xref: /netbsd-src/sys/dev/pci/if_jme.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: if_jme.c,v 1.13 2010/01/19 22:07:01 pooka Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 
54 
55 /*
56  * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
57  * Ethernet Controllers.
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.13 2010/01/19 22:07:01 pooka Exp $");
62 
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/mbuf.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/ioctl.h>
70 #include <sys/errno.h>
71 #include <sys/malloc.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>	/* only for declaration of wakeup() used by vm.h */
74 #include <sys/device.h>
75 #include <sys/syslog.h>
76 #include <sys/sysctl.h>
77 
78 #include <net/if.h>
79 #if defined(SIOCSIFMEDIA)
80 #include <net/if_media.h>
81 #endif
82 #include <net/if_types.h>
83 #include <net/if_dl.h>
84 #include <net/route.h>
85 #include <net/netisr.h>
86 
87 #include <net/bpf.h>
88 #include <net/bpfdesc.h>
89 
90 #include "rnd.h"
91 #if NRND > 0
92 #include <sys/rnd.h>
93 #endif
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/ip.h>
98 
99 #ifdef INET
100 #include <netinet/in_var.h>
101 #endif
102 
103 #include <netinet/tcp.h>
104 
105 #include <net/if_ether.h>
106 #include <uvm/uvm_extern.h>
107 #if defined(INET)
108 #include <netinet/if_inarp.h>
109 #endif
110 
111 #include <sys/bus.h>
112 #include <sys/intr.h>
113 
114 #include <dev/pci/pcireg.h>
115 #include <dev/pci/pcivar.h>
116 #include <dev/pci/pcidevs.h>
117 #include <dev/pci/if_jmereg.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 
122 struct jme_product_desc {
123 	u_int32_t jme_product;
124 	const char *jme_desc;
125 };
126 
127 /* number of entries in transmit and receive rings */
128 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))
129 
130 #define JME_DESC_INC(x, y)	((x) = ((x) + 1) % (y))
131 
132 /* Water mark to kick reclaiming Tx buffers. */
133 #define JME_TX_DESC_HIWAT	(JME_NBUFS - (((JME_NBUFS) * 3) / 10))
134 
135 
136 struct jme_softc {
137 	device_t jme_dev;		/* base device */
138 	bus_space_tag_t jme_bt_mac;
139 	bus_space_handle_t jme_bh_mac;  /* Mac registers */
140 	bus_space_tag_t jme_bt_phy;
141 	bus_space_handle_t jme_bh_phy;  /* PHY registers */
142 	bus_space_tag_t jme_bt_misc;
143 	bus_space_handle_t jme_bh_misc; /* Misc registers */
144 	bus_dma_tag_t jme_dmatag;
145 	bus_dma_segment_t jme_txseg;	/* transmit ring seg */
146 	bus_dmamap_t jme_txmap;		/* transmit ring DMA map */
147 	struct jme_desc* jme_txring;	/* transmit ring */
148 	bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
149 	struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
150 	int jme_tx_cons;		/* transmit ring consumer */
151 	int jme_tx_prod;		/* transmit ring producer */
152 	int jme_tx_cnt;			/* transmit ring active count */
153 	bus_dma_segment_t jme_rxseg;	/* receive ring seg */
154 	bus_dmamap_t jme_rxmap;		/* receive ring DMA map */
155 	struct jme_desc* jme_rxring;	/* receive ring */
156 	bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
157 	struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
158 	int jme_rx_cons;		/* receive ring consumer */
159 	int jme_rx_prod;		/* receive ring producer */
160 	void* jme_ih;			/* our interrupt */
161 	struct ethercom jme_ec;
162 	struct callout jme_tick_ch;	/* tick callout */
163 	u_int8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
164 	u_int8_t jme_phyaddr;		/* address of integrated phy */
165 	u_int8_t jme_chip_rev;		/* chip revision */
166 	u_int8_t jme_rev;		/* PCI revision */
167 	mii_data_t jme_mii;		/* mii bus */
168 	u_int32_t jme_flags;		/* device features, see below */
169 	uint32_t jme_txcsr;		/* TX config register */
170 	uint32_t jme_rxcsr;		/* RX config register */
171 #if NRND > 0
172 	rndsource_element_t rnd_source;
173 #endif
174 	/* interrupt coalition parameters */
175 	struct sysctllog *jme_clog;
176 	int jme_intrxto;		/* interrupt RX timeout */
177 	int jme_intrxct;		/* interrupt RX packets counter */
178 	int jme_inttxto;		/* interrupt TX timeout */
179 	int jme_inttxct;		/* interrupt TX packets counter */
180 };
181 
182 #define JME_FLAG_FPGA	0x0001 /* FPGA version */
183 #define JME_FLAG_GIGA	0x0002 /* giga Ethernet capable */
184 
185 
186 #define jme_if	jme_ec.ec_if
187 #define jme_bpf	jme_if.if_bpf
188 
189 typedef struct jme_softc jme_softc_t;
190 typedef u_long ioctl_cmd_t;
191 
192 static int jme_pci_match(device_t, cfdata_t, void *);
193 static void jme_pci_attach(device_t, device_t, void *);
194 static void jme_intr_rx(jme_softc_t *);
195 static int jme_intr(void *);
196 
197 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
198 static int jme_mediachange(struct ifnet *);
199 static void jme_ifwatchdog(struct ifnet *);
200 static bool jme_shutdown(device_t, int);
201 
202 static void jme_txeof(struct jme_softc *);
203 static void jme_ifstart(struct ifnet *);
204 static void jme_reset(jme_softc_t *);
205 static int  jme_ifinit(struct ifnet *);
206 static int  jme_init(struct ifnet *, int);
207 static void jme_stop(struct ifnet *, int);
208 // static void jme_restart(void *);
209 static void jme_ticks(void *);
210 static void jme_mac_config(jme_softc_t *);
211 static void jme_set_filter(jme_softc_t *);
212 
213 int jme_mii_read(device_t, int, int);
214 void jme_mii_write(device_t, int, int, int);
215 void jme_statchg(device_t);
216 
217 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
218 static int jme_eeprom_macaddr(struct jme_softc *);
219 
220 #define JME_TIMEOUT		1000
221 #define JME_PHY_TIMEOUT		1000
222 #define JME_EEPROM_TIMEOUT	1000
223 
224 static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
225 static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
226 static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
227 static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
228 static int jme_root_num;
229 
230 
231 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
232     jme_pci_match, jme_pci_attach, NULL, NULL);
233 
234 static const struct jme_product_desc jme_products[] = {
235 	{ PCI_PRODUCT_JMICRON_JMC250,
236 	  "JMicron JMC250 Gigabit Ethernet Controller" },
237 	{ PCI_PRODUCT_JMICRON_JMC260,
238 	  "JMicron JMC260 Gigabit Ethernet Controller" },
239 	{ 0, NULL },
240 };
241 
242 static const struct jme_product_desc *jme_lookup_product(uint32_t);
243 
244 static const struct jme_product_desc *
245 jme_lookup_product(uint32_t id)
246 {
247 	const struct jme_product_desc *jp;
248 
249 	for (jp = jme_products ; jp->jme_desc != NULL; jp++)
250 		if (PCI_PRODUCT(id) == jp->jme_product)
251 			return jp;
252 
253 	return NULL;
254 }
255 
256 static int
257 jme_pci_match(device_t parent, cfdata_t cf, void *aux)
258 {
259 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
260 
261 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_JMICRON)
262 		return 0;
263 
264 	if (jme_lookup_product(pa->pa_id) != NULL)
265 		return 1;
266 
267 	return 0;
268 }
269 
270 static void
271 jme_pci_attach(device_t parent, device_t self, void *aux)
272 {
273 	jme_softc_t *sc = device_private(self);
274 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
275 	const struct jme_product_desc *jp;
276 	struct ifnet * const ifp = &sc->jme_if;
277 	bus_space_tag_t iot1, iot2, memt;
278 	bus_space_handle_t ioh1, ioh2, memh;
279 	bus_size_t size, size2;
280 	pci_intr_handle_t intrhandle;
281 	const char *intrstr;
282 	pcireg_t csr;
283 	int nsegs, i;
284 	const struct sysctlnode *node;
285 	int jme_nodenum;
286 
287 	sc->jme_dev = self;
288 	aprint_normal("\n");
289 	callout_init(&sc->jme_tick_ch, 0);
290 
291 	jp = jme_lookup_product(pa->pa_id);
292 	if (jp == NULL)
293 		panic("jme_pci_attach: impossible");
294 
295 	if (jp->jme_product == PCI_PRODUCT_JMICRON_JMC250)
296 		sc->jme_flags = JME_FLAG_GIGA;
297 
298 	/*
299 	 * Map the card space. Try Mem first.
