xref: /netbsd-src/sys/dev/pci/if_jme.c (revision b757af438b42b93f8c6571f026d8b8ef3eaf5fc9)
1 /*	$NetBSD: if_jme.c,v 1.19 2012/02/02 19:43:05 tls Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 
54 
55 /*
56  * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
57  * Ethernet Controllers.
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.19 2012/02/02 19:43:05 tls Exp $");
62 
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/mbuf.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/ioctl.h>
70 #include <sys/errno.h>
71 #include <sys/malloc.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>	/* only for declaration of wakeup() used by vm.h */
74 #include <sys/device.h>
75 #include <sys/syslog.h>
76 #include <sys/sysctl.h>
77 
78 #include <net/if.h>
79 #if defined(SIOCSIFMEDIA)
80 #include <net/if_media.h>
81 #endif
82 #include <net/if_types.h>
83 #include <net/if_dl.h>
84 #include <net/route.h>
85 #include <net/netisr.h>
86 
87 #include <net/bpf.h>
88 #include <net/bpfdesc.h>
89 
90 #include <sys/rnd.h>
91 
92 #include <netinet/in.h>
93 #include <netinet/in_systm.h>
94 #include <netinet/ip.h>
95 
96 #ifdef INET
97 #include <netinet/in_var.h>
98 #endif
99 
100 #include <netinet/tcp.h>
101 
102 #include <net/if_ether.h>
103 #if defined(INET)
104 #include <netinet/if_inarp.h>
105 #endif
106 
107 #include <sys/bus.h>
108 #include <sys/intr.h>
109 
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113 #include <dev/pci/if_jmereg.h>
114 
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 
118 struct jme_product_desc {
119 	u_int32_t jme_product;
120 	const char *jme_desc;
121 };
122 
123 /* number of entries in transmit and receive rings */
124 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))
125 
126 #define JME_DESC_INC(x, y)	((x) = ((x) + 1) % (y))
127 
128 /* Water mark to kick reclaiming Tx buffers. */
129 #define JME_TX_DESC_HIWAT	(JME_NBUFS - (((JME_NBUFS) * 3) / 10))
130 
131 
132 struct jme_softc {
133 	device_t jme_dev;		/* base device */
134 	bus_space_tag_t jme_bt_mac;
135 	bus_space_handle_t jme_bh_mac;  /* Mac registers */
136 	bus_space_tag_t jme_bt_phy;
137 	bus_space_handle_t jme_bh_phy;  /* PHY registers */
138 	bus_space_tag_t jme_bt_misc;
139 	bus_space_handle_t jme_bh_misc; /* Misc registers */
140 	bus_dma_tag_t jme_dmatag;
141 	bus_dma_segment_t jme_txseg;	/* transmit ring seg */
142 	bus_dmamap_t jme_txmap;		/* transmit ring DMA map */
143 	struct jme_desc* jme_txring;	/* transmit ring */
144 	bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
145 	struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
146 	int jme_tx_cons;		/* transmit ring consumer */
147 	int jme_tx_prod;		/* transmit ring producer */
148 	int jme_tx_cnt;			/* transmit ring active count */
149 	bus_dma_segment_t jme_rxseg;	/* receive ring seg */
150 	bus_dmamap_t jme_rxmap;		/* receive ring DMA map */
151 	struct jme_desc* jme_rxring;	/* receive ring */
152 	bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
153 	struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
154 	int jme_rx_cons;		/* receive ring consumer */
155 	int jme_rx_prod;		/* receive ring producer */
156 	void* jme_ih;			/* our interrupt */
157 	struct ethercom jme_ec;
158 	struct callout jme_tick_ch;	/* tick callout */
159 	u_int8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
160 	u_int8_t jme_phyaddr;		/* address of integrated phy */
161 	u_int8_t jme_chip_rev;		/* chip revision */
162 	u_int8_t jme_rev;		/* PCI revision */
163 	mii_data_t jme_mii;		/* mii bus */
164 	u_int32_t jme_flags;		/* device features, see below */
165 	uint32_t jme_txcsr;		/* TX config register */
166 	uint32_t jme_rxcsr;		/* RX config register */
167 	krndsource_t rnd_source;
168 	/* interrupt coalition parameters */
169 	struct sysctllog *jme_clog;
170 	int jme_intrxto;		/* interrupt RX timeout */
171 	int jme_intrxct;		/* interrupt RX packets counter */
172 	int jme_inttxto;		/* interrupt TX timeout */
173 	int jme_inttxct;		/* interrupt TX packets counter */
174 };
175 
176 #define JME_FLAG_FPGA	0x0001 /* FPGA version */
177 #define JME_FLAG_GIGA	0x0002 /* giga Ethernet capable */
178 
179 
180 #define jme_if	jme_ec.ec_if
181 #define jme_bpf	jme_if.if_bpf
182 
183 typedef struct jme_softc jme_softc_t;
184 typedef u_long ioctl_cmd_t;
185 
186 static int jme_pci_match(device_t, cfdata_t, void *);
187 static void jme_pci_attach(device_t, device_t, void *);
188 static void jme_intr_rx(jme_softc_t *);
189 static int jme_intr(void *);
190 
191 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
192 static int jme_mediachange(struct ifnet *);
193 static void jme_ifwatchdog(struct ifnet *);
194 static bool jme_shutdown(device_t, int);
195 
196 static void jme_txeof(struct jme_softc *);
197 static void jme_ifstart(struct ifnet *);
198 static void jme_reset(jme_softc_t *);
199 static int  jme_ifinit(struct ifnet *);
200 static int  jme_init(struct ifnet *, int);
201 static void jme_stop(struct ifnet *, int);
202 // static void jme_restart(void *);
203 static void jme_ticks(void *);
204 static void jme_mac_config(jme_softc_t *);
205 static void jme_set_filter(jme_softc_t *);
206 
207 int jme_mii_read(device_t, int, int);
208 void jme_mii_write(device_t, int, int, int);
209 void jme_statchg(device_t);
210 
211 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
212 static int jme_eeprom_macaddr(struct jme_softc *);
213 static int jme_reg_macaddr(struct jme_softc *);
214 
215 #define JME_TIMEOUT		1000
216 #define JME_PHY_TIMEOUT		1000
217 #define JME_EEPROM_TIMEOUT	1000
218 
219 static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
220 static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
221 static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
222 static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
223 static int jme_root_num;
224 
225 
226 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
227     jme_pci_match, jme_pci_attach, NULL, NULL);
228 
229 static const struct jme_product_desc jme_products[] = {
230 	{ PCI_PRODUCT_JMICRON_JMC250,
231 	  "JMicron JMC250 Gigabit Ethernet Controller" },
232 	{ PCI_PRODUCT_JMICRON_JMC260,
233 	  "JMicron JMC260 Gigabit Ethernet Controller" },
234 	{ 0, NULL },
235 };
236 
237 static const struct jme_product_desc *jme_lookup_product(uint32_t);
238 
239 static const struct jme_product_desc *
240 jme_lookup_product(uint32_t id)
241 {
242 	const struct jme_product_desc *jp;
243 
244 	for (jp = jme_products ; jp->jme_desc != NULL; jp++)
245 		if (PCI_PRODUCT(id) == jp->jme_product)
246 			return jp;
247 
248 	return NULL;
249 }
250 
251 static int
252 jme_pci_match(device_t parent, cfdata_t cf, void *aux)
253 {
254 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
255 
256 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_JMICRON)
257 		return 0;
258 
259 	if (jme_lookup_product(pa->pa_id) != NULL)
260 		return 1;
261 
262 	return 0;
263 }
264 
265 static void
266 jme_pci_attach(device_t parent, device_t self, void *aux)
267 {
268 	jme_softc_t *sc = device_private(self);
269 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
270 	const struct jme_product_desc *jp;
271 	struct ifnet * const ifp = &sc->jme_if;
272 	bus_space_tag_t iot1, iot2, memt;
273 	bus_space_handle_t ioh1, ioh2, memh;
274 	bus_size_t size, size2;
275 	pci_intr_handle_t intrhandle;
276 	const char *intrstr;
277 	pcireg_t csr;
278 	int nsegs, i;
279 	const struct sysctlnode *node;
280 	int jme_nodenum;
281 
282 	sc->jme_dev = self;
283 	aprint_normal("\n");
284 	callout_init(&sc->jme_tick_ch, 0);
285 
286 	jp = jme_lookup_product(pa->pa_id);
287 	if (jp == NULL)
288 		panic("jme_pci_attach: impossible");
289 
290 	if (jp->jme_product == PCI_PRODUCT_JMICRON_JMC250)
291 		sc->jme_flags = JME_FLAG_GIGA;
292 
293 	/*
294 	 * Map the card space. Try Mem first.
