1 /* $NetBSD: if_jme.c,v 1.35 2018/06/26 06:48:01 msaitoh Exp $ */ 2 3 /* 4 * Copyright (c) 2008 Manuel Bouyer. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /*- 28 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 29 * All rights reserved. 30 * 31 * Redistribution and use in source and binary forms, with or without 32 * modification, are permitted provided that the following conditions 33 * are met: 34 * 1. Redistributions of source code must retain the above copyright 35 * notice unmodified, this list of conditions, and the following 36 * disclaimer. 37 * 2. Redistributions in binary form must reproduce the above copyright 38 * notice, this list of conditions and the following disclaimer in the 39 * documentation and/or other materials provided with the distribution. 40 * 41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 */ 53 54 55 /* 56 * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast) 57 * Ethernet Controllers. 58 */ 59 60 #include <sys/cdefs.h> 61 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.35 2018/06/26 06:48:01 msaitoh Exp $"); 62 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/mbuf.h> 67 #include <sys/protosw.h> 68 #include <sys/socket.h> 69 #include <sys/ioctl.h> 70 #include <sys/errno.h> 71 #include <sys/malloc.h> 72 #include <sys/kernel.h> 73 #include <sys/proc.h> /* only for declaration of wakeup() used by vm.h */ 74 #include <sys/device.h> 75 #include <sys/syslog.h> 76 #include <sys/sysctl.h> 77 78 #include <net/if.h> 79 #if defined(SIOCSIFMEDIA) 80 #include <net/if_media.h> 81 #endif 82 #include <net/if_types.h> 83 #include <net/if_dl.h> 84 #include <net/route.h> 85 #include <net/netisr.h> 86 #include <net/bpf.h> 87 88 #include <sys/rndsource.h> 89 90 #include <netinet/in.h> 91 #include <netinet/in_systm.h> 92 #include <netinet/ip.h> 93 94 #ifdef INET 95 #include <netinet/in_var.h> 96 #endif 97 98 #include <netinet/tcp.h> 99 100 #include <net/if_ether.h> 101 #if defined(INET) 102 #include <netinet/if_inarp.h> 103 #endif 104 105 #include <sys/bus.h> 106 #include <sys/intr.h> 107 108 #include <dev/pci/pcireg.h> 109 #include <dev/pci/pcivar.h> 110 #include <dev/pci/pcidevs.h> 111 #include <dev/pci/if_jmereg.h> 112 113 #include <dev/mii/mii.h> 114 #include <dev/mii/miivar.h> 115 116 struct jme_product_desc { 117 u_int32_t jme_product; 118 const char *jme_desc; 119 }; 120 121 /* number of entries in transmit and receive rings */ 122 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc)) 123 124 #define JME_DESC_INC(x, y) ((x) = ((x) + 1) % (y)) 125 126 /* Water mark to kick reclaiming Tx buffers. */ 127 #define JME_TX_DESC_HIWAT (JME_NBUFS - (((JME_NBUFS) * 3) / 10)) 128 129 130 struct jme_softc { 131 device_t jme_dev; /* base device */ 132 bus_space_tag_t jme_bt_mac; 133 bus_space_handle_t jme_bh_mac; /* Mac registers */ 134 bus_space_tag_t jme_bt_phy; 135 bus_space_handle_t jme_bh_phy; /* PHY registers */ 136 bus_space_tag_t jme_bt_misc; 137 bus_space_handle_t jme_bh_misc; /* Misc registers */ 138 bus_dma_tag_t jme_dmatag; 139 bus_dma_segment_t jme_txseg; /* transmit ring seg */ 140 bus_dmamap_t jme_txmap; /* transmit ring DMA map */ 141 struct jme_desc* jme_txring; /* transmit ring */ 142 bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */ 143 struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */ 144 int jme_tx_cons; /* transmit ring consumer */ 145 int jme_tx_prod; /* transmit ring producer */ 146 int jme_tx_cnt; /* transmit ring active count */ 147 bus_dma_segment_t jme_rxseg; /* receive ring seg */ 148 bus_dmamap_t jme_rxmap; /* receive ring DMA map */ 149 struct jme_desc* jme_rxring; /* receive ring */ 150 bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */ 151 struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */ 152 int jme_rx_cons; /* receive ring consumer */ 153 int jme_rx_prod; /* receive ring producer */ 154 void* jme_ih; /* our interrupt */ 155 struct ethercom jme_ec; 156 struct callout jme_tick_ch; /* tick callout */ 157 u_int8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */ 158 u_int8_t jme_phyaddr; /* address of integrated phy */ 159 u_int8_t jme_chip_rev; /* chip revision */ 160 u_int8_t jme_rev; /* PCI revision */ 161 mii_data_t jme_mii; /* mii bus */ 162 u_int32_t jme_flags; /* device features, see below */ 163 uint32_t jme_txcsr; /* TX config register */ 164 uint32_t jme_rxcsr; /* RX config register */ 165 krndsource_t rnd_source; 166 /* interrupt coalition parameters */ 167 struct sysctllog *jme_clog; 168 int jme_intrxto; /* interrupt RX timeout */ 169 int jme_intrxct; /* interrupt RX packets counter */ 170 int jme_inttxto; /* interrupt TX timeout */ 171 int jme_inttxct; /* interrupt TX packets counter */ 172 }; 173 174 #define JME_FLAG_FPGA 0x0001 /* FPGA version */ 175 #define JME_FLAG_GIGA 0x0002 /* giga Ethernet capable */ 176 177 178 #define jme_if jme_ec.ec_if 179 #define jme_bpf jme_if.if_bpf 180 181 typedef struct jme_softc jme_softc_t; 182 typedef u_long ioctl_cmd_t; 183 184 static int jme_pci_match(device_t, cfdata_t, void *); 185 static void jme_pci_attach(device_t, device_t, void *); 186 static void jme_intr_rx(jme_softc_t *); 187 static int jme_intr(void *); 188 189 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *); 190 static int jme_mediachange(struct ifnet *); 191 static void jme_ifwatchdog(struct ifnet *); 192 static bool jme_shutdown(device_t, int); 193 194 static void jme_txeof(struct jme_softc *); 195 static void jme_ifstart(struct ifnet *); 196 static void jme_reset(jme_softc_t *); 197 static int jme_ifinit(struct ifnet *); 198 static int jme_init(struct ifnet *, int); 199 static void jme_stop(struct ifnet *, int); 200 // static void jme_restart(void *); 201 static void jme_ticks(void *); 202 static void jme_mac_config(jme_softc_t *); 203 static void jme_set_filter(jme_softc_t *); 204 205 int jme_mii_read(device_t, int, int); 206 void jme_mii_write(device_t, int, int, int); 207 void jme_statchg(struct ifnet *); 208 209 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *); 210 static int jme_eeprom_macaddr(struct jme_softc *); 211 static int jme_reg_macaddr(struct jme_softc *); 212 213 #define JME_TIMEOUT 1000 214 #define JME_PHY_TIMEOUT 1000 215 #define JME_EEPROM_TIMEOUT 1000 216 217 static int jme_sysctl_intrxto(SYSCTLFN_PROTO); 218 static int jme_sysctl_intrxct(SYSCTLFN_PROTO); 219 static int jme_sysctl_inttxto(SYSCTLFN_PROTO); 220 static int jme_sysctl_inttxct(SYSCTLFN_PROTO); 221 static int jme_root_num; 222 223 224 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t), 225 jme_pci_match, jme_pci_attach, NULL, NULL); 226 227 static const struct jme_product_desc jme_products[] = { 228 { PCI_PRODUCT_JMICRON_JMC250, 229 "JMicron JMC250 Gigabit Ethernet Controller" }, 230 { PCI_PRODUCT_JMICRON_JMC260, 231 "JMicron JMC260 Gigabit Ethernet Controller" }, 232 { 0, NULL }, 233 }; 234 235 static const struct jme_product_desc *jme_lookup_product(uint32_t); 236 237 static const struct jme_product_desc * 238 jme_lookup_product(uint32_t id) 239 { 240 const struct jme_product_desc *jp; 241 242 for (jp = jme_products ; jp->jme_desc != NULL; jp++) 243 if (PCI_PRODUCT(id) == jp->jme_product) 244 return jp; 245 246 return NULL; 247 } 248 249 static int 250 jme_pci_match(device_t parent, cfdata_t cf, void *aux) 251 { 252 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 253 254 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_JMICRON) 255 return 0; 256 257 if (jme_lookup_product(pa->pa_id) != NULL) 258 return 1; 259 260 return 0; 261 } 262 263 static void 264 jme_pci_attach(device_t parent, device_t self, void *aux) 265 { 266 jme_softc_t *sc = device_private(self); 267 struct pci_attach_args * const pa = (struct pci_attach_args *)aux; 268 const struct jme_product_desc *jp; 269 struct ifnet * const ifp = &sc->jme_if; 270 bus_space_tag_t iot1, iot2, memt; 271 bus_space_handle_t ioh1, ioh2, memh; 272 bus_size_t size, size2; 273 pci_intr_handle_t intrhandle; 274 const char *intrstr; 275 pcireg_t csr; 276 int nsegs, i; 277 const struct sysctlnode *node; 278 int jme_nodenum; 279 char intrbuf[PCI_INTRSTR_LEN]; 280 281 sc->jme_dev = self; 282 aprint_normal("\n"); 283 callout_init(&sc->jme_tick_ch, 0); 284 285 jp = jme_lookup_product(pa->pa_id); 286 if (jp == NULL) 287 panic("jme_pci_attach: impossible"); 288 289 if (jp->jme_product == PCI_PRODUCT_JMICRON_JMC250) 290 sc->jme_flags = JME_FLAG_GIGA; 291 292 /* 293 * Map the card space. Try Mem first. 