xref: /netbsd-src/sys/dev/pci/if_jme.c (revision c42dbd0ed2e61fe6eda8590caa852ccf34719964)
1 /*	$NetBSD: if_jme.c,v 1.56 2023/12/20 05:08:34 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 
54 
55 /*
56  * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
57  * Ethernet Controllers.
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.56 2023/12/20 05:08:34 thorpej Exp $");
62 
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/mbuf.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/ioctl.h>
70 #include <sys/errno.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>	/* only for declaration of wakeup() used by vm.h */
73 #include <sys/device.h>
74 #include <sys/syslog.h>
75 #include <sys/sysctl.h>
76 
77 #include <net/if.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_dl.h>
81 #include <net/route.h>
82 #include <net/bpf.h>
83 
84 #include <sys/rndsource.h>
85 
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_var.h>
90 
91 #include <netinet6/ip6_var.h>
92 
93 #ifdef INET
94 #include <netinet/in_var.h>
95 #endif
96 
97 #include <netinet/tcp.h>
98 #include <netinet/tcp_timer.h>
99 #include <netinet/tcp_var.h>
100 
101 #include <net/if_ether.h>
102 #if defined(INET)
103 #include <netinet/if_inarp.h>
104 #endif
105 
106 #include <sys/bus.h>
107 #include <sys/intr.h>
108 
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112 #include <dev/pci/if_jmereg.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 
117 /* number of entries in transmit and receive rings */
118 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))
119 
120 #define JME_DESC_INC(x, y)	((x) = ((x) + 1) % (y))
121 
122 /* Water mark to kick reclaiming Tx buffers. */
123 #define JME_TX_DESC_HIWAT	(JME_NBUFS - (((JME_NBUFS) * 3) / 10))
124 
125 
126 struct jme_softc {
127 	device_t jme_dev;		/* base device */
128 	bus_space_tag_t jme_bt_mac;
129 	bus_space_handle_t jme_bh_mac;	/* Mac registers */
130 	bus_space_tag_t jme_bt_phy;
131 	bus_space_handle_t jme_bh_phy;	/* PHY registers */
132 	bus_space_tag_t jme_bt_misc;
133 	bus_space_handle_t jme_bh_misc; /* Misc registers */
134 	bus_dma_tag_t jme_dmatag;
135 	bus_dma_segment_t jme_txseg;	/* transmit ring seg */
136 	bus_dmamap_t jme_txmap;		/* transmit ring DMA map */
137 	struct jme_desc* jme_txring;	/* transmit ring */
138 	bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
139 	struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
140 	int jme_tx_cons;		/* transmit ring consumer */
141 	int jme_tx_prod;		/* transmit ring producer */
142 	int jme_tx_cnt;			/* transmit ring active count */
143 	bus_dma_segment_t jme_rxseg;	/* receive ring seg */
144 	bus_dmamap_t jme_rxmap;		/* receive ring DMA map */
145 	struct jme_desc* jme_rxring;	/* receive ring */
146 	bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
147 	struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
148 	int jme_rx_cons;		/* receive ring consumer */
149 	int jme_rx_prod;		/* receive ring producer */
150 	void* jme_ih;			/* our interrupt */
151 	struct ethercom jme_ec;
152 	struct callout jme_tick_ch;	/* tick callout */
153 	uint8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
154 	uint8_t jme_phyaddr;		/* address of integrated phy */
155 	uint8_t jme_chip_rev;		/* chip revision */
156 	uint8_t jme_rev;		/* PCI revision */
157 	mii_data_t jme_mii;		/* mii bus */
158 	uint32_t jme_flags;		/* device features, see below */
159 	uint32_t jme_txcsr;		/* TX config register */
160 	uint32_t jme_rxcsr;		/* RX config register */
161 	krndsource_t rnd_source;
162 	/* interrupt coalition parameters */
163 	struct sysctllog *jme_clog;
164 	int jme_intrxto;		/* interrupt RX timeout */
165 	int jme_intrxct;		/* interrupt RX packets counter */
166 	int jme_inttxto;		/* interrupt TX timeout */
167 	int jme_inttxct;		/* interrupt TX packets counter */
168 };
169 
170 #define JME_FLAG_FPGA	0x0001 /* FPGA version */
171 #define JME_FLAG_GIGA	0x0002 /* giga Ethernet capable */
172 
173 
174 #define jme_if	jme_ec.ec_if
175 #define jme_bpf	jme_if.if_bpf
176 
177 typedef struct jme_softc jme_softc_t;
178 typedef u_long ioctl_cmd_t;
179 
180 static int jme_pci_match(device_t, cfdata_t, void *);
181 static void jme_pci_attach(device_t, device_t, void *);
182 static void jme_intr_rx(jme_softc_t *);
183 static int jme_intr(void *);
184 
185 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
186 static int jme_mediachange(struct ifnet *);
187 static void jme_ifwatchdog(struct ifnet *);
188 static bool jme_shutdown(device_t, int);
189 
190 static void jme_txeof(struct jme_softc *);
191 static void jme_ifstart(struct ifnet *);
192 static void jme_reset(jme_softc_t *);
193 static int  jme_ifinit(struct ifnet *);
194 static int  jme_init(struct ifnet *, int);
195 static void jme_stop(struct ifnet *, int);
196 // static void jme_restart(void *);
197 static void jme_ticks(void *);
198 static void jme_mac_config(jme_softc_t *);
199 static void jme_set_filter(jme_softc_t *);
200 
201 static int jme_mii_read(device_t, int, int, uint16_t *);
202 static int jme_mii_write(device_t, int, int, uint16_t);
203 static void jme_statchg(struct ifnet *);
204 
205 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
206 static int jme_eeprom_macaddr(struct jme_softc *);
207 static int jme_reg_macaddr(struct jme_softc *);
208 
209 #define JME_TIMEOUT		1000
210 #define JME_PHY_TIMEOUT		1000
211 #define JME_EEPROM_TIMEOUT	1000
212 
213 static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
214 static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
215 static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
216 static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
217 static int jme_root_num;
218 
219 
220 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
221     jme_pci_match, jme_pci_attach, NULL, NULL);
222 
223 static const struct device_compatible_entry compat_data[] = {
224 	{ .id = PCI_ID_CODE(PCI_VENDOR_JMICRON,
225 		PCI_PRODUCT_JMICRON_JMC250),
226 	  .data = "JMicron JMC250 Gigabit Ethernet Controller" },
227 
228 	{ .id = PCI_ID_CODE(PCI_VENDOR_JMICRON,
229 		PCI_PRODUCT_JMICRON_JMC260),
230 	  .data = "JMicron JMC260 Gigabit Ethernet Controller" },
231 
232 	PCI_COMPAT_EOL
233 };
234 
235 static int
236 jme_pci_match(device_t parent, cfdata_t cf, void *aux)
237 {
238 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
239 
240 	return pci_compatible_match(pa, compat_data);
241 }
242 
243 static void
244 jme_pci_attach(device_t parent, device_t self, void *aux)
245 {
246 	jme_softc_t *sc = device_private(self);
247 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
248 	const struct device_compatible_entry *dce;
249 	struct ifnet * const ifp = &sc->jme_if;
250 	struct mii_data * const mii = &sc->jme_mii;
251 	bus_space_tag_t iot1, iot2, memt;
252 	bus_space_handle_t ioh1, ioh2, memh;
253 	bus_size_t size, size2;
254 	pci_intr_handle_t intrhandle;
255 	const char *intrstr;
256 	pcireg_t csr;
257 	int nsegs, i;
258 	const struct sysctlnode *node;
259 	int jme_nodenum;
260 	char intrbuf[PCI_INTRSTR_LEN];
261 
262 	sc->jme_dev = self;
263 	aprint_normal("\n");
264 	callout_init(&sc->jme_tick_ch, 0);
265 	callout_setfunc(&sc->jme_tick_ch, jme_ticks, sc);
266 
267 	dce = pci_compatible_lookup(pa, compat_data);
268 	KASSERT(dce != NULL);
269 
270 	if (PCI_PRODUCT(dce->id) == PCI_PRODUCT_JMICRON_JMC250)
271 		sc->jme_flags = JME_FLAG_GIGA;
272 
273 	/*
274 	 * Map the card space. Try Mem first.