295 	 */
296 	if (pci_mapreg_map(pa, JME_PCI_BAR0,
297 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
298 	    0, &memt, &memh, NULL, &size) == 0) {
299 		sc->jme_bt_mac = memt;
300 		sc->jme_bh_mac = memh;
301 		sc->jme_bt_phy = memt;
302 		if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
303 		    JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
304 			aprint_error_dev(self, "can't subregion PHY space\n");
305 			bus_space_unmap(memt, memh, size);
306 			return;
307 		}
308 		sc->jme_bt_misc = memt;
309 		if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
310 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
311 			aprint_error_dev(self, "can't subregion misc space\n");
312 			bus_space_unmap(memt, memh, size);
313 			return;
314 		}
315 	} else {
316 		if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
317 		    0, &iot1, &ioh1, NULL, &size) != 0) {
318 			aprint_error_dev(self, "can't map I/O space 1\n");
319 			return;
320 		}
321 		sc->jme_bt_mac = iot1;
322 		sc->jme_bh_mac = ioh1;
323 		if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
324 		    0, &iot2, &ioh2, NULL, &size2) != 0) {
325 			aprint_error_dev(self, "can't map I/O space 2\n");
326 			bus_space_unmap(iot1, ioh1, size);
327 			return;
328 		}
329 		sc->jme_bt_phy = iot2;
330 		sc->jme_bh_phy = ioh2;
331 		sc->jme_bt_misc = iot2;
332 		if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
333 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
334 			aprint_error_dev(self, "can't subregion misc space\n");
335 			bus_space_unmap(iot1, ioh1, size);
336 			bus_space_unmap(iot2, ioh2, size2);
337 			return;
338 		}
339 	}
340 
341 	if (pci_dma64_available(pa))
342 		sc->jme_dmatag = pa->pa_dmat64;
343 	else
344 		sc->jme_dmatag = pa->pa_dmat;
345 
346 	/* Enable the device. */
347 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
348 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
349 	    csr | PCI_COMMAND_MASTER_ENABLE);
350 
351 	aprint_normal_dev(self, "%s\n", jp->jme_desc);
352 
353 	sc->jme_rev = PCI_REVISION(pa->pa_class);
354 
355 	csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
356 	if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
357 	    CHIPMODE_NOT_FPGA)
358 		sc->jme_flags |= JME_FLAG_FPGA;
359 	sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
360 	aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
361 	    "0x%x", sc->jme_rev, sc->jme_chip_rev);
362 	if (sc->jme_flags & JME_FLAG_FPGA)
363 		aprint_verbose(" FPGA revision: 0x%x",
364 		    (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
365 	aprint_verbose("\n");
366 
367 	/*
368 	 * Save PHY address.
369 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
370 	 * requires PHY probing to get correct PHY address.
371 	 */
372 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
373 		sc->jme_phyaddr =
374 		    bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
375 				     JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
376 	} else
377 		sc->jme_phyaddr = 0;
378 
379 
380 	jme_reset(sc);
381 
382 	/* read mac addr */
383 	if (jme_eeprom_macaddr(sc) && jme_reg_macaddr(sc)) {
384 		aprint_error_dev(self, "error reading Ethernet address\n");
385 		/* return; */
386 	}
387 	aprint_normal_dev(self, "Ethernet address %s\n",
388 	    ether_sprintf(sc->jme_enaddr));
389 
390 	/* Map and establish interrupts */
391 	if (pci_intr_map(pa, &intrhandle)) {
392 		aprint_error_dev(self, "couldn't map interrupt\n");
393 		return;
394 	}
395 	intrstr = pci_intr_string(pa->pa_pc, intrhandle);
396 	sc->jme_if.if_softc = sc;
397 	sc->jme_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
398 	    jme_intr, sc);
399 	if (sc->jme_ih == NULL) {
400 		aprint_error_dev(self, "couldn't establish interrupt");
401 		if (intrstr != NULL)
402 			aprint_error(" at %s", intrstr);
403 		aprint_error("\n");
404 		return;
405 	}
406 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
407 
408 	/* allocate and map DMA-safe memory for transmit ring */
409 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
410 	    &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
411 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
412 	    nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
413 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
414 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
415 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
416 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
417 	    PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
418 		aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
419 		return;
420 	}
421 	/* allocate and map DMA-safe memory for receive ring */
422 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
423 	      &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
424 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
425 	      nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
426 	      BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
427 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
428 	      BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
429 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
430 	      PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
431 		aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
432 		return;
433 	}
434 	for (i = 0; i < JME_NBUFS; i++) {
435 		sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
436 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
437 		    JME_NBUFS, JME_MAX_TX_LEN, 0,
438 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
439 		    &sc->jme_txmbufm[i]) != 0) {
440 			aprint_error_dev(self, "can't allocate DMA TX map\n");
441 			return;
442 		}
443 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
444 		    1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
445 		    &sc->jme_rxmbufm[i]) != 0) {
446 			aprint_error_dev(self, "can't allocate DMA RX map\n");
447 			return;
448 		}
449 	}
450 	/*
451 	 * Initialize our media structures and probe the MII.
452 	 *
453 	 * Note that we don't care about the media instance.  We
454 	 * are expecting to have multiple PHYs on the 10/100 cards,
455 	 * and on those cards we exclude the internal PHY from providing
456 	 * 10baseT.  By ignoring the instance, it allows us to not have
457 	 * to specify it on the command line when switching media.
458 	 */
459 	sc->jme_mii.mii_ifp = ifp;
460 	sc->jme_mii.mii_readreg = jme_mii_read;
461 	sc->jme_mii.mii_writereg = jme_mii_write;
462 	sc->jme_mii.mii_statchg = jme_statchg;
463 	sc->jme_ec.ec_mii = &sc->jme_mii;
464 	ifmedia_init(&sc->jme_mii.mii_media, IFM_IMASK, jme_mediachange,
465 	    ether_mediastatus);
466 	mii_attach(self, &sc->jme_mii, 0xffffffff, MII_PHY_ANY,
467 	    MII_OFFSET_ANY, 0);
468 	if (LIST_FIRST(&sc->jme_mii.mii_phys) == NULL) {
469 		ifmedia_add(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
470 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE);
471 	} else
472 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_AUTO);
473 
474 	/*
475 	 * We can support 802.1Q VLAN-sized frames.
476 	 */
477 	sc->jme_ec.ec_capabilities |=
478 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
479 
480 	if (sc->jme_flags & JME_FLAG_GIGA)
481 		sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
482 
483 
484 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
485 	ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
486 	ifp->if_ioctl = jme_ifioctl;
487 	ifp->if_start = jme_ifstart;
488 	ifp->if_watchdog = jme_ifwatchdog;
489 	ifp->if_init = jme_ifinit;
490 	ifp->if_stop = jme_stop;
491 	ifp->if_timer = 0;
492 	ifp->if_capabilities |=
493 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
494 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
495 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
496 	    IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
497 	    IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
498 	    IFCAP_TSOv4 | IFCAP_TSOv6;
499 	IFQ_SET_READY(&ifp->if_snd);
500 	if_attach(ifp);
501 	ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);
502 
503 	/*
504 	 * Add shutdown hook so that DMA is disabled prior to reboot.