294 */ 295 if (pci_mapreg_map(pa, JME_PCI_BAR0, 296 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 297 0, &memt, &memh, NULL, &size) == 0) { 298 sc->jme_bt_mac = memt; 299 sc->jme_bh_mac = memh; 300 sc->jme_bt_phy = memt; 301 if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF, 302 JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) { 303 aprint_error_dev(self, "can't subregion PHY space\n"); 304 bus_space_unmap(memt, memh, size); 305 return; 306 } 307 sc->jme_bt_misc = memt; 308 if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF, 309 JME_MISC_SIZE, &sc->jme_bh_misc) != 0) { 310 aprint_error_dev(self, "can't subregion misc space\n"); 311 bus_space_unmap(memt, memh, size); 312 return; 313 } 314 } else { 315 if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO, 316 0, &iot1, &ioh1, NULL, &size) != 0) { 317 aprint_error_dev(self, "can't map I/O space 1\n"); 318 return; 319 } 320 sc->jme_bt_mac = iot1; 321 sc->jme_bh_mac = ioh1; 322 if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO, 323 0, &iot2, &ioh2, NULL, &size2) != 0) { 324 aprint_error_dev(self, "can't map I/O space 2\n"); 325 bus_space_unmap(iot1, ioh1, size); 326 return; 327 } 328 sc->jme_bt_phy = iot2; 329 sc->jme_bh_phy = ioh2; 330 sc->jme_bt_misc = iot2; 331 if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF, 332 JME_MISC_SIZE, &sc->jme_bh_misc) != 0) { 333 aprint_error_dev(self, "can't subregion misc space\n"); 334 bus_space_unmap(iot1, ioh1, size); 335 bus_space_unmap(iot2, ioh2, size2); 336 return; 337 } 338 } 339 340 if (pci_dma64_available(pa)) 341 sc->jme_dmatag = pa->pa_dmat64; 342 else 343 sc->jme_dmatag = pa->pa_dmat; 344 345 /* Enable the device. */ 346 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 347 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 348 csr | PCI_COMMAND_MASTER_ENABLE); 349 350 aprint_normal_dev(self, "%s\n", jp->jme_desc); 351 352 sc->jme_rev = PCI_REVISION(pa->pa_class); 353 354 csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE); 355 if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) != 356 CHIPMODE_NOT_FPGA) 357 sc->jme_flags |= JME_FLAG_FPGA; 358 sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT; 359 aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: " 360 "0x%x", sc->jme_rev, sc->jme_chip_rev); 361 if (sc->jme_flags & JME_FLAG_FPGA) 362 aprint_verbose(" FPGA revision: 0x%x", 363 (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT); 364 aprint_verbose("\n"); 365 366 /* 367 * Save PHY address. 368 * Integrated JR0211 has fixed PHY address whereas FPGA version 369 * requires PHY probing to get correct PHY address. 370 */ 371 if ((sc->jme_flags & JME_FLAG_FPGA) == 0) { 372 sc->jme_phyaddr = 373 bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, 374 JME_GPREG0) & GPREG0_PHY_ADDR_MASK; 375 } else 376 sc->jme_phyaddr = 0; 377 378 379 jme_reset(sc); 380 381 /* read mac addr */ 382 if (jme_eeprom_macaddr(sc) && jme_reg_macaddr(sc)) { 383 aprint_error_dev(self, "error reading Ethernet address\n"); 384 /* return; */ 385 } 386 aprint_normal_dev(self, "Ethernet address %s\n", 387 ether_sprintf(sc->jme_enaddr)); 388 389 /* Map and establish interrupts */ 390 if (pci_intr_map(pa, &intrhandle)) { 391 aprint_error_dev(self, "couldn't map interrupt\n"); 392 return; 393 } 394 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf)); 395 sc->jme_if.if_softc = sc; 396 sc->jme_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET, 397 jme_intr, sc); 398 if (sc->jme_ih == NULL) { 399 aprint_error_dev(self, "couldn't establish interrupt"); 400 if (intrstr != NULL) 401 aprint_error(" at %s", intrstr); 402 aprint_error("\n"); 403 return; 404 } 405 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 406 407 /* allocate and map DMA-safe memory for transmit ring */ 408 if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE, 409 &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 || 410 bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg, 411 nsegs, PAGE_SIZE, (void **)&sc->jme_txring, 412 BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 || 413 bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0, 414 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 || 415 bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring, 416 PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) { 417 aprint_error_dev(self, "can't allocate DMA memory TX ring\n"); 418 return; 419 } 420 /* allocate and map DMA-safe memory for receive ring */ 421 if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE, 422 &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 || 423 bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg, 424 nsegs, PAGE_SIZE, (void **)&sc->jme_rxring, 425 BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 || 426 bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0, 427 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 || 428 bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring, 429 PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) { 430 aprint_error_dev(self, "can't allocate DMA memory RX ring\n"); 431 return; 432 } 433 for (i = 0; i < JME_NBUFS; i++) { 434 sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL; 435 if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN, 436 JME_NBUFS, JME_MAX_TX_LEN, 0, 437 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 438 &sc->jme_txmbufm[i]) != 0) { 439 aprint_error_dev(self, "can't allocate DMA TX map\n"); 440 return; 441 } 442 if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN, 443 1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 444 &sc->jme_rxmbufm[i]) != 0) { 445 aprint_error_dev(self, "can't allocate DMA RX map\n"); 446 return; 447 } 448 } 449 /* 450 * Initialize our media structures and probe the MII. 451 * 452 * Note that we don't care about the media instance. We 453 * are expecting to have multiple PHYs on the 10/100 cards, 454 * and on those cards we exclude the internal PHY from providing 455 * 10baseT. By ignoring the instance, it allows us to not have 456 * to specify it on the command line when switching media. 457 */ 458 sc->jme_mii.mii_ifp = ifp; 459 sc->jme_mii.mii_readreg = jme_mii_read; 460 sc->jme_mii.mii_writereg = jme_mii_write; 461 sc->jme_mii.mii_statchg = jme_statchg; 462 sc->jme_ec.ec_mii = &sc->jme_mii; 463 ifmedia_init(&sc->jme_mii.mii_media, IFM_IMASK, jme_mediachange, 464 ether_mediastatus); 465 mii_attach(self, &sc->jme_mii, 0xffffffff, MII_PHY_ANY, 466 MII_OFFSET_ANY, 0); 467 if (LIST_FIRST(&sc->jme_mii.mii_phys) == NULL) { 468 ifmedia_add(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 469 ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE); 470 } else 471 ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_AUTO); 472 473 /* 474 * We can support 802.1Q VLAN-sized frames. 475 */ 476 sc->jme_ec.ec_capabilities |= 477 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; 478 479 if (sc->jme_flags & JME_FLAG_GIGA) 480 sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU; 481 482 483 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 484 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST; 485 ifp->if_ioctl = jme_ifioctl; 486 ifp->if_start = jme_ifstart; 487 ifp->if_watchdog = jme_ifwatchdog; 488 ifp->if_init = jme_ifinit; 489 ifp->if_stop = jme_stop; 490 ifp->if_timer = 0; 491 ifp->if_capabilities |= 492 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 493 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 494 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | 495 IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */ 496 IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */ 497 IFCAP_TSOv4 | IFCAP_TSOv6; 498 IFQ_SET_READY(&ifp->if_snd); 499 if_attach(ifp); 500 ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr); 501 502 /* 503 * Add shutdown hook so that DMA is disabled prior to reboot. 504 */ 505 if (pmf_device_register1(self, NULL, NULL, jme_shutdown)) 506 pmf_class_network_register(self, ifp); 507 else 508 aprint_error_dev(self, "couldn't establish power handler\n"); 509 510 rnd_attach_source(&sc->rnd_source, device_xname(self), 511 RND_TYPE_NET, RND_FLAG_DEFAULT); 512 513 sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT; 514 sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT; 515 sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT; 516 sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT; 517 if (sysctl_createv(&sc->jme_clog, 0, NULL, &node, 518 0, CTLTYPE_NODE, device_xname(sc->jme_dev), 519 SYSCTL_DESCR("jme per-controller controls"), 520 NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE, 521 CTL_EOL) != 0) { 522 aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n"); 523 return; 524 } 525 jme_nodenum = node->sysctl_num; 526 527 /* interrupt moderation sysctls */ 528 if (sysctl_createv(&sc->jme_clog, 0, NULL, &node, 529 CTLFLAG_READWRITE, 530 CTLTYPE_INT, "int_rxto", 531 SYSCTL_DESCR("jme RX interrupt moderation timer"), 532 jme_sysctl_intrxto, 0, (void *)sc, 533 0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE, 534 CTL_EOL) != 0) { 535 aprint_normal_dev(sc->jme_dev, 536 "couldn't create int_rxto sysctl node\n"); 537 } 538 if (sysctl_createv(&sc->jme_clog, 0, NULL, &node, 539 CTLFLAG_READWRITE, 540 CTLTYPE_INT, "int_rxct", 541 SYSCTL_DESCR("jme RX interrupt moderation packet counter"), 