300 	 */
301 	if (pci_mapreg_map(pa, JME_PCI_BAR0,
302 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
303 	    0, &memt, &memh, NULL, &size) == 0) {
304 		sc->jme_bt_mac = memt;
305 		sc->jme_bh_mac = memh;
306 		sc->jme_bt_phy = memt;
307 		if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
308 		    JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
309 			aprint_error_dev(self, "can't subregion PHY space\n");
310 			bus_space_unmap(memt, memh, size);
311 			return;
312 		}
313 		sc->jme_bt_misc = memt;
314 		if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
315 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
316 			aprint_error_dev(self, "can't subregion misc space\n");
317 			bus_space_unmap(memt, memh, size);
318 			return;
319 		}
320 	} else {
321 		if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
322 		    0, &iot1, &ioh1, NULL, &size) != 0) {
323 			aprint_error_dev(self, "can't map I/O space 1\n");
324 			return;
325 		}
326 		sc->jme_bt_mac = iot1;
327 		sc->jme_bh_mac = ioh1;
328 		if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
329 		    0, &iot2, &ioh2, NULL, &size2) != 0) {
330 			aprint_error_dev(self, "can't map I/O space 2\n");
331 			bus_space_unmap(iot1, ioh1, size);
332 			return;
333 		}
334 		sc->jme_bt_phy = iot2;
335 		sc->jme_bh_phy = ioh2;
336 		sc->jme_bt_misc = iot2;
337 		if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
338 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
339 			aprint_error_dev(self, "can't subregion misc space\n");
340 			bus_space_unmap(iot1, ioh1, size);
341 			bus_space_unmap(iot2, ioh2, size2);
342 			return;
343 		}
344 	}
345 
346 	if (pci_dma64_available(pa))
347 		sc->jme_dmatag = pa->pa_dmat64;
348 	else
349 		sc->jme_dmatag = pa->pa_dmat;
350 
351 	/* Enable the device. */
352 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
353 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
354 	    csr | PCI_COMMAND_MASTER_ENABLE);
355 
356 	aprint_normal_dev(self, "%s\n", jp->jme_desc);
357 
358 	sc->jme_rev = PCI_REVISION(pa->pa_class);
359 
360 	csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
361 	if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
362 	    CHIPMODE_NOT_FPGA)
363 		sc->jme_flags |= JME_FLAG_FPGA;
364 	sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
365 	aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
366 	    "0x%x", sc->jme_rev, sc->jme_chip_rev);
367 	if (sc->jme_flags & JME_FLAG_FPGA)
368 		aprint_verbose(" FPGA revision: 0x%x",
369 		    (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
370 	aprint_verbose("\n");
371 
372 	/*
373 	 * Save PHY address.
374 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
375 	 * requires PHY probing to get correct PHY address.
376 	 */
377 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
378 		sc->jme_phyaddr =
379 		    bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
380 				     JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
381 	} else
382 		sc->jme_phyaddr = 0;
383 
384 
385 	jme_reset(sc);
386 
387 	/* read mac addr */
388 	if (jme_eeprom_macaddr(sc)) {
389 		aprint_error_dev(self, "error reading Ethernet address\n");
390 		/* return; */
391 	}
392 	aprint_normal_dev(self, "Ethernet address %s\n",
393 	    ether_sprintf(sc->jme_enaddr));
394 
395 	/* Map and establish interrupts */
396 	if (pci_intr_map(pa, &intrhandle)) {
397 		aprint_error_dev(self, "couldn't map interrupt\n");
398 		return;
399 	}
400 	intrstr = pci_intr_string(pa->pa_pc, intrhandle);
401 	sc->jme_if.if_softc = sc;
402 	sc->jme_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
403 	    jme_intr, sc);
404 	if (sc->jme_ih == NULL) {
405 		aprint_error_dev(self, "couldn't establish interrupt");
406 		if (intrstr != NULL)
407 			aprint_error(" at %s", intrstr);
408 		aprint_error("\n");
409 		return;
410 	}
411 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
412 
413 	/* allocate and map DMA-safe memory for transmit ring */
414 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
415 	    &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
416 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
417 	    nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
418 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
419 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
420 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
421 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
422 	    PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
423 		aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
424 		return;
425 	}
426 	/* allocate and map DMA-safe memory for receive ring */
427 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
428 	      &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
429 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
430 	      nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
431 	      BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
432 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
433 	      BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
434 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
435 	      PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
436 		aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
437 		return;
438 	}
439 	for (i = 0; i < JME_NBUFS; i++) {
440 		sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
441 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
442 		    JME_NBUFS, JME_MAX_TX_LEN, 0, BUS_DMA_NOWAIT,
443 		    &sc->jme_txmbufm[i]) != 0) {
444 			aprint_error_dev(self, "can't allocate DMA TX map\n");
445 			return;
446 		}
447 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
448 		    1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT,
449 		    &sc->jme_rxmbufm[i]) != 0) {
450 			aprint_error_dev(self, "can't allocate DMA RX map\n");
451 			return;
452 		}
453 	}
454 	/*
455 	 * Initialize our media structures and probe the MII.
456 	 *
457 	 * Note that we don't care about the media instance.  We
458 	 * are expecting to have multiple PHYs on the 10/100 cards,
459 	 * and on those cards we exclude the internal PHY from providing
460 	 * 10baseT.  By ignoring the instance, it allows us to not have
461 	 * to specify it on the command line when switching media.
462 	 */
463 	sc->jme_mii.mii_ifp = ifp;
464 	sc->jme_mii.mii_readreg = jme_mii_read;
465 	sc->jme_mii.mii_writereg = jme_mii_write;
466 	sc->jme_mii.mii_statchg = jme_statchg;
467 	sc->jme_ec.ec_mii = &sc->jme_mii;
468 	ifmedia_init(&sc->jme_mii.mii_media, IFM_IMASK, jme_mediachange,
469 	    ether_mediastatus);
470 	mii_attach(self, &sc->jme_mii, 0xffffffff, MII_PHY_ANY,
471 	    MII_OFFSET_ANY, 0);
472 	if (LIST_FIRST(&sc->jme_mii.mii_phys) == NULL) {
473 		ifmedia_add(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
474 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE);
475 	} else
476 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_AUTO);
477 
478 	/*
479 	 * We can support 802.1Q VLAN-sized frames.
480 	 */
481 	sc->jme_ec.ec_capabilities |=
482 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
483 
484 	if (sc->jme_flags & JME_FLAG_GIGA)
485 		sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
486 
487 
488 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
489 	ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
490 	ifp->if_ioctl = jme_ifioctl;
491 	ifp->if_start = jme_ifstart;
492 	ifp->if_watchdog = jme_ifwatchdog;
493 	ifp->if_init = jme_ifinit;
494 	ifp->if_stop = jme_stop;
495 	ifp->if_timer = 0;
496 	ifp->if_capabilities |=
497 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
498 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
499 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
500 	    IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
501 	    IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
502 	    IFCAP_TSOv4 | IFCAP_TSOv6;
503 	IFQ_SET_READY(&ifp->if_snd);
504 	if_attach(ifp);
505 	ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);
506 
507 	/*
508 	 * Add shutdown hook so that DMA is disabled prior to reboot.