505 	 */
506 	if (pmf_device_register1(self, NULL, NULL, jme_shutdown))
507 		pmf_class_network_register(self, ifp);
508 	else
509 		aprint_error_dev(self, "couldn't establish power handler\n");
510 
511 	rnd_attach_source(&sc->rnd_source, device_xname(self),
512 	    RND_TYPE_NET, 0);
513 
514 	sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
515 	sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
516 	sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
517 	sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
518 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
519 	    0, CTLTYPE_NODE, device_xname(sc->jme_dev),
520 	    SYSCTL_DESCR("jme per-controller controls"),
521 	    NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
522 	    CTL_EOL) != 0) {
523 		aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
524 		return;
525 	}
526 	jme_nodenum = node->sysctl_num;
527 
528 	/* interrupt moderation sysctls */
529 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
530 	    CTLFLAG_READWRITE,
531 	    CTLTYPE_INT, "int_rxto",
532 	    SYSCTL_DESCR("jme RX interrupt moderation timer"),
533 	    jme_sysctl_intrxto, 0, sc,
534 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
535 	    CTL_EOL) != 0) {
536 		aprint_normal_dev(sc->jme_dev,
537 		    "couldn't create int_rxto sysctl node\n");
538 	}
539 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
540 	    CTLFLAG_READWRITE,
541 	    CTLTYPE_INT, "int_rxct",
542 	    SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
543 	    jme_sysctl_intrxct, 0, sc,
544 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
545 	    CTL_EOL) != 0) {
546 		aprint_normal_dev(sc->jme_dev,
547 		    "couldn't create int_rxct sysctl node\n");
548 	}
549 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
550 	    CTLFLAG_READWRITE,
551 	    CTLTYPE_INT, "int_txto",
552 	    SYSCTL_DESCR("jme TX interrupt moderation timer"),
553 	    jme_sysctl_inttxto, 0, sc,
554 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
555 	    CTL_EOL) != 0) {
556 		aprint_normal_dev(sc->jme_dev,
557 		    "couldn't create int_txto sysctl node\n");
558 	}
559 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
560 	    CTLFLAG_READWRITE,
561 	    CTLTYPE_INT, "int_txct",
562 	    SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
563 	    jme_sysctl_inttxct, 0, sc,
564 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
565 	    CTL_EOL) != 0) {
566 		aprint_normal_dev(sc->jme_dev,
567 		    "couldn't create int_txct sysctl node\n");
568 	}
569 }
570 
571 static void
572 jme_stop_rx(jme_softc_t *sc)
573 {
574 	uint32_t reg;
575 	int i;
576 
577 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
578 	if ((reg & RXCSR_RX_ENB) == 0)
579 		return;
580 	reg &= ~RXCSR_RX_ENB;
581 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
582 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
583 		DELAY(10);
584 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
585 		    JME_RXCSR) & RXCSR_RX_ENB) == 0)
586 			break;
587 	}
588 	if (i == 0)
589 		aprint_error_dev(sc->jme_dev, "stopping recevier timeout!\n");
590 
591 }
592 
593 static void
594 jme_stop_tx(jme_softc_t *sc)
595 {
596 	uint32_t reg;
597 	int i;
598 
599 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
600 	if ((reg & TXCSR_TX_ENB) == 0)
601 		return;
602 	reg &= ~TXCSR_TX_ENB;
603 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
604 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
605 		DELAY(10);
606 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
607 		    JME_TXCSR) & TXCSR_TX_ENB) == 0)
608 			break;
609 	}
610 	if (i == 0)
611 		aprint_error_dev(sc->jme_dev,
612 		    "stopping transmitter timeout!\n");
613 }
614 
615 static void
616 jme_reset(jme_softc_t *sc)
617 {
618 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
619 	DELAY(10);
620 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
621 }
622 
623 static bool
624 jme_shutdown(device_t self, int howto)
625 {
626 	jme_softc_t *sc;
627 	struct ifnet *ifp;
628 
629 	sc = device_private(self);
630 	ifp = &sc->jme_if;
631 	jme_stop(ifp, 1);
632 
633 	return true;
634 }
635 
636 static void
637 jme_stop(struct ifnet *ifp, int disable)
638 {
639 	jme_softc_t *sc = ifp->if_softc;
640 	int i;
641 	/* Stop receiver, transmitter. */
642 	jme_stop_rx(sc);
643 	jme_stop_tx(sc);
644 	/* free receive mbufs */
645 	for (i = 0; i < JME_NBUFS; i++) {
646 		if (sc->jme_rxmbuf[i]) {
647 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
648 			m_freem(sc->jme_rxmbuf[i]);
649 		}
650 		sc->jme_rxmbuf[i] = NULL;
651 	}
652 	/* process completed transmits */
653 	jme_txeof(sc);
654 	/* free abort pending transmits */
655 	for (i = 0; i < JME_NBUFS; i++) {
656 		if (sc->jme_txmbuf[i]) {
657 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
658 			m_freem(sc->jme_txmbuf[i]);
659 			sc->jme_txmbuf[i] = NULL;
660 		}
661 	}
662 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
663 	ifp->if_timer = 0;
664 }
665 
666 #if 0
667 static void
668 jme_restart(void *v)
669 {
670 
671 	jme_init(v);
672 }
673 #endif
674 
675 static int
676 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
677 {
678 	int error;
679 	bus_dmamap_t map;
680 	int i = sc->jme_rx_prod;
681 
682 	if (sc->jme_rxmbuf[i] != NULL) {
683 		aprint_error_dev(sc->jme_dev,
684 		    "mbuf already here: rxprod %d rxcons %d\n",
685 		    sc->jme_rx_prod, sc->jme_rx_cons);
686 		if (m)
687 			m_freem(m);
688 		return EINVAL;
689 	}
690 
691 	if (m == NULL) {
692 		sc->jme_rxmbuf[i] = NULL;
693 		MGETHDR(m, M_DONTWAIT, MT_DATA);
694 		if (m == NULL)
695 			return (ENOBUFS);
696 		MCLGET(m, M_DONTWAIT);
697 		if ((m->m_flags & M_EXT) == 0) {
698 			m_freem(m);
699 			return (ENOBUFS);
700 		}
701 	}
702 	map = sc->jme_rxmbufm[i];
703 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
704 	KASSERT(m->m_len == MCLBYTES);
705 
706 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
707 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
708 	if (error) {
709 		sc->jme_rxmbuf[i] = NULL;
710 		aprint_error_dev(sc->jme_dev,
711 		    "unable to load rx DMA map %d, error = %d\n",
712 		    i, error);
713 		m_freem(m);
714 		return (error);
715 	}
716 	bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
717 	    BUS_DMASYNC_PREREAD);
718 
719 	sc->jme_rxmbuf[i] = m;
720 
721 	sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
722 	sc->jme_rxring[i].addr_lo =
723 	    htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
724 	sc->jme_rxring[i].addr_hi =
725 	    htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
726 	sc->jme_rxring[i].flags =
727 	    htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
728 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
729 	    i * sizeof(struct jme_desc), sizeof(struct jme_desc),
730 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
731 	JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
732 	return (0);
733 }
734 
735 static int
736 jme_ifinit(struct ifnet *ifp)
737 {
738 	return jme_init(ifp, 1);
739 }
740 
741 static int
742 jme_init(struct ifnet *ifp, int do_ifinit)
743 {
744 	jme_softc_t *sc = ifp->if_softc;
745 	int i, s;
746 	uint8_t eaddr[ETHER_ADDR_LEN];
747 	uint32_t reg;
748 
749 	s = splnet();
750 	/* cancel any pending IO */
751 	jme_stop(ifp, 1);
752 	jme_reset(sc);
753 	if ((sc->jme_if.if_flags & IFF_UP) == 0) {
754 		splx(s);
755 		return 0;
756 	}
757 	/* allocate receive ring */
758 	sc->jme_rx_prod = 0;
759 	for (i = 0; i < JME_NBUFS; i++) {
760 		if (jme_add_rxbuf(sc, NULL) < 0) {
761 			aprint_error_dev(sc->jme_dev,
762 			    "can't allocate rx mbuf\n");
763 			for (i--; i >= 0; i--) {
764 				bus_dmamap_unload(sc->jme_dmatag,
765 				    sc->jme_rxmbufm[i]);
766 				m_freem(sc->jme_rxmbuf[i]);
767 				sc->jme_rxmbuf[i] = NULL;
768 			}
769 			splx(s);
770 			return ENOMEM;
771 		}
772 	}
773 	/* init TX ring */
774 	memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
775 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
776 	    0, JME_NBUFS * sizeof(struct jme_desc),
777 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
778 	for (i = 0; i < JME_NBUFS; i++)
779 		sc->jme_txmbuf[i] = NULL;
780 	sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;
781 
782 	/* Reprogram the station address. */
783 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
784 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
785 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
786 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
787 	    JME_PAR1, eaddr[5] << 8 | eaddr[4]);
788 
789 	/*
790 	 * Configure Tx queue.
791 	 *  Tx priority queue weight value : 0
792 	 *  Tx FIFO threshold for processing next packet : 16QW
793 	 *  Maximum Tx DMA length : 512
794 	 *  Allow Tx DMA burst.
795 	 */
796 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
797 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
798 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
799 	sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
800 	sc->jme_txcsr |= TXCSR_DMA_BURST;
801 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
802 	     JME_TXCSR, sc->jme_txcsr);
803 
804 	/* Set Tx descriptor counter. */
805 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
806 	     JME_TXQDC, JME_NBUFS);
807 
808 	/* Set Tx ring address to the hardware. */
809 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
810 	    JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
811 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
812 	    JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));
813 
814 	/* Configure TxMAC parameters. */
815 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
816 	    TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
817 	    TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);
818 
819 	/*
820 	 * Configure Rx queue.
821 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
822 	 *  FIFO threshold for processing next packet : 128QW
823 	 *  Rx queue 0 select
824 	 *  Max Rx DMA length : 128
825 	 *  Rx descriptor retry : 32
826 	 *  Rx descriptor retry time gap : 256ns
827 	 *  Don't receive runt/bad frame.
