xref: /netbsd-src/sys/dev/pci/if_jme.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: if_jme.c,v 1.32 2017/09/26 07:42:06 knakahara Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 
54 
55 /*
56  * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
57  * Ethernet Controllers.
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.32 2017/09/26 07:42:06 knakahara Exp $");
62 
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/mbuf.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/ioctl.h>
70 #include <sys/errno.h>
71 #include <sys/malloc.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>	/* only for declaration of wakeup() used by vm.h */
74 #include <sys/device.h>
75 #include <sys/syslog.h>
76 #include <sys/sysctl.h>
77 
78 #include <net/if.h>
79 #if defined(SIOCSIFMEDIA)
80 #include <net/if_media.h>
81 #endif
82 #include <net/if_types.h>
83 #include <net/if_dl.h>
84 #include <net/route.h>
85 #include <net/netisr.h>
86 
87 #include <net/bpf.h>
88 #include <net/bpfdesc.h>
89 
90 #include <sys/rndsource.h>
91 
92 #include <netinet/in.h>
93 #include <netinet/in_systm.h>
94 #include <netinet/ip.h>
95 
96 #ifdef INET
97 #include <netinet/in_var.h>
98 #endif
99 
100 #include <netinet/tcp.h>
101 
102 #include <net/if_ether.h>
103 #if defined(INET)
104 #include <netinet/if_inarp.h>
105 #endif
106 
107 #include <sys/bus.h>
108 #include <sys/intr.h>
109 
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113 #include <dev/pci/if_jmereg.h>
114 
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 
118 struct jme_product_desc {
119 	u_int32_t jme_product;
120 	const char *jme_desc;
121 };
122 
123 /* number of entries in transmit and receive rings */
124 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))
125 
126 #define JME_DESC_INC(x, y)	((x) = ((x) + 1) % (y))
127 
128 /* Water mark to kick reclaiming Tx buffers. */
129 #define JME_TX_DESC_HIWAT	(JME_NBUFS - (((JME_NBUFS) * 3) / 10))
130 
131 
132 struct jme_softc {
133 	device_t jme_dev;		/* base device */
134 	bus_space_tag_t jme_bt_mac;
135 	bus_space_handle_t jme_bh_mac;  /* Mac registers */
136 	bus_space_tag_t jme_bt_phy;
137 	bus_space_handle_t jme_bh_phy;  /* PHY registers */
138 	bus_space_tag_t jme_bt_misc;
139 	bus_space_handle_t jme_bh_misc; /* Misc registers */
140 	bus_dma_tag_t jme_dmatag;
141 	bus_dma_segment_t jme_txseg;	/* transmit ring seg */
142 	bus_dmamap_t jme_txmap;		/* transmit ring DMA map */
143 	struct jme_desc* jme_txring;	/* transmit ring */
144 	bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
145 	struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
146 	int jme_tx_cons;		/* transmit ring consumer */
147 	int jme_tx_prod;		/* transmit ring producer */
148 	int jme_tx_cnt;			/* transmit ring active count */
149 	bus_dma_segment_t jme_rxseg;	/* receive ring seg */
150 	bus_dmamap_t jme_rxmap;		/* receive ring DMA map */
151 	struct jme_desc* jme_rxring;	/* receive ring */
152 	bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
153 	struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
154 	int jme_rx_cons;		/* receive ring consumer */
155 	int jme_rx_prod;		/* receive ring producer */
156 	void* jme_ih;			/* our interrupt */
157 	struct ethercom jme_ec;
158 	struct callout jme_tick_ch;	/* tick callout */
159 	u_int8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
160 	u_int8_t jme_phyaddr;		/* address of integrated phy */
161 	u_int8_t jme_chip_rev;		/* chip revision */
162 	u_int8_t jme_rev;		/* PCI revision */
163 	mii_data_t jme_mii;		/* mii bus */
164 	u_int32_t jme_flags;		/* device features, see below */
165 	uint32_t jme_txcsr;		/* TX config register */
166 	uint32_t jme_rxcsr;		/* RX config register */
167 	krndsource_t rnd_source;
168 	/* interrupt coalition parameters */
169 	struct sysctllog *jme_clog;
170 	int jme_intrxto;		/* interrupt RX timeout */
171 	int jme_intrxct;		/* interrupt RX packets counter */
