for declaration of wakeup() used by vm.h */ 74 #include <sys/device.h> 75 #include <sys/syslog.h> 76 #include <sys/sysctl.h> 77 78 #include <net/if.h> 79 #if defined(SIOCSIFMEDIA) 80 #include <net/if_media.h> 81 #endif 82 #include <net/if_types.h> 83 #include <net/if_dl.h> 84 #include <net/route.h> 85 #include <net/netisr.h> 86 87 #include <net/bpf.h> 88 #include <net/bpfdesc.h> 89 90 #include <sys/rndsource.h> 91 92 #include <netinet/in.h> 93 #include <netinet/in_systm.h> 94 #include <netinet/ip.h> 95 96 #ifdef INET 97 #include <netinet/in_var.h> 98 #endif 99 100 #include <netinet/tcp.h> 101 102 #include <net/if_ether.h> 103 #if defined(INET) 104 #include <netinet/if_inarp.h> 105 #endif 106 107 #include <sys/bus.h> 108 #include <sys/intr.h> 109 110 #include <dev/pci/pcireg.h> 111 #include <dev/pci/pcivar.h> 112 #include <dev/pci/pcidevs.h> 113 #include <dev/pci/if_jmereg.h> 114 115 #include <dev/mii/mii.h> 116 #include <dev/mii/miivar.h> 117 118 struct jme_product_desc { 119 u_int32_t jme_product; 120 const char *jme_desc; 121 }; 122 123 /* number of entries in transmit and receive rings */ 124 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc)) 125 126 #define JME_DESC_INC(x, y) ((x) = ((x) + 1) % (y)) 127 128 /* Water mark to kick reclaiming Tx buffers. */ 129 #define JME_TX_DESC_HIWAT (JME_NBUFS - (((JME_NBUFS) * 3) / 10)) 130 131 132 struct jme_softc { 133 device_t jme_dev; /* base device */ 134 bus_space_tag_t jme_bt_mac; 135 bus_space_handle_t jme_bh_mac; /* Mac registers */ 136 bus_space_tag_t jme_bt_phy; 137 bus_space_handle_t jme_bh_phy; /* PHY registers */ 138 bus_space_tag_t jme_bt_misc; 139 bus_space_handle_t jme_bh_misc; /* Misc registers */ 140 bus_dma_tag_t jme_dmatag; 141 bus_dma_segment_t jme_txseg; /* transmit ring seg */ 142 bus_dmamap_t jme_txmap; /* transmit ring DMA map */ 143 struct jme_desc* jme_txring; /* transmit ring */ 144 bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */ 145 struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */ 146 int jme_tx_cons; /* transmit ring consumer */ 147 int jme_tx_prod; /* transmit ring producer */ 148 int jme_tx_cnt; /* transmit ring active count */ 149 bus_dma_segment_t jme_rxseg; /* receive ring seg */ 150 bus_dmamap_t jme_rxmap; /* receive ring DMA map */ 151 struct jme_desc* jme_rxring; /* receive ring */ 152 bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */ 153 struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */ 154 int jme_rx_cons; /* receive ring consumer */ 155 int jme_rx_prod; /* receive ring producer */ 156 void* jme_ih; /* our interrupt */ 157 struct ethercom jme_ec; 158 struct callout jme_tick_ch; /* tick callout */ 159 u_int8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */ 160 u_int8_t jme_phyaddr; /* address of integrated phy */ 161 u_int8_t jme_chip_rev; /* chip revision */ 162 u_int8_t jme_rev; /* PCI revision */ 163 mii_data_t jme_mii; /* mii bus */ 164 u_int32_t jme_flags; /* device features, see below */ 165 uint32_t jme_txcsr; /* TX config register */ 166 uint32_t jme_rxcsr; /* RX config register */ 167 krndsource_t rnd_source; 168 /* interrupt coalition parameters */ 169 struct sysctllog *jme_clog; 170 int jme_intrxto; /* interrupt RX timeout */ 171 int jme_intrxct; /* interrupt RX packets counter */ 172 int jme_inttxto; /* interrupt TX timeout */ 173 int jme_inttxct; /* interrupt TX packets counter */ 174 }; 175 176 #define JME_FLAG_FPGA 0x0001 /* FPGA version */ 177 #define JME_FLAG_GIGA 0x0002 /* giga Ethernet capable */ 178 179 180 #define jme_if jme_ec.ec_if 181 #define jme_bpf jme_if.if_bpf 182 183 typedef struct jme_softc jme_softc_t; 184 typedef u_long ioctl_cmd_t; 185 186 static int jme_pci_match(device_t, cfdata_t, void *); 187 static void jme_pci_attach(device_t, device_t, void *); 188 static void jme_intr_rx(jme_softc_t *); 189 static int jme_intr(void *); 190 191 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *); 192 static int jme_mediachange(struct ifnet *); 193 static void jme_ifwatchdog(struct ifnet *); 194 static bool jme_shutdown(device_t, int); 195 196 static void jme_txeof(struct jme_softc *); 197 static void jme_ifstart(struct ifnet *); 198 static void jme_reset(jme_softc_t *); 199 static int jme_ifinit(struct ifnet *); 200 static int jme_init(struct ifnet *, int); 201 static void jme_stop(struct ifnet *, int); 202 // static void jme_restart(void *); 203 static void jme_ticks(void *); 204 static void jme_mac_config(jme_softc_t *); 205 static void jme_set_filter(jme_softc_t *); 206 207 int jme_mii_read(device_t, int, int); 208 void jme_mii_write(device_t, int, int, int); 209 void jme_statchg(struct ifnet *); 210 211 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *); 212 static int jme_eeprom_macaddr(struct jme_softc *); 213 static int jme_reg_macaddr(struct jme_softc *); 214 215 #define JME_TIMEOUT 1000 216 #define JME_PHY_TIMEOUT 1000 217 #define JME_EEPROM_TIMEOUT 1000 218 219 static int jme_sysctl_intrxto(SYSCTLFN_PROTO); 220 static int jme_sysctl_intrxct(SYSCTLFN_PROTO); 221 static int jme_sysctl_inttxto(SYSCTLFN_PROTO); 222 static int jme_sysctl_inttxct(SYSCTLFN_PROTO); 223 static int jme_root_num; 224 225 226 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t), 227 jme_pci_match, jme_pci_attach, NULL, NULL); 228 229 static const struct jme_product_desc jme_products[] = { 230 { PCI_PRODUCT_JMICRON_JMC250, 231 "JMicron JMC250 Gigabit Ethernet Controller" }, 232 { PCI_PRODUCT_JMICRON_JMC260, 233 "JMicron JMC260 Gigabit Ethernet Controller" }, 234 { 0, NULL }, 235 }; 236 237 static const struct jme_product_desc *jme_lookup_product(uint32_t); 238 239 static const struct jme_product_desc * 240 jme_lookup_product(uint32_t id) 241 { 242 const struct jme_product_desc *jp; 243 244 for (jp = jme_products ; jp->jme_desc != NULL; jp++) 245 if (PCI_PRODUCT(id) == jp->jme_product) 246 return jp; 247 248 return NULL; 249 } 250 251 static int 252 jme_pci_match(device_t parent, cfdata_t cf, void *aux) 253 { 254 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 255 256 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_JMICRON) 257 return 0; 258 259 if (jme_lookup_product(pa->pa_id) != NULL) 260 return 1; 261 262 return 0; 263 } 264 265 static void 266 jme_pci_attach(device_t parent, device_t self, void *aux) 267 { 268 jme_softc_t *sc = device_private(self); 269 struct pci_attach_args * const pa = (struct pci_attach_args *)aux; 270 const struct jme_product_desc *jp; 271 struct ifnet * const ifp = &sc->jme_if; 272 bus_space_tag_t iot1, iot2, memt; 273 bus_space_handle_t ioh1, ioh2, memh; 274 bus_size_t size, size2; 275 pci_intr_handle_t intrhandle; 276 const char *intrstr; 277 pcireg_t csr; 278 int nsegs, i; 279 const struct sysctlnode *node; 280 int jme_nodenum; 281 char intrbuf[PCI_INTRSTR_LEN]; 282 283 sc->jme_dev = self; 284 aprint_normal("\n"); 285 callout_init(&sc->jme_tick_ch, 0); 286 287 jp = jme_lookup_product(pa->pa_id); 288 if (jp == NULL) 289 panic("jme_pci_attach: impossible"); 290 291 if (jp->jme_product == PCI_PRODUCT_JMICRON_JMC250) 292 sc->jme_flags = JME_FLAG_GIGA; 293 294 /* 295 * Map the card space. Try Mem first. 296 */ 297 if (pci_mapreg_map(pa, JME_PCI_BAR0, 298 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 299 0, &memt, &memh, NULL, &size) == 0) { 300 sc->jme_bt_mac = memt; 301 sc->jme_bh_mac = memh; 302 sc->jme_bt_phy = memt; 303 if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF, 304 JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) { 305 aprint_error_dev(self, "can't subregion PHY space\n"); 306 bus_space_unmap(memt, memh, size); 307 return; 308 } 309 sc->jme_bt_misc = memt; 310 if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF, 311 JME_MISC_SIZE, &sc->jme_bh_misc) != 0) { 312 aprint_error_dev(self, "can't subregion misc space\n"); 313 bus_space_unmap(memt, memh, size); 314 return; 315 } 316 } else { 317 if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO, 318 0, &iot1, &ioh1, NULL, &size) != 0) { 319 aprint_error_dev(self, "can't map I/O space 1\n"); 320 return; 321 } 322 sc->jme_bt_mac = iot1; 323 sc->jme_bh_mac = ioh1; 324 if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO, 325 0, &iot2, &ioh2, NULL, &size2) != 0) { 326 aprint_error_dev(self, "can't map I/O space 2\n"); 327 bus_space_unmap(iot1, ioh1, size); 328 return; 329 } 330 sc->jme_bt_phy = iot2; 331 sc->jme_bh_phy = ioh2; 332 sc->jme_bt_misc = iot2; 333 if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF, 334 JME_MISC_SIZE, &sc->jme_bh_misc) != 0) { 335 aprint_error_dev(self, "can't subregion misc space\n"); 336 bus_space_unmap(iot1, ioh1, size); 337 bus_space_unmap(iot2, ioh2, size2); 338 return; 339 } 340 } 341 342 if (pci_dma64_available(pa)) 343 sc->jme_dmatag = pa->pa_dmat64; 344 else 345 sc->jme_dmatag = pa->pa_dmat; 346 347 /* Enable the device. */ 348 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 349 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 350 csr | PCI_COMMAND_MASTER_ENABLE); 351 352 aprint_normal_dev(self, "%s\n", jp->jme_desc); 353 354 sc->jme_rev = PCI_REVISION(pa->pa_class); 355 356 csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE); 357 if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) != 358 CHIPMODE_NOT_FPGA) 359 sc->jme_flags |= JME_FLAG_FPGA; 360 sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT; 361 aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: " 362 "0x%x", sc->jme_rev, sc->jme_chip_rev); 363 if (sc->jme_flags & JME_FLAG_FPGA) 364 aprint_verbose(" FPGA revision: 0x%x", 365 (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT); 366 aprint_verbose("\n"); 367 368 /* 369 * Save PHY address. 