509 	 */
510 	if (pmf_device_register1(self, NULL, NULL, jme_shutdown))
511 		pmf_class_network_register(self, ifp);
512 	else
513 		aprint_error_dev(self, "couldn't establish power handler\n");
514 
515 #if NRND > 0
516 	rnd_attach_source(&sc->rnd_source, device_xname(self),
517 	    RND_TYPE_NET, 0);
518 #endif
519 	sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
520 	sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
521 	sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
522 	sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
523 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
524 	    0, CTLTYPE_NODE, device_xname(sc->jme_dev),
525 	    SYSCTL_DESCR("jme per-controller controls"),
526 	    NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
527 	    CTL_EOL) != 0) {
528 		aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
529 		return;
530 	}
531 	jme_nodenum = node->sysctl_num;
532 
533 	/* interrupt moderation sysctls */
534 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
535 	    CTLFLAG_READWRITE,
536 	    CTLTYPE_INT, "int_rxto",
537 	    SYSCTL_DESCR("jme RX interrupt moderation timer"),
538 	    jme_sysctl_intrxto, 0, sc,
539 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
540 	    CTL_EOL) != 0) {
541 		aprint_normal_dev(sc->jme_dev,
542 		    "couldn't create int_rxto sysctl node\n");
543 	}
544 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
545 	    CTLFLAG_READWRITE,
546 	    CTLTYPE_INT, "int_rxct",
547 	    SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
548 	    jme_sysctl_intrxct, 0, sc,
549 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
550 	    CTL_EOL) != 0) {
551 		aprint_normal_dev(sc->jme_dev,
552 		    "couldn't create int_rxct sysctl node\n");
553 	}
554 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
555 	    CTLFLAG_READWRITE,
556 	    CTLTYPE_INT, "int_txto",
557 	    SYSCTL_DESCR("jme TX interrupt moderation timer"),
558 	    jme_sysctl_inttxto, 0, sc,
559 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
560 	    CTL_EOL) != 0) {
561 		aprint_normal_dev(sc->jme_dev,
562 		    "couldn't create int_txto sysctl node\n");
563 	}
564 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
565 	    CTLFLAG_READWRITE,
566 	    CTLTYPE_INT, "int_txct",
567 	    SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
568 	    jme_sysctl_inttxct, 0, sc,
569 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
570 	    CTL_EOL) != 0) {
571 		aprint_normal_dev(sc->jme_dev,
572 		    "couldn't create int_txct sysctl node\n");
573 	}
574 }
575 
576 static void
577 jme_stop_rx(jme_softc_t *sc)
578 {
579 	uint32_t reg;
580 	int i;
581 
582 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
583 	if ((reg & RXCSR_RX_ENB) == 0)
584 		return;
585 	reg &= ~RXCSR_RX_ENB;
586 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
587 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
588 		DELAY(10);
589 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
590 		    JME_RXCSR) & RXCSR_RX_ENB) == 0)
591 			break;
592 	}
593 	if (i == 0)
594 		aprint_error_dev(sc->jme_dev, "stopping recevier timeout!\n");
595 
596 }
597 
598 static void
599 jme_stop_tx(jme_softc_t *sc)
600 {
601 	uint32_t reg;
602 	int i;
603 
604 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
605 	if ((reg & TXCSR_TX_ENB) == 0)
606 		return;
607 	reg &= ~TXCSR_TX_ENB;
608 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
609 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
610 		DELAY(10);
611 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
612 		    JME_TXCSR) & TXCSR_TX_ENB) == 0)
613 			break;
614 	}
615 	if (i == 0)
616 		aprint_error_dev(sc->jme_dev,
617 		    "stopping transmitter timeout!\n");
618 }
619 
620 static void
621 jme_reset(jme_softc_t *sc)
622 {
623 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
624 	DELAY(10);
625 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
626 }
627 
628 static bool
629 jme_shutdown(device_t self, int howto)
630 {
631 	jme_softc_t *sc;
632 	struct ifnet *ifp;
633 
634 	sc = device_private(self);
635 	ifp = &sc->jme_if;
636 	jme_stop(ifp, 1);
637 
638 	return true;
639 }
640 
641 static void
642 jme_stop(struct ifnet *ifp, int disable)
643 {
644 	jme_softc_t *sc = ifp->if_softc;
645 	int i;
646 	/* Stop receiver, transmitter. */
647 	jme_stop_rx(sc);
648 	jme_stop_tx(sc);
649 	/* free receive mbufs */
650 	for (i = 0; i < JME_NBUFS; i++) {
651 		if (sc->jme_rxmbuf[i]) {
652 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
653 			m_freem(sc->jme_rxmbuf[i]);
654 		}
655 		sc->jme_rxmbuf[i] = NULL;
656 	}
657 	/* process completed transmits */
658 	jme_txeof(sc);
659 	/* free abort pending transmits */
660 	for (i = 0; i < JME_NBUFS; i++) {
661 		if (sc->jme_txmbuf[i]) {
662 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
663 			m_freem(sc->jme_txmbuf[i]);
664 			sc->jme_txmbuf[i] = NULL;
665 		}
666 	}
667 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
668 	ifp->if_timer = 0;
669 }
670 
671 #if 0
672 static void
673 jme_restart(void *v)
674 {
675 
676 	jme_init(v);
677 }
678 #endif
679 
680 static int
681 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
682 {
683 	int error;
684 	bus_dmamap_t map;
685 	int i = sc->jme_rx_prod;
686 
687 	if (sc->jme_rxmbuf[i] != NULL) {
688 		aprint_error_dev(sc->jme_dev,
689 		    "mbuf already here: rxprod %d rxcons %d\n",
690 		    sc->jme_rx_prod, sc->jme_rx_cons);
691 		if (m)
692 			m_freem(m);
693 		return EINVAL;
694 	}
695 
696 	if (m == NULL) {
697 		sc->jme_rxmbuf[i] = NULL;
698 		MGETHDR(m, M_DONTWAIT, MT_DATA);
699 		if (m == NULL)
700 			return (ENOBUFS);
701 		MCLGET(m, M_DONTWAIT);
702 		if ((m->m_flags & M_EXT) == 0) {
703 			m_freem(m);
704 			return (ENOBUFS);
705 		}
706 	}
707 	map = sc->jme_rxmbufm[i];
708 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
709 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
710 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
711 	if (error) {
712 		sc->jme_rxmbuf[i] = NULL;
713 		aprint_error_dev(sc->jme_dev,
714 		    "unable to load rx DMA map %d, error = %d\n",
715 		    i, error);
716 		m_freem(m);
717 		return (error);
718 	}
719 	bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
720 	    BUS_DMASYNC_PREREAD);
721 
722 	sc->jme_rxmbuf[i] = m;
723 
724 	sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
725 	sc->jme_rxring[i].addr_lo =
726 	    htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
727 	sc->jme_rxring[i].addr_hi =
728 	    htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
729 	sc->jme_rxring[i].flags =
730 	    htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
731 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
732 	    i * sizeof(struct jme_desc), sizeof(struct jme_desc),
733 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
734 	JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
735 	return (0);
736 }
737 
738 static int
739 jme_ifinit(struct ifnet *ifp)
740 {
741 	return jme_init(ifp, 1);
742 }
743 
744 static int
745 jme_init(struct ifnet *ifp, int do_ifinit)
746 {
747 	jme_softc_t *sc = ifp->if_softc;
748 	int i, s;
749 	uint8_t eaddr[ETHER_ADDR_LEN];
750 	uint32_t reg;
751 
752 	s = splnet();
753 	/* cancel any pending IO */
754 	jme_stop(ifp, 1);
755 	jme_reset(sc);
756 	if ((sc->jme_if.if_flags & IFF_UP) == 0) {
757 		splx(s);
758 		return 0;
759 	}
760 	/* allocate receive ring */
761 	sc->jme_rx_prod = 0;
762 	for (i = 0; i < JME_NBUFS; i++) {
763 		if (jme_add_rxbuf(sc, NULL) < 0) {
764 			aprint_error_dev(sc->jme_dev,
765 			    "can't allocate rx mbuf\n");
766 			for (i--; i >= 0; i--) {
767 				bus_dmamap_unload(sc->jme_dmatag,
768 				    sc->jme_rxmbufm[i]);
769 				m_freem(sc->jme_rxmbuf[i]);
770 				sc->jme_rxmbuf[i] = NULL;
771 			}
772 			splx(s);
773 			return ENOMEM;
774 		}
775 	}
776 	/* init TX ring */
777 	memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
778 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
779 	    0, JME_NBUFS * sizeof(struct jme_desc),
780 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
781 	for (i = 0; i < JME_NBUFS; i++)
782 		sc->jme_txmbuf[i] = NULL;
783 	sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;
784 
785 	/* Reprogram the station address. */
786 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
787 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
788 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
789 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
790 	    JME_PAR1, eaddr[5] << 8 | eaddr[4]);
791 
792 	/*
793 	 * Configure Tx queue.
794 	 *  Tx priority queue weight value : 0
795 	 *  Tx FIFO threshold for processing next packet : 16QW
796 	 *  Maximum Tx DMA length : 512
797 	 *  Allow Tx DMA burst.
798 	 */
799 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
800 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
801 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
802 	sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
803 	sc->jme_txcsr |= TXCSR_DMA_BURST;
804 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
805 	     JME_TXCSR, sc->jme_txcsr);
806 
807 	/* Set Tx descriptor counter. */
808 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
809 	     JME_TXQDC, JME_NBUFS);
810 
811 	/* Set Tx ring address to the hardware. */
812 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
813 	    JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
814 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
815 	    JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));
816 
817 	/* Configure TxMAC parameters. */
818 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
819 	    TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
820 	    TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);
821 
822 	/*
823 	 * Configure Rx queue.