172 	int jme_inttxto;		/* interrupt TX timeout */
173 	int jme_inttxct;		/* interrupt TX packets counter */
174 };
175 
176 #define JME_FLAG_FPGA	0x0001 /* FPGA version */
177 #define JME_FLAG_GIGA	0x0002 /* giga Ethernet capable */
178 
179 
180 #define jme_if	jme_ec.ec_if
181 #define jme_bpf	jme_if.if_bpf
182 
183 typedef struct jme_softc jme_softc_t;
184 typedef u_long ioctl_cmd_t;
185 
186 static int jme_pci_match(device_t, cfdata_t, void *);
187 static void jme_pci_attach(device_t, device_t, void *);
188 static void jme_intr_rx(jme_softc_t *);
189 static int jme_intr(void *);
190 
191 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
192 static int jme_mediachange(struct ifnet *);
193 static void jme_ifwatchdog(struct ifnet *);
194 static bool jme_shutdown(device_t, int);
195 
196 static void jme_txeof(struct jme_softc *);
197 static void jme_ifstart(struct ifnet *);
198 static void jme_reset(jme_softc_t *);
199 static int  jme_ifinit(struct ifnet *);
200 static int  jme_init(struct ifnet *, int);
201 static void jme_stop(struct ifnet *, int);
202 // static void jme_restart(void *);
203 static void jme_ticks(void *);
204 static void jme_mac_config(jme_softc_t *);
205 static void jme_set_filter(jme_softc_t *);
206 
207 int jme_mii_read(device_t, int, int);
208 void jme_mii_write(device_t, int, int, int);
209 void jme_statchg(struct ifnet *);
210 
211 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
212 static int jme_eeprom_macaddr(struct jme_softc *);
213 static int jme_reg_macaddr(struct jme_softc *);
214 
215 #define JME_TIMEOUT		1000
216 #define JME_PHY_TIMEOUT		1000
217 #define JME_EEPROM_TIMEOUT	1000
218 
219 static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
220 static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
221 static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
222 static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
223 static int jme_root_num;
224 
225 
226 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
227     jme_pci_match, jme_pci_attach, NULL, NULL);
228 
229 static const struct jme_product_desc jme_products[] = {
230 	{ PCI_PRODUCT_JMICRON_JMC250,
231 	  "JMicron JMC250 Gigabit Ethernet Controller" },
232 	{ PCI_PRODUCT_JMICRON_JMC260,
233 	  "JMicron JMC260 Gigabit Ethernet Controller" },
234 	{ 0, NULL },
235 };
236 
237 static const struct jme_product_desc *jme_lookup_product(uint32_t);
238 
239 static const struct jme_product_desc *
240 jme_lookup_product(uint32_t id)
241 {
242 	const struct jme_product_desc *jp;
243 
244 	for (jp = jme_products ; jp->jme_desc != NULL; jp++)
245 		if (PCI_PRODUCT(id) == jp->jme_product)
246 			return jp;
247 
248 	return NULL;
249 }
250 
251 static int
252 jme_pci_match(device_t parent, cfdata_t cf, void *aux)
253 {
254 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
255 
256 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_JMICRON)
257 		return 0;
258 
259 	if (jme_lookup_product(pa->pa_id) != NULL)
260 		return 1;
261 
262 	return 0;
263 }
264 
265 static void
266 jme_pci_attach(device_t parent, device_t self, void *aux)
267 {
268 	jme_softc_t *sc = device_private(self);
269 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
270 	const struct jme_product_desc *jp;
271 	struct ifnet * const ifp = &sc->jme_if;
272 	bus_space_tag_t iot1, iot2, memt;
273 	bus_space_handle_t ioh1, ioh2, memh;
274 	bus_size_t size, size2;
275 	pci_intr_handle_t intrhandle;
276 	const char *intrstr;
277 	pcireg_t csr;
278 	int nsegs, i;
279 	const struct sysctlnode *node;
280 	int jme_nodenum;
281 	char intrbuf[PCI_INTRSTR_LEN];
282 
283 	sc->jme_dev = self;
284 	aprint_normal("\n");
285 	callout_init(&sc->jme_tick_ch, 0);
286 
287 	jp = jme_lookup_product(pa->pa_id);
288 	if (jp == NULL)
289 		panic("jme_pci_attach: impossible");
290 
291 	if (jp->jme_product == PCI_PRODUCT_JMICRON_JMC250)
292 		sc->jme_flags = JME_FLAG_GIGA;
293 
294 	/*
295 	 * Map the card space. Try Mem first.