275 	 */
276 	if (pci_mapreg_map(pa, JME_PCI_BAR0,
277 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
278 	    0, &memt, &memh, NULL, &size) == 0) {
279 		sc->jme_bt_mac = memt;
280 		sc->jme_bh_mac = memh;
281 		sc->jme_bt_phy = memt;
282 		if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
283 		    JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
284 			aprint_error_dev(self, "can't subregion PHY space\n");
285 			bus_space_unmap(memt, memh, size);
286 			return;
287 		}
288 		sc->jme_bt_misc = memt;
289 		if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
290 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
291 			aprint_error_dev(self, "can't subregion misc space\n");
292 			bus_space_unmap(memt, memh, size);
293 			return;
294 		}
295 	} else {
296 		if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
297 		    0, &iot1, &ioh1, NULL, &size) != 0) {
298 			aprint_error_dev(self, "can't map I/O space 1\n");
299 			return;
300 		}
301 		sc->jme_bt_mac = iot1;
302 		sc->jme_bh_mac = ioh1;
303 		if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
304 		    0, &iot2, &ioh2, NULL, &size2) != 0) {
305 			aprint_error_dev(self, "can't map I/O space 2\n");
306 			bus_space_unmap(iot1, ioh1, size);
307 			return;
308 		}
309 		sc->jme_bt_phy = iot2;
310 		sc->jme_bh_phy = ioh2;
311 		sc->jme_bt_misc = iot2;
312 		if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
313 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
314 			aprint_error_dev(self, "can't subregion misc space\n");
315 			bus_space_unmap(iot1, ioh1, size);
316 			bus_space_unmap(iot2, ioh2, size2);
317 			return;
318 		}
319 	}
320 
321 	if (pci_dma64_available(pa))
322 		sc->jme_dmatag = pa->pa_dmat64;
323 	else
324 		sc->jme_dmatag = pa->pa_dmat;
325 
326 	/* Enable the device. */
327 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
328 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
329 	    csr | PCI_COMMAND_MASTER_ENABLE);
330 
331 	aprint_normal_dev(self, "%s\n", (const char *)dce->data);
332 
333 	sc->jme_rev = PCI_REVISION(pa->pa_class);
334 
335 	csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
336 	if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
337 	    CHIPMODE_NOT_FPGA)
338 		sc->jme_flags |= JME_FLAG_FPGA;
339 	sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
340 	aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
341 	    "0x%x", sc->jme_rev, sc->jme_chip_rev);
342 	if (sc->jme_flags & JME_FLAG_FPGA)
343 		aprint_verbose(" FPGA revision: 0x%x",
344 		    (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
345 	aprint_verbose("\n");
346 
347 	/*
348 	 * Save PHY address.
349 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
350 	 * requires PHY probing to get correct PHY address.
351 	 */
352 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
353 		sc->jme_phyaddr =
354 		    bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
355 				     JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
356 	} else
357 		sc->jme_phyaddr = 0;
358 
359 
360 	jme_reset(sc);
361 
362 	/* read mac addr */
363 	if (jme_eeprom_macaddr(sc) && jme_reg_macaddr(sc)) {
364 		aprint_error_dev(self, "error reading Ethernet address\n");
365 		/* return; */
366 	}
367 	aprint_normal_dev(self, "Ethernet address %s\n",
368 	    ether_sprintf(sc->jme_enaddr));
369 
370 	/* Map and establish interrupts */
371 	if (pci_intr_map(pa, &intrhandle)) {
372 		aprint_error_dev(self, "couldn't map interrupt\n");
373 		return;
374 	}
375 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf));
376 	sc->jme_if.if_softc = sc;
377 	sc->jme_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
378 	    jme_intr, sc, device_xname(self));
379 	if (sc->jme_ih == NULL) {
380 		aprint_error_dev(self, "couldn't establish interrupt");
381 		if (intrstr != NULL)
382 			aprint_error(" at %s", intrstr);
383 		aprint_error("\n");
384 		return;
385 	}
386 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
387 
388 	/* allocate and map DMA-safe memory for transmit ring */
389 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
390 	    &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
391 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
392 	    nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
393 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
394 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
395 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
396 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
397 	    PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
398 		aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
399 		return;
400 	}
401 	/* allocate and map DMA-safe memory for receive ring */
402 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
403 	      &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
404 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
405 	      nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
406 	      BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
407 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
408 	      BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
409 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
410 	      PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
411 		aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
412 		return;
413 	}
414 	for (i = 0; i < JME_NBUFS; i++) {
415 		sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
416 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
417 		    JME_NBUFS, JME_MAX_TX_LEN, 0,
418 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
419 		    &sc->jme_txmbufm[i]) != 0) {
420 			aprint_error_dev(self, "can't allocate DMA TX map\n");
421 			return;
422 		}
423 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
424 		    1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
425 		    &sc->jme_rxmbufm[i]) != 0) {
426 			aprint_error_dev(self, "can't allocate DMA RX map\n");
427 			return;
428 		}
429 	}
430 	/*
431 	 * Initialize our media structures and probe the MII.
432 	 *
433 	 * Note that we don't care about the media instance.  We
434 	 * are expecting to have multiple PHYs on the 10/100 cards,
435 	 * and on those cards we exclude the internal PHY from providing
436 	 * 10baseT.  By ignoring the instance, it allows us to not have
437 	 * to specify it on the command line when switching media.
438 	 */
439 	mii->mii_ifp = ifp;
440 	mii->mii_readreg = jme_mii_read;
441 	mii->mii_writereg = jme_mii_write;
442 	mii->mii_statchg = jme_statchg;
443 	sc->jme_ec.ec_mii = mii;
444 	ifmedia_init(&mii->mii_media, IFM_IMASK, jme_mediachange,
445 	    ether_mediastatus);
446 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
447 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
448 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
449 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
450 	} else
451 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
452 
453 	/*
454 	 * We can support 802.1Q VLAN-sized frames.
455 	 */
456 	sc->jme_ec.ec_capabilities |=
457 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
458 	sc->jme_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
459 
460 	if (sc->jme_flags & JME_FLAG_GIGA)
461 		sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
462 
463 
464 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
465 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
466 	ifp->if_ioctl = jme_ifioctl;
467 	ifp->if_start = jme_ifstart;
468 	ifp->if_watchdog = jme_ifwatchdog;
469 	ifp->if_init = jme_ifinit;
470 	ifp->if_stop = jme_stop;
471 	ifp->if_timer = 0;
472 	ifp->if_capabilities |=
473 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
474 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
475 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
476 	    IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
477 	    IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
478 	    IFCAP_TSOv4 | IFCAP_TSOv6;
479 	IFQ_SET_READY(&ifp->if_snd);
480 	if_attach(ifp);
481 	ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);
482 
483 	/*
484 	 * Add shutdown hook so that DMA is disabled prior to reboot.