824 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
825 	 *  FIFO threshold for processing next packet : 128QW
826 	 *  Rx queue 0 select
827 	 *  Max Rx DMA length : 128
828 	 *  Rx descriptor retry : 32
829 	 *  Rx descriptor retry time gap : 256ns
830 	 *  Don't receive runt/bad frame.
831 	 */
832 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
833 	/*
834 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
835 	 * than 4K bytes will suffer from Rx FIFO overruns. So
836 	 * decrease FIFO threshold to reduce the FIFO overruns for
837 	 * frames larger than 4000 bytes.
838 	 * For best performance of standard MTU sized frames use
839 	 * maximum allowable FIFO threshold, 128QW.
840 	 */
841 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
842 	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
843 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
844 	else
845 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
846 	sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
847 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
848 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
849 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
850 	     JME_RXCSR, sc->jme_rxcsr);
851 
852 	/* Set Rx descriptor counter. */
853 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
854 	     JME_RXQDC, JME_NBUFS);
855 
856 	/* Set Rx ring address to the hardware. */
857 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
858 	    JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
859 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
860 	    JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));
861 
862 	/* Clear receive filter. */
863 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
864 	/* Set up the receive filter. */
865 	jme_set_filter(sc);
866 
867 	/*
868 	 * Disable all WOL bits as WOL can interfere normal Rx
869 	 * operation. Also clear WOL detection status bits.
870 	 */
871 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
872 	reg &= ~PMCS_WOL_ENB_MASK;
873 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);
874 
875 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
876 	/*
877 	 * Pad 10bytes right before received frame. This will greatly
878 	 * help Rx performance on strict-alignment architectures as
879 	 * it does not need to copy the frame to align the payload.
880 	 */
881 	reg |= RXMAC_PAD_10BYTES;
882 	if ((ifp->if_capenable &
883 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx|
884 	     IFCAP_CSUM_TCPv6_Rx|IFCAP_CSUM_UDPv6_Rx)) != 0)
885 		reg |= RXMAC_CSUM_ENB;
886 	reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
887 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);
888 
889 	/* Configure general purpose reg0 */
890 	reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
891 	reg &= ~GPREG0_PCC_UNIT_MASK;
892 	/* Set PCC timer resolution to micro-seconds unit. */
893 	reg |= GPREG0_PCC_UNIT_US;
894 	/*
895 	 * Disable all shadow register posting as we have to read
896 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
897 	 * that it's hard to synchronize interrupt status between
898 	 * hardware and software with shadow posting due to
899 	 * requirements of bus_dmamap_sync(9).
900 	 */
901 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
902 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
903 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
904 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
905 	/* Disable posting of DW0. */
906 	reg &= ~GPREG0_POST_DW0_ENB;
907 	/* Clear PME message. */
908 	reg &= ~GPREG0_PME_ENB;
909 	/* Set PHY address. */
910 	reg &= ~GPREG0_PHY_ADDR_MASK;
911 	reg |= sc->jme_phyaddr;
912 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);
913 
914 	/* Configure Tx queue 0 packet completion coalescing. */
915 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
916 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
917 	reg |= PCCTX_COAL_TXQ0;
918 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
919 
920 	/* Configure Rx queue 0 packet completion coalescing. */
921 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
922 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
923 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
924 
925 	/* Disable Timers */
926 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0);
927 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
928 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);
929 
930 	/* Configure retry transmit period, retry limit value. */
931 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
932 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
933 	    TXTRHD_RT_PERIOD_MASK) |
934 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
935 	    TXTRHD_RT_LIMIT_SHIFT));
936 
937 	/* Disable RSS. */
938 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
939 	    JME_RSSC, RSSC_DIS_RSS);
940 
941 	/* Initialize the interrupt mask. */
942 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
943 	     JME_INTR_MASK_SET, JME_INTRS_ENABLE);
944 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
945 	     JME_INTR_STATUS, 0xFFFFFFFF);
946 
947 	/* set media, if not already handling a media change */
948 	if (do_ifinit) {
949 		int error;
950 		if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
951 			error = 0;
952 		else if (error != 0) {
953 			aprint_error_dev(sc->jme_dev, "could not set media\n");
954 			return error;
955 		}
956 	}
957 
958 	/* Program MAC with resolved speed/duplex/flow-control. */
959 	jme_mac_config(sc);
960 
961 	/* Start receiver/transmitter. */
962 	sc->jme_rx_cons = 0;
963 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
964 	    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
965 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
966 	    sc->jme_txcsr | TXCSR_TX_ENB);
967 
968 	/* start ticks calls */
969 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
970 	sc->jme_if.if_flags |= IFF_RUNNING;
971 	sc->jme_if.if_flags &= ~IFF_OACTIVE;
972 	splx(s);
973 	return 0;
974 }
975 
976 
977 int
978 jme_mii_read(device_t self, int phy, int reg)
979 {
980 	struct jme_softc *sc = device_private(self);
981 	int val, i;
982 
983 	/* For FPGA version, PHY address 0 should be ignored. */
984 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
985 		if (phy == 0)
986 			return (0);
987 	} else {
988 		if (sc->jme_phyaddr != phy)
989 			return (0);
990 	}
991 
992 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
993 	    SMI_OP_READ | SMI_OP_EXECUTE |
994 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
995 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
996 		delay(10);
997 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
998 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
999 			break;
1000 	}
1001 
1002 	if (i == 0) {
1003 		aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
1004 		return (0);
1005 	}
1006 
1007 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
1008 }
1009 
1010 void
1011 jme_mii_write(device_t self, int phy, int reg, int val)
1012 {
1013 	struct jme_softc *sc = device_private(self);
1014 	int i;
1015 
1016 	/* For FPGA version, PHY address 0 should be ignored. */
1017 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
1018 		if (phy == 0)
1019 			return;
1020 	} else {
1021 		if (sc->jme_phyaddr != phy)
1022 			return;
1023 	}
1024 
1025 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
1026 	    SMI_OP_WRITE | SMI_OP_EXECUTE |
1027 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
1028 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
1029 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
1030 		delay(10);
1031 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1032 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1033 			break;
1034 	}
1035 
1036 	if (i == 0)
1037 		aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
1038 
1039 	return;
1040 }
1041 
1042 void
1043 jme_statchg(device_t self)
1044 {
1045 	jme_softc_t *sc = device_private(self);
1046 	struct ifnet *ifp = &sc->jme_if;
1047 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING))
1048 		jme_init(ifp, 0);
1049 }
1050 
1051 static void
1052 jme_intr_rx(jme_softc_t *sc) {
1053 	struct mbuf *m, *mhead;
1054 	struct ifnet *ifp = &sc->jme_if;
1055 	uint32_t flags,  buflen;
1056 	int i, ipackets, nsegs, seg, error;
1057 	struct jme_desc *desc;
1058 
1059 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
1060 	    sizeof(struct jme_desc) * JME_NBUFS,
1061 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1062 #ifdef JMEDEBUG_RX
1063 	printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
1064 	    sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
1065 #endif
1066 	ipackets = 0;
1067 	while((le32toh(sc->jme_rxring[ sc->jme_rx_cons].flags) & JME_RD_OWN)
1068 	    == 0) {
1069 		i = sc->jme_rx_cons;
1070 		desc = &sc->jme_rxring[i];
1071 #ifdef JMEDEBUG_RX
1072 		printf("rxintr i %d flags 0x%x buflen 0x%x\n",
1073 		    i,  le32toh(desc->flags), le32toh(desc->buflen));
1074 #endif
1075 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
1076 			break;
1077 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmbufm[i], 0,
1078 		    sc->jme_rxmbufm[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
1079 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
1080 
1081 		buflen = le32toh(desc->buflen);
1082 		nsegs = JME_RX_NSEGS(buflen);
1083 		flags = le32toh(desc->flags);
1084 		if ((buflen & JME_RX_ERR_STAT) != 0 ||
1085 		    JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
1086 		    JME_RX_BYTES(buflen) >
1087 		    (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