296 	 */
297 	if (pci_mapreg_map(pa, JME_PCI_BAR0,
298 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
299 	    0, &memt, &memh, NULL, &size) == 0) {
300 		sc->jme_bt_mac = memt;
301 		sc->jme_bh_mac = memh;
302 		sc->jme_bt_phy = memt;
303 		if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
304 		    JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
305 			aprint_error_dev(self, "can't subregion PHY space\n");
306 			bus_space_unmap(memt, memh, size);
307 			return;
308 		}
309 		sc->jme_bt_misc = memt;
310 		if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
311 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
312 			aprint_error_dev(self, "can't subregion misc space\n");
313 			bus_space_unmap(memt, memh, size);
314 			return;
315 		}
316 	} else {
317 		if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
318 		    0, &iot1, &ioh1, NULL, &size) != 0) {
319 			aprint_error_dev(self, "can't map I/O space 1\n");
320 			return;
321 		}
322 		sc->jme_bt_mac = iot1;
323 		sc->jme_bh_mac = ioh1;
324 		if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
325 		    0, &iot2, &ioh2, NULL, &size2) != 0) {
326 			aprint_error_dev(self, "can't map I/O space 2\n");
327 			bus_space_unmap(iot1, ioh1, size);
328 			return;
329 		}
330 		sc->jme_bt_phy = iot2;
331 		sc->jme_bh_phy = ioh2;
332 		sc->jme_bt_misc = iot2;
333 		if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
334 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
335 			aprint_error_dev(self, "can't subregion misc space\n");
336 			bus_space_unmap(iot1, ioh1, size);
337 			bus_space_unmap(iot2, ioh2, size2);
338 			return;
339 		}
340 	}
341 
342 	if (pci_dma64_available(pa))
343 		sc->jme_dmatag = pa->pa_dmat64;
344 	else
345 		sc->jme_dmatag = pa->pa_dmat;
346 
347 	/* Enable the device. */
348 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
349 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
350 	    csr | PCI_COMMAND_MASTER_ENABLE);
351 
352 	aprint_normal_dev(self, "%s\n", jp->jme_desc);
353 
354 	sc->jme_rev = PCI_REVISION(pa->pa_class);
355 
356 	csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
357 	if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
358 	    CHIPMODE_NOT_FPGA)
359 		sc->jme_flags |= JME_FLAG_FPGA;
360 	sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
361 	aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
362 	    "0x%x", sc->jme_rev, sc->jme_chip_rev);
363 	if (sc->jme_flags & JME_FLAG_FPGA)
364 		aprint_verbose(" FPGA revision: 0x%x",
365 		    (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
366 	aprint_verbose("\n");
367 
368 	/*
369 	 * Save PHY address.
370 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
371 	 * requires PHY probing to get correct PHY address.
372 	 */
373 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
374 		sc->jme_phyaddr =
375 		    bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
376 				     JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
377 	} else
378 		sc->jme_phyaddr = 0;
379 
380 
381 	jme_reset(sc);
382 
383 	/* read mac addr */
384 	if (jme_eeprom_macaddr(sc) && jme_reg_macaddr(sc)) {
385 		aprint_error_dev(self, "error reading Ethernet address\n");
386 		/* return; */
387 	}
388 	aprint_normal_dev(self, "Ethernet address %s\n",
389 	    ether_sprintf(sc->jme_enaddr));
390 
391 	/* Map and establish interrupts */
392 	if (pci_intr_map(pa, &intrhandle)) {
393 		aprint_error_dev(self, "couldn't map interrupt\n");
394 		return;
395 	}
396 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf));
397 	sc->jme_if.if_softc = sc;
398 	sc->jme_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
399 	    jme_intr, sc);
400 	if (sc->jme_ih == NULL) {
401 		aprint_error_dev(self, "couldn't establish interrupt");
402 		if (intrstr != NULL)
403 			aprint_error(" at %s", intrstr);
404 		aprint_error("\n");
405 		return;
406 	}
407 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
408 
409 	/* allocate and map DMA-safe memory for transmit ring */
410 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
411 	    &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
412 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
413 	    nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
414 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
415 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
416 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
417 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
418 	    PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
419 		aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
420 		return;
421 	}
422 	/* allocate and map DMA-safe memory for receive ring */
423 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
424 	      &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
425 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
426 	      nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
427 	      BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
428 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
429 	      BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
430 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
431 	      PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
432 		aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
433 		return;
434 	}
435 	for (i = 0; i < JME_NBUFS; i++) {
436 		sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
437 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
438 		    JME_NBUFS, JME_MAX_TX_LEN, 0,
439 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
440 		    &sc->jme_txmbufm[i]) != 0) {
441 			aprint_error_dev(self, "can't allocate DMA TX map\n");
442 			return;
443 		}
444 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
445 		    1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
446 		    &sc->jme_rxmbufm[i]) != 0) {
447 			aprint_error_dev(self, "can't allocate DMA RX map\n");
448 			return;
449 		}
450 	}
451 	/*
452 	 * Initialize our media structures and probe the MII.