370 * Integrated JR0211 has fixed PHY address whereas FPGA version 371 * requires PHY probing to get correct PHY address. 372 */ 373 if ((sc->jme_flags & JME_FLAG_FPGA) == 0) { 374 sc->jme_phyaddr = 375 bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, 376 JME_GPREG0) & GPREG0_PHY_ADDR_MASK; 377 } else 378 sc->jme_phyaddr = 0; 379 380 381 jme_reset(sc); 382 383 /* read mac addr */ 384 if (jme_eeprom_macaddr(sc) && jme_reg_macaddr(sc)) { 385 aprint_error_dev(self, "error reading Ethernet address\n"); 386 /* return; */ 387 } 388 aprint_normal_dev(self, "Ethernet address %s\n", 389 ether_sprintf(sc->jme_enaddr)); 390 391 /* Map and establish interrupts */ 392 if (pci_intr_map(pa, &intrhandle)) { 393 aprint_error_dev(self, "couldn't map interrupt\n"); 394 return; 395 } 396 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf)); 397 sc->jme_if.if_softc = sc; 398 sc->jme_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET, 399 jme_intr, sc); 400 if (sc->jme_ih == NULL) { 401 aprint_error_dev(self, "couldn't establish interrupt"); 402 if (intrstr != NULL) 403 aprint_error(" at %s", intrstr); 404 aprint_error("\n"); 405 return; 406 } 407 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 408 409 /* allocate and map DMA-safe memory for transmit ring */ 410 if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE, 411 &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 || 412 bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg, 413 nsegs, PAGE_SIZE, (void **)&sc->jme_txring, 414 BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 || 415 bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0, 416 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 || 417 bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring, 418 PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) { 419 aprint_error_dev(self, "can't allocate DMA memory TX ring\n"); 420 return; 421 } 422 /* allocate and map DMA-safe memory for receive ring */ 423 if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE, 424 &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 || 425 bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg, 426 nsegs, PAGE_SIZE, (void **)&sc->jme_rxring, 427 BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 || 428 bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0, 429 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 || 430 bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring, 431 PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) { 432 aprint_error_dev(self, "can't allocate DMA memory RX ring\n"); 433 return; 434 } 435 for (i = 0; i < JME_NBUFS; i++) { 436 sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL; 437 if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN, 438 JME_NBUFS, JME_MAX_TX_LEN, 0, 439 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 440 &sc->jme_txmbufm[i]) != 0) { 441 aprint_error_dev(self, "can't allocate DMA TX map\n"); 442 return; 443 } 444 if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN, 445 1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 446 &sc->jme_rxmbufm[i]) != 0) { 447 aprint_error_dev(self, "can't allocate DMA RX map\n"); 448 return; 449 } 450 } 451 /* 452 * Initialize our media structures and probe the MII. 453 * 454 * Note that we don't care about the media instance. We 455 * are expecting to have multiple PHYs on the 10/100 cards, 456 * and on those cards we exclude the internal PHY from providing 457 * 10baseT. By ignoring the instance, it allows us to not have 458 * to specify it on the command line when switching media. 459 */ 460 sc->jme_mii.mii_ifp = ifp; 461 sc->jme_mii.mii_readreg = jme_mii_read; 462 sc->jme_mii.mii_writereg = jme_mii_write; 463 sc->jme_mii.mii_statchg = jme_statchg; 464 sc->jme_ec.ec_mii = &sc->jme_mii; 465 ifmedia_init(&sc->jme_mii.mii_media, IFM_IMASK, jme_mediachange, 466 ether_mediastatus); 467 mii_attach(self, &sc->jme_mii, 0xffffffff, MII_PHY_ANY, 468 MII_OFFSET_ANY, 0); 469 if (LIST_FIRST(&sc->jme_mii.mii_phys) == NULL) { 470 ifmedia_add(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 471 ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE); 472 } else 473 ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_AUTO); 474 475 /* 476 * We can support 802.1Q VLAN-sized frames. 477 */ 478 sc->jme_ec.ec_capabilities |= 479 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; 480 481 if (sc->jme_flags & JME_FLAG_GIGA) 482 sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU; 483 484 485 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 486 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST; 487 ifp->if_ioctl = jme_ifioctl; 488 ifp->if_start = jme_ifstart; 489 ifp->if_watchdog = jme_ifwatchdog; 490 ifp->if_init = jme_ifinit; 491 ifp->if_stop = jme_stop; 492 ifp->if_timer = 0; 493 ifp->if_capabilities |= 494 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 495 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 496 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | 497 IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */ 498 IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */ 499 IFCAP_TSOv4 | IFCAP_TSOv6; 500 IFQ_SET_READY(&ifp->if_snd); 501 if_attach(ifp); 502 ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr); 503 504 /* 505 * Add shutdown hook so that DMA is disabled prior to reboot. 506 */ 507 if (pmf_device_register1(self, NULL, NULL, jme_shutdown)) 508 pmf_class_network_register(self, ifp); 509 else 510 aprint_error_dev(self, "couldn't establish power handler\n"); 511 512 rnd_attach_source(&sc->rnd_source, device_xname(self), 513 RND_TYPE_NET, RND_FLAG_DEFAULT); 514 515 sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT; 516 sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT; 517 sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT; 518 sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT; 519 if (sysctl_createv(&sc->jme_clog, 0, NULL, &node, 520 0, CTLTYPE_NODE, device_xname(sc->jme_dev), 521 SYSCTL_DESCR("jme per-controller controls"), 522 NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE, 523 CTL_EOL) != 0) { 524 aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n"); 525 return; 526 } 527 jme_nodenum = node->sysctl_num; 528 529 /* interrupt moderation sysctls */ 530 if (sysctl_createv(&sc->jme_clog, 0, NULL, &node, 531 CTLFLAG_READWRITE, 532 CTLTYPE_INT, "int_rxto", 533 SYSCTL_DESCR("jme RX interrupt moderation timer"), 534 jme_sysctl_intrxto, 0, (void *)sc, 535 0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE, 536 CTL_EOL) != 0) { 537 aprint_normal_dev(sc->jme_dev, 538 "couldn't create int_rxto sysctl node\n"); 539 } 540 if (sysctl_createv(&sc->jme_clog, 0, NULL, &node, 541 CTLFLAG_READWRITE, 542 CTLTYPE_INT, "int_rxct", 543 SYSCTL_DESCR("jme RX interrupt moderation packet counter"), 544 jme_sysctl_intrxct, 0, (void *)sc, 545 0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE, 546 CTL_EOL) != 0) { 547 aprint_normal_dev(sc->jme_dev, 548 "couldn't create int_rxct sysctl node\n"); 549 } 550 if (sysctl_createv(&sc->jme_clog, 0, NULL, &node, 551 CTLFLAG_READWRITE, 552 CTLTYPE_INT, "int_txto", 553 SYSCTL_DESCR("jme TX interrupt moderation timer"), 554 jme_sysctl_inttxto, 0, (void *)sc, 555 0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE, 556 CTL_EOL) != 0) { 557 aprint_normal_dev(sc->jme_dev, 558 "couldn't create int_txto sysctl node\n"); 559 } 560 if (sysctl_createv(&sc->jme_clog, 0, NULL, &node, 561 CTLFLAG_READWRITE, 562 CTLTYPE_INT, "int_txct", 563 SYSCTL_DESCR("jme TX interrupt moderation packet counter"), 564 jme_sysctl_inttxct, 0, (void *)sc, 565 0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE, 566 CTL_EOL) != 0) { 567 aprint_normal_dev(sc->jme_dev, 568 "couldn't create int_txct sysctl node\n"); 569 } 570 } 571 572 static void 573 jme_stop_rx(jme_softc_t *sc) 574 { 575 uint32_t reg; 576 int i; 577 578 reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR); 579 if ((reg & RXCSR_RX_ENB) == 0) 580 return; 581 reg &= ~RXCSR_RX_ENB; 582 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg); 583 for (i = JME_TIMEOUT / 10; i > 0; i--) { 584 DELAY(10); 585 if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, 586 JME_RXCSR) & RXCSR_RX_ENB) == 0) 587 break; 588 } 589 if (i == 0) 590 aprint_error_dev(sc->jme_dev, "stopping recevier timeout!