542 jme_sysctl_intrxct, 0, (void *)sc, 543 0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE, 544 CTL_EOL) != 0) { 545 aprint_normal_dev(sc->jme_dev, 546 "couldn't create int_rxct sysctl node\n"); 547 } 548 if (sysctl_createv(&sc->jme_clog, 0, NULL, &node, 549 CTLFLAG_READWRITE, 550 CTLTYPE_INT, "int_txto", 551 SYSCTL_DESCR("jme TX interrupt moderation timer"), 552 jme_sysctl_inttxto, 0, (void *)sc, 553 0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE, 554 CTL_EOL) != 0) { 555 aprint_normal_dev(sc->jme_dev, 556 "couldn't create int_txto sysctl node\n"); 557 } 558 if (sysctl_createv(&sc->jme_clog, 0, NULL, &node, 559 CTLFLAG_READWRITE, 560 CTLTYPE_INT, "int_txct", 561 SYSCTL_DESCR("jme TX interrupt moderation packet counter"), 562 jme_sysctl_inttxct, 0, (void *)sc, 563 0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE, 564 CTL_EOL) != 0) { 565 aprint_normal_dev(sc->jme_dev, 566 "couldn't create int_txct sysctl node\n"); 567 } 568 } 569 570 static void 571 jme_stop_rx(jme_softc_t *sc) 572 { 573 uint32_t reg; 574 int i; 575 576 reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR); 577 if ((reg & RXCSR_RX_ENB) == 0) 578 return; 579 reg &= ~RXCSR_RX_ENB; 580 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg); 581 for (i = JME_TIMEOUT / 10; i > 0; i--) { 582 DELAY(10); 583 if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, 584 JME_RXCSR) & RXCSR_RX_ENB) == 0) 585 break; 586 } 587 if (i == 0) 588 aprint_error_dev(sc->jme_dev, "stopping recevier timeout!\n"); 589 590 } 591 592 static void 593 jme_stop_tx(jme_softc_t *sc) 594 { 595 uint32_t reg; 596 int i; 597 598 reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR); 599 if ((reg & TXCSR_TX_ENB) == 0) 600 return; 601 reg &= ~TXCSR_TX_ENB; 602 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg); 603 for (i = JME_TIMEOUT / 10; i > 0; i--) { 604 DELAY(10); 605 if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, 606 JME_TXCSR) & TXCSR_TX_ENB) == 0) 607 break; 608 } 609 if (i == 0) 610 aprint_error_dev(sc->jme_dev, 611 "stopping transmitter timeout!\n"); 612 } 613 614 static void 615 jme_reset(jme_softc_t *sc) 616 { 617 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET); 618 DELAY(10); 619 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0); 620 } 621 622 static bool 623 jme_shutdown(device_t self, int howto) 624 { 625 jme_softc_t *sc; 626 struct ifnet *ifp; 627 628 sc = device_private(self); 629 ifp = &sc->jme_if; 630 jme_stop(ifp, 1); 631 632 return true; 633 } 634 635 static void 636 jme_stop(struct ifnet *ifp, int disable) 637 { 638 jme_softc_t *sc = ifp->if_softc; 639 int i; 640 /* Stop receiver, transmitter. */ 641 jme_stop_rx(sc); 642 jme_stop_tx(sc); 643 /* free receive mbufs */ 644 for (i = 0; i < JME_NBUFS; i++) { 645 if (sc->jme_rxmbuf[i]) { 646 bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]); 647 m_freem(sc->jme_rxmbuf[i]); 648 } 649 sc->jme_rxmbuf[i] = NULL; 650 } 651 /* process completed transmits */ 652 jme_txeof(sc); 653 /* free abort pending transmits */ 654 for (i = 0; i < JME_NBUFS; i++) { 655 if (sc->jme_txmbuf[i]) { 656 bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]); 657 m_freem(sc->jme_txmbuf[i]); 658 sc->jme_txmbuf[i] = NULL; 659 } 660 } 661 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 662 ifp->if_timer = 0; 663 } 664 665 #if 0 666 static void 667 jme_restart(void *v) 668 { 669 670 jme_init(v); 671 } 672 #endif 673 674 static int 675 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m) 676 { 677 int error; 678 bus_dmamap_t map; 679 int i = sc->jme_rx_prod; 680 681 if (sc->jme_rxmbuf[i] != NULL) { 682 aprint_error_dev(sc->jme_dev, 683 "mbuf already here: rxprod %d rxcons %d\n", 684 sc->jme_rx_prod, sc->jme_rx_cons); 685 if (m) 686 m_freem(m); 687 return EINVAL; 688 } 689 690 if (m == NULL) { 691 sc->jme_rxmbuf[i] = NULL; 692 MGETHDR(m, M_DONTWAIT, MT_DATA); 693 if (m == NULL) 694 return (ENOBUFS); 695 MCLGET(m, M_DONTWAIT); 696 if ((m->m_flags & M_EXT) == 0) { 697 m_freem(m); 698 return (ENOBUFS); 699 } 700 } 701 map = sc->jme_rxmbufm[i]; 702 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 703 KASSERT(m->m_len == MCLBYTES); 704 705 error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m, 706 BUS_DMA_READ|BUS_DMA_NOWAIT); 707 if (error) { 708 sc->jme_rxmbuf[i] = NULL; 709 aprint_error_dev(sc->jme_dev, 710 "unable to load rx DMA map %d, error = %d\n", 711 i, error); 712 m_freem(m); 713 return (error); 714 } 715 bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize, 716 BUS_DMASYNC_PREREAD); 717 718 sc->jme_rxmbuf[i] = m; 719 720 sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len); 721 sc->jme_rxring[i].addr_lo = 722 htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr)); 723 sc->jme_rxring[i].addr_hi = 724 htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr)); 725 sc->jme_rxring[i].flags = 726 htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT); 727 bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 728 i * sizeof(struct jme_desc), sizeof(struct jme_desc), 729 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 730 JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS); 731 return (0); 732 } 733 734 static int 735 jme_ifinit(struct ifnet *ifp) 736 { 737 return jme_init(ifp, 1); 738 } 739 740 static int 741 jme_init(struct ifnet *ifp, int do_ifinit) 742 { 743 jme_softc_t *sc = ifp->if_softc; 744 int i, s; 745 uint8_t eaddr[ETHER_ADDR_LEN]; 746 uint32_t reg; 747 748 s = splnet(); 749 /* cancel any pending IO */ 750 jme_stop(ifp, 1); 751 jme_reset(sc); 752 if ((sc->jme_if.if_flags & IFF_UP) == 0) { 753 splx(s); 754 return 0; 755 } 756 /* allocate receive ring */ 757 sc->jme_rx_prod = 0; 758 for (i = 0; i < JME_NBUFS; i++) { 759 if (jme_add_rxbuf(sc, NULL) < 0) { 760 aprint_error_dev(sc->jme_dev, 761 "can't allocate rx mbuf\n"); 762 for (i--; i >= 0; i--) { 763 bus_dmamap_unload(sc->jme_dmatag, 764 sc->jme_rxmbufm[i]); 765 m_freem(sc->jme_rxmbuf[i]); 766 sc->jme_rxmbuf[i] = NULL; 767 } 768 splx(s); 769 return ENOMEM; 770 } 771 } 772 /* init TX ring */ 773 memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc)); 774 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap, 775 0, JME_NBUFS * sizeof(struct jme_desc), 776 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 777 for (i = 0; i < JME_NBUFS; i++) 778 sc->jme_txmbuf[i] = NULL; 779 sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0; 780 781 /* Reprogram the station address. */ 782 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN); 783 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0, 784 eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]); 785 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 786 JME_PAR1, eaddr[5] << 8 | eaddr[4]); 787 788 /* 789 * Configure Tx queue. 790 * Tx priority queue weight value : 0 791 * Tx FIFO threshold for processing next packet : 16QW 792 * Maximum Tx DMA length : 512 793 * Allow Tx DMA burst. 794 */ 795 sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0); 796 sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN); 797 sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW; 798 sc->jme_txcsr |= TXCSR_DMA_SIZE_512; 799 sc->jme_txcsr |= TXCSR_DMA_BURST; 800 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 801 JME_TXCSR, sc->jme_txcsr); 802 803 /* Set Tx descriptor counter. */ 804 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 805 JME_TXQDC, JME_NBUFS); 806 807 /* Set Tx ring address to the hardware. */ 808 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI, 809 JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr)); 810 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO, 811 JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr)); 812 813 /* Configure TxMAC parameters. */ 814 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, 815 TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB | 816 TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB); 817 818 /* 819 * Configure Rx queue. 820 * FIFO full threshold for transmitting Tx pause packet : 128T 821 * FIFO threshold for processing next packet : 128QW 822 * Rx queue 0 select 823 * Max Rx DMA length : 128 824 * Rx descriptor retry : 32 825 * Rx descriptor retry time gap : 256ns 826 * Don't receive runt/bad frame. 827 */ 828 sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T; 829 /* 830 * Since Rx FIFO size is 4K bytes, receiving frames larger 831 * than 4K bytes will suffer from Rx FIFO overruns. So 832 * decrease FIFO threshold to reduce the FIFO overruns for 833 * frames larger than 4000 bytes. 