453 	 *
454 	 * Note that we don't care about the media instance.  We
455 	 * are expecting to have multiple PHYs on the 10/100 cards,
456 	 * and on those cards we exclude the internal PHY from providing
457 	 * 10baseT.  By ignoring the instance, it allows us to not have
458 	 * to specify it on the command line when switching media.
459 	 */
460 	sc->jme_mii.mii_ifp = ifp;
461 	sc->jme_mii.mii_readreg = jme_mii_read;
462 	sc->jme_mii.mii_writereg = jme_mii_write;
463 	sc->jme_mii.mii_statchg = jme_statchg;
464 	sc->jme_ec.ec_mii = &sc->jme_mii;
465 	ifmedia_init(&sc->jme_mii.mii_media, IFM_IMASK, jme_mediachange,
466 	    ether_mediastatus);
467 	mii_attach(self, &sc->jme_mii, 0xffffffff, MII_PHY_ANY,
468 	    MII_OFFSET_ANY, 0);
469 	if (LIST_FIRST(&sc->jme_mii.mii_phys) == NULL) {
470 		ifmedia_add(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
471 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE);
472 	} else
473 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_AUTO);
474 
475 	/*
476 	 * We can support 802.1Q VLAN-sized frames.
477 	 */
478 	sc->jme_ec.ec_capabilities |=
479 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
480 
481 	if (sc->jme_flags & JME_FLAG_GIGA)
482 		sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
483 
484 
485 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
486 	ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
487 	ifp->if_ioctl = jme_ifioctl;
488 	ifp->if_start = jme_ifstart;
489 	ifp->if_watchdog = jme_ifwatchdog;
490 	ifp->if_init = jme_ifinit;
491 	ifp->if_stop = jme_stop;
492 	ifp->if_timer = 0;
493 	ifp->if_capabilities |=
494 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
495 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
496 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
497 	    IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
498 	    IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
499 	    IFCAP_TSOv4 | IFCAP_TSOv6;
500 	IFQ_SET_READY(&ifp->if_snd);
501 	if_attach(ifp);
502 	ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);
503 
504 	/*
505 	 * Add shutdown hook so that DMA is disabled prior to reboot.