\n"); 591 592 } 593 594 static void 595 jme_stop_tx(jme_softc_t *sc) 596 { 597 uint32_t reg; 598 int i; 599 600 reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR); 601 if ((reg & TXCSR_TX_ENB) == 0) 602 return; 603 reg &= ~TXCSR_TX_ENB; 604 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg); 605 for (i = JME_TIMEOUT / 10; i > 0; i--) { 606 DELAY(10); 607 if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, 608 JME_TXCSR) & TXCSR_TX_ENB) == 0) 609 break; 610 } 611 if (i == 0) 612 aprint_error_dev(sc->jme_dev, 613 "stopping transmitter timeout!\n"); 614 } 615 616 static void 617 jme_reset(jme_softc_t *sc) 618 { 619 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET); 620 DELAY(10); 621 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0); 622 } 623 624 static bool 625 jme_shutdown(device_t self, int howto) 626 { 627 jme_softc_t *sc; 628 struct ifnet *ifp; 629 630 sc = device_private(self); 631 ifp = &sc->jme_if; 632 jme_stop(ifp, 1); 633 634 return true; 635 } 636 637 static void 638 jme_stop(struct ifnet *ifp, int disable) 639 { 640 jme_softc_t *sc = ifp->if_softc; 641 int i; 642 /* Stop receiver, transmitter. */ 643 jme_stop_rx(sc); 644 jme_stop_tx(sc); 645 /* free receive mbufs */ 646 for (i = 0; i < JME_NBUFS; i++) { 647 if (sc->jme_rxmbuf[i]) { 648 bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]); 649 m_freem(sc->jme_rxmbuf[i]); 650 } 651 sc->jme_rxmbuf[i] = NULL; 652 } 653 /* process completed transmits */ 654 jme_txeof(sc); 655 /* free abort pending transmits */ 656 for (i = 0; i < JME_NBUFS; i++) { 657 if (sc->jme_txmbuf[i]) { 658 bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]); 659 m_freem(sc->jme_txmbuf[i]); 660 sc->jme_txmbuf[i] = NULL; 661 } 662 } 663 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 664 ifp->if_timer = 0; 665 } 666 667 #if 0 668 static void 669 jme_restart(void *v) 670 { 671 672 jme_init(v); 673 } 674 #endif 675 676 static int 677 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m) 678 { 679 int error; 680 bus_dmamap_t map; 681 int i = sc->jme_rx_prod; 682 683 if (sc->jme_rxmbuf[i] != NULL) { 684 aprint_error_dev(sc->jme_dev, 685 "mbuf already here: rxprod %d rxcons %d\n", 686 sc->jme_rx_prod, sc->jme_rx_cons); 687 if (m) 688 m_freem(m); 689 return EINVAL; 690 } 691 692 if (m == NULL) { 693 sc->jme_rxmbuf[i] = NULL; 694 MGETHDR(m, M_DONTWAIT, MT_DATA); 695 if (m == NULL) 696 return (ENOBUFS); 697 MCLGET(m, M_DONTWAIT); 698 if ((m->m_flags & M_EXT) == 0) { 699 m_freem(m); 700 return (ENOBUFS); 701 } 702 } 703 map = sc->jme_rxmbufm[i]; 704 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 705 KASSERT(m->m_len == MCLBYTES); 706 707 error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m, 708 BUS_DMA_READ|BUS_DMA_NOWAIT); 709 if (error) { 710 sc->jme_rxmbuf[i] = NULL; 711 aprint_error_dev(sc->jme_dev, 712 "unable to load rx DMA map %d, error = %d\n", 713 i, error); 714 m_freem(m); 715 return (error); 716 } 717 bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize, 718 BUS_DMASYNC_PREREAD); 719 720 sc->jme_rxmbuf[i] = m; 721 722 sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len); 723 sc->jme_rxring[i].addr_lo = 724 htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr)); 725 sc->jme_rxring[i].addr_hi = 726 htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr)); 727 sc->jme_rxring[i].flags = 728 htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT); 729 bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 730 i * sizeof(struct jme_desc), sizeof(struct jme_desc), 731 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 732 JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS); 733 return (0); 734 } 735 736 static int 737 jme_ifinit(struct ifnet *ifp) 738 { 739 return jme_init(ifp, 1); 740 } 741 742 static int 743 jme_init(struct ifnet *ifp, int do_ifinit) 744 { 745 jme_softc_t *sc = ifp->if_softc; 746 int i, s; 747 uint8_t eaddr[ETHER_ADDR_LEN]; 748 uint32_t reg; 749 750 s = splnet(); 751 /* cancel any pending IO */ 752 jme_stop(ifp, 1); 753 jme_reset(sc); 754 if ((sc->jme_if.if_flags & IFF_UP) == 0) { 755 splx(s); 756 return 0; 757 } 758 /* allocate receive ring */ 759 sc->jme_rx_prod = 0; 760 for (i = 0; i < JME_NBUFS; i++) { 761 if (jme_add_rxbuf(sc, NULL) < 0) { 762 aprint_error_dev(sc->jme_dev, 763 "can't allocate rx mbuf\n"); 764 for (i--; i >= 0; i--) { 765 bus_dmamap_unload(sc->jme_dmatag, 766 sc->jme_rxmbufm[i]); 767 m_freem(sc->jme_rxmbuf[i]); 768 sc->jme_rxmbuf[i] = NULL; 769 } 770 splx(s); 771 return ENOMEM; 772 } 773 } 774 /* init TX ring */ 775 memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc)); 776 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap, 777 0, JME_NBUFS * sizeof(struct jme_desc), 778 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 779 for (i = 0; i < JME_NBUFS; i++) 780 sc->jme_txmbuf[i] = NULL; 781 sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0; 782 783 /* Reprogram the station address. */ 784 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN); 785 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0, 786 eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]); 787 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 788 JME_PAR1, eaddr[5] << 8 | eaddr[4]); 789 790 /* 791 * Configure Tx queue. 792 * Tx priority queue weight value : 0 793 * Tx FIFO threshold for processing next packet : 16QW 794 * Maximum Tx DMA length : 512 795 * Allow Tx DMA burst. 796 */ 797 sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0); 798 sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN); 799 sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW; 800 sc->jme_txcsr |= TXCSR_DMA_SIZE_512; 801 sc->jme_txcsr |= TXCSR_DMA_BURST; 802 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 803 JME_TXCSR, sc->jme_txcsr); 804 805 /* Set Tx descriptor counter. */ 806 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 807 JME_TXQDC, JME_NBUFS); 808 809 /* Set Tx ring address to the hardware. */ 810 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI, 811 JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr)); 812 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO, 813 JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr)); 814 815 /* Configure TxMAC parameters. */ 816 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, 817 TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB | 818 TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB); 819 820 /* 821 * Configure Rx queue. 822 * FIFO full threshold for transmitting Tx pause packet : 128T 823 * FIFO threshold for processing next packet : 128QW 824 * Rx queue 0 select 825 * Max Rx DMA length : 128 826 * Rx descriptor retry : 32 827 * Rx descriptor retry time gap : 256ns 828 * Don't receive runt/bad frame. 829 */ 830 sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T; 831 /* 832 * Since Rx FIFO size is 4K bytes, receiving frames larger 833 * than 4K bytes will suffer from Rx FIFO overruns. So 834 * decrease FIFO threshold to reduce the FIFO overruns for 835 * frames larger than 4000 bytes. 836 * For best performance of standard MTU sized frames use 837 * maximum allowable FIFO threshold, 128QW. 838 */ 839 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 840 ETHER_CRC_LEN) > JME_RX_FIFO_SIZE) 841 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW; 842 else 843 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW; 844 sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0); 845 sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT); 846 sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK; 847 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 848 JME_RXCSR, sc->jme_rxcsr); 849 850 /* Set Rx descriptor counter. */ 851 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 852 JME_RXQDC, JME_NBUFS); 853 854 /* Set Rx ring address to the hardware. */ 855 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI, 856 JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr)); 857 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO, 858 JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr)); 859 860 /* Clear receive filter. */ 861 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0); 862 /* Set up the receive filter. */ 863 jme_set_filter(sc); 864 865 /* 866 * Disable all WOL bits as WOL can interfere normal Rx 867 * operation. Also clear WOL detection status bits. 868 */ 869 reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS); 870 reg &= ~PMCS_WOL_ENB_MASK; 871 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg); 872 873 reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC); 874 /* 875 * Pad 10bytes right before received frame. This will greatly 876 * help Rx performance on strict-alignment architectures as 877 * it does not need to copy the frame to align the payload. 