485 	 */
486 	if (pmf_device_register1(self, NULL, NULL, jme_shutdown))
487 		pmf_class_network_register(self, ifp);
488 	else
489 		aprint_error_dev(self, "couldn't establish power handler\n");
490 
491 	rnd_attach_source(&sc->rnd_source, device_xname(self),
492 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
493 
494 	sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
495 	sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
496 	sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
497 	sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
498 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
499 	    0, CTLTYPE_NODE, device_xname(sc->jme_dev),
500 	    SYSCTL_DESCR("jme per-controller controls"),
501 	    NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
502 	    CTL_EOL) != 0) {
503 		aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
504 		return;
505 	}
506 	jme_nodenum = node->sysctl_num;
507 
508 	/* interrupt moderation sysctls */
509 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
510 	    CTLFLAG_READWRITE,
511 	    CTLTYPE_INT, "int_rxto",
512 	    SYSCTL_DESCR("jme RX interrupt moderation timer"),
513 	    jme_sysctl_intrxto, 0, (void *)sc,
514 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
515 	    CTL_EOL) != 0) {
516 		aprint_normal_dev(sc->jme_dev,
517 		    "couldn't create int_rxto sysctl node\n");
518 	}
519 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
520 	    CTLFLAG_READWRITE,
521 	    CTLTYPE_INT, "int_rxct",
522 	    SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
523 	    jme_sysctl_intrxct, 0, (void *)sc,
524 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
525 	    CTL_EOL) != 0) {
526 		aprint_normal_dev(sc->jme_dev,
527 		    "couldn't create int_rxct sysctl node\n");
528 	}
529 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
530 	    CTLFLAG_READWRITE,
531 	    CTLTYPE_INT, "int_txto",
532 	    SYSCTL_DESCR("jme TX interrupt moderation timer"),
533 	    jme_sysctl_inttxto, 0, (void *)sc,
534 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
535 	    CTL_EOL) != 0) {
536 		aprint_normal_dev(sc->jme_dev,
537 		    "couldn't create int_txto sysctl node\n");
538 	}
539 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
540 	    CTLFLAG_READWRITE,
541 	    CTLTYPE_INT, "int_txct",
542 	    SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
543 	    jme_sysctl_inttxct, 0, (void *)sc,
544 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
545 	    CTL_EOL) != 0) {
546 		aprint_normal_dev(sc->jme_dev,
547 		    "couldn't create int_txct sysctl node\n");
548 	}
549 }
550 
551 static void
552 jme_stop_rx(jme_softc_t *sc)
553 {
554 	uint32_t reg;
555 	int i;
556 
557 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
558 	if ((reg & RXCSR_RX_ENB) == 0)
559 		return;
560 	reg &= ~RXCSR_RX_ENB;
561 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
562 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
563 		DELAY(10);
564 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
565 		    JME_RXCSR) & RXCSR_RX_ENB) == 0)
566 			break;
567 	}
568 	if (i == 0)
569 		aprint_error_dev(sc->jme_dev, "stopping receiver timeout!\n");
570 
571 }
572 
573 static void
574 jme_stop_tx(jme_softc_t *sc)
575 {
576 	uint32_t reg;
577 	int i;
578 
579 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
580 	if ((reg & TXCSR_TX_ENB) == 0)
581 		return;
582 	reg &= ~TXCSR_TX_ENB;
583 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
584 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
585 		DELAY(10);
586 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
587 		    JME_TXCSR) & TXCSR_TX_ENB) == 0)
588 			break;
589 	}
590 	if (i == 0)
591 		aprint_error_dev(sc->jme_dev,
592 		    "stopping transmitter timeout!\n");
593 }
594 
595 static void
596 jme_reset(jme_softc_t *sc)
597 {
598 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
599 	DELAY(10);
600 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
601 }
602 
603 static bool
604 jme_shutdown(device_t self, int howto)
605 {
606 	jme_softc_t *sc;
607 	struct ifnet *ifp;
608 
609 	sc = device_private(self);
610 	ifp = &sc->jme_if;
611 	jme_stop(ifp, 1);
612 
613 	return true;
614 }
615 
616 static void
617 jme_stop(struct ifnet *ifp, int disable)
618 {
619 	jme_softc_t *sc = ifp->if_softc;
620 	int i;
621 	/* Stop receiver, transmitter. */
622 	jme_stop_rx(sc);
623 	jme_stop_tx(sc);
624 	/* free receive mbufs */
625 	for (i = 0; i < JME_NBUFS; i++) {
626 		if (sc->jme_rxmbuf[i]) {
627 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
628 			m_freem(sc->jme_rxmbuf[i]);
629 		}
630 		sc->jme_rxmbuf[i] = NULL;
631 	}
632 	/* process completed transmits */
633 	jme_txeof(sc);
634 	/* free abort pending transmits */
635 	for (i = 0; i < JME_NBUFS; i++) {
636 		if (sc->jme_txmbuf[i]) {
637 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
638 			m_freem(sc->jme_txmbuf[i]);
639 			sc->jme_txmbuf[i] = NULL;
640 		}
641 	}
642 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
643 	ifp->if_timer = 0;
644 }
645 
646 #if 0
647 static void
648 jme_restart(void *v)
649 {
650 
651 	jme_init(v);
652 }
653 #endif
654 
655 static int
656 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
657 {
658 	int error;
659 	bus_dmamap_t map;
660 	int i = sc->jme_rx_prod;
661 
662 	if (sc->jme_rxmbuf[i] != NULL) {
663 		aprint_error_dev(sc->jme_dev,
664 		    "mbuf already here: rxprod %d rxcons %d\n",
665 		    sc->jme_rx_prod, sc->jme_rx_cons);
666 		if (m)
667 			m_freem(m);
668 		return EINVAL;
669 	}
670 
671 	if (m == NULL) {
672 		sc->jme_rxmbuf[i] = NULL;
673 		MGETHDR(m, M_DONTWAIT, MT_DATA);
674 		if (m == NULL)
675 			return (ENOBUFS);
676 		MCLGET(m, M_DONTWAIT);
677 		if ((m->m_flags & M_EXT) == 0) {
678 			m_freem(m);
679 			return (ENOBUFS);
680 		}
681 	}
682 	map = sc->jme_rxmbufm[i];
683 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
684 	KASSERT(m->m_len == MCLBYTES);
685 
686 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
687 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
688 	if (error) {
689 		sc->jme_rxmbuf[i] = NULL;
690 		aprint_error_dev(sc->jme_dev,
691 		    "unable to load rx DMA map %d, error = %d\n",
692 		    i, error);
693 		m_freem(m);
694 		return (error);
695 	}
696 	bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
697 	    BUS_DMASYNC_PREREAD);
698 
699 	sc->jme_rxmbuf[i] = m;
700 
701 	sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
702 	sc->jme_rxring[i].addr_lo =
703 	    htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
704 	sc->jme_rxring[i].addr_hi =
705 	    htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
706 	sc->jme_rxring[i].flags =
707 	    htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
708 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
709 	    i * sizeof(struct jme_desc), sizeof(struct jme_desc),
710 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
711 	JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
712 	return (0);
713 }
714 
715 static int
716 jme_ifinit(struct ifnet *ifp)
717 {
718 	return jme_init(ifp, 1);
719 }
720 
721 static int
722 jme_init(struct ifnet *ifp, int do_ifinit)
723 {
724 	jme_softc_t *sc = ifp->if_softc;
725 	int i, s;
726 	uint8_t eaddr[ETHER_ADDR_LEN];
727 	uint32_t reg;
728 
729 	s = splnet();
730 	/* cancel any pending IO */
731 	jme_stop(ifp, 1);
732 	jme_reset(sc);
733 	if ((sc->jme_if.if_flags & IFF_UP) == 0) {
734 		splx(s);
735 		return 0;
736 	}
737 	/* allocate receive ring */
738 	sc->jme_rx_prod = 0;
739 	for (i = 0; i < JME_NBUFS; i++) {
740 		if (jme_add_rxbuf(sc, NULL) < 0) {
741 			aprint_error_dev(sc->jme_dev,
742 			    "can't allocate rx mbuf\n");
743 			for (i--; i >= 0; i--) {
744 				bus_dmamap_unload(sc->jme_dmatag,
745 				    sc->jme_rxmbufm[i]);
746 				m_freem(sc->jme_rxmbuf[i]);
747 				sc->jme_rxmbuf[i] = NULL;
748 			}
749 			splx(s);
750 			return ENOMEM;
751 		}
752 	}
753 	/* init TX ring */
754 	memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
755 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
756 	    0, JME_NBUFS * sizeof(struct jme_desc),
757 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
758 	for (i = 0; i < JME_NBUFS; i++)
759 		sc->jme_txmbuf[i] = NULL;
760 	sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;
761 
762 	/* Reprogram the station address. */
763 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
764 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
765 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
766 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
767 	    JME_PAR1, eaddr[5] << 8 | eaddr[4]);
768 
769 	/*
770 	 * Configure Tx queue.
771 	 *  Tx priority queue weight value : 0
772 	 *  Tx FIFO threshold for processing next packet : 16QW
773 	 *  Maximum Tx DMA length : 512
774 	 *  Allow Tx DMA burst.
775 	 */
776 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
777 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
778 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
779 	sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
780 	sc->jme_txcsr |= TXCSR_DMA_BURST;
781 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
782 	     JME_TXCSR, sc->jme_txcsr);
783 
784 	/* Set Tx descriptor counter. */
785 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
786 	     JME_TXQDC, JME_NBUFS);
787 
788 	/* Set Tx ring address to the hardware. */
789 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
790 	    JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
791 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
792 	    JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));
793 
794 	/* Configure TxMAC parameters. */
795 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
796 	    TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
797 	    TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);
798 
799 	/*
800 	 * Configure Rx queue.
801 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
802 	 *  FIFO threshold for processing next packet : 128QW
803 	 *  Rx queue 0 select
804 	 *  Max Rx DMA length : 128
805 	 *  Rx descriptor retry : 32
806 	 *  Rx descriptor retry time gap : 256ns
807 	 *  Don't receive runt/bad frame.
808 	 */
809 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
810 	/*
811 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
812 	 * than 4K bytes will suffer from Rx FIFO overruns. So
813 	 * decrease FIFO threshold to reduce the FIFO overruns for
814 	 * frames larger than 4000 bytes.
815 	 * For best performance of standard MTU sized frames use
816 	 * maximum allowable FIFO threshold, 128QW.