834 * For best performance of standard MTU sized frames use 835 * maximum allowable FIFO threshold, 128QW. 836 */ 837 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 838 ETHER_CRC_LEN) > JME_RX_FIFO_SIZE) 839 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW; 840 else 841 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW; 842 sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0); 843 sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT); 844 sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK; 845 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 846 JME_RXCSR, sc->jme_rxcsr); 847 848 /* Set Rx descriptor counter. */ 849 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 850 JME_RXQDC, JME_NBUFS); 851 852 /* Set Rx ring address to the hardware. */ 853 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI, 854 JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr)); 855 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO, 856 JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr)); 857 858 /* Clear receive filter. */ 859 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0); 860 /* Set up the receive filter. */ 861 jme_set_filter(sc); 862 863 /* 864 * Disable all WOL bits as WOL can interfere normal Rx 865 * operation. Also clear WOL detection status bits. 866 */ 867 reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS); 868 reg &= ~PMCS_WOL_ENB_MASK; 869 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg); 870 871 reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC); 872 /* 873 * Pad 10bytes right before received frame. This will greatly 874 * help Rx performance on strict-alignment architectures as 875 * it does not need to copy the frame to align the payload. 876 */ 877 reg |= RXMAC_PAD_10BYTES; 878 if ((ifp->if_capenable & 879 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx| 880 IFCAP_CSUM_TCPv6_Rx|IFCAP_CSUM_UDPv6_Rx)) != 0) 881 reg |= RXMAC_CSUM_ENB; 882 reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */ 883 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg); 884 885 /* Configure general purpose reg0 */ 886 reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0); 887 reg &= ~GPREG0_PCC_UNIT_MASK; 888 /* Set PCC timer resolution to micro-seconds unit. */ 889 reg |= GPREG0_PCC_UNIT_US; 890 /* 891 * Disable all shadow register posting as we have to read 892 * JME_INTR_STATUS register in jme_int_task. Also it seems 893 * that it's hard to synchronize interrupt status between 894 * hardware and software with shadow posting due to 895 * requirements of bus_dmamap_sync(9). 896 */ 897 reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS | 898 GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS | 899 GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS | 900 GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS; 901 /* Disable posting of DW0. */ 902 reg &= ~GPREG0_POST_DW0_ENB; 903 /* Clear PME message. */ 904 reg &= ~GPREG0_PME_ENB; 905 /* Set PHY address. */ 906 reg &= ~GPREG0_PHY_ADDR_MASK; 907 reg |= sc->jme_phyaddr; 908 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg); 909 910 /* Configure Tx queue 0 packet completion coalescing. */ 911 reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK; 912 reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK; 913 reg |= PCCTX_COAL_TXQ0; 914 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg); 915 916 /* Configure Rx queue 0 packet completion coalescing. */ 917 reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK; 918 reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK; 919 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg); 920 921 /* Disable Timers */ 922 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0); 923 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0); 924 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0); 925 926 /* Configure retry transmit period, retry limit value. */ 927 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD, 928 ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) & 929 TXTRHD_RT_PERIOD_MASK) | 930 ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) & 931 TXTRHD_RT_LIMIT_SHIFT)); 932 933 /* Disable RSS. */ 934 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 935 JME_RSSC, RSSC_DIS_RSS); 936 937 /* Initialize the interrupt mask. */ 938 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 939 JME_INTR_MASK_SET, JME_INTRS_ENABLE); 940 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 941 JME_INTR_STATUS, 0xFFFFFFFF); 942 943 /* set media, if not already handling a media change */ 944 if (do_ifinit) { 945 int error; 946 if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO) 947 error = 0; 948 else if (error != 0) { 949 aprint_error_dev(sc->jme_dev, "could not set media\n"); 950 splx(s); 951 return error; 952 } 953 } 954 955 /* Program MAC with resolved speed/duplex/flow-control. */ 956 jme_mac_config(sc); 957 958 /* Start receiver/transmitter. */ 959 sc->jme_rx_cons = 0; 960 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, 961 sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START); 962 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, 963 sc->jme_txcsr | TXCSR_TX_ENB); 964 965 /* start ticks calls */ 966 callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc); 967 sc->jme_if.if_flags |= IFF_RUNNING; 968 sc->jme_if.if_flags &= ~IFF_OACTIVE; 969 splx(s); 970 return 0; 971 } 972 973 974 int 975 jme_mii_read(device_t self, int phy, int reg) 976 { 977 struct jme_softc *sc = device_private(self); 978 int val, i; 979 980 /* For FPGA version, PHY address 0 should be ignored. */ 981 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) { 982 if (phy == 0) 983 return (0); 984 } else { 985 if (sc->jme_phyaddr != phy) 986 return (0); 987 } 988 989 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI, 990 SMI_OP_READ | SMI_OP_EXECUTE | 991 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 992 for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) { 993 delay(10); 994 if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, 995 JME_SMI)) & SMI_OP_EXECUTE) == 0) 996 break; 997 } 998 999 if (i == 0) { 1000 aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg); 1001 return (0); 1002 } 1003 1004 return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT); 1005 } 1006 1007 void 1008 jme_mii_write(device_t self, int phy, int reg, int val) 1009 { 1010 struct jme_softc *sc = device_private(self); 1011 int i; 1012 1013 /* For FPGA version, PHY address 0 should be ignored. */ 1014 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) { 1015 if (phy == 0) 1016 return; 1017 } else { 1018 if (sc->jme_phyaddr != phy) 1019 return; 1020 } 1021 1022 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI, 1023 SMI_OP_WRITE | SMI_OP_EXECUTE | 1024 ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) | 1025 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 1026 for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) { 1027 delay(10); 1028 if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, 1029 JME_SMI)) & SMI_OP_EXECUTE) == 0) 1030 break; 1031 } 1032 1033 if (i == 0) 1034 aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg); 1035 1036 return; 1037 } 1038 1039 void 1040 jme_statchg(struct ifnet *ifp) 1041 { 1042 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) 1043 jme_init(ifp, 0); 1044 } 1045 1046 static void 1047 jme_intr_rx(jme_softc_t *sc) { 1048 struct mbuf *m, *mhead; 1049 bus_dmamap_t mmap; 1050 struct ifnet *ifp = &sc->jme_if; 1051 uint32_t flags, buflen; 1052 int i, ipackets, nsegs, seg, error; 1053 struct jme_desc *desc; 1054 1055 bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0, 1056 sizeof(struct jme_desc) * JME_NBUFS, 1057 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1058 #ifdef JMEDEBUG_RX 1059 printf("rxintr sc->jme_rx_cons %d flags 0x%x\n", 1060 sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags)); 1061 #endif 1062 ipackets = 0; 1063 while((le32toh(sc->jme_rxring[sc->jme_rx_cons].flags) & JME_RD_OWN) 1064 == 0) { 1065 i = sc->jme_rx_cons; 1066 desc = &sc->jme_rxring[i]; 1067 #ifdef JMEDEBUG_RX 1068 printf("rxintr i %d flags 0x%x buflen 0x%x\n", 1069 i, le32toh(desc->flags), le32toh(desc->buflen)); 1070 #endif 1071 if (sc->jme_rxmbuf[i] == NULL) { 1072 if ((error = jme_add_rxbuf(sc, NULL)) != 0) { 1073 aprint_error_dev(sc->jme_dev, 1074 "can't add new mbuf to empty slot: %d\n", 1075 error); 1076 break; 1077 } 1078 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1079 i = sc->jme_rx_cons; 1080 continue; 1081 } 1082 if ((le32toh(desc->buflen) & JME_RD_VALID) == 0) 1083 break; 1084 1085 buflen = le32toh(desc->buflen); 1086 nsegs = JME_RX_NSEGS(buflen); 1087 flags = le32toh(desc->flags); 1088 if ((buflen & JME_RX_ERR_STAT) != 0 || 1089 JME_RX_BYTES(buflen) < sizeof(struct ether_header) || 1090 JME_RX_BYTES(buflen) > 1091 (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) { 1092 #ifdef JMEDEBUG_RX 1093 printf("rx error flags 0x%x buflen 0x%x\n", 1094 flags, buflen); 1095 #endif 1096 ifp->if_ierrors++; 1097 /* reuse the mbufs */ 1098 for (seg = 0; seg < nsegs; seg++) { 1099 m = sc->jme_rxmbuf[i]; 1100 sc->jme_rxmbuf[i] = NULL; 1101 mmap = sc->jme_rxmbufm[i]; 1102 bus_dmamap_sync(sc->jme_dmatag, mmap, 0, 1103 mmap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1104 bus_dmamap_unload(sc->jme_dmatag, mmap); 1105 if ((error = jme_add_rxbuf(sc, m)) != 0) 1106 aprint_error_dev(sc->jme_dev, 1107 "can't reuse mbuf: %d\n", error); 1108 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1109 i = sc->jme_rx_cons; 1110 } 1111 continue; 1112 } 1113 /* receive this packet */ 1114 mhead = m = sc->jme_rxmbuf[i]; 1115 sc->jme_rxmbuf[i] = NULL; 1116 mmap = sc->jme_rxmbufm[i]; 1117 bus_dmamap_sync(sc->jme_dmatag, mmap, 0, 1118 mmap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1119 bus_dmamap_unload(sc->jme_dmatag, mmap); 1120 /* add a new buffer to chain */ 1121 if (jme_add_rxbuf(sc, NULL) != 0) { 1122 if ((error = jme_add_rxbuf(sc, m)) != 0) 1123 aprint_error_dev(sc->jme_dev, 1124 "can't reuse mbuf: %d\n", error); 1125 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1126 i = sc->jme_rx_cons; 1127 for (seg = 1; seg < nsegs; seg++) { 1128 m = sc->jme_rxmbuf[i]; 1129 sc->jme_rxmbuf[i] = NULL; 1130 mmap = sc->jme_rxmbufm[i]; 1131 bus_dmamap_sync(sc->jme_dmatag, mmap, 0, 1132 mmap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1133 bus_dmamap_unload(sc->jme_dmatag, mmap); 1134 if ((error = jme_add_rxbuf(sc, m)) != 0) 1135 aprint_error_dev(sc->jme_dev, 1136 "can't reuse mbuf: %d\n", error); 1137 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1138 i = sc->jme_rx_cons; 1139 } 1140 ifp->if_ierrors++; 1141 continue; 1142 } 1143 1144 /* build mbuf chain: head, then remaining segments */ 1145 m_set_rcvif(m, ifp); 1146 m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES; 1147 m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) : 1148 m->m_pkthdr.len; 1149 m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES; 1150 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1151 for (seg = 1; seg < nsegs; seg++) { 1152 i = sc->jme_rx_cons; 1153 m = sc->jme_rxmbuf[i]; 1154 sc->jme_rxmbuf[i] = NULL; 1155 mmap = sc->jme_rxmbufm[i]; 1156 bus_dmamap_sync(sc->jme_dmatag, mmap, 0, 1157 mmap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1158 bus_dmamap_unload(sc->jme_dmatag, mmap); 1159 if ((error = jme_add_rxbuf(sc, NULL)) != 0) 1160 aprint_error_dev(sc->jme_dev, 1161 "can't add new mbuf: %d\n", error); 1162 m->m_flags &= ~M_PKTHDR; 1163 m_cat(mhead, m); 1164 JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS); 1165 } 1166 /* and adjust last mbuf's size */ 1167 if (nsegs > 1) { 1168 m->m_len = 1169 JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1)); 1170 } 1171 ipackets++; 1172 1173 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) && 1174 (flags & JME_RD_IPV4)) { 1175 mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1176 if (!(flags & JME_RD_IPCSUM)) 1177 mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 1178 } 1179 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) && 1180 (flags & JME_RD_TCPV4) == JME_RD_TCPV4) { 1181 mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1182 if (!(flags & JME_RD_TCPCSUM)) 1183 mhead->m_pkthdr.csum_flags |= 1184 M_CSUM_TCP_UDP_BAD; 1185 } 1186 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) && 1187 (flags & JME_RD_UDPV4) == JME_RD_UDPV4) { 1188 mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1189 if (!(flags & JME_RD_UDPCSUM)) 1190 mhead->m_pkthdr.csum_flags |= 1191 M_CSUM_TCP_UDP_BAD; 1192 } 1193 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) && 1194 (flags & JME_RD_TCPV6) == JME_RD_TCPV6) { 1195 mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6; 1196 if (!(flags & JME_RD_TCPCSUM)) 1197 mhead->m_pkthdr.csum_flags |= 1198 M_CSUM_TCP_UDP_BAD; 1199 } 1200 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) && 1201 (flags & JME_RD_UDPV6) == JME_RD_UDPV6) { 1202 m->m_pkthdr.csum_flags |= M_CSUM_UDPv6; 1203 if (!(flags & JME_RD_UDPCSUM)) 1204 mhead->m_pkthdr.csum_flags |= 1205 M_CSUM_TCP_UDP_BAD; 1206 } 1207 if (flags & JME_RD_VLAN_TAG) { 1208 /* pass to vlan_input() */ 1209 vlan_set_tag(mhead, (flags & JME_RD_VLAN_MASK)); 1210 } 1211 if_percpuq_enqueue(ifp->if_percpuq, mhead); 1212 } 1213 if (ipackets) 1214 rnd_add_uint32(&sc->rnd_source, ipackets); 1215 } 1216 1217 static int 1218 jme_intr(void *v) 1219 { 1220 jme_softc_t *sc = v; 1221 uint32_t istatus; 1222 1223 istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, 1224 JME_INTR_STATUS); 1225 if (istatus == 0 || istatus == 0xFFFFFFFF) 1226 return 0; 1227 /* Disable interrupts. */ 1228 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 1229 JME_INTR_MASK_CLR, 0xFFFFFFFF); 1230 again: 1231 /* and update istatus */ 1232 istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, 1233 JME_INTR_STATUS); 1234 if ((istatus & JME_INTRS_CHECK) == 0) 1235 goto done; 1236 /* Reset PCC counter/timer and Ack interrupts. */ 1237 if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0) 1238 istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP; 1239 if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) 1240 istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP; 1241 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 1242 JME_INTR_STATUS, istatus); 1243 1244 if ((sc->jme_if.if_flags & IFF_RUNNING) == 0) 1245 goto done; 1246 #ifdef JMEDEBUG_RX 1247 printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x 0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus, 1248 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR), 1249 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO), 1250 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI), 1251 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC), 1252 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA), 1253 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC)); 1254 printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n", 1255 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0), 1256 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1), 1257 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0), 1258 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1), 1259 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC)); 1260 #endif 1261 if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) 1262 jme_intr_rx(sc); 1263 if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) { 1264 /* 1265 * Notify hardware availability of new Rx 1266 * buffers. 1267 * Reading RXCSR takes very long time under 1268 * heavy load so cache RXCSR value and writes 1269 * the ORed value with the kick command to 1270 * the RXCSR. This saves one register access 1271 * cycle. 1272 */ 1273 sc->jme_rx_cons = 0; 1274 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 1275 JME_RXCSR, 1276 sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START); 1277 } 1278 if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0) 1279 jme_ifstart(&sc->jme_if); 1280 1281 goto again; 1282 1283 done: 1284 /* enable interrupts. */ 1285 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 1286 JME_INTR_MASK_SET, JME_INTRS_ENABLE); 1287 return 1; 1288 } 1289 1290 1291 static int 1292 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data) 1293 { 1294 struct jme_softc *sc = ifp->if_softc; 1295 int s, error; 1296 struct ifreq *ifr; 1297 struct ifcapreq *ifcr; 1298 1299 s = splnet(); 1300 /* 1301 * we can't support at the same time jumbo frames and 1302 * TX checksums offload/TSO 1303 */ 1304 switch(cmd) { 1305 case SIOCSIFMTU: 1306 ifr = data; 1307 if (ifr->ifr_mtu > JME_TX_FIFO_SIZE && 1308 (ifp->if_capenable & ( 1309 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx| 1310 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx| 1311 IFCAP_TSOv4|IFCAP_TSOv6)) != 0) { 1312 splx(s); 1313 return EINVAL; 1314 } 1315 break; 1316 case SIOCSIFCAP: 1317 ifcr = data; 1318 if (ifp->if_mtu > JME_TX_FIFO_SIZE && 1319 (ifcr->ifcr_capenable & ( 1320 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx| 1321 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx| 1322 IFCAP_TSOv4|IFCAP_TSOv6)) != 0) { 1323 splx(s); 1324 return EINVAL; 1325 } 1326 break; 1327 } 1328 1329 error = ether_ioctl(ifp, cmd, data); 1330 if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) { 1331 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) { 1332 jme_set_filter(sc); 1333 error = 0; 1334 } else { 1335 error = jme_init(ifp, 0); 1336 } 1337 } 1338 splx(s); 1339 return error; 1340 } 1341 1342 static int 1343 jme_encap(struct jme_softc *sc, struct mbuf **m_head) 1344 { 1345 struct jme_desc *desc; 1346 struct mbuf *m; 1347 int error, i, prod, headdsc, nsegs; 1348 uint32_t cflags, tso_segsz; 1349 1350 if (((*m_head)->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0){ 1351 /* 1352 * Due to the adherence to NDIS specification JMC250 1353 * assumes upper stack computed TCP pseudo checksum 1354 * without including payload length. This breaks 1355 * checksum offload for TSO case so recompute TCP 1356 * pseudo checksum for JMC250. Hopefully this wouldn't 1357 * be much burden on modern CPUs. 1358 */ 1359 bool v4 = ((*m_head)->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0; 1360 int iphl = v4 ? 