878 */ 879 reg |= RXMAC_PAD_10BYTES; 880 if ((ifp->if_capenable & 881 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx| 882 IFCAP_CSUM_TCPv6_Rx|IFCAP_CSUM_UDPv6_Rx)) != 0) 883 reg |= RXMAC_CSUM_ENB; 884 reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */ 885 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg); 886 887 /* Configure general purpose reg0 */ 888 reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0); 889 reg &= ~GPREG0_PCC_UNIT_MASK; 890 /* Set PCC timer resolution to micro-seconds unit. */ 891 reg |= GPREG0_PCC_UNIT_US; 892 /* 893 * Disable all shadow register posting as we have to read 894 * JME_INTR_STATUS register in jme_int_task. Also it seems 895 * that it's hard to synchronize interrupt status between 896 * hardware and software with shadow posting due to 897 * requirements of bus_dmamap_sync(9). 898 */ 899 reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS | 900 GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS | 901 GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS | 902 GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS; 903 /* Disable posting of DW0. */ 904 reg &= ~GPREG0_POST_DW0_ENB; 905 /* Clear PME message. */ 906 reg &= ~GPREG0_PME_ENB; 907 /* Set PHY address. */ 908 reg &= ~GPREG0_PHY_ADDR_MASK; 909 reg |= sc->jme_phyaddr; 910 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg); 911 912 /* Configure Tx queue 0 packet completion coalescing. */ 913 reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK; 914 reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK; 915 reg |= PCCTX_COAL_TXQ0; 916 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg); 917 918 /* Configure Rx queue 0 packet completion coalescing. */ 919 reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK; 920 reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK; 921 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg); 922 923 /* Disable Timers */ 924 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0); 925 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0); 926 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0); 927 928 /* Configure retry transmit period, retry limit value. */ 929 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD, 930 ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) & 931 TXTRHD_RT_PERIOD_MASK) | 932 ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) & 933 TXTRHD_RT_LIMIT_SHIFT)); 934 935 /* Disable RSS. */ 936 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 937 JME_RSSC, RSSC_DIS_RSS); 938 939 /* Initialize the interrupt mask. */ 940 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 941 JME_INTR_MASK_SET, JME_INTRS_ENABLE); 942 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 943 JME_INTR_STATUS, 0xFFFFFFFF); 944 945 /* set media, if not already handling a media change */ 946 if (do_ifinit) { 947 int error; 948 if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO) 949 error = 0; 950 else if (error != 0) { 951 aprint_error_dev(sc->jme_dev, "could not set media\n"); 952 splx(s); 953 return error; 954 } 955 } 956 957 /* Program MAC with resolved speed/duplex/flow-control. */ 958 jme_mac_config(sc); 959 960 /* Start receiver/transmitter. */ 961 sc->jme_rx_cons = 0; 962 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, 963 sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START); 964 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, 965 sc->jme_txcsr | TXCSR_TX_ENB); 966 967 /* start ticks calls */ 968 callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc); 969 sc->jme_if.if_flags |= IFF_RUNNING; 970 sc->jme_if.if_flags &= ~IFF_OACTIVE; 971 splx(s); 972 return 0; 973 } 974 975 976 int 977 jme_mii_read(device_t self, int phy, int reg) 978 { 979 struct jme_softc *sc = device_private(self); 980 int val, i; 981 982 /* For FPGA version, PHY address 0 should be ignored. */ 983 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) { 984 if (phy == 0) 985 return (0); 986 } else { 987 if (sc->jme_phyaddr != phy) 988 return (0); 989 } 990 991 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI, 992 SMI_OP_READ | SMI_OP_EXECUTE | 993 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 994 for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) { 995 delay(10); 996 if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, 997 JME_SMI)) & SMI_OP_EXECUTE) == 0) 998 break; 999 } 1000 1001 if (i == 0) { 1002 aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg); 1003 return (0); 1004 } 1005 1006 return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT); 1007 } 1008 1009 void 1010 jme_mii_write(device_t self, int phy, int reg, int val) 1011 { 1012 struct jme_softc *sc = device_private(self); 1013 int i; 1014 1015 /* For FPGA version, PHY address 0 should be ignored. */ 1016 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) { 1017 if (phy == 0) 1018 return; 1019 } else { 1020 if (sc->jme_phyaddr != phy) 1021 return; 1022 } 1023 1024 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI, 1025 SMI_OP_WRITE | SMI_OP_EXECUTE | 1026 ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) | 1027 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 1028 for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) { 1029 delay(10); 1030 if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, 1031 JME_SMI)) & SMI_OP_EXECUTE) == 0) 1032 break; 1033 } 1034 1035 if (i == 0) 1036 aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg); 1037 1038 return; 1039 } 1040 1041 void 1042 jme_statchg(struct ifnet *ifp) 1043 { 1044 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) 1045 jme_init(ifp, 0); 1046 } 1047 1048 static void 1049 jme_intr_rx(jme_softc_t *sc) { 1050 struct mbuf *m, *mhead; 1051 bus_dmamap_t mmap; 1052 struct ifnet *ifp = &sc->jme_if; 1053 uint32_t flags, buflen; 1054 int i, ipackets, nsegs, seg, error; 1055 struct jme_desc *desc; 1056 1057 bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0, 1058 sizeof(struct jme_desc) * JME_NBUFS, 1059 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1060 #ifdef JMEDEBUG_RX 1061 printf("rxintr sc->jme_rx_cons %d flags 0x%x\n", 1062 sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags)); 1063 #endif 1064 ipackets = 0; 1065 while((le32toh(sc->jme_rxring[sc->jme_rx_cons].flags) & JME_RD_OWN) 1066 == 0) { 1067 i = sc->jme_rx_cons; 1068 desc = &sc->jme_rxring[i]; 1069 #ifdef JMEDEBUG_RX 1070 printf("rxintr i %d flags 0x%x buflen 0x%x\n", 1071 i, le32toh(desc->flags), le32toh(desc->buflen)); 1072 #endif 1073 if (sc->jme_rxmbuf[i] == NULL) { 1074 if ((error = jme_add_rxbuf(sc, NULL)) != 0) { 1075 aprint_error_dev(sc->jme_dev, 1076 "can't add new mbuf to empty slot: %d\n", 1077 error); 1078 break; 1079 } 1080 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1081 i = sc->jme_rx_cons; 1082 continue; 1083 } 1084 if ((le32toh(desc->buflen) & JME_RD_VALID) == 0) 1085 break; 1086 1087 buflen = le32toh(desc->buflen); 1088 nsegs = JME_RX_NSEGS(buflen); 1089 flags = le32toh(desc->flags); 1090 if ((buflen & JME_RX_ERR_STAT) != 0 || 1091 JME_RX_BYTES(buflen) < sizeof(struct ether_header) || 1092 JME_RX_BYTES(buflen) > 1093 (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) { 1094 #ifdef JMEDEBUG_RX 1095 printf("rx error flags 0x%x buflen 0x%x\n", 1096 flags, buflen); 1097 #endif 1098 ifp->if_ierrors++; 1099 /* reuse the mbufs */ 1100 for (seg = 0; seg < nsegs; seg++) { 1101 m = sc->jme_rxmbuf[i]; 1102 sc->jme_rxmbuf[i] = NULL; 1103 mmap = sc->jme_rxmbufm[i]; 1104 bus_dmamap_sync(sc->jme_dmatag, mmap, 0, 1105 mmap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1106 bus_dmamap_unload(sc->jme_dmatag, mmap); 1107 if ((error = jme_add_rxbuf(sc, m)) != 0) 1108 aprint_error_dev(sc->jme_dev, 1109 "can't reuse mbuf: %d\n", error); 1110 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1111 i = sc->jme_rx_cons; 1112 } 1113 continue; 1114 } 1115 /* receive this packet */ 1116 mhead = m = sc->jme_rxmbuf[i]; 1117 sc->jme_rxmbuf[i] = NULL; 1118 mmap = sc->jme_rxmbufm[i]; 1119 bus_dmamap_sync(sc->jme_dmatag, mmap, 0, 1120 mmap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1121 bus_dmamap_unload(sc->jme_dmatag, mmap); 