1088 #ifdef JMEDEBUG_RX
1089 			printf("rx error flags 0x%x buflen 0x%x\n",
1090 			    flags, buflen);
1091 #endif
1092 			ifp->if_ierrors++;
1093 			/* reuse the mbufs */
1094 			for (seg = 0; seg < nsegs; seg++) {
1095 				m = sc->jme_rxmbuf[i];
1096 				sc->jme_rxmbuf[i] = NULL;
1097 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1098 					aprint_error_dev(sc->jme_dev,
1099 					    "can't reuse mbuf: %d\n", error);
1100 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1101 				i = sc->jme_rx_cons;
1102 			}
1103 			continue;
1104 		}
1105 		/* receive this packet */
1106 		mhead = m = sc->jme_rxmbuf[i];
1107 		sc->jme_rxmbuf[i] = NULL;
1108 		/* add a new buffer to chain */
1109 		if (jme_add_rxbuf(sc, NULL) == ENOBUFS) {
1110 			for (seg = 0; seg < nsegs; seg++) {
1111 				m = sc->jme_rxmbuf[i];
1112 				sc->jme_rxmbuf[i] = NULL;
1113 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1114 					aprint_error_dev(sc->jme_dev,
1115 					    "can't reuse mbuf: %d\n", error);
1116 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1117 				i = sc->jme_rx_cons;
1118 			}
1119 			ifp->if_ierrors++;
1120 			continue;
1121 		}
1122 
1123 		/* build mbuf chain: head, then remaining segments */
1124 		m->m_pkthdr.rcvif = ifp;
1125 		m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
1126 		m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
1127 		    m->m_pkthdr.len;
1128 		m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
1129 		JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1130 		for (seg = 1; seg < nsegs; seg++) {
1131 			i = sc->jme_rx_cons;
1132 			m = sc->jme_rxmbuf[i];
1133 			sc->jme_rxmbuf[i] = NULL;
1134 			(void)jme_add_rxbuf(sc, NULL);
1135 			m->m_flags &= ~M_PKTHDR;
1136 			m_cat(mhead, m);
1137 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1138 		}
1139 		/* and adjust last mbuf's size */
1140 		if (nsegs > 1) {
1141 			m->m_len =
1142 			    JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
1143 		}
1144 		ifp->if_ipackets++;
1145 		ipackets++;
1146 		if (ifp->if_bpf)
1147 			bpf_ops->bpf_mtap(ifp->if_bpf, mhead);
1148 
1149 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
1150 		    (flags & JME_RD_IPV4)) {
1151 			mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1152 			if (!(flags & JME_RD_IPCSUM))
1153 				mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1154 		}
1155 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
1156 		    (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
1157 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1158 			if (!(flags & JME_RD_TCPCSUM))
1159 				mhead->m_pkthdr.csum_flags |=
1160 				    M_CSUM_TCP_UDP_BAD;
1161 		}
1162 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
1163 		    (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
1164 			mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1165 			if (!(flags & JME_RD_UDPCSUM))
1166 				mhead->m_pkthdr.csum_flags |=
1167 				    M_CSUM_TCP_UDP_BAD;
1168 		}
1169 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
1170 		    (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
1171 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
1172 			if (!(flags & JME_RD_TCPCSUM))
1173 				mhead->m_pkthdr.csum_flags |=
1174 				    M_CSUM_TCP_UDP_BAD;
1175 		}
1176 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
1177 		    (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
1178 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
1179 			if (!(flags & JME_RD_UDPCSUM))
1180 				mhead->m_pkthdr.csum_flags |=
1181 				    M_CSUM_TCP_UDP_BAD;
1182 		}
1183 		if (flags & JME_RD_VLAN_TAG) {
1184 			/* pass to vlan_input() */
1185 			VLAN_INPUT_TAG(ifp, mhead,
1186 			    (flags & JME_RD_VLAN_MASK), continue);
1187 		}
1188 		(*ifp->if_input)(ifp, mhead);
1189 	}
1190 #if NRND > 0
1191 	if (ipackets && RND_ENABLED(&sc->rnd_source))
1192 		rnd_add_uint32(&sc->rnd_source, ipackets);
1193 #endif /* NRND > 0 */
1194 
1195 }
1196 
1197 static int
1198 jme_intr(void *v)
1199 {
1200 	jme_softc_t *sc = v;
1201 	uint32_t istatus;
1202 
1203 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1204 	     JME_INTR_STATUS);
1205 	if (istatus == 0 || istatus == 0xFFFFFFFF)
1206 		return 0;
1207 	/* Disable interrupts. */
1208 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1209 	    JME_INTR_MASK_CLR, 0xFFFFFFFF);
1210 again:
1211 	/* and update istatus */
1212 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1213 	     JME_INTR_STATUS);
1214 	if ((istatus & JME_INTRS_CHECK) == 0)
1215 		goto done;
1216 	/* Reset PCC counter/timer and Ack interrupts. */
1217 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1218 		istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1219 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1220 		istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1221 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1222 	     JME_INTR_STATUS, istatus);
1223 
1224 	if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
1225 		goto done;
1226 #ifdef JMEDEBUG_RX
1227 	printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
1228 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
1229 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
1230 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
1231 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
1232 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
1233 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
1234 	printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
1235 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
1236 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
1237 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
1238 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
1239 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
1240 #endif
1241 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1242 		jme_intr_rx(sc);
1243 	if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
1244 		/*
1245 		 * Notify hardware availability of new Rx
1246 		 * buffers.
1247 		 * Reading RXCSR takes very long time under
1248 		 * heavy load so cache RXCSR value and writes
1249 		 * the ORed value with the kick command to
1250 		 * the RXCSR. This saves one register access
1251 		 * cycle.
1252 		 */
1253 		sc->jme_rx_cons = 0;
1254 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1255 		    JME_RXCSR,
1256 		    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
1257 	}
1258 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1259 		jme_ifstart(&sc->jme_if);
1260 
1261 	goto again;
1262 
1263 done:
1264 	/* enable interrupts. */
1265 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1266 	    JME_INTR_MASK_SET, JME_INTRS_ENABLE);
1267 	return 1;
1268 }
1269 
1270 
1271 static int
1272 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1273 {
1274 	struct jme_softc *sc = ifp->if_softc;
1275 	int s, error;
1276 	struct ifreq *ifr;
1277 	struct ifcapreq *ifcr;
1278 
1279 	s = splnet();
1280 	/*
1281 	 * we can't support at the same time jumbo frames and
1282 	 * TX checksums offload/TSO
1283 	 */
1284 	switch(cmd) {
1285 	case SIOCSIFMTU:
1286 		ifr = data;
1287 		if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
1288 		    (ifp->if_capenable & (
1289 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1290 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1291 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1292 			splx(s);
1293 			return EINVAL;
1294 		}
1295 		break;
1296 	case SIOCSIFCAP:
1297 		ifcr = data;
1298 		if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
1299 		    (ifcr->ifcr_capenable & (
1300 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1301 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1302 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1303 			splx(s);
1304 			return EINVAL;
1305 		}
1306 		break;
1307 	}
1308 
1309 	error = ether_ioctl(ifp, cmd, data);
1310 	if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
1311 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1312 			jme_set_filter(sc);
1313 			error = 0;
1314 		} else {
1315 			error = jme_init(ifp, 0);
1316 		}
1317 	}
1318 	splx(s);
1319 	return error;
1320 }
1321 
1322 static int
1323 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1324 {
1325 	struct jme_desc *txd;
1326 	struct jme_desc *desc;
1327 	struct mbuf *m;
1328 	struct m_tag *mtag;
1329 	int error, i, prod, headdsc, nsegs;
1330 	uint32_t cflags, tso_segsz;
1331 
1332 	if (((*m_head)->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0){
1333 		/*
1334 		 * Due to the adherence to NDIS specification JMC250
1335 		 * assumes upper stack computed TCP pseudo checksum
1336 		 * without including payload length. This breaks
1337 		 * checksum offload for TSO case so recompute TCP
1338 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1339 		 * be much burden on modern CPUs.
1340 		 */
1341 		bool v4 = ((*m_head)->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1342 		int iphl = v4 ?
1343 		    M_CSUM_DATA_IPv4_IPHL((*m_head)->m_pkthdr.csum_data) :
1344 		    M_CSUM_DATA_IPv6_HL((*m_head)->m_pkthdr.csum_data);
1345 		/*
1346 		 * note: we support vlan offloading, so we should never have
1347 		 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
1348 		 * right.
1349 		 */
1350 		int hlen = ETHER_HDR_LEN + iphl;
1351 
1352 		if (__predict_false((*m_head)->m_len <
1353 		    (hlen + sizeof(struct tcphdr)))) {
1354 			   /*
1355 			    * TCP/IP headers are not in the first mbuf; we need
1356 			    * to do this the slow and painful way.  Let's just
1357 			    * hope this doesn't happen very often.