506 	 */
507 	if (pmf_device_register1(self, NULL, NULL, jme_shutdown))
508 		pmf_class_network_register(self, ifp);
509 	else
510 		aprint_error_dev(self, "couldn't establish power handler\n");
511 
512 	rnd_attach_source(&sc->rnd_source, device_xname(self),
513 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
514 
515 	sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
516 	sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
517 	sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
518 	sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
519 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
520 	    0, CTLTYPE_NODE, device_xname(sc->jme_dev),
521 	    SYSCTL_DESCR("jme per-controller controls"),
522 	    NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
523 	    CTL_EOL) != 0) {
524 		aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
525 		return;
526 	}
527 	jme_nodenum = node->sysctl_num;
528 
529 	/* interrupt moderation sysctls */
530 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
531 	    CTLFLAG_READWRITE,
532 	    CTLTYPE_INT, "int_rxto",
533 	    SYSCTL_DESCR("jme RX interrupt moderation timer"),
534 	    jme_sysctl_intrxto, 0, (void *)sc,
535 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
536 	    CTL_EOL) != 0) {
537 		aprint_normal_dev(sc->jme_dev,
538 		    "couldn't create int_rxto sysctl node\n");
539 	}
540 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
541 	    CTLFLAG_READWRITE,
542 	    CTLTYPE_INT, "int_rxct",
543 	    SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
544 	    jme_sysctl_intrxct, 0, (void *)sc,
545 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
546 	    CTL_EOL) != 0) {
547 		aprint_normal_dev(sc->jme_dev,
548 		    "couldn't create int_rxct sysctl node\n");
549 	}
550 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
551 	    CTLFLAG_READWRITE,
552 	    CTLTYPE_INT, "int_txto",
553 	    SYSCTL_DESCR("jme TX interrupt moderation timer"),
554 	    jme_sysctl_inttxto, 0, (void *)sc,
555 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
556 	    CTL_EOL) != 0) {
557 		aprint_normal_dev(sc->jme_dev,
558 		    "couldn't create int_txto sysctl node\n");
559 	}
560 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
561 	    CTLFLAG_READWRITE,
562 	    CTLTYPE_INT, "int_txct",
563 	    SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
564 	    jme_sysctl_inttxct, 0, (void *)sc,
565 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
566 	    CTL_EOL) != 0) {
567 		aprint_normal_dev(sc->jme_dev,
568 		    "couldn't create int_txct sysctl node\n");
569 	}
570 }
571 
572 static void
573 jme_stop_rx(jme_softc_t *sc)
574 {
575 	uint32_t reg;
576 	int i;
577 
578 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
579 	if ((reg & RXCSR_RX_ENB) == 0)
580 		return;
581 	reg &= ~RXCSR_RX_ENB;
582 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
583 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
584 		DELAY(10);
585 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
586 		    JME_RXCSR) & RXCSR_RX_ENB) == 0)
587 			break;
588 	}
589 	if (i == 0)
590 		aprint_error_dev(sc->jme_dev, "stopping recevier timeout!\n");
591 
592 }
593 
594 static void
595 jme_stop_tx(jme_softc_t *sc)
596 {
597 	uint32_t reg;
598 	int i;
599 
600 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
601 	if ((reg & TXCSR_TX_ENB) == 0)
602 		return;
603 	reg &= ~TXCSR_TX_ENB;
604 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
605 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
606 		DELAY(10);
607 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
608 		    JME_TXCSR) & TXCSR_TX_ENB) == 0)
609 			break;
610 	}
611 	if (i == 0)
612 		aprint_error_dev(sc->jme_dev,
613 		    "stopping transmitter timeout!\n");
614 }
615 
616 static void
617 jme_reset(jme_softc_t *sc)
618 {
619 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
620 	DELAY(10);
621 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
622 }
623 
624 static bool
625 jme_shutdown(device_t self, int howto)
626 {
627 	jme_softc_t *sc;
628 	struct ifnet *ifp;
629 
630 	sc = device_private(self);
631 	ifp = &sc->jme_if;
632 	jme_stop(ifp, 1);
633 
634 	return true;
635 }
636 
637 static void
638 jme_stop(struct ifnet *ifp, int disable)
639 {
640 	jme_softc_t *sc = ifp->if_softc;
641 	int i;
642 	/* Stop receiver, transmitter. */
643 	jme_stop_rx(sc);
644 	jme_stop_tx(sc);