817 	 */
818 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
819 	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
820 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
821 	else
822 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
823 	sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
824 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
825 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
826 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
827 	     JME_RXCSR, sc->jme_rxcsr);
828 
829 	/* Set Rx descriptor counter. */
830 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
831 	     JME_RXQDC, JME_NBUFS);
832 
833 	/* Set Rx ring address to the hardware. */
834 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
835 	    JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
836 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
837 	    JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));
838 
839 	/* Clear receive filter. */
840 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
841 	/* Set up the receive filter. */
842 	jme_set_filter(sc);
843 
844 	/*
845 	 * Disable all WOL bits as WOL can interfere normal Rx
846 	 * operation. Also clear WOL detection status bits.
847 	 */
848 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
849 	reg &= ~PMCS_WOL_ENB_MASK;
850 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);
851 
852 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
853 	/*
854 	 * Pad 10bytes right before received frame. This will greatly
855 	 * help Rx performance on strict-alignment architectures as
856 	 * it does not need to copy the frame to align the payload.
857 	 */
858 	reg |= RXMAC_PAD_10BYTES;
859 	if ((ifp->if_capenable &
860 	    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
861 	     IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) != 0)
862 		reg |= RXMAC_CSUM_ENB;
863 	reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
864 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);
865 
866 	/* Configure general purpose reg0 */
867 	reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
868 	reg &= ~GPREG0_PCC_UNIT_MASK;
869 	/* Set PCC timer resolution to micro-seconds unit. */
870 	reg |= GPREG0_PCC_UNIT_US;
871 	/*
872 	 * Disable all shadow register posting as we have to read
873 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
874 	 * that it's hard to synchronize interrupt status between
875 	 * hardware and software with shadow posting due to
876 	 * requirements of bus_dmamap_sync(9).
877 	 */
878 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
879 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
880 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
881 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
882 	/* Disable posting of DW0. */
883 	reg &= ~GPREG0_POST_DW0_ENB;
884 	/* Clear PME message. */
885 	reg &= ~GPREG0_PME_ENB;
886 	/* Set PHY address. */
887 	reg &= ~GPREG0_PHY_ADDR_MASK;
888 	reg |= sc->jme_phyaddr;
889 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);
890 
891 	/* Configure Tx queue 0 packet completion coalescing. */
892 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
893 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
894 	reg |= PCCTX_COAL_TXQ0;
895 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
896 
897 	/* Configure Rx queue 0 packet completion coalescing. */
898 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
899 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
900 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
901 
902 	/* Disable Timers */
903 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0);
904 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
905 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);
906 
907 	/* Configure retry transmit period, retry limit value. */
908 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
909 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
910 	    TXTRHD_RT_PERIOD_MASK) |
911 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
912 	    TXTRHD_RT_LIMIT_SHIFT));
913 
914 	/* Disable RSS. */
915 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
916 	    JME_RSSC, RSSC_DIS_RSS);
917 
918 	/* Initialize the interrupt mask. */
919 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
920 	     JME_INTR_MASK_SET, JME_INTRS_ENABLE);
921 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
922 	     JME_INTR_STATUS, 0xFFFFFFFF);
923 
924 	/* set media, if not already handling a media change */
925 	if (do_ifinit) {
926 		int error;
927 		if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
928 			error = 0;
929 		else if (error != 0) {
930 			aprint_error_dev(sc->jme_dev, "could not set media\n");
931 			splx(s);
932 			return error;
933 		}
934 	}
935 
936 	/* Program MAC with resolved speed/duplex/flow-control. */
937 	jme_mac_config(sc);
938 
939 	/* Start receiver/transmitter. */
940 	sc->jme_rx_cons = 0;
941 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
942 	    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
943 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
944 	    sc->jme_txcsr | TXCSR_TX_ENB);
945 
946 	/* start ticks calls */
947 	callout_schedule(&sc->jme_tick_ch, hz);
948 	sc->jme_if.if_flags |= IFF_RUNNING;
949 	sc->jme_if.if_flags &= ~IFF_OACTIVE;
950 	splx(s);
951 	return 0;
952 }
953 
954 static int
955 jme_mii_read(device_t self, int phy, int reg, uint16_t *val)
956 {
957 	struct jme_softc *sc = device_private(self);
958 	int data, i;
959 
960 	/* For FPGA version, PHY address 0 should be ignored. */
961 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
962 		if (phy == 0)
963 			return -1;
964 	} else {
965 		if (sc->jme_phyaddr != phy)
966 			return -1;
967 	}
968 
969 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
970 	    SMI_OP_READ | SMI_OP_EXECUTE |
971 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
972 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
973 		delay(10);
974 		if (((data = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
975 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
976 			break;
977 	}
978 
979 	if (i == 0) {
980 		aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
981 		return ETIMEDOUT;
982 	}
983 
984 	*val = (data & SMI_DATA_MASK) >> SMI_DATA_SHIFT;
985 	return 0;
986 }
987 
988 static int
989 jme_mii_write(device_t self, int phy, int reg, uint16_t val)
990 {
991 	struct jme_softc *sc = device_private(self);
992 	int i;
993 
994 	/* For FPGA version, PHY address 0 should be ignored. */
995 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
996 		if (phy == 0)
997 			return -1;
998 	} else {
999 		if (sc->jme_phyaddr != phy)
1000 			return -1;
1001 	}
1002 
1003 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
1004 	    SMI_OP_WRITE | SMI_OP_EXECUTE |
1005 	    (((uint32_t)val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
1006 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
1007 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
1008 		delay(10);
1009 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1010 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1011 			break;
1012 	}
1013 
1014 	if (i == 0) {
1015 		aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
1016 		return ETIMEDOUT;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 static void
1023 jme_statchg(struct ifnet *ifp)
1024 {
1025 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
1026 		jme_init(ifp, 0);
1027 }
1028 
1029 static void
1030 jme_intr_rx(jme_softc_t *sc) {
1031 	struct mbuf *m, *mhead;
1032 	bus_dmamap_t mmap;
1033 	struct ifnet *ifp = &sc->jme_if;
1034 	uint32_t flags,	 buflen;
1035 	int i, ipackets, nsegs, seg, error;
1036 	struct jme_desc *desc;
1037 
1038 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
1039 	    sizeof(struct jme_desc) * JME_NBUFS,
1040 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1041 #ifdef JMEDEBUG_RX
1042 	printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
1043 	    sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
1044 #endif
1045 	ipackets = 0;
1046 	while ((le32toh(sc->jme_rxring[sc->jme_rx_cons].flags) & JME_RD_OWN)
1047 	    == 0) {
1048 		i = sc->jme_rx_cons;
1049 		desc = &sc->jme_rxring[i];
1050 #ifdef JMEDEBUG_RX
1051 		printf("rxintr i %d flags 0x%x buflen 0x%x\n",
1052 		    i, le32toh(desc->flags), le32toh(desc->buflen));
1053 #endif
1054 		if (sc->jme_rxmbuf[i] == NULL) {
1055 			if ((error = jme_add_rxbuf(sc, NULL)) != 0) {
1056 				aprint_error_dev(sc->jme_dev,
1057 				    "can't add new mbuf to empty slot: %d\n",
1058 				    error);
1059 				break;
1060 			}
1061 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1062 			i = sc->jme_rx_cons;
1063 			continue;
1064 		}
1065 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
1066 			break;
1067 
1068 		buflen = le32toh(desc->buflen);
1069 		nsegs = JME_RX_NSEGS(buflen);
1070 		flags = le32toh(desc->flags);
1071 		if ((buflen & JME_RX_ERR_STAT) != 0 ||
1072 		    JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
1073 		    JME_RX_BYTES(buflen) >
1074 		    (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
1075 #ifdef JMEDEBUG_RX
1076 			printf("rx error flags 0x%x buflen 0x%x\n",
1077 			    flags, buflen);
1078 #endif
1079 			if_statinc(ifp, if_ierrors);
1080 			/* reuse the mbufs */
1081 			for (seg = 0; seg < nsegs; seg++) {
1082 				m = sc->jme_rxmbuf[i];
1083 				sc->jme_rxmbuf[i] = NULL;
1084 				mmap = sc->jme_rxmbufm[i];
1085 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1086 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1087 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1088 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1089 					aprint_error_dev(sc->jme_dev,
1090 					    "can't reuse mbuf: %d\n", error);
1091 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1092 				i = sc->jme_rx_cons;