828 	 */
829 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
830 	/*
831 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
832 	 * than 4K bytes will suffer from Rx FIFO overruns. So
833 	 * decrease FIFO threshold to reduce the FIFO overruns for
834 	 * frames larger than 4000 bytes.
835 	 * For best performance of standard MTU sized frames use
836 	 * maximum allowable FIFO threshold, 128QW.
837 	 */
838 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
839 	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
840 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
841 	else
842 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
843 	sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
844 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
845 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
846 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
847 	     JME_RXCSR, sc->jme_rxcsr);
848 
849 	/* Set Rx descriptor counter. */
850 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
851 	     JME_RXQDC, JME_NBUFS);
852 
853 	/* Set Rx ring address to the hardware. */
854 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
855 	    JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
856 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
857 	    JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));
858 
859 	/* Clear receive filter. */
860 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
861 	/* Set up the receive filter. */
862 	jme_set_filter(sc);
863 
864 	/*
865 	 * Disable all WOL bits as WOL can interfere normal Rx
866 	 * operation. Also clear WOL detection status bits.
867 	 */
868 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
869 	reg &= ~PMCS_WOL_ENB_MASK;
870 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);
871 
872 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
873 	/*
874 	 * Pad 10bytes right before received frame. This will greatly
875 	 * help Rx performance on strict-alignment architectures as
876 	 * it does not need to copy the frame to align the payload.
877 	 */
878 	reg |= RXMAC_PAD_10BYTES;
879 	if ((ifp->if_capenable &
880 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx|
881 	     IFCAP_CSUM_TCPv6_Rx|IFCAP_CSUM_UDPv6_Rx)) != 0)
882 		reg |= RXMAC_CSUM_ENB;
883 	reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
884 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);
885 
886 	/* Configure general purpose reg0 */
887 	reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
888 	reg &= ~GPREG0_PCC_UNIT_MASK;
889 	/* Set PCC timer resolution to micro-seconds unit. */
890 	reg |= GPREG0_PCC_UNIT_US;
891 	/*
892 	 * Disable all shadow register posting as we have to read
893 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
894 	 * that it's hard to synchronize interrupt status between
895 	 * hardware and software with shadow posting due to
896 	 * requirements of bus_dmamap_sync(9).
897 	 */
898 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
899 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
900 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
901 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
902 	/* Disable posting of DW0. */
903 	reg &= ~GPREG0_POST_DW0_ENB;
904 	/* Clear PME message. */
905 	reg &= ~GPREG0_PME_ENB;
906 	/* Set PHY address. */
907 	reg &= ~GPREG0_PHY_ADDR_MASK;
908 	reg |= sc->jme_phyaddr;
909 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);
910 
911 	/* Configure Tx queue 0 packet completion coalescing. */
912 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
913 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
914 	reg |= PCCTX_COAL_TXQ0;
915 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
916 
917 	/* Configure Rx queue 0 packet completion coalescing. */
918 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
919 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
920 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
921 
922 	/* Disable Timers */
923 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0);
924 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
925 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);
926 
927 	/* Configure retry transmit period, retry limit value. */
928 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
929 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
930 	    TXTRHD_RT_PERIOD_MASK) |
931 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
932 	    TXTRHD_RT_LIMIT_SHIFT));
933 
934 	/* Disable RSS. */
935 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
936 	    JME_RSSC, RSSC_DIS_RSS);
937 
938 	/* Initialize the interrupt mask. */
939 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
940 	     JME_INTR_MASK_SET, JME_INTRS_ENABLE);
941 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
942 	     JME_INTR_STATUS, 0xFFFFFFFF);
943 
944 	/* set media, if not already handling a media change */
945 	if (do_ifinit) {
946 		int error;
947 		if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
948 			error = 0;
949 		else if (error != 0) {
950 			aprint_error_dev(sc->jme_dev, "could not set media\n");
951 			return error;
952 		}
953 	}
954 
955 	/* Program MAC with resolved speed/duplex/flow-control. */
956 	jme_mac_config(sc);
957 
958 	/* Start receiver/transmitter. */
959 	sc->jme_rx_cons = 0;
960 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
961 	    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
962 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
963 	    sc->jme_txcsr | TXCSR_TX_ENB);
964 
965 	/* start ticks calls */
966 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
967 	sc->jme_if.if_flags |= IFF_RUNNING;
968 	sc->jme_if.if_flags &= ~IFF_OACTIVE;
969 	splx(s);
970 	return 0;
971 }
972 
973 
974 int
975 jme_mii_read(device_t self, int phy, int reg)
976 {
977 	struct jme_softc *sc = device_private(self);
978 	int val, i;
979 
980 	/* For FPGA version, PHY address 0 should be ignored. */
981 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
982 		if (phy == 0)
983 			return (0);
984 	} else {
985 		if (sc->jme_phyaddr != phy)
986 			return (0);
987 	}
988 
989 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
990 	    SMI_OP_READ | SMI_OP_EXECUTE |
991 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
992 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
993 		delay(10);
994 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
995 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
996 			break;
997 	}
998 
999 	if (i == 0) {
1000 		aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
1001 		return (0);
1002 	}
1003 
1004 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
1005 }
1006 
1007 void
1008 jme_mii_write(device_t self, int phy, int reg, int val)
1009 {
1010 	struct jme_softc *sc = device_private(self);
1011 	int i;
1012 
1013 	/* For FPGA version, PHY address 0 should be ignored. */
1014 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
1015 		if (phy == 0)
1016 			return;
1017 	} else {
1018 		if (sc->jme_phyaddr != phy)
1019 			return;
1020 	}
1021 
1022 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
1023 	    SMI_OP_WRITE | SMI_OP_EXECUTE |
1024 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
1025 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
1026 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
1027 		delay(10);
1028 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1029 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1030 			break;
1031 	}
1032 
1033 	if (i == 0)
1034 		aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
1035 
1036 	return;
1037 }
1038 
1039 void
1040 jme_statchg(device_t self)
1041 {
1042 	jme_softc_t *sc = device_private(self);
1043 	struct ifnet *ifp = &sc->jme_if;
1044 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING))
1045 		jme_init(ifp, 0);
1046 }
1047 
1048 static void
1049 jme_intr_rx(jme_softc_t *sc) {
1050 	struct mbuf *m, *mhead;
1051 	bus_dmamap_t mmap;
1052 	struct ifnet *ifp = &sc->jme_if;
1053 	uint32_t flags,  buflen;
1054 	int i, ipackets, nsegs, seg, error;
1055 	struct jme_desc *desc;
1056 
1057 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
1058 	    sizeof(struct jme_desc) * JME_NBUFS,
1059 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1060 #ifdef JMEDEBUG_RX
1061 	printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
1062 	    sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
1063 #endif
1064 	ipackets = 0;
1065 	while((le32toh(sc->jme_rxring[sc->jme_rx_cons].flags) & JME_RD_OWN)
1066 	    == 0) {
1067 		i = sc->jme_rx_cons;
1068 		desc = &sc->jme_rxring[i];
1069 #ifdef JMEDEBUG_RX
1070 		printf("rxintr i %d flags 0x%x buflen 0x%x\n",
1071 		    i,  le32toh(desc->flags), le32toh(desc->buflen));
1072 #endif
1073 		if (sc->jme_rxmbuf[i] == NULL) {
1074 			if ((error = jme_add_rxbuf(sc, NULL)) != 0) {
1075 				aprint_error_dev(sc->jme_dev,
1076 				    "can't add new mbuf to empty slot: %d\n",
1077 				    error);
1078 				break;
1079 			}
1080 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1081 			i = sc->jme_rx_cons;
1082 			continue;
1083 		}
1084 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
1085 			break;
1086 
1087 		buflen = le32toh(desc->buflen);
1088 		nsegs = JME_RX_NSEGS(buflen);
1089 		flags = le32toh(desc->flags);
1090 		if ((buflen & JME_RX_ERR_STAT) != 0 ||
1091 		    JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
1092 		    JME_RX_BYTES(buflen) >
1093 		    (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
1094 #ifdef JMEDEBUG_RX
1095 			printf("rx error flags 0x%x buflen 0x%x\n",
1096 			    flags, buflen);
1097 #endif
1098 			ifp->if_ierrors++;
1099 			/* reuse the mbufs */
1100 			for (seg = 0; seg < nsegs; seg++) {
1101 				m = sc->jme_rxmbuf[i];
1102 				sc->jme_rxmbuf[i] = NULL;
1103 				mmap = sc->jme_rxmbufm[i];
1104 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1105 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1106 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1107 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1108 					aprint_error_dev(sc->jme_dev,