645 	/* free receive mbufs */
646 	for (i = 0; i < JME_NBUFS; i++) {
647 		if (sc->jme_rxmbuf[i]) {
648 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
649 			m_freem(sc->jme_rxmbuf[i]);
650 		}
651 		sc->jme_rxmbuf[i] = NULL;
652 	}
653 	/* process completed transmits */
654 	jme_txeof(sc);
655 	/* free abort pending transmits */
656 	for (i = 0; i < JME_NBUFS; i++) {
657 		if (sc->jme_txmbuf[i]) {
658 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
659 			m_freem(sc->jme_txmbuf[i]);
660 			sc->jme_txmbuf[i] = NULL;
661 		}
662 	}
663 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
664 	ifp->if_timer = 0;
665 }
666 
667 #if 0
668 static void
669 jme_restart(void *v)
670 {
671 
672 	jme_init(v);
673 }
674 #endif
675 
676 static int
677 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
678 {
679 	int error;
680 	bus_dmamap_t map;
681 	int i = sc->jme_rx_prod;
682 
683 	if (sc->jme_rxmbuf[i] != NULL) {
684 		aprint_error_dev(sc->jme_dev,
685 		    "mbuf already here: rxprod %d rxcons %d\n",
686 		    sc->jme_rx_prod, sc->jme_rx_cons);
687 		if (m)
688 			m_freem(m);
689 		return EINVAL;
690 	}
691 
692 	if (m == NULL) {
693 		sc->jme_rxmbuf[i] = NULL;
694 		MGETHDR(m, M_DONTWAIT, MT_DATA);
695 		if (m == NULL)
696 			return (ENOBUFS);
697 		MCLGET(m, M_DONTWAIT);
698 		if ((m->m_flags & M_EXT) == 0) {
699 			m_freem(m);
700 			return (ENOBUFS);
701 		}
702 	}
703 	map = sc->jme_rxmbufm[i];
704 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
705 	KASSERT(m->m_len == MCLBYTES);
706 
707 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
708 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
709 	if (error) {
710 		sc->jme_rxmbuf[i] = NULL;
711 		aprint_error_dev(sc->jme_dev,
712 		    "unable to load rx DMA map %d, error = %d\n",
713 		    i, error);
714 		m_freem(m);
715 		return (error);
716 	}
717 	bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
718 	    BUS_DMASYNC_PREREAD);
719 
720 	sc->jme_rxmbuf[i] = m;
721 
722 	sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
723 	sc->jme_rxring[i].addr_lo =
724 	    htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
725 	sc->jme_rxring[i].addr_hi =
726 	    htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
727 	sc->jme_rxring[i].flags =
728 	    htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
729 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
730 	    i * sizeof(struct jme_desc), sizeof(struct jme_desc),
731 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
732 	JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
733 	return (0);
734 }
735 
736 static int
737 jme_ifinit(struct ifnet *ifp)
738 {
739 	return jme_init(ifp, 1);
740 }
741 
742 static int
743 jme_init(struct ifnet *ifp, int do_ifinit)
744 {
745 	jme_softc_t *sc = ifp->if_softc;
746 	int i, s;
747 	uint8_t eaddr[ETHER_ADDR_LEN];
748 	uint32_t reg;
749 
750 	s = splnet();
751 	/* cancel any pending IO */
752 	jme_stop(ifp, 1);
753 	jme_reset(sc);
754 	if ((sc->jme_if.if_flags & IFF_UP) == 0) {
755 		splx(s);
756 		return 0;
757 	}
758 	/* allocate receive ring */
759 	sc->jme_rx_prod = 0;
760 	for (i = 0; i < JME_NBUFS; i++) {
761 		if (jme_add_rxbuf(sc, NULL) < 0) {
762 			aprint_error_dev(sc->jme_dev,
763 			    "can't allocate rx mbuf\n");
764 			for (i--; i >= 0; i--) {
765 				bus_dmamap_unload(sc->jme_dmatag,
766 				    sc->jme_rxmbufm[i]);
767 				m_freem(sc->jme_rxmbuf[i]);
768 				sc->jme_rxmbuf[i] = NULL;
769 			}
770 			splx(s);
771 			return ENOMEM;
772 		}
773 	}
774 	/* init TX ring */
775 	memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
776 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
777 	    0, JME_NBUFS * sizeof(struct jme_desc),
778 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
779 	for (i = 0; i < JME_NBUFS; i++)
780 		sc->jme_txmbuf[i] = NULL;
781 	sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;
782 
783 	/* Reprogram the station address. */
784 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
785 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
786 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
787 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
788 	    JME_PAR1, eaddr[5] << 8 | eaddr[4]);
789 
790 	/*
791 	 * Configure Tx queue.
792 	 *  Tx priority queue weight value : 0
793 	 *  Tx FIFO threshold for processing next packet : 16QW
794 	 *  Maximum Tx DMA length : 512
795 	 *  Allow Tx DMA burst.