1093 			}
1094 			continue;
1095 		}
1096 		/* receive this packet */
1097 		mhead = m = sc->jme_rxmbuf[i];
1098 		sc->jme_rxmbuf[i] = NULL;
1099 		mmap = sc->jme_rxmbufm[i];
1100 		bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1101 		    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1102 		bus_dmamap_unload(sc->jme_dmatag, mmap);
1103 		/* add a new buffer to chain */
1104 		if (jme_add_rxbuf(sc, NULL) != 0) {
1105 			if ((error = jme_add_rxbuf(sc, m)) != 0)
1106 				aprint_error_dev(sc->jme_dev,
1107 				    "can't reuse mbuf: %d\n", error);
1108 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1109 			i = sc->jme_rx_cons;
1110 			for (seg = 1; seg < nsegs; seg++) {
1111 				m = sc->jme_rxmbuf[i];
1112 				sc->jme_rxmbuf[i] = NULL;
1113 				mmap = sc->jme_rxmbufm[i];
1114 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1115 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1116 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1117 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1118 					aprint_error_dev(sc->jme_dev,
1119 					    "can't reuse mbuf: %d\n", error);
1120 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1121 				i = sc->jme_rx_cons;
1122 			}
1123 			if_statinc(ifp, if_ierrors);
1124 			continue;
1125 		}
1126 
1127 		/* build mbuf chain: head, then remaining segments */
1128 		m_set_rcvif(m, ifp);
1129 		m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
1130 		m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
1131 		    m->m_pkthdr.len;
1132 		m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
1133 		JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1134 		for (seg = 1; seg < nsegs; seg++) {
1135 			i = sc->jme_rx_cons;
1136 			m = sc->jme_rxmbuf[i];
1137 			sc->jme_rxmbuf[i] = NULL;
1138 			mmap = sc->jme_rxmbufm[i];
1139 			bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1140 			    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1141 			bus_dmamap_unload(sc->jme_dmatag, mmap);
1142 			if ((error = jme_add_rxbuf(sc, NULL)) != 0)
1143 				aprint_error_dev(sc->jme_dev,
1144 				    "can't add new mbuf: %d\n", error);
1145 			m->m_flags &= ~M_PKTHDR;
1146 			m_cat(mhead, m);
1147 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1148 		}
1149 		/* and adjust last mbuf's size */
1150 		if (nsegs > 1) {
1151 			m->m_len =
1152 			    JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
1153 		}
1154 		ipackets++;
1155 
1156 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
1157 		    (flags & JME_RD_IPV4)) {
1158 			mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1159 			if (!(flags & JME_RD_IPCSUM))
1160 				mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1161 		}
1162 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
1163 		    (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
1164 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1165 			if (!(flags & JME_RD_TCPCSUM))
1166 				mhead->m_pkthdr.csum_flags |=
1167 				    M_CSUM_TCP_UDP_BAD;
1168 		}
1169 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
1170 		    (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
1171 			mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1172 			if (!(flags & JME_RD_UDPCSUM))
1173 				mhead->m_pkthdr.csum_flags |=
1174 				    M_CSUM_TCP_UDP_BAD;
1175 		}
1176 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
1177 		    (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
1178 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
1179 			if (!(flags & JME_RD_TCPCSUM))
1180 				mhead->m_pkthdr.csum_flags |=
1181 				    M_CSUM_TCP_UDP_BAD;
1182 		}
1183 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
1184 		    (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
1185 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
1186 			if (!(flags & JME_RD_UDPCSUM))
1187 				mhead->m_pkthdr.csum_flags |=
1188 				    M_CSUM_TCP_UDP_BAD;
1189 		}
1190 		if (flags & JME_RD_VLAN_TAG) {
1191 			/* pass to vlan_input() */
1192 			vlan_set_tag(mhead, (flags & JME_RD_VLAN_MASK));
1193 		}
1194 		if_percpuq_enqueue(ifp->if_percpuq, mhead);
1195 	}
1196 	if (ipackets)
1197 		rnd_add_uint32(&sc->rnd_source, ipackets);
1198 }
1199 
1200 static int
1201 jme_intr(void *v)
1202 {
1203 	jme_softc_t *sc = v;
1204 	uint32_t istatus;
1205 
1206 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1207 	     JME_INTR_STATUS);
1208 	if (istatus == 0 || istatus == 0xFFFFFFFF)
1209 		return 0;
1210 	/* Disable interrupts. */
1211 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1212 	    JME_INTR_MASK_CLR, 0xFFFFFFFF);
1213 again:
1214 	/* and update istatus */
1215 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1216 	     JME_INTR_STATUS);
1217 	if ((istatus & JME_INTRS_CHECK) == 0)
1218 		goto done;
1219 	/* Reset PCC counter/timer and Ack interrupts. */
1220 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1221 		istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1222 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1223 		istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1224 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1225 	     JME_INTR_STATUS, istatus);
1226 
1227 	if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
1228 		goto done;
1229 #ifdef JMEDEBUG_RX
1230 	printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
1231 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
1232 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
1233 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
1234 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
1235 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
1236 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
1237 	printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
1238 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
1239 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
1240 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
1241 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
1242 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
1243 #endif
1244 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1245 		jme_intr_rx(sc);
1246 	if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
1247 		/*
1248 		 * Notify hardware availability of new Rx
1249 		 * buffers.
1250 		 * Reading RXCSR takes very long time under
1251 		 * heavy load so cache RXCSR value and writes
1252 		 * the ORed value with the kick command to
1253 		 * the RXCSR. This saves one register access
1254 		 * cycle.
1255 		 */
1256 		sc->jme_rx_cons = 0;
1257 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1258 		    JME_RXCSR,
1259 		    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
1260 	}
1261 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1262 		jme_ifstart(&sc->jme_if);
1263 
1264 	goto again;
1265 
1266 done:
1267 	/* enable interrupts. */
1268 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1269 	    JME_INTR_MASK_SET, JME_INTRS_ENABLE);
1270 	return 1;
1271 }
1272 
1273 
1274 static int
1275 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1276 {
1277 	struct jme_softc *sc = ifp->if_softc;
1278 	int s, error;
1279 	struct ifreq *ifr;
1280 	struct ifcapreq *ifcr;
1281 
1282 	s = splnet();
1283 	/*
1284 	 * we can't support at the same time jumbo frames and
1285 	 * TX checksums offload/TSO
1286 	 */
1287 	switch (cmd) {
1288 	case SIOCSIFMTU:
1289 		ifr = data;
1290 		if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
1291 		    (ifp->if_capenable & (
1292 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx |
1293 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv6_Tx |
1294 		    IFCAP_CSUM_UDPv6_Tx | IFCAP_TSOv4 | IFCAP_TSOv6)) != 0) {
1295 			splx(s);
1296 			return EINVAL;
1297 		}
1298 		break;
1299 	case SIOCSIFCAP:
1300 		ifcr = data;
1301 		if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
1302 		    (ifcr->ifcr_capenable & (
1303 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx |
1304 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv6_Tx |
1305 		    IFCAP_CSUM_UDPv6_Tx | IFCAP_TSOv4 | IFCAP_TSOv6)) != 0) {
1306 			splx(s);
1307 			return EINVAL;
1308 		}
1309 		break;
1310 	}
1311 
1312 	error = ether_ioctl(ifp, cmd, data);
1313 	if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
1314 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1315 			jme_set_filter(sc);
1316 			error = 0;
1317 		} else {
1318 			error = jme_init(ifp, 0);
1319 		}
1320 	}
1321 	splx(s);
1322 	return error;
1323 }
1324 
1325 static int
1326 jme_encap(struct jme_softc *sc, struct mbuf * const m)
1327 {
1328 	struct jme_desc *desc;
1329 	int error, i, prod, headdsc, nsegs;
1330 	uint32_t cflags, tso_segsz;
1331 
1332 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
1333 		/*
1334 		 * Due to the adherence to NDIS specification JMC250
1335 		 * assumes upper stack computed TCP pseudo checksum
1336 		 * without including payload length. This breaks
1337 		 * checksum offload for TSO case so recompute TCP
1338 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1339 		 * be much burden on modern CPUs.
1340 		 */
1341 		bool v4 = (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1342 		int iphl = v4 ?
1343 		    M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) :
1344 		    M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
1345 		/*
1346 		 * note: we support vlan offloading, so we should never have
1347 		 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
1348 		 * right.
1349 		 */
1350 		int hlen = ETHER_HDR_LEN + iphl;
1351 
1352 		if (__predict_false(m->m_len <
1353 		    (hlen + sizeof(struct tcphdr)))) {
1354 			/*
1355 			 *
1356 			 * TCP/IP headers are not in the first mbuf; we need
1357 			 * to do this the slow and painful way.  Let's just
1358 			 * hope this doesn't happen very often.