1109 					    "can't reuse mbuf: %d\n", error);
1110 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1111 				i = sc->jme_rx_cons;
1112 			}
1113 			continue;
1114 		}
1115 		/* receive this packet */
1116 		mhead = m = sc->jme_rxmbuf[i];
1117 		sc->jme_rxmbuf[i] = NULL;
1118 		mmap = sc->jme_rxmbufm[i];
1119 		bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1120 		    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1121 		bus_dmamap_unload(sc->jme_dmatag, mmap);
1122 		/* add a new buffer to chain */
1123 		if (jme_add_rxbuf(sc, NULL) != 0) {
1124 			if ((error = jme_add_rxbuf(sc, m)) != 0)
1125 				aprint_error_dev(sc->jme_dev,
1126 				    "can't reuse mbuf: %d\n", error);
1127 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1128 			i = sc->jme_rx_cons;
1129 			for (seg = 1; seg < nsegs; seg++) {
1130 				m = sc->jme_rxmbuf[i];
1131 				sc->jme_rxmbuf[i] = NULL;
1132 				mmap = sc->jme_rxmbufm[i];
1133 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1134 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1135 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1136 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1137 					aprint_error_dev(sc->jme_dev,
1138 					    "can't reuse mbuf: %d\n", error);
1139 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1140 				i = sc->jme_rx_cons;
1141 			}
1142 			ifp->if_ierrors++;
1143 			continue;
1144 		}
1145 
1146 		/* build mbuf chain: head, then remaining segments */
1147 		m->m_pkthdr.rcvif = ifp;
1148 		m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
1149 		m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
1150 		    m->m_pkthdr.len;
1151 		m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
1152 		JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1153 		for (seg = 1; seg < nsegs; seg++) {
1154 			i = sc->jme_rx_cons;
1155 			m = sc->jme_rxmbuf[i];
1156 			sc->jme_rxmbuf[i] = NULL;
1157 			mmap = sc->jme_rxmbufm[i];
1158 			bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1159 			    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1160 			bus_dmamap_unload(sc->jme_dmatag, mmap);
1161 			if ((error = jme_add_rxbuf(sc, NULL)) != 0)
1162 				aprint_error_dev(sc->jme_dev,
1163 				    "can't add new mbuf: %d\n", error);
1164 			m->m_flags &= ~M_PKTHDR;
1165 			m_cat(mhead, m);
1166 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1167 		}
1168 		/* and adjust last mbuf's size */
1169 		if (nsegs > 1) {
1170 			m->m_len =
1171 			    JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
1172 		}
1173 		ifp->if_ipackets++;
1174 		ipackets++;
1175 		bpf_mtap(ifp, mhead);
1176 
1177 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
1178 		    (flags & JME_RD_IPV4)) {
1179 			mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1180 			if (!(flags & JME_RD_IPCSUM))
1181 				mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1182 		}
1183 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
1184 		    (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
1185 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1186 			if (!(flags & JME_RD_TCPCSUM))
1187 				mhead->m_pkthdr.csum_flags |=
1188 				    M_CSUM_TCP_UDP_BAD;
1189 		}
1190 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
1191 		    (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
1192 			mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1193 			if (!(flags & JME_RD_UDPCSUM))
1194 				mhead->m_pkthdr.csum_flags |=
1195 				    M_CSUM_TCP_UDP_BAD;
1196 		}
1197 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
1198 		    (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
1199 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
1200 			if (!(flags & JME_RD_TCPCSUM))
1201 				mhead->m_pkthdr.csum_flags |=
1202 				    M_CSUM_TCP_UDP_BAD;
1203 		}
1204 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
1205 		    (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
1206 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
1207 			if (!(flags & JME_RD_UDPCSUM))
1208 				mhead->m_pkthdr.csum_flags |=
1209 				    M_CSUM_TCP_UDP_BAD;
1210 		}
1211 		if (flags & JME_RD_VLAN_TAG) {
1212 			/* pass to vlan_input() */
1213 			VLAN_INPUT_TAG(ifp, mhead,
1214 			    (flags & JME_RD_VLAN_MASK), continue);
1215 		}
1216 		(*ifp->if_input)(ifp, mhead);
1217 	}
1218 	if (ipackets)
1219 		rnd_add_uint32(&sc->rnd_source, ipackets);
1220 }
1221 
1222 static int
1223 jme_intr(void *v)
1224 {
1225 	jme_softc_t *sc = v;
1226 	uint32_t istatus;
1227 
1228 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1229 	     JME_INTR_STATUS);
1230 	if (istatus == 0 || istatus == 0xFFFFFFFF)
1231 		return 0;
1232 	/* Disable interrupts. */
1233 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1234 	    JME_INTR_MASK_CLR, 0xFFFFFFFF);
1235 again:
1236 	/* and update istatus */
1237 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1238 	     JME_INTR_STATUS);
1239 	if ((istatus & JME_INTRS_CHECK) == 0)
1240 		goto done;
1241 	/* Reset PCC counter/timer and Ack interrupts. */
1242 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1243 		istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1244 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1245 		istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1246 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1247 	     JME_INTR_STATUS, istatus);
1248 
1249 	if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
1250 		goto done;
1251 #ifdef JMEDEBUG_RX
1252 	printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
1253 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
1254 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
1255 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
1256 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
1257 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
1258 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
1259 	printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
1260 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
1261 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
1262 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
1263 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
1264 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
1265 #endif
1266 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1267 		jme_intr_rx(sc);
1268 	if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
1269 		/*
1270 		 * Notify hardware availability of new Rx
1271 		 * buffers.
1272 		 * Reading RXCSR takes very long time under
1273 		 * heavy load so cache RXCSR value and writes
1274 		 * the ORed value with the kick command to
1275 		 * the RXCSR. This saves one register access
1276 		 * cycle.
1277 		 */
1278 		sc->jme_rx_cons = 0;
1279 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1280 		    JME_RXCSR,
1281 		    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
1282 	}
1283 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1284 		jme_ifstart(&sc->jme_if);
1285 
1286 	goto again;
1287 
1288 done:
1289 	/* enable interrupts. */
1290 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1291 	    JME_INTR_MASK_SET, JME_INTRS_ENABLE);
1292 	return 1;
1293 }
1294 
1295 
1296 static int
1297 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1298 {
1299 	struct jme_softc *sc = ifp->if_softc;
1300 	int s, error;
1301 	struct ifreq *ifr;
1302 	struct ifcapreq *ifcr;
1303 
1304 	s = splnet();
1305 	/*
1306 	 * we can't support at the same time jumbo frames and
1307 	 * TX checksums offload/TSO
1308 	 */
1309 	switch(cmd) {
1310 	case SIOCSIFMTU:
1311 		ifr = data;
1312 		if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
1313 		    (ifp->if_capenable & (
1314 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1315 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1316 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1317 			splx(s);
1318 			return EINVAL;
1319 		}
1320 		break;
1321 	case SIOCSIFCAP:
1322 		ifcr = data;
1323 		if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
1324 		    (ifcr->ifcr_capenable & (
1325 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1326 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1327 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1328 			splx(s);
1329 			return EINVAL;
1330 		}
1331 		break;
1332 	}
1333 
1334 	error = ether_ioctl(ifp, cmd, data);
1335 	if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
1336 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1337 			jme_set_filter(sc);
1338 			error = 0;
1339 		} else {
1340 			error = jme_init(ifp, 0);
1341 		}
1342 	}
1343 	splx(s);
1344 	return error;
1345 }
1346 
1347 static int
1348 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1349 {
1350 	struct jme_desc *txd;
1351 	struct jme_desc *desc;
1352 	struct mbuf *m;
1353 	struct m_tag *mtag;
1354 	int error, i, prod, headdsc, nsegs;
1355 	uint32_t cflags, tso_segsz;
1356 
1357 	if (((*m_head)->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0){
1358 		/*
1359 		 * Due to the adherence to NDIS specification JMC250
1360 		 * assumes upper stack computed TCP pseudo checksum
1361 		 * without including payload length. This breaks
1362 		 * checksum offload for TSO case so recompute TCP
1363 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1364 		 * be much burden on modern CPUs.
1365 		 */
1366 		bool v4 = ((*m_head)->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1367 		int iphl = v4 ?
1368 		    M_CSUM_DATA_IPv4_IPHL((*m_head)->m_pkthdr.csum_data) :
1369 		    M_CSUM_DATA_IPv6_HL((*m_head)->m_pkthdr.csum_data);
1370 		/*
1371 		 * note: we support vlan offloading, so we should never have
1372 		 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
1373 		 * right.
1374 		 */
1375 		int hlen = ETHER_HDR_LEN + iphl;
1376 
1377 		if (__predict_false((*m_head)->m_len <
1378 		    (hlen + sizeof(struct tcphdr)))) {
1379 			   /*
1380 			    * TCP/IP headers are not in the first mbuf; we need
1381 			    * to do this the slow and painful way.  Let's just
1382 			    * hope this doesn't happen very often.