1122 /* add a new buffer to chain */ 1123 if (jme_add_rxbuf(sc, NULL) != 0) { 1124 if ((error = jme_add_rxbuf(sc, m)) != 0) 1125 aprint_error_dev(sc->jme_dev, 1126 "can't reuse mbuf: %d\n", error); 1127 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1128 i = sc->jme_rx_cons; 1129 for (seg = 1; seg < nsegs; seg++) { 1130 m = sc->jme_rxmbuf[i]; 1131 sc->jme_rxmbuf[i] = NULL; 1132 mmap = sc->jme_rxmbufm[i]; 1133 bus_dmamap_sync(sc->jme_dmatag, mmap, 0, 1134 mmap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1135 bus_dmamap_unload(sc->jme_dmatag, mmap); 1136 if ((error = jme_add_rxbuf(sc, m)) != 0) 1137 aprint_error_dev(sc->jme_dev, 1138 "can't reuse mbuf: %d\n", error); 1139 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1140 i = sc->jme_rx_cons; 1141 } 1142 ifp->if_ierrors++; 1143 continue; 1144 } 1145 1146 /* build mbuf chain: head, then remaining segments */ 1147 m_set_rcvif(m, ifp); 1148 m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES; 1149 m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) : 1150 m->m_pkthdr.len; 1151 m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES; 1152 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1153 for (seg = 1; seg < nsegs; seg++) { 1154 i = sc->jme_rx_cons; 1155 m = sc->jme_rxmbuf[i]; 1156 sc->jme_rxmbuf[i] = NULL; 1157 mmap = sc->jme_rxmbufm[i]; 1158 bus_dmamap_sync(sc->jme_dmatag, mmap, 0, 1159 mmap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1160 bus_dmamap_unload(sc->jme_dmatag, mmap); 1161 if ((error = jme_add_rxbuf(sc, NULL)) != 0) 1162 aprint_error_dev(sc->jme_dev, 1163 "can't add new mbuf: %d\n", error); 1164 m->m_flags &= ~M_PKTHDR; 1165 m_cat(mhead, m); 1166 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1167 } 1168 /* and adjust last mbuf's size */ 1169 if (nsegs > 1) { 1170 m->m_len = 1171 JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1)); 1172 } 1173 ipackets++; 1174 1175 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) && 1176 (flags & JME_RD_IPV4)) { 1177 mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1178 if (!(flags & JME_RD_IPCSUM)) 1179 mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 1180 } 1181 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) && 1182 (flags & JME_RD_TCPV4) == JME_RD_TCPV4) { 1183 mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1184 if (!(flags & JME_RD_TCPCSUM)) 1185 mhead->m_pkthdr.csum_flags |= 1186 M_CSUM_TCP_UDP_BAD; 1187 } 1188 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) && 1189 (flags & JME_RD_UDPV4) == JME_RD_UDPV4) { 1190 mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1191 if (!(flags & JME_RD_UDPCSUM)) 1192 mhead->m_pkthdr.csum_flags |= 1193 M_CSUM_TCP_UDP_BAD; 1194 } 1195 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) && 1196 (flags & JME_RD_TCPV6) == JME_RD_TCPV6) { 1197 mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6; 1198 if (!(flags & JME_RD_TCPCSUM)) 1199 mhead->m_pkthdr.csum_flags |= 1200 M_CSUM_TCP_UDP_BAD; 1201 } 1202 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) && 1203 (flags & JME_RD_UDPV6) == JME_RD_UDPV6) { 1204 m->m_pkthdr.csum_flags |= M_CSUM_UDPv6; 1205 if (!(flags & JME_RD_UDPCSUM)) 1206 mhead->m_pkthdr.csum_flags |= 1207 M_CSUM_TCP_UDP_BAD; 1208 } 1209 if (flags & JME_RD_VLAN_TAG) { 1210 /* pass to vlan_input() */ 1211 VLAN_INPUT_TAG(ifp, mhead, 1212 (flags & JME_RD_VLAN_MASK), continue); 1213 } 1214 if_percpuq_enqueue(ifp->if_percpuq, mhead); 1215 } 1216 if (ipackets) 1217 rnd_add_uint32(&sc->rnd_source, ipackets); 1218 } 1219 1220 static int 1221 jme_intr(void *v) 1222 { 1223 jme_softc_t *sc = v; 1224 uint32_t istatus; 1225 1226 istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, 1227 JME_INTR_STATUS); 1228 if (istatus == 0 || istatus == 0xFFFFFFFF) 1229 return 0; 1230 /* Disable interrupts. */ 1231 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 1232 JME_INTR_MASK_CLR, 0xFFFFFFFF); 1233 again: 1234 /* and update istatus */ 1235 istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, 1236 JME_INTR_STATUS); 1237 if ((istatus & JME_INTRS_CHECK) == 0) 1238 goto done; 1239 /* Reset PCC counter/timer and Ack interrupts. */ 1240 if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0) 1241 istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP; 1242 if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) 1243 istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP; 1244 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 1245 JME_INTR_STATUS, istatus); 1246 1247 if ((sc->jme_if.if_flags & IFF_RUNNING) == 0) 1248 goto done; 1249 #ifdef JMEDEBUG_RX 1250 printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x 0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus, 1251 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR), 1252 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO), 1253 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI), 1254 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC), 1255 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA), 1256 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC)); 1257 printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n", 1258 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0), 1259 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1), 1260 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0), 1261 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1), 1262 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC)); 1263 #endif 1264 if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) 1265 jme_intr_rx(sc); 1266 if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) { 1267 /* 1268 * Notify hardware availability of new Rx 1269 * buffers. 1270 * Reading RXCSR takes very long time under 1271 * heavy load so cache RXCSR value and writes 1272 * the ORed value with the kick command to 1273 * the RXCSR. This saves one register access 1274 * cycle. 1275 */ 1276 sc->jme_rx_cons = 0; 1277 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 1278 JME_RXCSR, 1279 sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START); 1280 } 1281 if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0) 1282 jme_ifstart(&sc->jme_if); 1283 1284 goto again; 1285 1286 done: 1287 /* enable interrupts. */ 1288 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 1289 JME_INTR_MASK_SET, JME_INTRS_ENABLE); 1290 return 1; 1291 } 1292 1293 1294 static int 1295 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data) 1296 { 1297 struct jme_softc *sc = ifp->if_softc; 1298 int s, error; 1299 struct ifreq *ifr; 1300 struct ifcapreq *ifcr; 1301 1302 s = splnet(); 1303 /* 1304 * we can't support at the same time jumbo frames and 1305 * TX checksums offload/TSO 1306 */ 1307 switch(cmd) { 1308 case SIOCSIFMTU: 1309 ifr = data; 1310 if (ifr->ifr_mtu > JME_TX_FIFO_SIZE && 1311 (ifp->if_capenable & ( 1312 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx| 1313 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx| 1314 IFCAP_TSOv4|IFCAP_TSOv6)) != 0) { 1315 splx(s); 1316 return EINVAL; 1317 } 1318 break; 1319 case SIOCSIFCAP: 1320 ifcr = data; 1321 if (ifp->if_mtu > JME_TX_FIFO_SIZE && 1322 (ifcr->ifcr_capenable & ( 1323 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx| 1324 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx| 1325 IFCAP_TSOv4|IFCAP_TSOv6)) != 0) { 1326 splx(s); 1327 return EINVAL; 1328 } 1329 break; 1330 } 1331 1332 error = ether_ioctl(ifp, cmd, data); 1333 if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) { 1334 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) { 1335 jme_set_filter(sc); 1336 error = 0; 1337 } else { 1338 error = jme_init(ifp, 0); 1339 } 1340 } 1341 splx(s); 1342 return error; 1343 } 1344 1345 static int 1346 jme_encap(struct jme_softc *sc, struct mbuf **m_head) 1347 { 1348 struct jme_desc *desc; 1349 struct mbuf *m; 1350 struct m_tag *mtag; 1351 int error, i, prod, headdsc, nsegs; 1352 uint32_t cflags, tso_segsz; 1353 1354 if (((*m_head)->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0){ 1355 /* 1356 * Due to the adherence to NDIS specification JMC250 1357 * assumes upper stack computed TCP pseudo checksum 1358 * without including payload length. This breaks 1359 * checksum offload for TSO case so recompute TCP 1360 * pseudo checksum for JMC250. Hopefully this wouldn't 1361 * be much burden on modern CPUs. 1362 */ 1363 bool v4 = ((*m_head)->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0; 1364 int iphl = v4 ? 1365 M_CSUM_DATA_IPv4_IPHL((*m_head)->m_pkthdr.csum_data) : 1366 M_CSUM_DATA_IPv6_HL((*m_head)->m_pkthdr.csum_data); 1367 /* 1368 * note: we support vlan offloading, so we should never have 1369 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always 1370 * right. 