796 	 */
797 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
798 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
799 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
800 	sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
801 	sc->jme_txcsr |= TXCSR_DMA_BURST;
802 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
803 	     JME_TXCSR, sc->jme_txcsr);
804 
805 	/* Set Tx descriptor counter. */
806 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
807 	     JME_TXQDC, JME_NBUFS);
808 
809 	/* Set Tx ring address to the hardware. */
810 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
811 	    JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
812 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
813 	    JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));
814 
815 	/* Configure TxMAC parameters. */
816 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
817 	    TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
818 	    TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);
819 
820 	/*
821 	 * Configure Rx queue.
822 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
823 	 *  FIFO threshold for processing next packet : 128QW
824 	 *  Rx queue 0 select
825 	 *  Max Rx DMA length : 128
826 	 *  Rx descriptor retry : 32
827 	 *  Rx descriptor retry time gap : 256ns
828 	 *  Don't receive runt/bad frame.
829 	 */
830 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
831 	/*
832 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
833 	 * than 4K bytes will suffer from Rx FIFO overruns. So
834 	 * decrease FIFO threshold to reduce the FIFO overruns for
835 	 * frames larger than 4000 bytes.
836 	 * For best performance of standard MTU sized frames use
837 	 * maximum allowable FIFO threshold, 128QW.
838 	 */
839 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
840 	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
841 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
842 	else
843 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
844 	sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
845 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
846 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
847 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
848 	     JME_RXCSR, sc->jme_rxcsr);
849 
850 	/* Set Rx descriptor counter. */
851 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
852 	     JME_RXQDC, JME_NBUFS);
853 
854 	/* Set Rx ring address to the hardware. */
855 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
856 	    JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
857 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
858 	    JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));
859 
860 	/* Clear receive filter. */
861 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
862 	/* Set up the receive filter. */
863 	jme_set_filter(sc);
864 
865 	/*
866 	 * Disable all WOL bits as WOL can interfere normal Rx
867 	 * operation. Also clear WOL detection status bits.
868 	 */
869 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
870 	reg &= ~PMCS_WOL_ENB_MASK;
871 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);
872 
873 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
874 	/*
875 	 * Pad 10bytes right before received frame. This will greatly
876 	 * help Rx performance on strict-alignment architectures as
877 	 * it does not need to copy the frame to align the payload.
878 	 */
879 	reg |= RXMAC_PAD_10BYTES;
880 	if ((ifp->if_capenable &
881 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx|
882 	     IFCAP_CSUM_TCPv6_Rx|IFCAP_CSUM_UDPv6_Rx)) != 0)
883 		reg |= RXMAC_CSUM_ENB;
884 	reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
885 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);
886 
887 	/* Configure general purpose reg0 */
888 	reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
889 	reg &= ~GPREG0_PCC_UNIT_MASK;
890 	/* Set PCC timer resolution to micro-seconds unit. */
891 	reg |= GPREG0_PCC_UNIT_US;
892 	/*
893 	 * Disable all shadow register posting as we have to read
894 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
895 	 * that it's hard to synchronize interrupt status between
896 	 * hardware and software with shadow posting due to
897 	 * requirements of bus_dmamap_sync(9).
898 	 */
899 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
900 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
901 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
902 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
903 	/* Disable posting of DW0. */
904 	reg &= ~GPREG0_POST_DW0_ENB;
905 	/* Clear PME message. */
906 	reg &= ~GPREG0_PME_ENB;
907 	/* Set PHY address. */
908 	reg &= ~GPREG0_PHY_ADDR_MASK;
909 	reg |= sc->jme_phyaddr;
910 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);
911 
912 	/* Configure Tx queue 0 packet completion coalescing. */
913 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
914 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
915 	reg |= PCCTX_COAL_TXQ0;
916 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
917 
918 	/* Configure Rx queue 0 packet completion coalescing. */
919 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
920 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