1358 			    */
1359 			   struct tcphdr th;
1360 
1361 			   m_copydata((*m_head), hlen, sizeof(th), &th);
1362 			   if (v4) {
1363 				    struct ip ip;
1364 
1365 				    m_copydata((*m_head), ETHER_HDR_LEN,
1366 				    sizeof(ip), &ip);
1367 				    ip.ip_len = 0;
1368 				    m_copyback((*m_head),
1369 					 ETHER_HDR_LEN + offsetof(struct ip, ip_len),
1370 					 sizeof(ip.ip_len), &ip.ip_len);
1371 				    th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1372 					 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1373 			   } else {
1374 #if INET6
1375 				    struct ip6_hdr ip6;
1376 
1377 				    m_copydata((*m_head), ETHER_HDR_LEN,
1378 				    sizeof(ip6), &ip6);
1379 				    ip6.ip6_plen = 0;
1380 				    m_copyback((*m_head), ETHER_HDR_LEN +
1381 				    offsetof(struct ip6_hdr, ip6_plen),
1382 					 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1383 				    th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1384 					 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1385 #endif /* INET6 */
1386 			   }
1387 			   m_copyback((*m_head),
1388 			    hlen + offsetof(struct tcphdr, th_sum),
1389 				sizeof(th.th_sum), &th.th_sum);
1390 
1391 			   hlen += th.th_off << 2;
1392 		} else {
1393 			   /*
1394 			    * TCP/IP headers are in the first mbuf; we can do
1395 			    * this the easy way.
1396 			    */
1397 			   struct tcphdr *th;
1398 
1399 			   if (v4) {
1400 				    struct ip *ip =
1401 					 (void *)(mtod((*m_head), char *) +
1402 					ETHER_HDR_LEN);
1403 				    th = (void *)(mtod((*m_head), char *) + hlen);
1404 
1405 				    ip->ip_len = 0;
1406 				    th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1407 					 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1408 			   } else {
1409 #if INET6
1410 				    struct ip6_hdr *ip6 =
1411 				    (void *)(mtod((*m_head), char *) +
1412 				    ETHER_HDR_LEN);
1413 				    th = (void *)(mtod((*m_head), char *) + hlen);
1414 
1415 				    ip6->ip6_plen = 0;
1416 				    th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1417 					 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1418 #endif /* INET6 */
1419 			   }
1420 			hlen += th->th_off << 2;
1421 		}
1422 
1423 	}
1424 
1425 	prod = sc->jme_tx_prod;
1426 	txd = &sc->jme_txring[prod];
1427 
1428 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
1429 	    *m_head, BUS_DMA_WRITE);
1430 	if (error) {
1431 		if (error == EFBIG) {
1432 			log(LOG_ERR, "%s: Tx packet consumes too many "
1433 			    "DMA segments, dropping...\n",
1434 			    device_xname(sc->jme_dev));
1435 			m_freem(*m_head);
1436 			m_head = NULL;
1437 		}
1438 		return (error);
1439 	}
1440 	/*
1441 	 * Check descriptor overrun. Leave one free descriptor.
1442 	 * Since we always use 64bit address mode for transmitting,
1443 	 * each Tx request requires one more dummy descriptor.
1444 	 */
1445 	nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
1446 #ifdef JMEDEBUG_TX
1447 	printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
1448 #endif
1449 	if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
1450 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
1451 		return (ENOBUFS);
1452 	}
1453 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
1454 	    0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1455 
1456 	m = *m_head;
1457 	cflags = 0;
1458 	tso_segsz = 0;
1459 	/* Configure checksum offload and TSO. */
1460 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0) {
1461 		tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
1462 		cflags |= JME_TD_TSO;
1463 	} else {
1464 		if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
1465 			cflags |= JME_TD_IPCSUM;
1466 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_TCPv6)) != 0)
1467 			cflags |= JME_TD_TCPCSUM;
1468 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4|M_CSUM_UDPv6)) != 0)
1469 			cflags |= JME_TD_UDPCSUM;
1470 	}
1471 	/* Configure VLAN. */
1472 	if ((mtag = VLAN_OUTPUT_TAG(&sc->jme_ec, m)) != NULL) {
1473 		cflags |= (VLAN_TAG_VALUE(mtag) & JME_TD_VLAN_MASK);
1474 		cflags |= JME_TD_VLAN_TAG;
1475 	}
1476 
1477 	desc = &sc->jme_txring[prod];
1478 	desc->flags = htole32(cflags);
1479 	desc->buflen = htole32(tso_segsz);
1480 	desc->addr_hi = htole32(m->m_pkthdr.len);
1481 	desc->addr_lo = 0;
1482 	headdsc = prod;
1483 	sc->jme_tx_cnt++;
1484 	JME_DESC_INC(prod, JME_NBUFS);
1485 	for (i = 0; i < nsegs; i++) {
1486 		desc = &sc->jme_txring[prod];
1487 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1488 		desc->buflen =
1489 		    htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
1490 		desc->addr_hi = htole32(
1491 		    JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1492 		desc->addr_lo = htole32(
1493 		    JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1494 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1495 		    prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
1496 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1497 		sc->jme_txmbuf[prod] = NULL;
1498 		sc->jme_tx_cnt++;
1499 		JME_DESC_INC(prod, JME_NBUFS);
1500 	}
1501 
1502 	/* Update producer index. */
1503 	sc->jme_tx_prod = prod;
1504 #ifdef JMEDEBUG_TX
1505 	printf("jme_encap prod now %d\n", sc->jme_tx_prod);
1506 #endif
1507 	/*
1508 	 * Finally request interrupt and give the first descriptor
1509 	 * owenership to hardware.
1510 	 */
1511 	desc = &sc->jme_txring[headdsc];
1512 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1513 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1514 	    headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
1515 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1516 
1517 	sc->jme_txmbuf[headdsc] = m;
1518 	return (0);
1519 }
1520 
1521 static void
1522 jme_txeof(struct jme_softc *sc)
1523 {
1524 	struct ifnet *ifp;
1525 	struct jme_desc *desc;
1526 	uint32_t status;
1527 	int cons, cons0, nsegs, seg;
1528 
1529 	ifp = &sc->jme_if;
1530 
1531 #ifdef JMEDEBUG_TX
1532 	printf("jme_txeof cons %d prod %d\n",
1533 	    sc->jme_tx_cons, sc->jme_tx_prod);
1534 	printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1535 	    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1536 	    "JME_TXTRHD 0x%x\n",
1537 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1538 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1539 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1540 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1541 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1542 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1543 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1544 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1545 	for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
1546 		desc = &sc->jme_txring[cons];
1547 		printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
1548 		    desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
1549 		JME_DESC_INC(cons, JME_NBUFS);
1550 	}
1551 #endif
1552 
1553 	cons = sc->jme_tx_cons;
1554 	if (cons == sc->jme_tx_prod)
1555 		return;
1556 
1557 	/*
1558 	 * Go through our Tx list and free mbufs for those
1559 	 * frames which have been transmitted.
1560 	 */
1561 	for (; cons != sc->jme_tx_prod;) {
1562 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1563 		    cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
1564 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1565 
1566 		desc = &sc->jme_txring[cons];
1567 		status = le32toh(desc->flags);
1568 #ifdef JMEDEBUG_TX
1569 		printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
1570 		    sc->jme_txmbufm[cons]->dm_nsegs);
1571 #endif
1572 		if (status & JME_TD_OWN)
1573 			break;
1574 
1575 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
1576 			ifp->if_oerrors++;
1577 		else {
1578 			ifp->if_opackets++;
1579 			if ((status & JME_TD_COLLISION) != 0)
1580 				ifp->if_collisions +=
1581 				    le32toh(desc->buflen) &
1582 				    JME_TD_BUF_LEN_MASK;
1583 		}
1584 		/*
1585 		 * Only the first descriptor of multi-descriptor
1586 		 * transmission is updated so driver have to skip entire
1587 		 * chained buffers for the transmiited frame. In other
1588 		 * words, JME_TD_OWN bit is valid only at the first
1589 		 * descriptor of a multi-descriptor transmission.