1371 */ 1372 int hlen = ETHER_HDR_LEN + iphl; 1373 1374 if (__predict_false((*m_head)->m_len < 1375 (hlen + sizeof(struct tcphdr)))) { 1376 /* 1377 * TCP/IP headers are not in the first mbuf; we need 1378 * to do this the slow and painful way. Let's just 1379 * hope this doesn't happen very often. 1380 */ 1381 struct tcphdr th; 1382 1383 m_copydata((*m_head), hlen, sizeof(th), &th); 1384 if (v4) { 1385 struct ip ip; 1386 1387 m_copydata((*m_head), ETHER_HDR_LEN, 1388 sizeof(ip), &ip); 1389 ip.ip_len = 0; 1390 m_copyback((*m_head), 1391 ETHER_HDR_LEN + offsetof(struct ip, ip_len), 1392 sizeof(ip.ip_len), &ip.ip_len); 1393 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr, 1394 ip.ip_dst.s_addr, htons(IPPROTO_TCP)); 1395 } else { 1396 #if INET6 1397 struct ip6_hdr ip6; 1398 1399 m_copydata((*m_head), ETHER_HDR_LEN, 1400 sizeof(ip6), &ip6); 1401 ip6.ip6_plen = 0; 1402 m_copyback((*m_head), ETHER_HDR_LEN + 1403 offsetof(struct ip6_hdr, ip6_plen), 1404 sizeof(ip6.ip6_plen), &ip6.ip6_plen); 1405 th.th_sum = in6_cksum_phdr(&ip6.ip6_src, 1406 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP)); 1407 #endif /* INET6 */ 1408 } 1409 m_copyback((*m_head), 1410 hlen + offsetof(struct tcphdr, th_sum), 1411 sizeof(th.th_sum), &th.th_sum); 1412 1413 hlen += th.th_off << 2; 1414 } else { 1415 /* 1416 * TCP/IP headers are in the first mbuf; we can do 1417 * this the easy way. 1418 */ 1419 struct tcphdr *th; 1420 1421 if (v4) { 1422 struct ip *ip = 1423 (void *)(mtod((*m_head), char *) + 1424 ETHER_HDR_LEN); 1425 th = (void *)(mtod((*m_head), char *) + hlen); 1426 1427 ip->ip_len = 0; 1428 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, 1429 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1430 } else { 1431 #if INET6 1432 struct ip6_hdr *ip6 = 1433 (void *)(mtod((*m_head), char *) + 1434 ETHER_HDR_LEN); 1435 th = (void *)(mtod((*m_head), char *) + hlen); 1436 1437 ip6->ip6_plen = 0; 1438 th->th_sum = in6_cksum_phdr(&ip6->ip6_src, 1439 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP)); 1440 #endif /* INET6 */ 1441 } 1442 hlen += th->th_off << 2; 1443 } 1444 1445 } 1446 1447 prod = sc->jme_tx_prod; 1448 1449 error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod], 1450 *m_head, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1451 if (error) { 1452 if (error == EFBIG) { 1453 log(LOG_ERR, "%s: Tx packet consumes too many " 1454 "DMA segments, dropping...\n", 1455 device_xname(sc->jme_dev)); 1456 m_freem(*m_head); 1457 m_head = NULL; 1458 } 1459 return (error); 1460 } 1461 /* 1462 * Check descriptor overrun. Leave one free descriptor. 1463 * Since we always use 64bit address mode for transmitting, 1464 * each Tx request requires one more dummy descriptor. 1465 */ 1466 nsegs = sc->jme_txmbufm[prod]->dm_nsegs; 1467 #ifdef JMEDEBUG_TX 1468 printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt); 1469 #endif 1470 if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) { 1471 bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]); 1472 return (ENOBUFS); 1473 } 1474 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod], 1475 0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE); 1476 1477 m = *m_head; 1478 cflags = 0; 1479 tso_segsz = 0; 1480 /* Configure checksum offload and TSO. */ 1481 if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0) { 1482 tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT; 1483 cflags |= JME_TD_TSO; 1484 } else { 1485 if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) 1486 cflags |= JME_TD_IPCSUM; 1487 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_TCPv6)) != 0) 1488 cflags |= JME_TD_TCPCSUM; 1489 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4|M_CSUM_UDPv6)) != 0) 1490 cflags |= JME_TD_UDPCSUM; 1491 } 1492 /* Configure VLAN. */ 1493 if ((mtag = VLAN_OUTPUT_TAG(&sc->jme_ec, m)) != NULL) { 1494 cflags |= (VLAN_TAG_VALUE(mtag) & JME_TD_VLAN_MASK); 1495 cflags |= JME_TD_VLAN_TAG; 1496 } 1497 1498 desc = &sc->jme_txring[prod]; 1499 desc->flags = htole32(cflags); 1500 desc->buflen = htole32(tso_segsz); 1501 desc->addr_hi = htole32(m->m_pkthdr.len); 1502 desc->addr_lo = 0; 1503 headdsc = prod; 1504 sc->jme_tx_cnt++; 1505 JME_DESC_INC(prod, JME_NBUFS); 1506 for (i = 0; i < nsegs; i++) { 1507 desc = &sc->jme_txring[prod]; 1508 desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT); 1509 desc->buflen = 1510 htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len); 1511 desc->addr_hi = htole32( 1512 JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr)); 1513 desc->addr_lo = htole32( 1514 JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr)); 1515 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap, 1516 prod * sizeof(struct jme_desc), sizeof(struct jme_desc), 1517 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1518 sc->jme_txmbuf[prod] = NULL; 1519 sc->jme_tx_cnt++; 1520 JME_DESC_INC(prod, JME_NBUFS); 1521 } 1522 1523 /* Update producer index. */ 1524 sc->jme_tx_prod = prod; 1525 #ifdef JMEDEBUG_TX 1526 printf("jme_encap prod now %d\n", sc->jme_tx_prod); 1527 #endif 1528 /* 1529 * Finally request interrupt and give the first descriptor 1530 * owenership to hardware. 1531 */ 1532 desc = &sc->jme_txring[headdsc]; 1533 desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR); 1534 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap, 1535 headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc), 1536 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1537 1538 sc->jme_txmbuf[headdsc] = m; 1539 return (0); 1540 } 1541 1542 static void 1543 jme_txeof(struct jme_softc *sc) 1544 { 1545 struct ifnet *ifp; 1546 struct jme_desc *desc; 1547 uint32_t status; 1548 int cons, cons0, nsegs, seg; 1549 1550 ifp = &sc->jme_if; 1551 1552 #ifdef JMEDEBUG_TX 1553 printf("jme_txeof cons %d prod %d\n", 1554 sc->jme_tx_cons, sc->jme_tx_prod); 1555 printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x " 1556 "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x " 1557 "JME_TXTRHD 0x%x\n", 1558 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR), 1559 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO), 1560 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI), 1561 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC), 1562 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA), 1563 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC), 1564 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC), 1565 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)); 1566 for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) { 1567 desc = &sc->jme_txring[cons]; 1568 printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons, 1569 desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo); 1570 JME_DESC_INC(cons, JME_NBUFS); 1571 } 1572 #endif 1573 1574 cons = sc->jme_tx_cons; 1575 if (cons == sc->jme_tx_prod) 1576 return; 1577 1578 /* 1579 * Go through our Tx list and free mbufs for those 1580 * frames which have been transmitted. 1581 */ 1582 for (; cons != sc->jme_tx_prod;) { 1583 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap, 1584 cons * sizeof(struct jme_desc), sizeof(struct jme_desc), 1585 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1586 1587 desc = &sc->jme_txring[cons]; 1588 status = le32toh(desc->flags); 1589 #ifdef JMEDEBUG_TX 1590 printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status, 1591 sc->jme_txmbufm[cons]->dm_nsegs); 1592 #endif 1593 if (status & JME_TD_OWN) 1594 break; 1595 1596 if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0) 1597 ifp->if_oerrors++; 1598 else { 1599 ifp->if_opackets++; 1600 if ((status & JME_TD_COLLISION) != 0) 1601 ifp->if_collisions += 1602 le32toh(desc->buflen) & 1603 JME_TD_BUF_LEN_MASK; 1604 } 1605 /* 1606 * Only the first descriptor of multi-descriptor 1607 * transmission is updated so driver have to skip entire 1608 * chained buffers for the transmiited frame. In other 1609 * words, JME_TD_OWN bit is valid only at the first 1610 * descriptor of a multi-descriptor transmission. 