1361 M_CSUM_DATA_IPv4_IPHL((*m_head)->m_pkthdr.csum_data) : 1362 M_CSUM_DATA_IPv6_IPHL((*m_head)->m_pkthdr.csum_data); 1363 /* 1364 * note: we support vlan offloading, so we should never have 1365 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always 1366 * right. 1367 */ 1368 int hlen = ETHER_HDR_LEN + iphl; 1369 1370 if (__predict_false((*m_head)->m_len < 1371 (hlen + sizeof(struct tcphdr)))) { 1372 /* 1373 * TCP/IP headers are not in the first mbuf; we need 1374 * to do this the slow and painful way. Let's just 1375 * hope this doesn't happen very often. 1376 */ 1377 struct tcphdr th; 1378 1379 m_copydata((*m_head), hlen, sizeof(th), &th); 1380 if (v4) { 1381 struct ip ip; 1382 1383 m_copydata((*m_head), ETHER_HDR_LEN, 1384 sizeof(ip), &ip); 1385 ip.ip_len = 0; 1386 m_copyback((*m_head), 1387 ETHER_HDR_LEN + offsetof(struct ip, ip_len), 1388 sizeof(ip.ip_len), &ip.ip_len); 1389 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr, 1390 ip.ip_dst.s_addr, htons(IPPROTO_TCP)); 1391 } else { 1392 #if INET6 1393 struct ip6_hdr ip6; 1394 1395 m_copydata((*m_head), ETHER_HDR_LEN, 1396 sizeof(ip6), &ip6); 1397 ip6.ip6_plen = 0; 1398 m_copyback((*m_head), ETHER_HDR_LEN + 1399 offsetof(struct ip6_hdr, ip6_plen), 1400 sizeof(ip6.ip6_plen), &ip6.ip6_plen); 1401 th.th_sum = in6_cksum_phdr(&ip6.ip6_src, 1402 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP)); 1403 #endif /* INET6 */ 1404 } 1405 m_copyback((*m_head), 1406 hlen + offsetof(struct tcphdr, th_sum), 1407 sizeof(th.th_sum), &th.th_sum); 1408 1409 hlen += th.th_off << 2; 1410 } else { 1411 /* 1412 * TCP/IP headers are in the first mbuf; we can do 1413 * this the easy way. 1414 */ 1415 struct tcphdr *th; 1416 1417 if (v4) { 1418 struct ip *ip = 1419 (void *)(mtod((*m_head), char *) + 1420 ETHER_HDR_LEN); 1421 th = (void *)(mtod((*m_head), char *) + hlen); 1422 1423 ip->ip_len = 0; 1424 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, 1425 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1426 } else { 1427 #if INET6 1428 struct ip6_hdr *ip6 = 1429 (void *)(mtod((*m_head), char *) + 1430 ETHER_HDR_LEN); 1431 th = (void *)(mtod((*m_head), char *) + hlen); 1432 1433 ip6->ip6_plen = 0; 1434 th->th_sum = in6_cksum_phdr(&ip6->ip6_src, 1435 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP)); 1436 #endif /* INET6 */ 1437 } 1438 hlen += th->th_off << 2; 1439 } 1440 1441 } 1442 1443 prod = sc->jme_tx_prod; 1444 1445 error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod], 1446 *m_head, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1447 if (error) { 1448 if (error == EFBIG) { 1449 log(LOG_ERR, "%s: Tx packet consumes too many " 1450 "DMA segments, dropping...\n", 1451 device_xname(sc->jme_dev)); 1452 m_freem(*m_head); 1453 m_head = NULL; 1454 } 1455 return (error); 1456 } 1457 /* 1458 * Check descriptor overrun. Leave one free descriptor. 1459 * Since we always use 64bit address mode for transmitting, 1460 * each Tx request requires one more dummy descriptor. 1461 */ 1462 nsegs = sc->jme_txmbufm[prod]->dm_nsegs; 1463 #ifdef JMEDEBUG_TX 1464 printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt); 1465 #endif 1466 if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) { 1467 bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]); 1468 return (ENOBUFS); 1469 } 1470 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod], 1471 0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE); 1472 1473 m = *m_head; 1474 cflags = 0; 1475 tso_segsz = 0; 1476 /* Configure checksum offload and TSO. */ 1477 if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0) { 1478 tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT; 1479 cflags |= JME_TD_TSO; 1480 } else { 1481 if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) 1482 cflags |= JME_TD_IPCSUM; 1483 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_TCPv6)) != 0) 1484 cflags |= JME_TD_TCPCSUM; 1485 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4|M_CSUM_UDPv6)) != 0) 1486 cflags |= JME_TD_UDPCSUM; 1487 } 1488 /* Configure VLAN. */ 1489 if (vlan_has_tag(m)) { 1490 cflags |= (vlan_get_tag(m) & JME_TD_VLAN_MASK); 1491 cflags |= JME_TD_VLAN_TAG; 1492 } 1493 1494 desc = &sc->jme_txring[prod]; 1495 desc->flags = htole32(cflags); 1496 desc->buflen = htole32(tso_segsz); 1497 desc->addr_hi = htole32(m->m_pkthdr.len); 1498 desc->addr_lo = 0; 1499 headdsc = prod; 1500 sc->jme_tx_cnt++; 1501 JME_DESC_INC(prod, JME_NBUFS); 1502 for (i = 0; i < nsegs; i++) { 1503 desc = &sc->jme_txring[prod]; 1504 desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT); 1505 desc->buflen = 1506 htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len); 1507 desc->addr_hi = htole32( 1508 JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr)); 1509 desc->addr_lo = htole32( 1510 JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr)); 1511 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap, 1512 prod * sizeof(struct jme_desc), sizeof(struct jme_desc), 1513 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1514 sc->jme_txmbuf[prod] = NULL; 1515 sc->jme_tx_cnt++; 1516 JME_DESC_INC(prod, JME_NBUFS); 1517 } 1518 1519 /* Update producer index. */ 1520 sc->jme_tx_prod = prod; 1521 #ifdef JMEDEBUG_TX 1522 printf("jme_encap prod now %d\n", sc->jme_tx_prod); 1523 #endif 1524 /* 1525 * Finally request interrupt and give the first descriptor 1526 * owenership to hardware. 1527 */ 1528 desc = &sc->jme_txring[headdsc]; 1529 desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR); 1530 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap, 1531 headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc), 1532 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1533 1534 sc->jme_txmbuf[headdsc] = m; 1535 return (0); 1536 } 1537 1538 static void 1539 jme_txeof(struct jme_softc *sc) 1540 { 1541 struct ifnet *ifp; 1542 struct jme_desc *desc; 1543 uint32_t status; 1544 int cons, cons0, nsegs, seg; 1545 1546 ifp = &sc->jme_if; 1547 1548 #ifdef JMEDEBUG_TX 1549 printf("jme_txeof cons %d prod %d\n", 1550 sc->jme_tx_cons, sc->jme_tx_prod); 1551 printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x " 1552 "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x " 1553 "JME_TXTRHD 0x%x\n", 1554 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR), 1555 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO), 1556 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI), 1557 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC), 1558 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA), 1559 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC), 1560 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC), 1561 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)); 1562 for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) { 1563 desc = &sc->jme_txring[cons]; 1564 printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons, 1565 desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo); 1566 JME_DESC_INC(cons, JME_NBUFS); 1567 } 1568 #endif 1569 1570 cons = sc->jme_tx_cons; 1571 if (cons == sc->jme_tx_prod) 1572 return; 1573 1574 /* 1575 * Go through our Tx list and free mbufs for those 1576 * frames which have been transmitted. 1577 */ 1578 for (; cons != sc->jme_tx_prod;) { 1579 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap, 1580 cons * sizeof(struct jme_desc), sizeof(struct jme_desc), 1581 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1582 1583 desc = &sc->jme_txring[cons]; 1584 status = le32toh(desc->flags); 1585 #ifdef JMEDEBUG_TX 1586 printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status, 1587 sc->jme_txmbufm[cons]->dm_nsegs); 1588 #endif 1589 if (status & JME_TD_OWN) 1590 break; 1591 1592 if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0) 1593 ifp->if_oerrors++; 1594 else { 1595 ifp->if_opackets++; 1596 if ((status & JME_TD_COLLISION) != 0) 1597 ifp->if_collisions += 1598 le32toh(desc->buflen) & 1599 JME_TD_BUF_LEN_MASK; 1600 } 1601 /* 1602 * Only the first descriptor of multi-descriptor 1603 * transmission is updated so driver have to skip entire 1604 * chained buffers for the transmiited frame. In other 1605 * words, JME_TD_OWN bit is valid only at the first 1606 * descriptor of a multi-descriptor transmission. 