1590 		 */
1591 		nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
1592 		cons0 = cons;
1593 		JME_DESC_INC(cons, JME_NBUFS);
1594 		for (seg = 1; seg < nsegs + 1; seg++) {
1595 			bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1596 			    cons * sizeof(struct jme_desc),
1597 			    sizeof(struct jme_desc),
1598 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1599 			sc->jme_txring[cons].flags = 0;
1600 			JME_DESC_INC(cons, JME_NBUFS);
1601 		}
1602 		/* Reclaim transferred mbufs. */
1603 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
1604 		    0, sc->jme_txmbufm[cons0]->dm_mapsize,
1605 		    BUS_DMASYNC_POSTWRITE);
1606 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);
1607 
1608 		KASSERT(sc->jme_txmbuf[cons0] != NULL);
1609 		m_freem(sc->jme_txmbuf[cons0]);
1610 		sc->jme_txmbuf[cons0] = NULL;
1611 		sc->jme_tx_cnt -= nsegs + 1;
1612 		KASSERT(sc->jme_tx_cnt >= 0);
1613 		sc->jme_if.if_flags &= ~IFF_OACTIVE;
1614 	}
1615 	sc->jme_tx_cons = cons;
1616 	/* Unarm watchog timer when there is no pending descriptors in queue. */
1617 	if (sc->jme_tx_cnt == 0)
1618 		ifp->if_timer = 0;
1619 #ifdef JMEDEBUG_TX
1620 	printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
1621 #endif
1622 }
1623 
1624 static void
1625 jme_ifstart(struct ifnet *ifp)
1626 {
1627 	jme_softc_t *sc = ifp->if_softc;
1628 	struct mbuf *mb_head;
1629 	int enq;
1630 
1631 	/*
1632 	 * check if we can free some desc.
1633 	 * Clear TX interrupt status to reset TX coalescing counters.
1634 	 */
1635 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1636 	     JME_INTR_STATUS, INTR_TXQ_COMP);
1637 	jme_txeof(sc);
1638 
1639 	if ((sc->jme_if.if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1640 		return;
1641 	for (enq = 0;; enq++) {
1642 nexttx:
1643 		/* Grab a paquet for output */
1644 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1645 		if (mb_head == NULL) {
1646 #ifdef JMEDEBUG_TX
1647 			printf("%s: nothing to send\n", __func__);
1648 #endif
1649 			break;
1650 		}
1651 		/* try to add this mbuf to the TX ring */
1652 		if (jme_encap(sc, &mb_head)) {
1653 			if (mb_head == NULL) {
1654 				ifp->if_oerrors++;
1655 				/* packet dropped, try next one */
1656 				goto nexttx;
1657 			}
1658 			/* resource shortage, try again later */
1659 			IF_PREPEND(&ifp->if_snd, mb_head);
1660 			ifp->if_flags |= IFF_OACTIVE;
1661 			break;
1662 		}
1663 		/* Pass packet to bpf if there is a listener */
1664 		if (ifp->if_bpf)
1665 			bpf_ops->bpf_mtap(ifp->if_bpf, mb_head);
1666 	}
1667 #ifdef JMEDEBUG_TX
1668 	printf("jme_ifstart enq %d\n", enq);
1669 #endif
1670 	if (enq) {
1671 		/*
1672 		 * Set a 5 second timer just in case we don't hear from
1673 		 * the card again.
1674 		 */
1675 		ifp->if_timer = 5;
1676 		/*
1677 		 * Reading TXCSR takes very long time under heavy load
1678 		 * so cache TXCSR value and writes the ORed value with
1679 		 * the kick command to the TXCSR. This saves one register
1680 		 * access cycle.
1681 		 */
1682 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
1683 		  sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1684 #ifdef JMEDEBUG_TX
1685 		printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1686 		    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1687 		    "JME_TXTRHD 0x%x\n",
1688 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1689 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1690 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1691 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1692 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1693 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1694 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1695 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1696 #endif
1697 	}
1698 }
1699 
1700 static void
1701 jme_ifwatchdog(struct ifnet *ifp)
1702 {
1703 	jme_softc_t *sc = ifp->if_softc;
1704 
1705 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1706 		return;
1707 	printf("%s: device timeout\n", device_xname(sc->jme_dev));
1708 	ifp->if_oerrors++;
1709 	jme_init(ifp, 0);
1710 }
1711 
1712 static int
1713 jme_mediachange(struct ifnet *ifp)
1714 {
1715 	int error;
1716 	jme_softc_t *sc = ifp->if_softc;
1717 
1718 	if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
1719 		error = 0;
1720 	else if (error != 0) {
1721 		aprint_error_dev(sc->jme_dev, "could not set media\n");
1722 		return error;
1723 	}
1724 	return 0;
1725 }
1726 
1727 static void
1728 jme_ticks(void *v)
1729 {
1730 	jme_softc_t *sc = v;
1731 	int s = splnet();
1732 
1733 	/* Tick the MII. */
1734 	mii_tick(&sc->jme_mii);
1735 
1736 	/* every seconds */
1737 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
1738 	splx(s);
1739 }
1740 
1741 static void
1742 jme_mac_config(jme_softc_t *sc)
1743 {
1744 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1745 	struct mii_data *mii = &sc->jme_mii;
1746 
1747 	ghc = 0;
1748 	rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1749 	rxmac &= ~RXMAC_FC_ENB;
1750 	txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
1751 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1752 	txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
1753 	txpause &= ~TXPFC_PAUSE_ENB;
1754 
1755 	if (mii->mii_media_active & IFM_FDX) {
1756 		ghc |= GHC_FULL_DUPLEX;
1757 		rxmac &= ~RXMAC_COLL_DET_ENB;
1758 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1759 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1760 		    TXMAC_FRAME_BURST);
1761 		/* Disable retry transmit timer/retry limit. */
1762 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1763 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
1764 		    & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1765 	} else {
1766 		rxmac |= RXMAC_COLL_DET_ENB;
1767 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1768 		/* Enable retry transmit timer/retry limit. */
1769 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1770 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)		    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1771 	}
1772 	/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1773 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1774 	case IFM_10_T:
1775 		ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100;
1776 		break;
1777 	case IFM_100_TX:
1778 		ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100;
1779 		break;
1780 	case IFM_1000_T:
1781 		ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000;
1782 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1783 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1784 		break;
1785 	default:
1786 		break;
1787 	}
1788 	if ((sc->jme_flags & JME_FLAG_GIGA) &&
1789 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
1790 		/*
1791 		 * Workaround occasional packet loss issue of JMC250 A2
1792 		 * when it runs on half-duplex media.
1793 		 */
1794 #ifdef JMEDEBUG
1795 		printf("JME250 A2 workaround\n");
1796 #endif
1797 		gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1798 		    JME_GPREG1);
1799 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1800 			gpreg &= ~GPREG1_HDPX_FIX;
1801 		else
1802 			gpreg |= GPREG1_HDPX_FIX;
1803 		bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1804 		    JME_GPREG1, gpreg);
1805 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
1806 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
1807 			/* Extend interface FIFO depth. */
1808 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1809 			    0x1B, 0x0000);
1810 		} else {
1811 			/* Select default interface FIFO depth. */
1812 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1813 			    0x1B, 0x0004);
1814 		}
1815 	}
1816 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
1817 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
1818 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
1819 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
1820 }
1821 
1822 static void
1823 jme_set_filter(jme_softc_t *sc)
1824 {
1825 	struct ifnet *ifp = &sc->jme_if;
1826 	struct ether_multistep step;
1827 	struct ether_multi *enm;
1828 	uint32_t hash[2] = {0, 0};
1829 	int i;
1830 	uint32_t rxcfg;
1831 
1832 	rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1833 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
1834 	    RXMAC_ALLMULTI);
1835 	/* Always accept frames destined to our station address. */
1836 	rxcfg |= RXMAC_UNICAST;
1837 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1838 		rxcfg |= RXMAC_BROADCAST;
1839 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1840 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1841 			rxcfg |= RXMAC_PROMISC;
1842 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1843 			rxcfg |= RXMAC_ALLMULTI;
1844 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1845 		     JME_MAR0, 0xFFFFFFFF);
1846 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1847 		     JME_MAR1, 0xFFFFFFFF);
1848 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1849 		     JME_RXMAC, rxcfg);
1850 		return;
1851 	}
1852 	/*
1853 	 * Set up the multicast address filter by passing all multicast
1854 	 * addresses through a CRC generator, and then using the low-order
1855 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1856 	 * high order bits select the register, while the rest of the bits
1857 	 * select the bit within the register.