1611 */ 1612 nsegs = sc->jme_txmbufm[cons]->dm_nsegs; 1613 cons0 = cons; 1614 JME_DESC_INC(cons, JME_NBUFS); 1615 for (seg = 1; seg < nsegs + 1; seg++) { 1616 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap, 1617 cons * sizeof(struct jme_desc), 1618 sizeof(struct jme_desc), 1619 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1620 sc->jme_txring[cons].flags = 0; 1621 JME_DESC_INC(cons, JME_NBUFS); 1622 } 1623 /* Reclaim transferred mbufs. */ 1624 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0], 1625 0, sc->jme_txmbufm[cons0]->dm_mapsize, 1626 BUS_DMASYNC_POSTWRITE); 1627 bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]); 1628 1629 KASSERT(sc->jme_txmbuf[cons0] != NULL); 1630 m_freem(sc->jme_txmbuf[cons0]); 1631 sc->jme_txmbuf[cons0] = NULL; 1632 sc->jme_tx_cnt -= nsegs + 1; 1633 KASSERT(sc->jme_tx_cnt >= 0); 1634 sc->jme_if.if_flags &= ~IFF_OACTIVE; 1635 } 1636 sc->jme_tx_cons = cons; 1637 /* Unarm watchog timer when there is no pending descriptors in queue. */ 1638 if (sc->jme_tx_cnt == 0) 1639 ifp->if_timer = 0; 1640 #ifdef JMEDEBUG_TX 1641 printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt); 1642 #endif 1643 } 1644 1645 static void 1646 jme_ifstart(struct ifnet *ifp) 1647 { 1648 jme_softc_t *sc = ifp->if_softc; 1649 struct mbuf *mb_head; 1650 int enq; 1651 1652 /* 1653 * check if we can free some desc. 1654 * Clear TX interrupt status to reset TX coalescing counters. 1655 */ 1656 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 1657 JME_INTR_STATUS, INTR_TXQ_COMP); 1658 jme_txeof(sc); 1659 1660 if ((sc->jme_if.if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 1661 return; 1662 for (enq = 0;; enq++) { 1663 nexttx: 1664 /* Grab a paquet for output */ 1665 IFQ_DEQUEUE(&ifp->if_snd, mb_head); 1666 if (mb_head == NULL) { 1667 #ifdef JMEDEBUG_TX 1668 printf("%s: nothing to send\n", __func__); 1669 #endif 1670 break; 1671 } 1672 /* try to add this mbuf to the TX ring */ 1673 if (jme_encap(sc, &mb_head)) { 1674 if (mb_head == NULL) { 1675 ifp->if_oerrors++; 1676 /* packet dropped, try next one */ 1677 goto nexttx; 1678 } 1679 /* resource shortage, try again later */ 1680 IF_PREPEND(&ifp->if_snd, mb_head); 1681 ifp->if_flags |= IFF_OACTIVE; 1682 break; 1683 } 1684 /* Pass packet to bpf if there is a listener */ 1685 bpf_mtap(ifp, mb_head); 1686 } 1687 #ifdef JMEDEBUG_TX 1688 printf("jme_ifstart enq %d\n", enq); 1689 #endif 1690 if (enq) { 1691 /* 1692 * Set a 5 second timer just in case we don't hear from 1693 * the card again. 1694 */ 1695 ifp->if_timer = 5; 1696 /* 1697 * Reading TXCSR takes very long time under heavy load 1698 * so cache TXCSR value and writes the ORed value with 1699 * the kick command to the TXCSR. This saves one register 1700 * access cycle. 1701 */ 1702 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, 1703 sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0)); 1704 #ifdef JMEDEBUG_TX 1705 printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x " 1706 "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x " 1707 "JME_TXTRHD 0x%x\n", 1708 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR), 1709 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO), 1710 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI), 1711 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC), 1712 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA), 1713 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC), 1714 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC), 1715 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)); 1716 #endif 1717 } 1718 } 1719 1720 static void 1721 jme_ifwatchdog(struct ifnet *ifp) 1722 { 1723 jme_softc_t *sc = ifp->if_softc; 1724 1725 if ((ifp->if_flags & IFF_RUNNING) == 0) 1726 return; 1727 printf("%s: device timeout\n", device_xname(sc->jme_dev)); 1728 ifp->if_oerrors++; 1729 jme_init(ifp, 0); 1730 } 1731 1732 static int 1733 jme_mediachange(struct ifnet *ifp) 1734 { 1735 int error; 1736 jme_softc_t *sc = ifp->if_softc; 1737 1738 if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO) 1739 error = 0; 1740 else if (error != 0) { 1741 aprint_error_dev(sc->jme_dev, "could not set media\n"); 1742 return error; 1743 } 1744 return 0; 1745 } 1746 1747 static void 1748 jme_ticks(void *v) 1749 { 1750 jme_softc_t *sc = v; 1751 int s = splnet(); 1752 1753 /* Tick the MII. */ 1754 mii_tick(&sc->jme_mii); 1755 1756 /* every seconds */ 1757 callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc); 1758 splx(s); 1759 } 1760 1761 static void 1762 jme_mac_config(jme_softc_t *sc) 1763 { 1764 uint32_t ghc, gpreg, rxmac, txmac, txpause; 1765 struct mii_data *mii = &sc->jme_mii; 1766 1767 ghc = 0; 1768 rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC); 1769 rxmac &= ~RXMAC_FC_ENB; 1770 txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC); 1771 txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST); 1772 txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC); 1773 txpause &= ~TXPFC_PAUSE_ENB; 1774 1775 if (mii->mii_media_active & IFM_FDX) { 1776 ghc |= GHC_FULL_DUPLEX; 1777 rxmac &= ~RXMAC_COLL_DET_ENB; 1778 txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | 1779 TXMAC_BACKOFF | TXMAC_CARRIER_EXT | 1780 TXMAC_FRAME_BURST); 1781 /* Disable retry transmit timer/retry limit. */ 1782 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD, 1783 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD) 1784 & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB)); 1785 } else { 1786 rxmac |= RXMAC_COLL_DET_ENB; 1787 txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF; 1788 /* Enable retry transmit timer/retry limit. */ 1789 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD, 1790 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD) | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB); 1791 } 1792 /* Reprogram Tx/Rx MACs with resolved speed/duplex. */ 1793 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1794 case IFM_10_T: 1795 ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100; 1796 break; 1797 case IFM_100_TX: 1798 ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100; 1799 break; 1800 case IFM_1000_T: 1801 ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000; 1802 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) 1803 txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST; 1804 break; 1805 default: 1806 break; 1807 } 1808 if ((sc->jme_flags & JME_FLAG_GIGA) && 1809 sc->jme_chip_rev == DEVICEREVID_JMC250_A2) { 1810 /* 1811 * Workaround occasional packet loss issue of JMC250 A2 1812 * when it runs on half-duplex media. 1813 */ 1814 #ifdef JMEDEBUG 1815 printf("JME250 A2 workaround\n"); 1816 #endif 1817 gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, 1818 JME_GPREG1); 1819 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 1820 gpreg &= ~GPREG1_HDPX_FIX; 1821 else 1822 gpreg |= GPREG1_HDPX_FIX; 1823 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 1824 JME_GPREG1, gpreg); 1825 /* Workaround CRC errors at 100Mbps on JMC250 A2. */ 1826 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { 1827 /* Extend interface FIFO depth. */ 1828 jme_mii_write(sc->jme_dev, sc->jme_phyaddr, 1829 0x1B, 0x0000); 1830 } else { 1831 /* Select default interface FIFO depth. */ 1832 jme_mii_write(sc->jme_dev, sc->jme_phyaddr, 1833 0x1B, 0x0004); 1834 } 1835 } 1836 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc); 1837 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac); 1838 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac); 1839 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause); 1840 } 1841 1842 static void 1843 jme_set_filter(jme_softc_t *sc) 1844 { 1845 struct ifnet *ifp = &sc->jme_if; 1846 struct ether_multistep step; 1847 struct ether_multi *enm; 1848 uint32_t hash[2] = {0, 0}; 1849 int i; 1850 uint32_t rxcfg; 1851 1852 rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC); 1853 rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST | 1854 RXMAC_ALLMULTI); 1855 /* Always accept frames destined to our station address. */ 1856 rxcfg |= RXMAC_UNICAST; 1857 if ((ifp->if_flags & IFF_BROADCAST) != 0) 1858 rxcfg |= RXMAC_BROADCAST; 1859 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 1860 if ((ifp->if_flags & IFF_PROMISC) != 0) 1861 rxcfg |= RXMAC_PROMISC; 1862 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 1863 rxcfg |= RXMAC_ALLMULTI; 1864 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 1865 JME_MAR0, 0xFFFFFFFF); 1866 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 1867 JME_MAR1, 0xFFFFFFFF); 1868 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 1869 JME_RXMAC, rxcfg); 1870 return; 1871 } 1872 /* 1873 * Set up the multicast address filter by passing all multicast 1874 * addresses through a CRC generator, and then using the low-order 1875 * 6 bits as an index into the 64 bit multicast hash table. The 1876 * high order bits select the register, while the rest of the bits 1877 * select the bit within the register. 