1383 			    */
1384 			   struct tcphdr th;
1385 
1386 			   m_copydata((*m_head), hlen, sizeof(th), &th);
1387 			   if (v4) {
1388 				    struct ip ip;
1389 
1390 				    m_copydata((*m_head), ETHER_HDR_LEN,
1391 				    sizeof(ip), &ip);
1392 				    ip.ip_len = 0;
1393 				    m_copyback((*m_head),
1394 					 ETHER_HDR_LEN + offsetof(struct ip, ip_len),
1395 					 sizeof(ip.ip_len), &ip.ip_len);
1396 				    th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1397 					 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1398 			   } else {
1399 #if INET6
1400 				    struct ip6_hdr ip6;
1401 
1402 				    m_copydata((*m_head), ETHER_HDR_LEN,
1403 				    sizeof(ip6), &ip6);
1404 				    ip6.ip6_plen = 0;
1405 				    m_copyback((*m_head), ETHER_HDR_LEN +
1406 				    offsetof(struct ip6_hdr, ip6_plen),
1407 					 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1408 				    th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1409 					 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1410 #endif /* INET6 */
1411 			   }
1412 			   m_copyback((*m_head),
1413 			    hlen + offsetof(struct tcphdr, th_sum),
1414 				sizeof(th.th_sum), &th.th_sum);
1415 
1416 			   hlen += th.th_off << 2;
1417 		} else {
1418 			   /*
1419 			    * TCP/IP headers are in the first mbuf; we can do
1420 			    * this the easy way.
1421 			    */
1422 			   struct tcphdr *th;
1423 
1424 			   if (v4) {
1425 				    struct ip *ip =
1426 					 (void *)(mtod((*m_head), char *) +
1427 					ETHER_HDR_LEN);
1428 				    th = (void *)(mtod((*m_head), char *) + hlen);
1429 
1430 				    ip->ip_len = 0;
1431 				    th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1432 					 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1433 			   } else {
1434 #if INET6
1435 				    struct ip6_hdr *ip6 =
1436 				    (void *)(mtod((*m_head), char *) +
1437 				    ETHER_HDR_LEN);
1438 				    th = (void *)(mtod((*m_head), char *) + hlen);
1439 
1440 				    ip6->ip6_plen = 0;
1441 				    th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1442 					 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1443 #endif /* INET6 */
1444 			   }
1445 			hlen += th->th_off << 2;
1446 		}
1447 
1448 	}
1449 
1450 	prod = sc->jme_tx_prod;
1451 	txd = &sc->jme_txring[prod];
1452 
1453 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
1454 	    *m_head, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1455 	if (error) {
1456 		if (error == EFBIG) {
1457 			log(LOG_ERR, "%s: Tx packet consumes too many "
1458 			    "DMA segments, dropping...\n",
1459 			    device_xname(sc->jme_dev));
1460 			m_freem(*m_head);
1461 			m_head = NULL;
1462 		}
1463 		return (error);
1464 	}
1465 	/*
1466 	 * Check descriptor overrun. Leave one free descriptor.
1467 	 * Since we always use 64bit address mode for transmitting,
1468 	 * each Tx request requires one more dummy descriptor.
1469 	 */
1470 	nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
1471 #ifdef JMEDEBUG_TX
1472 	printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
1473 #endif
1474 	if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
1475 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
1476 		return (ENOBUFS);
1477 	}
1478 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
1479 	    0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1480 
1481 	m = *m_head;
1482 	cflags = 0;
1483 	tso_segsz = 0;
1484 	/* Configure checksum offload and TSO. */
1485 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0) {
1486 		tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
1487 		cflags |= JME_TD_TSO;
1488 	} else {
1489 		if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
1490 			cflags |= JME_TD_IPCSUM;
1491 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_TCPv6)) != 0)
1492 			cflags |= JME_TD_TCPCSUM;
1493 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4|M_CSUM_UDPv6)) != 0)
1494 			cflags |= JME_TD_UDPCSUM;
1495 	}
1496 	/* Configure VLAN. */
1497 	if ((mtag = VLAN_OUTPUT_TAG(&sc->jme_ec, m)) != NULL) {
1498 		cflags |= (VLAN_TAG_VALUE(mtag) & JME_TD_VLAN_MASK);
1499 		cflags |= JME_TD_VLAN_TAG;
1500 	}
1501 
1502 	desc = &sc->jme_txring[prod];
1503 	desc->flags = htole32(cflags);
1504 	desc->buflen = htole32(tso_segsz);
1505 	desc->addr_hi = htole32(m->m_pkthdr.len);
1506 	desc->addr_lo = 0;
1507 	headdsc = prod;
1508 	sc->jme_tx_cnt++;
1509 	JME_DESC_INC(prod, JME_NBUFS);
1510 	for (i = 0; i < nsegs; i++) {
1511 		desc = &sc->jme_txring[prod];
1512 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1513 		desc->buflen =
1514 		    htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
1515 		desc->addr_hi = htole32(
1516 		    JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1517 		desc->addr_lo = htole32(
1518 		    JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1519 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1520 		    prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
1521 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1522 		sc->jme_txmbuf[prod] = NULL;
1523 		sc->jme_tx_cnt++;
1524 		JME_DESC_INC(prod, JME_NBUFS);
1525 	}
1526 
1527 	/* Update producer index. */
1528 	sc->jme_tx_prod = prod;
1529 #ifdef JMEDEBUG_TX
1530 	printf("jme_encap prod now %d\n", sc->jme_tx_prod);
1531 #endif
1532 	/*
1533 	 * Finally request interrupt and give the first descriptor
1534 	 * owenership to hardware.
1535 	 */
1536 	desc = &sc->jme_txring[headdsc];
1537 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1538 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1539 	    headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
1540 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1541 
1542 	sc->jme_txmbuf[headdsc] = m;
1543 	return (0);
1544 }
1545 
1546 static void
1547 jme_txeof(struct jme_softc *sc)
1548 {
1549 	struct ifnet *ifp;
1550 	struct jme_desc *desc;
1551 	uint32_t status;
1552 	int cons, cons0, nsegs, seg;
1553 
1554 	ifp = &sc->jme_if;
1555 
1556 #ifdef JMEDEBUG_TX
1557 	printf("jme_txeof cons %d prod %d\n",
1558 	    sc->jme_tx_cons, sc->jme_tx_prod);
1559 	printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1560 	    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1561 	    "JME_TXTRHD 0x%x\n",
1562 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1563 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1564 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1565 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1566 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1567 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1568 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1569 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1570 	for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
1571 		desc = &sc->jme_txring[cons];
1572 		printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
1573 		    desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
1574 		JME_DESC_INC(cons, JME_NBUFS);
1575 	}
1576 #endif
1577 
1578 	cons = sc->jme_tx_cons;
1579 	if (cons == sc->jme_tx_prod)
1580 		return;
1581 
1582 	/*
1583 	 * Go through our Tx list and free mbufs for those
1584 	 * frames which have been transmitted.
1585 	 */
1586 	for (; cons != sc->jme_tx_prod;) {
1587 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1588 		    cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
1589 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1590 
1591 		desc = &sc->jme_txring[cons];
1592 		status = le32toh(desc->flags);
1593 #ifdef JMEDEBUG_TX
1594 		printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
1595 		    sc->jme_txmbufm[cons]->dm_nsegs);
1596 #endif
1597 		if (status & JME_TD_OWN)
1598 			break;
1599 
1600 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
1601 			ifp->if_oerrors++;
1602 		else {
1603 			ifp->if_opackets++;
1604 			if ((status & JME_TD_COLLISION) != 0)
1605 				ifp->if_collisions +=
1606 				    le32toh(desc->buflen) &
1607 				    JME_TD_BUF_LEN_MASK;
1608 		}
1609 		/*
1610 		 * Only the first descriptor of multi-descriptor
1611 		 * transmission is updated so driver have to skip entire
1612 		 * chained buffers for the transmiited frame. In other
1613 		 * words, JME_TD_OWN bit is valid only at the first
1614 		 * descriptor of a multi-descriptor transmission.