1359 			 */
1360 			struct tcphdr th;
1361 
1362 			m_copydata(m, hlen, sizeof(th), &th);
1363 			if (v4) {
1364 				struct ip ip;
1365 
1366 				m_copydata(m, ETHER_HDR_LEN, sizeof(ip), &ip);
1367 				ip.ip_len = 0;
1368 				m_copyback(m,
1369 				    ETHER_HDR_LEN + offsetof(struct ip, ip_len),
1370 				    sizeof(ip.ip_len), &ip.ip_len);
1371 				th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1372 				    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1373 			} else {
1374 #if INET6
1375 				struct ip6_hdr ip6;
1376 
1377 				m_copydata(m, ETHER_HDR_LEN,
1378 				    sizeof(ip6), &ip6);
1379 				ip6.ip6_plen = 0;
1380 				m_copyback(m, ETHER_HDR_LEN +
1381 				    offsetof(struct ip6_hdr, ip6_plen),
1382 				    sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1383 				th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1384 				    &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1385 #endif /* INET6 */
1386 			}
1387 			m_copyback(m, hlen + offsetof(struct tcphdr, th_sum),
1388 			    sizeof(th.th_sum), &th.th_sum);
1389 
1390 			hlen += th.th_off << 2;
1391 		} else {
1392 			/*
1393 			 * TCP/IP headers are in the first mbuf; we can do
1394 			 * this the easy way.
1395 			 */
1396 			struct tcphdr *th;
1397 
1398 			if (v4) {
1399 				struct ip *ip =
1400 				    (void *)(mtod(m, char *) +
1401 				    ETHER_HDR_LEN);
1402 				th = (void *)(mtod(m, char *) + hlen);
1403 
1404 				ip->ip_len = 0;
1405 				th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1406 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1407 			} else {
1408 #if INET6
1409 				struct ip6_hdr *ip6 =
1410 				    (void *)(mtod(m, char *) +
1411 				    ETHER_HDR_LEN);
1412 				th = (void *)(mtod(m, char *) + hlen);
1413 
1414 				ip6->ip6_plen = 0;
1415 				th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1416 				    &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1417 #endif /* INET6 */
1418 			}
1419 			hlen += th->th_off << 2;
1420 		}
1421 	}
1422 
1423 	prod = sc->jme_tx_prod;
1424 
1425 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
1426 	    m, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1427 	if (error) {
1428 		if (error == EFBIG) {
1429 			log(LOG_ERR, "%s: Tx packet consumes too many "
1430 			    "DMA segments, dropping...\n",
1431 			    device_xname(sc->jme_dev));
1432 			/* Caller will free the packet. */
1433 		}
1434 		return (error);
1435 	}
1436 	/*
1437 	 * Check descriptor overrun. Leave one free descriptor.
1438 	 * Since we always use 64bit address mode for transmitting,
1439 	 * each Tx request requires one more dummy descriptor.
1440 	 */
1441 	nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
1442 #ifdef JMEDEBUG_TX
1443 	printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
1444 #endif
1445 	if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
1446 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
1447 		return (ENOBUFS);
1448 	}
1449 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
1450 	    0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1451 
1452 	cflags = 0;
1453 	tso_segsz = 0;
1454 	/* Configure checksum offload and TSO. */
1455 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
1456 		tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
1457 		cflags |= JME_TD_TSO;
1458 	} else {
1459 		if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
1460 			cflags |= JME_TD_IPCSUM;
1461 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6))
1462 		    != 0)
1463 			cflags |= JME_TD_TCPCSUM;
1464 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6))
1465 		    != 0)
1466 			cflags |= JME_TD_UDPCSUM;
1467 	}
1468 	/* Configure VLAN. */
1469 	if (vlan_has_tag(m)) {
1470 		cflags |= (vlan_get_tag(m) & JME_TD_VLAN_MASK);
1471 		cflags |= JME_TD_VLAN_TAG;
1472 	}
1473 
1474 	desc = &sc->jme_txring[prod];
1475 	desc->flags = htole32(cflags);
1476 	desc->buflen = htole32(tso_segsz);
1477 	desc->addr_hi = htole32(m->m_pkthdr.len);
1478 	desc->addr_lo = 0;
1479 	headdsc = prod;
1480 	sc->jme_tx_cnt++;
1481 	JME_DESC_INC(prod, JME_NBUFS);
1482 	for (i = 0; i < nsegs; i++) {
1483 		desc = &sc->jme_txring[prod];
1484 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1485 		desc->buflen =
1486 		    htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
1487 		desc->addr_hi = htole32(
1488 		    JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1489 		desc->addr_lo = htole32(
1490 		    JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1491 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1492 		    prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
1493 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1494 		sc->jme_txmbuf[prod] = NULL;
1495 		sc->jme_tx_cnt++;
1496 		JME_DESC_INC(prod, JME_NBUFS);
1497 	}
1498 
1499 	/* Update producer index. */
1500 	sc->jme_tx_prod = prod;
1501 #ifdef JMEDEBUG_TX
1502 	printf("jme_encap prod now %d\n", sc->jme_tx_prod);
1503 #endif
1504 	/*
1505 	 * Finally request interrupt and give the first descriptor
1506 	 * ownership to hardware.
1507 	 */
1508 	desc = &sc->jme_txring[headdsc];
1509 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1510 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1511 	    headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
1512 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1513 
1514 	sc->jme_txmbuf[headdsc] = m;
1515 	return (0);
1516 }
1517 
1518 static void
1519 jme_txeof(struct jme_softc *sc)
1520 {
1521 	struct ifnet *ifp;
1522 	struct jme_desc *desc;
1523 	uint32_t status;
1524 	int cons, cons0, nsegs, seg;
1525 
1526 	ifp = &sc->jme_if;
1527 
1528 #ifdef JMEDEBUG_TX
1529 	printf("jme_txeof cons %d prod %d\n",
1530 	    sc->jme_tx_cons, sc->jme_tx_prod);
1531 	printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1532 	    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1533 	    "JME_TXTRHD 0x%x\n",
1534 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1535 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1536 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1537 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1538 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1539 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1540 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1541 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1542 	for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
1543 		desc = &sc->jme_txring[cons];
1544 		printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
1545 		    desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
1546 		JME_DESC_INC(cons, JME_NBUFS);
1547 	}
1548 #endif
1549 
1550 	cons = sc->jme_tx_cons;
1551 	if (cons == sc->jme_tx_prod)
1552 		return;
1553 
1554 	/*
1555 	 * Go through our Tx list and free mbufs for those
1556 	 * frames which have been transmitted.
1557 	 */
1558 	for (; cons != sc->jme_tx_prod;) {
1559 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1560 		    cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
1561 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1562 
1563 		desc = &sc->jme_txring[cons];
1564 		status = le32toh(desc->flags);
1565 #ifdef JMEDEBUG_TX
1566 		printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
1567 		    sc->jme_txmbufm[cons]->dm_nsegs);
1568 #endif
1569 		if (status & JME_TD_OWN)
1570 			break;
1571 
1572 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
1573 			if_statinc(ifp, if_oerrors);
1574 		else {
1575 			if_statinc(ifp, if_opackets);
1576 			if ((status & JME_TD_COLLISION) != 0) {
1577 				if_statadd(ifp, if_collisions,
1578 				    le32toh(desc->buflen) &
1579 				    JME_TD_BUF_LEN_MASK);
1580 			}
1581 		}
1582 		/*
1583 		 * Only the first descriptor of multi-descriptor
1584 		 * transmission is updated so driver have to skip entire
1585 		 * chained buffers for the transmitted frame. In other
1586 		 * words, JME_TD_OWN bit is valid only at the first
1587 		 * descriptor of a multi-descriptor transmission.
1588 		 */
1589 		nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
1590 		cons0 = cons;
1591 		JME_DESC_INC(cons, JME_NBUFS);
1592 		for (seg = 1; seg < nsegs + 1; seg++) {
1593 			bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1594 			    cons * sizeof(struct jme_desc),
1595 			    sizeof(struct jme_desc),
1596 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1597 			sc->jme_txring[cons].flags = 0;
1598 			JME_DESC_INC(cons, JME_NBUFS);
1599 		}
1600 		/* Reclaim transferred mbufs. */
1601 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
1602 		    0, sc->jme_txmbufm[cons0]->dm_mapsize,
1603 		    BUS_DMASYNC_POSTWRITE);
1604 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);
1605 
1606 		KASSERT(sc->jme_txmbuf[cons0] != NULL);
1607 		m_freem(sc->jme_txmbuf[cons0]);
1608 		sc->jme_txmbuf[cons0] = NULL;
1609 		sc->jme_tx_cnt -= nsegs + 1;
1610 		KASSERT(sc->jme_tx_cnt >= 0);
1611 		sc->jme_if.if_flags &= ~IFF_OACTIVE;
1612 	}
1613 	sc->jme_tx_cons = cons;
1614 	/* Unarm watchdog timer when there are no pending descriptors in queue. */
1615 	if (sc->jme_tx_cnt == 0)
1616 		ifp->if_timer = 0;
1617 #ifdef JMEDEBUG_TX
1618 	printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
1619 #endif
1620 }
1621 
1622 static void
1623 jme_ifstart(struct ifnet *ifp)
1624 {
1625 	jme_softc_t *sc = ifp->if_softc;
1626 	struct mbuf *mb_head;
1627 	int enq, error;
1628 
1629 	/*
1630 	 * check if we can free some desc.