1858 	 */
1859 	rxcfg |= RXMAC_MULTICAST;
1860 	memset(hash, 0, sizeof(hash));
1861 
1862 	ETHER_FIRST_MULTI(step, &sc->jme_ec, enm);
1863 	while (enm != NULL) {
1864 #ifdef JEMDBUG
1865 		printf("%s: addrs %s %s\n", __func__,
1866 		   ether_sprintf(enm->enm_addrlo),
1867 		   ether_sprintf(enm->enm_addrhi));
1868 #endif
1869 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
1870 			i = ether_crc32_be(enm->enm_addrlo, 6);
1871 			/* Just want the 6 least significant bits. */
1872 			i &= 0x3f;
1873 			hash[i / 32] |= 1 << (i%32);
1874 		} else {
1875 			hash[0] = hash[1] = 0xffffffff;
1876 			sc->jme_if.if_flags |= IFF_ALLMULTI;
1877 			break;
1878 		}
1879 		ETHER_NEXT_MULTI(step, enm);
1880 	}
1881 #ifdef JMEDEBUG
1882 	printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
1883 #endif
1884 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
1885 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
1886 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
1887 }
1888 
1889 #if 0
1890 static int
1891 jme_multicast_hash(uint8_t *a)
1892 {
1893 	int hash;
1894 
1895 #define DA(addr,bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
1896 #define xor8(a,b,c,d,e,f,g,h)						\
1897 	(((a != 0) + (b != 0) + (c != 0) + (d != 0) + 			\
1898 	  (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
1899 
1900 	hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
1901 	    DA(a,36), DA(a,42));
1902 	hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
1903 	    DA(a,37), DA(a,43)) << 1;
1904 	hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
1905 	    DA(a,38), DA(a,44)) << 2;
1906 	hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
1907 	    DA(a,39), DA(a,45)) << 3;
1908 	hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
1909 	    DA(a,40), DA(a,46)) << 4;
1910 	hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
1911 	    DA(a,41), DA(a,47)) << 5;
1912 
1913 	return hash;
1914 }
1915 #endif
1916 
1917 static int
1918 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
1919 {
1920 	 uint32_t reg;
1921 	 int i;
1922 
1923 	 *val = 0;
1924 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1925 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1926 		      JME_SMBCSR);
1927 		  if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
1928 			   break;
1929 		  delay(10);
1930 	 }
1931 
1932 	 if (i == 0) {
1933 		  aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
1934 		  return (ETIMEDOUT);
1935 	 }
1936 
1937 	 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
1938 	 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
1939 	     JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
1940 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1941 		  delay(10);
1942 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1943 		      JME_SMBINTF);
1944 		  if ((reg & SMBINTF_CMD_TRIGGER) == 0)
1945 			   break;
1946 	 }
1947 
1948 	 if (i == 0) {
1949 		  aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
1950 		  return (ETIMEDOUT);
1951 	 }
1952 
1953 	 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
1954 	 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
1955 	 return (0);
1956 }
1957 
1958 
1959 static int
1960 jme_eeprom_macaddr(struct jme_softc *sc)
1961 {
1962 	uint8_t eaddr[ETHER_ADDR_LEN];
1963 	uint8_t fup, reg, val;
1964 	uint32_t offset;
1965 	int match;
1966 
1967 	offset = 0;
1968 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1969 	    fup != JME_EEPROM_SIG0)
1970 		return (ENOENT);
1971 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1972 	    fup != JME_EEPROM_SIG1)
1973 		return (ENOENT);
1974 	match = 0;
1975 	do {
1976 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
1977 			break;
1978 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
1979 		    == (fup & (JME_EEPROM_FUNC_MASK|JME_EEPROM_PAGE_MASK))) {
1980 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
1981 				break;
1982 			if (reg >= JME_PAR0 &&
1983 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
1984 				if (jme_eeprom_read_byte(sc, offset + 2,
1985 				    &val) != 0)
1986 					break;
1987 				eaddr[reg - JME_PAR0] = val;
1988 				match++;
1989 			}
1990 		}
1991 		if (fup & JME_EEPROM_DESC_END)
1992 			break;
1993 
1994 		/* Try next eeprom descriptor. */
1995 		offset += JME_EEPROM_DESC_BYTES;
1996 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
1997 
1998 	if (match == ETHER_ADDR_LEN) {
1999 		memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN);
2000 		return (0);
2001 	}
2002 
2003 	return (ENOENT);
2004 }
2005 
2006 /*
2007  * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
2008  * set up in jme_pci_attach()
2009  */
2010 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
2011 {
2012 	int rc;
2013 	const struct sysctlnode *node;
2014 
2015 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2016 	    0, CTLTYPE_NODE, "hw", NULL,
2017 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2018 		goto err;
2019 	}
2020 
2021 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2022 	    0, CTLTYPE_NODE, "jme",
2023 	    SYSCTL_DESCR("jme interface controls"),
2024 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2025 		goto err;
2026 	}
2027 
2028 	jme_root_num = node->sysctl_num;
2029 	return;
2030 
2031 err:
2032 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2033 }
2034 
2035 static int
2036 jme_sysctl_intrxto(SYSCTLFN_ARGS)
2037 {
2038 	int error, t;
2039 	struct sysctlnode node;
2040 	struct jme_softc *sc;
2041 	uint32_t reg;
2042 
2043 	node = *rnode;
2044 	sc = node.sysctl_data;
2045 	t = sc->jme_intrxto;
2046 	node.sysctl_data = &t;
2047 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2048 	if (error || newp == NULL)
2049 		return error;
2050 
2051 	if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
2052 		return EINVAL;
2053 
2054 	/*
2055 	 * update the softc with sysctl-changed value, and mark
2056 	 * for hardware update
2057 	 */
2058 	sc->jme_intrxto = t;
2059 	/* Configure Rx queue 0 packet completion coalescing. */
2060 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2061 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2062 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2063 	return 0;
2064 }
2065 
2066 static int
2067 jme_sysctl_intrxct(SYSCTLFN_ARGS)
2068 {
2069 	int error, t;
2070 	struct sysctlnode node;
2071 	struct jme_softc *sc;
2072 	uint32_t reg;
2073 
2074 	node = *rnode;
2075 	sc = node.sysctl_data;
2076 	t = sc->jme_intrxct;
2077 	node.sysctl_data = &t;
2078 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2079 	if (error || newp == NULL)
2080 		return error;
2081 
2082 	if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
2083 		return EINVAL;
2084 
2085 	/*
2086 	 * update the softc with sysctl-changed value, and mark
2087 	 * for hardware update
2088 	 */
2089 	sc->jme_intrxct = t;
2090 	/* Configure Rx queue 0 packet completion coalescing. */
2091 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2092 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2093 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2094 	return 0;
2095 }
2096 
2097 static int
2098 jme_sysctl_inttxto(SYSCTLFN_ARGS)
2099 {
2100 	int error, t;
2101 	struct sysctlnode node;
2102 	struct jme_softc *sc;
2103 	uint32_t reg;
2104 
2105 	node = *rnode;
2106 	sc = node.sysctl_data;
2107 	t = sc->jme_inttxto;
2108 	node.sysctl_data = &t;
2109 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2110 	if (error || newp == NULL)
2111 		return error;
2112 
2113 	if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
2114 		return EINVAL;
2115 
2116 	/*
2117 	 * update the softc with sysctl-changed value, and mark
2118 	 * for hardware update
2119 	 */
2120 	sc->jme_inttxto = t;
2121 	/* Configure Tx queue 0 packet completion coalescing. */
2122 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2123 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2124 	reg |= PCCTX_COAL_TXQ0;
2125 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2126 	return 0;
2127 }
2128 
2129 static int
2130 jme_sysctl_inttxct(SYSCTLFN_ARGS)
2131 {
2132 	int error, t;
2133 	struct sysctlnode node;
2134 	struct jme_softc *sc;
2135 	uint32_t reg;
2136 
2137 	node = *rnode;
2138 	sc = node.sysctl_data;
2139 	t = sc->jme_inttxct;
2140 	node.sysctl_data = &t;
2141 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2142 	if (error || newp == NULL)
2143 		return error;
2144 
2145 	if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
2146 		return EINVAL;
2147 
2148 	/*
2149 	 * update the softc with sysctl-changed value, and mark
2150 	 * for hardware update
2151 	 */
2152 	sc->jme_inttxct = t;
2153 	/* Configure Tx queue 0 packet completion coalescing. */
2154 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2155 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2156 	reg |= PCCTX_COAL_TXQ0;
2157 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2158 	return 0;
2159 }
2160