1607 */ 1608 nsegs = sc->jme_txmbufm[cons]->dm_nsegs; 1609 cons0 = cons; 1610 JME_DESC_INC(cons, JME_NBUFS); 1611 for (seg = 1; seg < nsegs + 1; seg++) { 1612 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap, 1613 cons * sizeof(struct jme_desc), 1614 sizeof(struct jme_desc), 1615 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1616 sc->jme_txring[cons].flags = 0; 1617 JME_DESC_INC(cons, JME_NBUFS); 1618 } 1619 /* Reclaim transferred mbufs. */ 1620 bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0], 1621 0, sc->jme_txmbufm[cons0]->dm_mapsize, 1622 BUS_DMASYNC_POSTWRITE); 1623 bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]); 1624 1625 KASSERT(sc->jme_txmbuf[cons0] != NULL); 1626 m_freem(sc->jme_txmbuf[cons0]); 1627 sc->jme_txmbuf[cons0] = NULL; 1628 sc->jme_tx_cnt -= nsegs + 1; 1629 KASSERT(sc->jme_tx_cnt >= 0); 1630 sc->jme_if.if_flags &= ~IFF_OACTIVE; 1631 } 1632 sc->jme_tx_cons = cons; 1633 /* Unarm watchog timer when there is no pending descriptors in queue. */ 1634 if (sc->jme_tx_cnt == 0) 1635 ifp->if_timer = 0; 1636 #ifdef JMEDEBUG_TX 1637 printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt); 1638 #endif 1639 } 1640 1641 static void 1642 jme_ifstart(struct ifnet *ifp) 1643 { 1644 jme_softc_t *sc = ifp->if_softc; 1645 struct mbuf *mb_head; 1646 int enq; 1647 1648 /* 1649 * check if we can free some desc. 1650 * Clear TX interrupt status to reset TX coalescing counters. 1651 */ 1652 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 1653 JME_INTR_STATUS, INTR_TXQ_COMP); 1654 jme_txeof(sc); 1655 1656 if ((sc->jme_if.if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 1657 return; 1658 for (enq = 0;; enq++) { 1659 nexttx: 1660 /* Grab a paquet for output */ 1661 IFQ_DEQUEUE(&ifp->if_snd, mb_head); 1662 if (mb_head == NULL) { 1663 #ifdef JMEDEBUG_TX 1664 printf("%s: nothing to send\n", __func__); 1665 #endif 1666 break; 1667 } 1668 /* try to add this mbuf to the TX ring */ 1669 if (jme_encap(sc, &mb_head)) { 1670 if (mb_head == NULL) { 1671 ifp->if_oerrors++; 1672 /* packet dropped, try next one */ 1673 goto nexttx; 1674 } 1675 /* resource shortage, try again later */ 1676 IF_PREPEND(&ifp->if_snd, mb_head); 1677 ifp->if_flags |= IFF_OACTIVE; 1678 break; 1679 } 1680 /* Pass packet to bpf if there is a listener */ 1681 bpf_mtap(ifp, mb_head, BPF_D_OUT); 1682 } 1683 #ifdef JMEDEBUG_TX 1684 printf("jme_ifstart enq %d\n", enq); 1685 #endif 1686 if (enq) { 1687 /* 1688 * Set a 5 second timer just in case we don't hear from 1689 * the card again. 1690 */ 1691 ifp->if_timer = 5; 1692 /* 1693 * Reading TXCSR takes very long time under heavy load 1694 * so cache TXCSR value and writes the ORed value with 1695 * the kick command to the TXCSR. This saves one register 1696 * access cycle. 1697 */ 1698 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, 1699 sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0)); 1700 #ifdef JMEDEBUG_TX 1701 printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x " 1702 "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x " 1703 "JME_TXTRHD 0x%x\n", 1704 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR), 1705 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO), 1706 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI), 1707 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC), 1708 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA), 1709 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC), 1710 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC), 1711 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)); 1712 #endif 1713 } 1714 } 1715 1716 static void 1717 jme_ifwatchdog(struct ifnet *ifp) 1718 { 1719 jme_softc_t *sc = ifp->if_softc; 1720 1721 if ((ifp->if_flags & IFF_RUNNING) == 0) 1722 return; 1723 printf("%s: device timeout\n", device_xname(sc->jme_dev)); 1724 ifp->if_oerrors++; 1725 jme_init(ifp, 0); 1726 } 1727 1728 static int 1729 jme_mediachange(struct ifnet *ifp) 1730 { 1731 int error; 1732 jme_softc_t *sc = ifp->if_softc; 1733 1734 if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO) 1735 error = 0; 1736 else if (error != 0) { 1737 aprint_error_dev(sc->jme_dev, "could not set media\n"); 1738 return error; 1739 } 1740 return 0; 1741 } 1742 1743 static void 1744 jme_ticks(void *v) 1745 { 1746 jme_softc_t *sc = v; 1747 int s = splnet(); 1748 1749 /* Tick the MII. */ 1750 mii_tick(&sc->jme_mii); 1751 1752 /* every seconds */ 1753 callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc); 1754 splx(s); 1755 } 1756 1757 static void 1758 jme_mac_config(jme_softc_t *sc) 1759 { 1760 uint32_t ghc, gpreg, rxmac, txmac, txpause; 1761 struct mii_data *mii = &sc->jme_mii; 1762 1763 ghc = 0; 1764 rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC); 1765 rxmac &= ~RXMAC_FC_ENB; 1766 txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC); 1767 txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST); 1768 txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC); 1769 txpause &= ~TXPFC_PAUSE_ENB; 1770 1771 if (mii->mii_media_active & IFM_FDX) { 1772 ghc |= GHC_FULL_DUPLEX; 1773 rxmac &= ~RXMAC_COLL_DET_ENB; 1774 txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | 1775 TXMAC_BACKOFF | TXMAC_CARRIER_EXT | 1776 TXMAC_FRAME_BURST); 1777 /* Disable retry transmit timer/retry limit. */ 1778 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD, 1779 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD) 1780 & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB)); 1781 } else { 1782 rxmac |= RXMAC_COLL_DET_ENB; 1783 txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF; 1784 /* Enable retry transmit timer/retry limit. */ 1785 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD, 1786 bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD) | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB); 1787 } 1788 /* Reprogram Tx/Rx MACs with resolved speed/duplex. */ 1789 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1790 case IFM_10_T: 1791 ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100; 1792 break; 1793 case IFM_100_TX: 1794 ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100; 1795 break; 1796 case IFM_1000_T: 1797 ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000; 1798 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) 1799 txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST; 1800 break; 1801 default: 1802 break; 1803 } 1804 if ((sc->jme_flags & JME_FLAG_GIGA) && 1805 sc->jme_chip_rev == DEVICEREVID_JMC250_A2) { 1806 /* 1807 * Workaround occasional packet loss issue of JMC250 A2 1808 * when it runs on half-duplex media. 1809 */ 1810 #ifdef JMEDEBUG 1811 printf("JME250 A2 workaround\n"); 1812 #endif 1813 gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, 1814 JME_GPREG1); 1815 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 1816 gpreg &= ~GPREG1_HDPX_FIX; 1817 else 1818 gpreg |= GPREG1_HDPX_FIX; 1819 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, 1820 JME_GPREG1, gpreg); 1821 /* Workaround CRC errors at 100Mbps on JMC250 A2. */ 1822 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { 1823 /* Extend interface FIFO depth. */ 1824 jme_mii_write(sc->jme_dev, sc->jme_phyaddr, 1825 0x1B, 0x0000); 1826 } else { 1827 /* Select default interface FIFO depth. */ 1828 jme_mii_write(sc->jme_dev, sc->jme_phyaddr, 1829 0x1B, 0x0004); 1830 } 1831 } 1832 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc); 1833 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac); 1834 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac); 1835 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause); 1836 } 1837 1838 static void 1839 jme_set_filter(jme_softc_t *sc) 1840 { 1841 struct ifnet *ifp = &sc->jme_if; 1842 struct ether_multistep step; 1843 struct ether_multi *enm; 1844 uint32_t hash[2] = {0, 0}; 1845 int i; 1846 uint32_t rxcfg; 1847 1848 rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC); 1849 rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST | 1850 RXMAC_ALLMULTI); 1851 /* Always accept frames destined to our station address. */ 1852 rxcfg |= RXMAC_UNICAST; 1853 if ((ifp->if_flags & IFF_BROADCAST) != 0) 1854 rxcfg |= RXMAC_BROADCAST; 1855 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 1856 if ((ifp->if_flags & IFF_PROMISC) != 0) 1857 rxcfg |= RXMAC_PROMISC; 1858 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 1859 rxcfg |= RXMAC_ALLMULTI; 1860 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 1861 JME_MAR0, 0xFFFFFFFF); 1862 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 1863 JME_MAR1, 0xFFFFFFFF); 1864 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, 1865 JME_RXMAC, rxcfg); 1866 return; 1867 } 1868 /* 1869 * Set up the multicast address filter by passing all multicast 1870 * addresses through a CRC generator, and then using the low-order 1871 * 6 bits as an index into the 64 bit multicast hash table. The 1872 * high order bits select the register, while the rest of the bits 1873 * select the bit within the register. 