1615 		 */
1616 		nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
1617 		cons0 = cons;
1618 		JME_DESC_INC(cons, JME_NBUFS);
1619 		for (seg = 1; seg < nsegs + 1; seg++) {
1620 			bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1621 			    cons * sizeof(struct jme_desc),
1622 			    sizeof(struct jme_desc),
1623 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1624 			sc->jme_txring[cons].flags = 0;
1625 			JME_DESC_INC(cons, JME_NBUFS);
1626 		}
1627 		/* Reclaim transferred mbufs. */
1628 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
1629 		    0, sc->jme_txmbufm[cons0]->dm_mapsize,
1630 		    BUS_DMASYNC_POSTWRITE);
1631 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);
1632 
1633 		KASSERT(sc->jme_txmbuf[cons0] != NULL);
1634 		m_freem(sc->jme_txmbuf[cons0]);
1635 		sc->jme_txmbuf[cons0] = NULL;
1636 		sc->jme_tx_cnt -= nsegs + 1;
1637 		KASSERT(sc->jme_tx_cnt >= 0);
1638 		sc->jme_if.if_flags &= ~IFF_OACTIVE;
1639 	}
1640 	sc->jme_tx_cons = cons;
1641 	/* Unarm watchog timer when there is no pending descriptors in queue. */
1642 	if (sc->jme_tx_cnt == 0)
1643 		ifp->if_timer = 0;
1644 #ifdef JMEDEBUG_TX
1645 	printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
1646 #endif
1647 }
1648 
1649 static void
1650 jme_ifstart(struct ifnet *ifp)
1651 {
1652 	jme_softc_t *sc = ifp->if_softc;
1653 	struct mbuf *mb_head;
1654 	int enq;
1655 
1656 	/*
1657 	 * check if we can free some desc.
1658 	 * Clear TX interrupt status to reset TX coalescing counters.
1659 	 */
1660 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1661 	     JME_INTR_STATUS, INTR_TXQ_COMP);
1662 	jme_txeof(sc);
1663 
1664 	if ((sc->jme_if.if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1665 		return;
1666 	for (enq = 0;; enq++) {
1667 nexttx:
1668 		/* Grab a paquet for output */
1669 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1670 		if (mb_head == NULL) {
1671 #ifdef JMEDEBUG_TX
1672 			printf("%s: nothing to send\n", __func__);
1673 #endif
1674 			break;
1675 		}
1676 		/* try to add this mbuf to the TX ring */
1677 		if (jme_encap(sc, &mb_head)) {
1678 			if (mb_head == NULL) {
1679 				ifp->if_oerrors++;
1680 				/* packet dropped, try next one */
1681 				goto nexttx;
1682 			}
1683 			/* resource shortage, try again later */
1684 			IF_PREPEND(&ifp->if_snd, mb_head);
1685 			ifp->if_flags |= IFF_OACTIVE;
1686 			break;
1687 		}
1688 		/* Pass packet to bpf if there is a listener */
1689 		bpf_mtap(ifp, mb_head);
1690 	}
1691 #ifdef JMEDEBUG_TX
1692 	printf("jme_ifstart enq %d\n", enq);
1693 #endif
1694 	if (enq) {
1695 		/*
1696 		 * Set a 5 second timer just in case we don't hear from
1697 		 * the card again.
1698 		 */
1699 		ifp->if_timer = 5;
1700 		/*
1701 		 * Reading TXCSR takes very long time under heavy load
1702 		 * so cache TXCSR value and writes the ORed value with
1703 		 * the kick command to the TXCSR. This saves one register
1704 		 * access cycle.
1705 		 */
1706 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
1707 		  sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1708 #ifdef JMEDEBUG_TX
1709 		printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1710 		    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1711 		    "JME_TXTRHD 0x%x\n",
1712 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1713 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1714 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1715 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1716 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1717 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1718 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1719 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1720 #endif
1721 	}
1722 }
1723 
1724 static void
1725 jme_ifwatchdog(struct ifnet *ifp)
1726 {
1727 	jme_softc_t *sc = ifp->if_softc;
1728 
1729 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1730 		return;
1731 	printf("%s: device timeout\n", device_xname(sc->jme_dev));
1732 	ifp->if_oerrors++;
1733 	jme_init(ifp, 0);
1734 }
1735 
1736 static int
1737 jme_mediachange(struct ifnet *ifp)
1738 {
1739 	int error;
1740 	jme_softc_t *sc = ifp->if_softc;
1741 
1742 	if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
1743 		error = 0;
1744 	else if (error != 0) {
1745 		aprint_error_dev(sc->jme_dev, "could not set media\n");
1746 		return error;
1747 	}
1748 	return 0;
1749 }
1750 
1751 static void
1752 jme_ticks(void *v)
1753 {
1754 	jme_softc_t *sc = v;
1755 	int s = splnet();
1756 
1757 	/* Tick the MII. */
1758 	mii_tick(&sc->jme_mii);
1759 
1760 	/* every seconds */
1761 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
1762 	splx(s);
1763 }
1764 
1765 static void
1766 jme_mac_config(jme_softc_t *sc)
1767 {
1768 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1769 	struct mii_data *mii = &sc->jme_mii;
1770 
1771 	ghc = 0;
1772 	rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1773 	rxmac &= ~RXMAC_FC_ENB;
1774 	txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
1775 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1776 	txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
1777 	txpause &= ~TXPFC_PAUSE_ENB;
1778 
1779 	if (mii->mii_media_active & IFM_FDX) {
1780 		ghc |= GHC_FULL_DUPLEX;
1781 		rxmac &= ~RXMAC_COLL_DET_ENB;
1782 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1783 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1784 		    TXMAC_FRAME_BURST);
1785 		/* Disable retry transmit timer/retry limit. */
1786 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1787 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
1788 		    & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1789 	} else {
1790 		rxmac |= RXMAC_COLL_DET_ENB;
1791 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1792 		/* Enable retry transmit timer/retry limit. */
1793 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1794 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)		    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1795 	}
1796 	/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1797 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1798 	case IFM_10_T:
1799 		ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100;
1800 		break;
1801 	case IFM_100_TX:
1802 		ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100;
1803 		break;
1804 	case IFM_1000_T:
1805 		ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000;
1806 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1807 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1808 		break;
1809 	default:
1810 		break;
1811 	}
1812 	if ((sc->jme_flags & JME_FLAG_GIGA) &&
1813 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
1814 		/*
1815 		 * Workaround occasional packet loss issue of JMC250 A2
1816 		 * when it runs on half-duplex media.
1817 		 */
1818 #ifdef JMEDEBUG
1819 		printf("JME250 A2 workaround\n");
1820 #endif
1821 		gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1822 		    JME_GPREG1);
1823 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1824 			gpreg &= ~GPREG1_HDPX_FIX;
1825 		else
1826 			gpreg |= GPREG1_HDPX_FIX;
1827 		bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1828 		    JME_GPREG1, gpreg);
1829 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
1830 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
1831 			/* Extend interface FIFO depth. */
1832 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1833 			    0x1B, 0x0000);
1834 		} else {
1835 			/* Select default interface FIFO depth. */
1836 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1837 			    0x1B, 0x0004);
1838 		}
1839 	}
1840 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
1841 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
1842 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
1843 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
1844 }
1845 
1846 static void
1847 jme_set_filter(jme_softc_t *sc)
1848 {
1849 	struct ifnet *ifp = &sc->jme_if;
1850 	struct ether_multistep step;
1851 	struct ether_multi *enm;
1852 	uint32_t hash[2] = {0, 0};
1853 	int i;
1854 	uint32_t rxcfg;
1855 
1856 	rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1857 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
1858 	    RXMAC_ALLMULTI);
1859 	/* Always accept frames destined to our station address. */
1860 	rxcfg |= RXMAC_UNICAST;
1861 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1862 		rxcfg |= RXMAC_BROADCAST;
1863 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1864 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1865 			rxcfg |= RXMAC_PROMISC;
1866 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1867 			rxcfg |= RXMAC_ALLMULTI;
1868 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1869 		     JME_MAR0, 0xFFFFFFFF);
1870 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1871 		     JME_MAR1, 0xFFFFFFFF);
1872 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1873 		     JME_RXMAC, rxcfg);
1874 		return;
1875 	}
1876 	/*
1877 	 * Set up the multicast address filter by passing all multicast
1878 	 * addresses through a CRC generator, and then using the low-order
1879 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1880 	 * high order bits select the register, while the rest of the bits
1881 	 * select the bit within the register.