1878 */ 1879 rxcfg |= RXMAC_MULTICAST; 1880 memset(hash, 0, sizeof(hash)); 1881 1882 ETHER_FIRST_MULTI(step, &sc->jme_ec, enm); 1883 while (enm != NULL) { 1884 #ifdef JEMDBUG 1885 printf("%s: addrs %s %s\n", __func__, 1886 ether_sprintf(enm->enm_addrlo), 1887 ether_sprintf(enm->enm_addrhi)); 1888 #endif 1889 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) { 1890 i = ether_crc32_be(enm->enm_addrlo, 6); 1891 /* Just want the 6 least significant bits. */ 1892 i &= 0x3f; 1893 hash[i / 32] |= 1 << (i%32); 1894 } else { 1895 hash[0] = hash[1] = 0xffffffff; 1896 sc->jme_if.if_flags |= IFF_ALLMULTI; 1897 break; 1898 } 1899 ETHER_NEXT_MULTI(step, enm); 1900 } 1901 #ifdef JMEDEBUG 1902 printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]); 1903 #endif 1904 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]); 1905 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]); 1906 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg); 1907 } 1908 1909 #if 0 1910 static int 1911 jme_multicast_hash(uint8_t *a) 1912 { 1913 int hash; 1914 1915 #define DA(addr,bit) (addr[5 - (bit / 8)] & (1 << (bit % 8))) 1916 #define xor8(a,b,c,d,e,f,g,h) \ 1917 (((a != 0) + (b != 0) + (c != 0) + (d != 0) + \ 1918 (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1) 1919 1920 hash = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30), 1921 DA(a,36), DA(a,42)); 1922 hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31), 1923 DA(a,37), DA(a,43)) << 1; 1924 hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32), 1925 DA(a,38), DA(a,44)) << 2; 1926 hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33), 1927 DA(a,39), DA(a,45)) << 3; 1928 hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34), 1929 DA(a,40), DA(a,46)) << 4; 1930 hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35), 1931 DA(a,41), DA(a,47)) << 5; 1932 1933 return hash; 1934 } 1935 #endif 1936 1937 static int 1938 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val) 1939 { 1940 uint32_t reg; 1941 int i; 1942 1943 *val = 0; 1944 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) { 1945 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, 1946 JME_SMBCSR); 1947 if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE) 1948 break; 1949 delay(10); 1950 } 1951 1952 if (i == 0) { 1953 aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n"); 1954 return (ETIMEDOUT); 1955 } 1956 1957 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK; 1958 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy, 1959 JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER); 1960 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) { 1961 delay(10); 1962 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, 1963 JME_SMBINTF); 1964 if ((reg & SMBINTF_CMD_TRIGGER) == 0) 1965 break; 1966 } 1967 1968 if (i == 0) { 1969 aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n"); 1970 return (ETIMEDOUT); 1971 } 1972 1973 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF); 1974 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT; 1975 return (0); 1976 } 1977 1978 1979 static int 1980 jme_eeprom_macaddr(struct jme_softc *sc) 1981 { 1982 uint8_t eaddr[ETHER_ADDR_LEN]; 1983 uint8_t fup, reg, val; 1984 uint32_t offset; 1985 int match; 1986 1987 offset = 0; 1988 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 1989 fup != JME_EEPROM_SIG0) 1990 return (ENOENT); 1991 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 1992 fup != JME_EEPROM_SIG1) 1993 return (ENOENT); 1994 match = 0; 1995 do { 1996 if (jme_eeprom_read_byte(sc, offset, &fup) != 0) 1997 break; 1998 if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) 1999 == (fup & (JME_EEPROM_FUNC_MASK|JME_EEPROM_PAGE_MASK))) { 2000 if (jme_eeprom_read_byte(sc, offset + 1, ®) != 0) 2001 break; 2002 if (reg >= JME_PAR0 && 2003 reg < JME_PAR0 + ETHER_ADDR_LEN) { 2004 if (jme_eeprom_read_byte(sc, offset + 2, 2005 &val) != 0) 2006 break; 2007 eaddr[reg - JME_PAR0] = val; 2008 match++; 2009 } 2010 } 2011 if (fup & JME_EEPROM_DESC_END) 2012 break; 2013 2014 /* Try next eeprom descriptor. */ 2015 offset += JME_EEPROM_DESC_BYTES; 2016 } while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END); 2017 2018 if (match == ETHER_ADDR_LEN) { 2019 memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN); 2020 return (0); 2021 } 2022 2023 return (ENOENT); 2024 } 2025 2026 static int 2027 jme_reg_macaddr(struct jme_softc *sc) 2028 { 2029 uint32_t par0, par1; 2030 2031 par0 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0); 2032 par1 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1); 2033 par1 &= 0xffff; 2034 if ((par0 == 0 && par1 == 0) || 2035 (par0 == 0xffffffff && par1 == 0xffff)) { 2036 return (ENOENT); 2037 } else { 2038 sc->jme_enaddr[0] = (par0 >> 0) & 0xff; 2039 sc->jme_enaddr[1] = (par0 >> 8) & 0xff; 2040 sc->jme_enaddr[2] = (par0 >> 16) & 0xff; 2041 sc->jme_enaddr[3] = (par0 >> 24) & 0xff; 2042 sc->jme_enaddr[4] = (par1 >> 0) & 0xff; 2043 sc->jme_enaddr[5] = (par1 >> 8) & 0xff; 2044 } 2045 return (0); 2046 } 2047 2048 /* 2049 * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be 2050 * set up in jme_pci_attach() 2051 */ 2052 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup") 2053 { 2054 int rc; 2055 const struct sysctlnode *node; 2056 2057 if ((rc = sysctl_createv(clog, 0, NULL, &node, 2058 0, CTLTYPE_NODE, "jme", 2059 SYSCTL_DESCR("jme interface controls"), 2060 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 2061 goto err; 2062 } 2063 2064 jme_root_num = node->sysctl_num; 2065 return; 2066 2067 err: 2068 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc); 2069 } 2070 2071 static int 2072 jme_sysctl_intrxto(SYSCTLFN_ARGS) 2073 { 2074 int error, t; 2075 struct sysctlnode node; 2076 struct jme_softc *sc; 2077 uint32_t reg; 2078 2079 node = *rnode; 2080 sc = node.sysctl_data; 2081 t = sc->jme_intrxto; 2082 node.sysctl_data = &t; 2083 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2084 if (error || newp == NULL) 2085 return error; 2086 2087 if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX) 2088 return EINVAL; 2089 2090 /* 2091 * update the softc with sysctl-changed value, and mark 2092 * for hardware update 2093 */ 2094 sc->jme_intrxto = t; 2095 /* Configure Rx queue 0 packet completion coalescing. */ 2096 reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK; 2097 reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK; 2098 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg); 2099 return 0; 2100 } 2101 2102 static int 2103 jme_sysctl_intrxct(SYSCTLFN_ARGS) 2104 { 2105 int error, t; 2106 struct sysctlnode node; 2107 struct jme_softc *sc; 2108 uint32_t reg; 2109 2110 node = *rnode; 2111 sc = node.sysctl_data; 2112 t = sc->jme_intrxct; 2113 node.sysctl_data = &t; 2114 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2115 if (error || newp == NULL) 2116 return error; 2117 2118 if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX) 2119 return EINVAL; 2120 2121 /* 2122 * update the softc with sysctl-changed value, and mark 2123 * for hardware update 2124 */ 2125 sc->jme_intrxct = t; 2126 /* Configure Rx queue 0 packet completion coalescing. */ 2127 reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK; 2128 reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK; 2129 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg); 2130 return 0; 2131 } 2132 2133 static int 2134 jme_sysctl_inttxto(SYSCTLFN_ARGS) 2135 { 2136 int error, t; 2137 struct sysctlnode node; 2138 struct jme_softc *sc; 2139 uint32_t reg; 2140 2141 node = *rnode; 2142 sc = node.sysctl_data; 2143 t = sc->jme_inttxto; 2144 node.sysctl_data = &t; 2145 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2146 if (error || newp == NULL) 2147 return error; 2148 2149 if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX) 2150 return EINVAL; 2151 2152 /* 2153 * update the softc with sysctl-changed value, and mark 2154 * for hardware update 2155 */ 2156 sc->jme_inttxto = t; 2157 /* Configure Tx queue 0 packet completion coalescing. */ 2158 reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK; 2159 reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK; 2160 reg |= PCCTX_COAL_TXQ0; 2161 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg); 2162 return 0; 2163 } 2164 2165 static int 2166 jme_sysctl_inttxct(SYSCTLFN_ARGS) 2167 { 2168 int error, t; 2169 struct sysctlnode node; 2170 struct jme_softc *sc; 2171 uint32_t reg; 2172 2173 node = *rnode; 2174 sc = node.sysctl_data; 2175 t = sc->jme_inttxct; 2176 node.sysctl_data = &t; 2177 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2178 if (error || newp == NULL) 2179 return error; 2180 2181 if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX) 2182 return EINVAL; 2183 2184 /* 2185 * update the softc with sysctl-changed value, and mark 2186 * for hardware update 2187 */ 2188 sc->jme_inttxct = t; 2189 /* Configure Tx queue 0 packet completion coalescing. */ 2190 reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK; 2191 reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK; 2192 reg |= PCCTX_COAL_TXQ0; 2193 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg); 2194 return 0; 2195 } 2196