1631 	 * Clear TX interrupt status to reset TX coalescing counters.
1632 	 */
1633 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1634 	     JME_INTR_STATUS, INTR_TXQ_COMP);
1635 	jme_txeof(sc);
1636 
1637 	if ((sc->jme_if.if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1638 		return;
1639 	for (enq = 0;; enq++) {
1640 nexttx:
1641 		/* Grab a paquet for output */
1642 		IFQ_POLL(&ifp->if_snd, mb_head);
1643 		if (mb_head == NULL) {
1644 #ifdef JMEDEBUG_TX
1645 			printf("%s: nothing to send\n", __func__);
1646 #endif
1647 			break;
1648 		}
1649 		/* try to add this mbuf to the TX ring */
1650 		if ((error = jme_encap(sc, mb_head)) != 0) {
1651 			if (error == EFBIG) {
1652 				/* This error is fatal to the packet. */
1653 				IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1654 				m_freem(mb_head);
1655 				if_statinc(ifp, if_oerrors);
1656 				goto nexttx;
1657 			}
1658 			/* resource shortage, try again later */
1659 			ifp->if_flags |= IFF_OACTIVE;
1660 			break;
1661 		}
1662 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1663 
1664 		/* Pass packet to bpf if there is a listener */
1665 		bpf_mtap(ifp, mb_head, BPF_D_OUT);
1666 	}
1667 #ifdef JMEDEBUG_TX
1668 	printf("jme_ifstart enq %d\n", enq);
1669 #endif
1670 	if (enq) {
1671 		/*
1672 		 * Set a 5 second timer just in case we don't hear from
1673 		 * the card again.
1674 		 */
1675 		ifp->if_timer = 5;
1676 		/*
1677 		 * Reading TXCSR takes very long time under heavy load
1678 		 * so cache TXCSR value and writes the ORed value with
1679 		 * the kick command to the TXCSR. This saves one register
1680 		 * access cycle.
1681 		 */
1682 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
1683 		  sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1684 #ifdef JMEDEBUG_TX
1685 		printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1686 		    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1687 		    "JME_TXTRHD 0x%x\n",
1688 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1689 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1690 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1691 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1692 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1693 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1694 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1695 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1696 #endif
1697 	}
1698 }
1699 
1700 static void
1701 jme_ifwatchdog(struct ifnet *ifp)
1702 {
1703 	jme_softc_t *sc = ifp->if_softc;
1704 
1705 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1706 		return;
1707 	printf("%s: device timeout\n", device_xname(sc->jme_dev));
1708 	if_statinc(ifp, if_oerrors);
1709 	jme_init(ifp, 0);
1710 }
1711 
1712 static int
1713 jme_mediachange(struct ifnet *ifp)
1714 {
1715 	int error;
1716 	jme_softc_t *sc = ifp->if_softc;
1717 
1718 	if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
1719 		error = 0;
1720 	else if (error != 0) {
1721 		aprint_error_dev(sc->jme_dev, "could not set media\n");
1722 		return error;
1723 	}
1724 	return 0;
1725 }
1726 
1727 static void
1728 jme_ticks(void *v)
1729 {
1730 	jme_softc_t *sc = v;
1731 	int s = splnet();
1732 
1733 	/* Tick the MII. */
1734 	mii_tick(&sc->jme_mii);
1735 
1736 	/* every seconds */
1737 	callout_schedule(&sc->jme_tick_ch, hz);
1738 	splx(s);
1739 }
1740 
1741 static void
1742 jme_mac_config(jme_softc_t *sc)
1743 {
1744 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1745 	struct mii_data *mii = &sc->jme_mii;
1746 
1747 	ghc = 0;
1748 	rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1749 	rxmac &= ~RXMAC_FC_ENB;
1750 	txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
1751 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1752 	txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
1753 	txpause &= ~TXPFC_PAUSE_ENB;
1754 
1755 	if (mii->mii_media_active & IFM_FDX) {
1756 		ghc |= GHC_FULL_DUPLEX;
1757 		rxmac &= ~RXMAC_COLL_DET_ENB;
1758 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1759 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1760 		    TXMAC_FRAME_BURST);
1761 		/* Disable retry transmit timer/retry limit. */
1762 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1763 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
1764 		    & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1765 	} else {
1766 		rxmac |= RXMAC_COLL_DET_ENB;
1767 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1768 		/* Enable retry transmit timer/retry limit. */
1769 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1770 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)		    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1771 	}
1772 	/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1773 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1774 	case IFM_10_T:
1775 		ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100;
1776 		break;
1777 	case IFM_100_TX:
1778 		ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100;
1779 		break;
1780 	case IFM_1000_T:
1781 		ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000;
1782 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1783 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1784 		break;
1785 	default:
1786 		break;
1787 	}
1788 	if ((sc->jme_flags & JME_FLAG_GIGA) &&
1789 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
1790 		/*
1791 		 * Workaround occasional packet loss issue of JMC250 A2
1792 		 * when it runs on half-duplex media.
1793 		 */
1794 #ifdef JMEDEBUG
1795 		printf("JME250 A2 workaround\n");
1796 #endif
1797 		gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1798 		    JME_GPREG1);
1799 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1800 			gpreg &= ~GPREG1_HDPX_FIX;
1801 		else
1802 			gpreg |= GPREG1_HDPX_FIX;
1803 		bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1804 		    JME_GPREG1, gpreg);
1805 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
1806 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
1807 			/* Extend interface FIFO depth. */
1808 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1809 			    0x1B, 0x0000);
1810 		} else {
1811 			/* Select default interface FIFO depth. */
1812 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1813 			    0x1B, 0x0004);
1814 		}
1815 	}
1816 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
1817 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
1818 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
1819 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
1820 }
1821 
1822 static void
1823 jme_set_filter(jme_softc_t *sc)
1824 {
1825 	struct ethercom *ec = &sc->jme_ec;
1826 	struct ifnet *ifp = &sc->jme_if;
1827 	struct ether_multistep step;
1828 	struct ether_multi *enm;
1829 	uint32_t hash[2] = {0, 0};
1830 	int i;
1831 	uint32_t rxcfg;
1832 
1833 	rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1834 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
1835 	    RXMAC_ALLMULTI);
1836 	/* Always accept frames destined to our station address. */
1837 	rxcfg |= RXMAC_UNICAST;
1838 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1839 		rxcfg |= RXMAC_BROADCAST;
1840 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1841 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1842 			rxcfg |= RXMAC_PROMISC;
1843 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1844 			rxcfg |= RXMAC_ALLMULTI;
1845 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1846 		     JME_MAR0, 0xFFFFFFFF);
1847 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1848 		     JME_MAR1, 0xFFFFFFFF);
1849 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1850 		     JME_RXMAC, rxcfg);
1851 		return;
1852 	}
1853 	/*
1854 	 * Set up the multicast address filter by passing all multicast
1855 	 * addresses through a CRC generator, and then using the low-order
1856 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1857 	 * high order bits select the register, while the rest of the bits
1858 	 * select the bit within the register.