1882 	 */
1883 	rxcfg |= RXMAC_MULTICAST;
1884 	memset(hash, 0, sizeof(hash));
1885 
1886 	ETHER_FIRST_MULTI(step, &sc->jme_ec, enm);
1887 	while (enm != NULL) {
1888 #ifdef JEMDBUG
1889 		printf("%s: addrs %s %s\n", __func__,
1890 		   ether_sprintf(enm->enm_addrlo),
1891 		   ether_sprintf(enm->enm_addrhi));
1892 #endif
1893 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
1894 			i = ether_crc32_be(enm->enm_addrlo, 6);
1895 			/* Just want the 6 least significant bits. */
1896 			i &= 0x3f;
1897 			hash[i / 32] |= 1 << (i%32);
1898 		} else {
1899 			hash[0] = hash[1] = 0xffffffff;
1900 			sc->jme_if.if_flags |= IFF_ALLMULTI;
1901 			break;
1902 		}
1903 		ETHER_NEXT_MULTI(step, enm);
1904 	}
1905 #ifdef JMEDEBUG
1906 	printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
1907 #endif
1908 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
1909 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
1910 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
1911 }
1912 
1913 #if 0
1914 static int
1915 jme_multicast_hash(uint8_t *a)
1916 {
1917 	int hash;
1918 
1919 #define DA(addr,bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
1920 #define xor8(a,b,c,d,e,f,g,h)						\
1921 	(((a != 0) + (b != 0) + (c != 0) + (d != 0) + 			\
1922 	  (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
1923 
1924 	hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
1925 	    DA(a,36), DA(a,42));
1926 	hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
1927 	    DA(a,37), DA(a,43)) << 1;
1928 	hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
1929 	    DA(a,38), DA(a,44)) << 2;
1930 	hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
1931 	    DA(a,39), DA(a,45)) << 3;
1932 	hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
1933 	    DA(a,40), DA(a,46)) << 4;
1934 	hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
1935 	    DA(a,41), DA(a,47)) << 5;
1936 
1937 	return hash;
1938 }
1939 #endif
1940 
1941 static int
1942 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
1943 {
1944 	 uint32_t reg;
1945 	 int i;
1946 
1947 	 *val = 0;
1948 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1949 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1950 		      JME_SMBCSR);
1951 		  if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
1952 			   break;
1953 		  delay(10);
1954 	 }
1955 
1956 	 if (i == 0) {
1957 		  aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
1958 		  return (ETIMEDOUT);
1959 	 }
1960 
1961 	 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
1962 	 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
1963 	     JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
1964 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1965 		  delay(10);
1966 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1967 		      JME_SMBINTF);
1968 		  if ((reg & SMBINTF_CMD_TRIGGER) == 0)
1969 			   break;
1970 	 }
1971 
1972 	 if (i == 0) {
1973 		  aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
1974 		  return (ETIMEDOUT);
1975 	 }
1976 
1977 	 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
1978 	 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
1979 	 return (0);
1980 }
1981 
1982 
1983 static int
1984 jme_eeprom_macaddr(struct jme_softc *sc)
1985 {
1986 	uint8_t eaddr[ETHER_ADDR_LEN];
1987 	uint8_t fup, reg, val;
1988 	uint32_t offset;
1989 	int match;
1990 
1991 	offset = 0;
1992 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1993 	    fup != JME_EEPROM_SIG0)
1994 		return (ENOENT);
1995 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1996 	    fup != JME_EEPROM_SIG1)
1997 		return (ENOENT);
1998 	match = 0;
1999 	do {
2000 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
2001 			break;
2002 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
2003 		    == (fup & (JME_EEPROM_FUNC_MASK|JME_EEPROM_PAGE_MASK))) {
2004 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
2005 				break;
2006 			if (reg >= JME_PAR0 &&
2007 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
2008 				if (jme_eeprom_read_byte(sc, offset + 2,
2009 				    &val) != 0)
2010 					break;
2011 				eaddr[reg - JME_PAR0] = val;
2012 				match++;
2013 			}
2014 		}
2015 		if (fup & JME_EEPROM_DESC_END)
2016 			break;
2017 
2018 		/* Try next eeprom descriptor. */
2019 		offset += JME_EEPROM_DESC_BYTES;
2020 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
2021 
2022 	if (match == ETHER_ADDR_LEN) {
2023 		memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN);
2024 		return (0);
2025 	}
2026 
2027 	return (ENOENT);
2028 }
2029 
2030 static int
2031 jme_reg_macaddr(struct jme_softc *sc)
2032 {
2033 	uint32_t par0, par1;
2034 
2035 	par0 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0);
2036 	par1 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1);
2037 	par1 &= 0xffff;
2038 	if ((par0 == 0 && par1 == 0) ||
2039 	    (par0 == 0xffffffff && par1 == 0xffff)) {
2040 		return (ENOENT);
2041 	} else {
2042 		sc->jme_enaddr[0] = (par0 >> 0) & 0xff;
2043 		sc->jme_enaddr[1] = (par0 >> 8) & 0xff;
2044 		sc->jme_enaddr[2] = (par0 >> 16) & 0xff;
2045 		sc->jme_enaddr[3] = (par0 >> 24) & 0xff;
2046 		sc->jme_enaddr[4] = (par1 >> 0) & 0xff;
2047 		sc->jme_enaddr[5] = (par1 >> 8) & 0xff;
2048 	}
2049 	return (0);
2050 }
2051 
2052 /*
2053  * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
2054  * set up in jme_pci_attach()
2055  */
2056 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
2057 {
2058 	int rc;
2059 	const struct sysctlnode *node;
2060 
2061 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2062 	    0, CTLTYPE_NODE, "hw", NULL,
2063 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2064 		goto err;
2065 	}
2066 
2067 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2068 	    0, CTLTYPE_NODE, "jme",
2069 	    SYSCTL_DESCR("jme interface controls"),
2070 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2071 		goto err;
2072 	}
2073 
2074 	jme_root_num = node->sysctl_num;
2075 	return;
2076 
2077 err:
2078 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2079 }
2080 
2081 static int
2082 jme_sysctl_intrxto(SYSCTLFN_ARGS)
2083 {
2084 	int error, t;
2085 	struct sysctlnode node;
2086 	struct jme_softc *sc;
2087 	uint32_t reg;
2088 
2089 	node = *rnode;
2090 	sc = node.sysctl_data;
2091 	t = sc->jme_intrxto;
2092 	node.sysctl_data = &t;
2093 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2094 	if (error || newp == NULL)
2095 		return error;
2096 
2097 	if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
2098 		return EINVAL;
2099 
2100 	/*
2101 	 * update the softc with sysctl-changed value, and mark
2102 	 * for hardware update
2103 	 */
2104 	sc->jme_intrxto = t;
2105 	/* Configure Rx queue 0 packet completion coalescing. */
2106 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2107 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2108 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2109 	return 0;
2110 }
2111 
2112 static int
2113 jme_sysctl_intrxct(SYSCTLFN_ARGS)
2114 {
2115 	int error, t;
2116 	struct sysctlnode node;
2117 	struct jme_softc *sc;
2118 	uint32_t reg;
2119 
2120 	node = *rnode;
2121 	sc = node.sysctl_data;
2122 	t = sc->jme_intrxct;
2123 	node.sysctl_data = &t;
2124 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2125 	if (error || newp == NULL)
2126 		return error;
2127 
2128 	if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
2129 		return EINVAL;
2130 
2131 	/*
2132 	 * update the softc with sysctl-changed value, and mark
2133 	 * for hardware update
2134 	 */
2135 	sc->jme_intrxct = t;
2136 	/* Configure Rx queue 0 packet completion coalescing. */
2137 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2138 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2139 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2140 	return 0;
2141 }
2142 
2143 static int
2144 jme_sysctl_inttxto(SYSCTLFN_ARGS)
2145 {
2146 	int error, t;
2147 	struct sysctlnode node;
2148 	struct jme_softc *sc;
2149 	uint32_t reg;
2150 
2151 	node = *rnode;
2152 	sc = node.sysctl_data;
2153 	t = sc->jme_inttxto;
2154 	node.sysctl_data = &t;
2155 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2156 	if (error || newp == NULL)
2157 		return error;
2158 
2159 	if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
2160 		return EINVAL;
2161 
2162 	/*
2163 	 * update the softc with sysctl-changed value, and mark
2164 	 * for hardware update
2165 	 */
2166 	sc->jme_inttxto = t;
2167 	/* Configure Tx queue 0 packet completion coalescing. */
2168 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2169 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2170 	reg |= PCCTX_COAL_TXQ0;
2171 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2172 	return 0;
2173 }
2174 
2175 static int
2176 jme_sysctl_inttxct(SYSCTLFN_ARGS)
2177 {
2178 	int error, t;
2179 	struct sysctlnode node;
2180 	struct jme_softc *sc;
2181 	uint32_t reg;
2182 
2183 	node = *rnode;
2184 	sc = node.sysctl_data;
2185 	t = sc->jme_inttxct;
2186 	node.sysctl_data = &t;
2187 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2188 	if (error || newp == NULL)
2189 		return error;
2190 
2191 	if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
2192 		return EINVAL;
2193 
2194 	/*
2195 	 * update the softc with sysctl-changed value, and mark
2196 	 * for hardware update
2197 	 */
2198 	sc->jme_inttxct = t;
2199 	/* Configure Tx queue 0 packet completion coalescing. */
2200 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2201 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2202 	reg |= PCCTX_COAL_TXQ0;
2203 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2204 	return 0;
2205 }
2206