1874 */ 1875 rxcfg |= RXMAC_MULTICAST; 1876 memset(hash, 0, sizeof(hash)); 1877 1878 ETHER_FIRST_MULTI(step, &sc->jme_ec, enm); 1879 while (enm != NULL) { 1880 #ifdef JEMDBUG 1881 printf("%s: addrs %s %s\n", __func__, 1882 ether_sprintf(enm->enm_addrlo), 1883 ether_sprintf(enm->enm_addrhi)); 1884 #endif 1885 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) { 1886 i = ether_crc32_be(enm->enm_addrlo, 6); 1887 /* Just want the 6 least significant bits. */ 1888 i &= 0x3f; 1889 hash[i / 32] |= 1 << (i%32); 1890 } else { 1891 hash[0] = hash[1] = 0xffffffff; 1892 sc->jme_if.if_flags |= IFF_ALLMULTI; 1893 break; 1894 } 1895 ETHER_NEXT_MULTI(step, enm); 1896 } 1897 #ifdef JMEDEBUG 1898 printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]); 1899 #endif 1900 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]); 1901 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]); 1902 bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg); 1903 } 1904 1905 #if 0 1906 static int 1907 jme_multicast_hash(uint8_t *a) 1908 { 1909 int hash; 1910 1911 #define DA(addr,bit) (addr[5 - (bit / 8)] & (1 << (bit % 8))) 1912 #define xor8(a,b,c,d,e,f,g,h) \ 1913 (((a != 0) + (b != 0) + (c != 0) + (d != 0) + \ 1914 (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1) 1915 1916 hash = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30), 1917 DA(a,36), DA(a,42)); 1918 hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31), 1919 DA(a,37), DA(a,43)) << 1; 1920 hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32), 1921 DA(a,38), DA(a,44)) << 2; 1922 hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33), 1923 DA(a,39), DA(a,45)) << 3; 1924 hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34), 1925 DA(a,40), DA(a,46)) << 4; 1926 hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35), 1927 DA(a,41), DA(a,47)) << 5; 1928 1929 return hash; 1930 } 1931 #endif 1932 1933 static int 1934 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val) 1935 { 1936 uint32_t reg; 1937 int i; 1938 1939 *val = 0; 1940 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) { 1941 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, 1942 JME_SMBCSR); 1943 if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE) 1944 break; 1945 delay(10); 1946 } 1947 1948 if (i == 0) { 1949 aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n"); 1950 return (ETIMEDOUT); 1951 } 1952 1953 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK; 1954 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy, 1955 JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER); 1956 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) { 1957 delay(10); 1958 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, 1959 JME_SMBINTF); 1960 if ((reg & SMBINTF_CMD_TRIGGER) == 0) 1961 break; 1962 } 1963 1964 if (i == 0) { 1965 aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n"); 1966 return (ETIMEDOUT); 1967 } 1968 1969 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF); 1970 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT; 1971 return (0); 1972 } 1973 1974 1975 static int 1976 jme_eeprom_macaddr(struct jme_softc *sc) 1977 { 1978 uint8_t eaddr[ETHER_ADDR_LEN]; 1979 uint8_t fup, reg, val; 1980 uint32_t offset; 1981 int match; 1982 1983 offset = 0; 1984 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 1985 fup != JME_EEPROM_SIG0) 1986 return (ENOENT); 1987 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 1988 fup != JME_EEPROM_SIG1) 1989 return (ENOENT); 1990 match = 0; 1991 do { 1992 if (jme_eeprom_read_byte(sc, offset, &fup) != 0) 1993 break; 1994 if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) 1995 == (fup & (JME_EEPROM_FUNC_MASK|JME_EEPROM_PAGE_MASK))) { 1996 if (jme_eeprom_read_byte(sc, offset + 1, ®) != 0) 1997 break; 1998 if (reg >= JME_PAR0 && 1999 reg < JME_PAR0 + ETHER_ADDR_LEN) { 2000 if (jme_eeprom_read_byte(sc, offset + 2, 2001 &val) != 0) 2002 break; 2003 eaddr[reg - JME_PAR0] = val; 2004 match++; 2005 } 2006 } 2007 if (fup & JME_EEPROM_DESC_END) 2008 break; 2009 2010 /* Try next eeprom descriptor. */ 2011 offset += JME_EEPROM_DESC_BYTES; 2012 } while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END); 2013 2014 if (match == ETHER_ADDR_LEN) { 2015 memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN); 2016 return (0); 2017 } 2018 2019 return (ENOENT); 2020 } 2021 2022 static int 2023 jme_reg_macaddr(struct jme_softc *sc) 2024 { 2025 uint32_t par0, par1; 2026 2027 par0 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0); 2028 par1 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1); 2029 par1 &= 0xffff; 2030 if ((par0 == 0 && par1 == 0) || 2031 (par0 == 0xffffffff && par1 == 0xffff)) { 2032 return (ENOENT); 2033 } else { 2034 sc->jme_enaddr[0] = (par0 >> 0) & 0xff; 2035 sc->jme_enaddr[1] = (par0 >> 8) & 0xff; 2036 sc->jme_enaddr[2] = (par0 >> 16) & 0xff; 2037 sc->jme_enaddr[3] = (par0 >> 24) & 0xff; 2038 sc->jme_enaddr[4] = (par1 >> 0) & 0xff; 2039 sc->jme_enaddr[5] = (par1 >> 8) & 0xff; 2040 } 2041 return (0); 2042 } 2043 2044 /* 2045 * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be 2046 * set up in jme_pci_attach() 2047 */ 2048 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup") 2049 { 2050 int rc; 2051 const struct sysctlnode *node; 2052 2053 if ((rc = sysctl_createv(clog, 0, NULL, &node, 2054 0, CTLTYPE_NODE, "jme", 2055 SYSCTL_DESCR("jme interface controls"), 2056 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 2057 goto err; 2058 } 2059 2060 jme_root_num = node->sysctl_num; 2061 return; 2062 2063 err: 2064 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc); 2065 } 2066 2067 static int 2068 jme_sysctl_intrxto(SYSCTLFN_ARGS) 2069 { 2070 int error, t; 2071 struct sysctlnode node; 2072 struct jme_softc *sc; 2073 uint32_t reg; 2074 2075 node = *rnode; 2076 sc = node.sysctl_data; 2077 t = sc->jme_intrxto; 2078 node.sysctl_data = &t; 2079 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2080 if (error || newp == NULL) 2081 return error; 2082 2083 if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX) 2084 return EINVAL; 2085 2086 /* 2087 * update the softc with sysctl-changed value, and mark 2088 * for hardware update 2089 */ 2090 sc->jme_intrxto = t; 2091 /* Configure Rx queue 0 packet completion coalescing. */ 2092 reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK; 2093 reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK; 2094 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg); 2095 return 0; 2096 } 2097 2098 static int 2099 jme_sysctl_intrxct(SYSCTLFN_ARGS) 2100 { 2101 int error, t; 2102 struct sysctlnode node; 2103 struct jme_softc *sc; 2104 uint32_t reg; 2105 2106 node = *rnode; 2107 sc = node.sysctl_data; 2108 t = sc->jme_intrxct; 2109 node.sysctl_data = &t; 2110 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2111 if (error || newp == NULL) 2112 return error; 2113 2114 if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX) 2115 return EINVAL; 2116 2117 /* 2118 * update the softc with sysctl-changed value, and mark 2119 * for hardware update 2120 */ 2121 sc->jme_intrxct = t; 2122 /* Configure Rx queue 0 packet completion coalescing. */ 2123 reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK; 2124 reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK; 2125 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg); 2126 return 0; 2127 } 2128 2129 static int 2130 jme_sysctl_inttxto(SYSCTLFN_ARGS) 2131 { 2132 int error, t; 2133 struct sysctlnode node; 2134 struct jme_softc *sc; 2135 uint32_t reg; 2136 2137 node = *rnode; 2138 sc = node.sysctl_data; 2139 t = sc->jme_inttxto; 2140 node.sysctl_data = &t; 2141 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2142 if (error || newp == NULL) 2143 return error; 2144 2145 if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX) 2146 return EINVAL; 2147 2148 /* 2149 * update the softc with sysctl-changed value, and mark 2150 * for hardware update 2151 */ 2152 sc->jme_inttxto = t; 2153 /* Configure Tx queue 0 packet completion coalescing. */ 2154 reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK; 2155 reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK; 2156 reg |= PCCTX_COAL_TXQ0; 2157 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg); 2158 return 0; 2159 } 2160 2161 static int 2162 jme_sysctl_inttxct(SYSCTLFN_ARGS) 2163 { 2164 int error, t; 2165 struct sysctlnode node; 2166 struct jme_softc *sc; 2167 uint32_t reg; 2168 2169 node = *rnode; 2170 sc = node.sysctl_data; 2171 t = sc->jme_inttxct; 2172 node.sysctl_data = &t; 2173 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2174 if (error || newp == NULL) 2175 return error; 2176 2177 if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX) 2178 return EINVAL; 2179 2180 /* 2181 * update the softc with sysctl-changed value, and mark 2182 * for hardware update 2183 */ 2184 sc->jme_inttxct = t; 2185 /* Configure Tx queue 0 packet completion coalescing. */ 2186 reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK; 2187 reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK; 2188 reg |= PCCTX_COAL_TXQ0; 2189 bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg); 2190 return 0; 2191 } 2192