1859 	 */
1860 	rxcfg |= RXMAC_MULTICAST;
1861 	memset(hash, 0, sizeof(hash));
1862 
1863 	ETHER_LOCK(ec);
1864 	ETHER_FIRST_MULTI(step, ec, enm);
1865 	while (enm != NULL) {
1866 #ifdef JEMDBUG
1867 		printf("%s: addrs %s %s\n", __func__,
1868 		   ether_sprintf(enm->enm_addrlo),
1869 		   ether_sprintf(enm->enm_addrhi));
1870 #endif
1871 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
1872 			i = ether_crc32_be(enm->enm_addrlo, 6);
1873 			/* Just want the 6 least significant bits. */
1874 			i &= 0x3f;
1875 			hash[i / 32] |= 1 << (i%32);
1876 		} else {
1877 			hash[0] = hash[1] = 0xffffffff;
1878 			sc->jme_if.if_flags |= IFF_ALLMULTI;
1879 			break;
1880 		}
1881 		ETHER_NEXT_MULTI(step, enm);
1882 	}
1883 	ETHER_UNLOCK(ec);
1884 #ifdef JMEDEBUG
1885 	printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
1886 #endif
1887 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
1888 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
1889 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
1890 }
1891 
1892 #if 0
1893 static int
1894 jme_multicast_hash(uint8_t *a)
1895 {
1896 	int hash;
1897 
1898 #define DA(addr, bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
1899 #define xor8(a,b,c,d,e,f,g,h)						\
1900 	(((a != 0) + (b != 0) + (c != 0) + (d != 0) +			\
1901 	  (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
1902 
1903 	hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
1904 	    DA(a,36), DA(a,42));
1905 	hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
1906 	    DA(a,37), DA(a,43)) << 1;
1907 	hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
1908 	    DA(a,38), DA(a,44)) << 2;
1909 	hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
1910 	    DA(a,39), DA(a,45)) << 3;
1911 	hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
1912 	    DA(a,40), DA(a,46)) << 4;
1913 	hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
1914 	    DA(a,41), DA(a,47)) << 5;
1915 
1916 	return hash;
1917 }
1918 #endif
1919 
1920 static int
1921 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
1922 {
1923 	 uint32_t reg;
1924 	 int i;
1925 
1926 	 *val = 0;
1927 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1928 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1929 		      JME_SMBCSR);
1930 		  if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
1931 			   break;
1932 		  delay(10);
1933 	 }
1934 
1935 	 if (i == 0) {
1936 		  aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
1937 		  return (ETIMEDOUT);
1938 	 }
1939 
1940 	 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
1941 	 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
1942 	     JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
1943 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1944 		  delay(10);
1945 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1946 		      JME_SMBINTF);
1947 		  if ((reg & SMBINTF_CMD_TRIGGER) == 0)
1948 			   break;
1949 	 }
1950 
1951 	 if (i == 0) {
1952 		  aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
1953 		  return (ETIMEDOUT);
1954 	 }
1955 
1956 	 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
1957 	 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
1958 	 return (0);
1959 }
1960 
1961 
1962 static int
1963 jme_eeprom_macaddr(struct jme_softc *sc)
1964 {
1965 	uint8_t eaddr[ETHER_ADDR_LEN];
1966 	uint8_t fup, reg, val;
1967 	uint32_t offset;
1968 	int match;
1969 
1970 	offset = 0;
1971 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1972 	    fup != JME_EEPROM_SIG0)
1973 		return (ENOENT);
1974 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1975 	    fup != JME_EEPROM_SIG1)
1976 		return (ENOENT);
1977 	match = 0;
1978 	do {
1979 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
1980 			break;
1981 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
1982 		    == (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
1983 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
1984 				break;
1985 			if (reg >= JME_PAR0 &&
1986 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
1987 				if (jme_eeprom_read_byte(sc, offset + 2,
1988 				    &val) != 0)
1989 					break;
1990 				eaddr[reg - JME_PAR0] = val;
1991 				match++;
1992 			}
1993 		}
1994 		if (fup & JME_EEPROM_DESC_END)
1995 			break;
1996 
1997 		/* Try next eeprom descriptor. */
1998 		offset += JME_EEPROM_DESC_BYTES;
1999 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
2000 
2001 	if (match == ETHER_ADDR_LEN) {
2002 		memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN);
2003 		return (0);
2004 	}
2005 
2006 	return (ENOENT);
2007 }
2008 
2009 static int
2010 jme_reg_macaddr(struct jme_softc *sc)
2011 {
2012 	uint32_t par0, par1;
2013 
2014 	par0 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0);
2015 	par1 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1);
2016 	par1 &= 0xffff;
2017 	if ((par0 == 0 && par1 == 0) ||
2018 	    (par0 == 0xffffffff && par1 == 0xffff)) {
2019 		return (ENOENT);
2020 	} else {
2021 		sc->jme_enaddr[0] = (par0 >> 0) & 0xff;
2022 		sc->jme_enaddr[1] = (par0 >> 8) & 0xff;
2023 		sc->jme_enaddr[2] = (par0 >> 16) & 0xff;
2024 		sc->jme_enaddr[3] = (par0 >> 24) & 0xff;
2025 		sc->jme_enaddr[4] = (par1 >> 0) & 0xff;
2026 		sc->jme_enaddr[5] = (par1 >> 8) & 0xff;
2027 	}
2028 	return (0);
2029 }
2030 
2031 /*
2032  * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
2033  * set up in jme_pci_attach()
2034  */
2035 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
2036 {
2037 	int rc;
2038 	const struct sysctlnode *node;
2039 
2040 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2041 	    0, CTLTYPE_NODE, "jme",
2042 	    SYSCTL_DESCR("jme interface controls"),
2043 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2044 		goto err;
2045 	}
2046 
2047 	jme_root_num = node->sysctl_num;
2048 	return;
2049 
2050 err:
2051 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2052 }
2053 
2054 static int
2055 jme_sysctl_intrxto(SYSCTLFN_ARGS)
2056 {
2057 	int error, t;
2058 	struct sysctlnode node;
2059 	struct jme_softc *sc;
2060 	uint32_t reg;
2061 
2062 	node = *rnode;
2063 	sc = node.sysctl_data;
2064 	t = sc->jme_intrxto;
2065 	node.sysctl_data = &t;
2066 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2067 	if (error || newp == NULL)
2068 		return error;
2069 
2070 	if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
2071 		return EINVAL;
2072 
2073 	/*
2074 	 * update the softc with sysctl-changed value, and mark
2075 	 * for hardware update
2076 	 */
2077 	sc->jme_intrxto = t;
2078 	/* Configure Rx queue 0 packet completion coalescing. */
2079 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2080 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2081 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2082 	return 0;
2083 }
2084 
2085 static int
2086 jme_sysctl_intrxct(SYSCTLFN_ARGS)
2087 {
2088 	int error, t;
2089 	struct sysctlnode node;
2090 	struct jme_softc *sc;
2091 	uint32_t reg;
2092 
2093 	node = *rnode;
2094 	sc = node.sysctl_data;
2095 	t = sc->jme_intrxct;
2096 	node.sysctl_data = &t;
2097 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2098 	if (error || newp == NULL)
2099 		return error;
2100 
2101 	if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
2102 		return EINVAL;
2103 
2104 	/*
2105 	 * update the softc with sysctl-changed value, and mark
2106 	 * for hardware update
2107 	 */
2108 	sc->jme_intrxct = t;
2109 	/* Configure Rx queue 0 packet completion coalescing. */
2110 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2111 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2112 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2113 	return 0;
2114 }
2115 
2116 static int
2117 jme_sysctl_inttxto(SYSCTLFN_ARGS)
2118 {
2119 	int error, t;
2120 	struct sysctlnode node;
2121 	struct jme_softc *sc;
2122 	uint32_t reg;
2123 
2124 	node = *rnode;
2125 	sc = node.sysctl_data;
2126 	t = sc->jme_inttxto;
2127 	node.sysctl_data = &t;
2128 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2129 	if (error || newp == NULL)
2130 		return error;
2131 
2132 	if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
2133 		return EINVAL;
2134 
2135 	/*
2136 	 * update the softc with sysctl-changed value, and mark
2137 	 * for hardware update
2138 	 */
2139 	sc->jme_inttxto = t;
2140 	/* Configure Tx queue 0 packet completion coalescing. */
2141 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2142 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2143 	reg |= PCCTX_COAL_TXQ0;
2144 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2145 	return 0;
2146 }
2147 
2148 static int
2149 jme_sysctl_inttxct(SYSCTLFN_ARGS)
2150 {
2151 	int error, t;
2152 	struct sysctlnode node;
2153 	struct jme_softc *sc;
2154 	uint32_t reg;
2155 
2156 	node = *rnode;
2157 	sc = node.sysctl_data;
2158 	t = sc->jme_inttxct;
2159 	node.sysctl_data = &t;
2160 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2161 	if (error || newp == NULL)
2162 		return error;
2163 
2164 	if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
2165 		return EINVAL;
2166 
2167 	/*
2168 	 * update the softc with sysctl-changed value, and mark
2169 	 * for hardware update
2170 	 */
2171 	sc->jme_inttxct = t;
2172 	/* Configure Tx queue 0 packet completion coalescing. */
2173 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2174 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2175 	reg |= PCCTX_COAL_TXQ0;
2176 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2177 	return 0;
2178 }
2179