921 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
922 
923 	/* Disable Timers */
924 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0);
925 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
926 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);
927 
928 	/* Configure retry transmit period, retry limit value. */
929 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
930 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
931 	    TXTRHD_RT_PERIOD_MASK) |
932 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
933 	    TXTRHD_RT_LIMIT_SHIFT));
934 
935 	/* Disable RSS. */
936 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
937 	    JME_RSSC, RSSC_DIS_RSS);
938 
939 	/* Initialize the interrupt mask. */
940 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
941 	     JME_INTR_MASK_SET, JME_INTRS_ENABLE);
942 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
943 	     JME_INTR_STATUS, 0xFFFFFFFF);
944 
945 	/* set media, if not already handling a media change */
946 	if (do_ifinit) {
947 		int error;
948 		if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
949 			error = 0;
950 		else if (error != 0) {
951 			aprint_error_dev(sc->jme_dev, "could not set media\n");
952 			splx(s);
953 			return error;
954 		}
955 	}
956 
957 	/* Program MAC with resolved speed/duplex/flow-control. */
958 	jme_mac_config(sc);
959 
960 	/* Start receiver/transmitter. */
961 	sc->jme_rx_cons = 0;
962 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
963 	    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
964 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
965 	    sc->jme_txcsr | TXCSR_TX_ENB);
966 
967 	/* start ticks calls */
968 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
969 	sc->jme_if.if_flags |= IFF_RUNNING;
970 	sc->jme_if.if_flags &= ~IFF_OACTIVE;
971 	splx(s);
972 	return 0;
973 }
974 
975 
976 int
977 jme_mii_read(device_t self, int phy, int reg)
978 {
979 	struct jme_softc *sc = device_private(self);
980 	int val, i;
981 
982 	/* For FPGA version, PHY address 0 should be ignored. */
983 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
984 		if (phy == 0)
985 			return (0);
986 	} else {
987 		if (sc->jme_phyaddr != phy)
988 			return (0);
989 	}
990 
991 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
992 	    SMI_OP_READ | SMI_OP_EXECUTE |
993 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
994 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
995 		delay(10);
996 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
997 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
998 			break;
999 	}
1000 
1001 	if (i == 0) {
1002 		aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
1003 		return (0);
1004 	}
1005 
1006 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
1007 }
1008 
1009 void
1010 jme_mii_write(device_t self, int phy, int reg, int val)
1011 {
1012 	struct jme_softc *sc = device_private(self);
1013 	int i;
1014 
1015 	/* For FPGA version, PHY address 0 should be ignored. */
1016 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
1017 		if (phy == 0)
1018 			return;
1019 	} else {
1020 		if (sc->jme_phyaddr != phy)
1021 			return;
1022 	}
1023 
1024 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
1025 	    SMI_OP_WRITE | SMI_OP_EXECUTE |
1026 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
1027 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
1028 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
1029 		delay(10);
1030 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1031 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1032 			break;
1033 	}
1034 
1035 	if (i == 0)
1036 		aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
1037 
1038 	return;
1039 }
1040 
1041 void
1042 jme_statchg(struct ifnet *ifp)
1043 {
1044 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING))
1045 		jme_init(ifp, 0);
1046 }
1047 
1048 static void
1049 jme_intr_rx(jme_softc_t *sc) {
1050 	struct mbuf *m, *mhead;
1051 	bus_dmamap_t mmap;
1052 	struct ifnet *ifp = &sc->jme_if;
1053 	uint32_t flags,  buflen;
1054 	int i, ipackets, nsegs, seg, error;
1055 	struct jme_desc *desc;
1056 
1057 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
1058 	    sizeof(struct jme_desc) * JME_NBUFS,
1059 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1060 #ifdef JMEDEBUG_RX
1061 	printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
1062 	    sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
1063 #endif
1064 	ipackets = 0;
1065 	while((le32toh(sc->jme_rxring[sc->jme_rx_cons].flags) & JME_RD_OWN)
1066 	    == 0) {
1067 		i = sc->jme_rx_cons;
1068 		desc = &sc->jme_rxring[i];
1069 #ifdef JMEDEBUG_RX
1070 		printf("rxintr i %d flags 0x%x buflen 0x%x\n",
1071 		    i,  le32toh(desc->flags), le32toh(desc->buflen));
1072 #endif
1073 		if (sc->jme_rxmbuf[i] == NULL) {
1074 			if ((error = jme_add_rxbuf(sc, NULL)) != 0) {
1075 				aprint_error_dev(sc->jme_dev,
1076 				    "can't add new mbuf to empty slot: %d\n",
1077 				    error);
1078 				break;
1079 			}
1080 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1081 			i = sc->jme_rx_cons;
1082 			continue;
1083 		}
1084 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
1085 			break;
1086 
1087 		buflen = le32toh(desc->buflen);
1088 		nsegs = JME_RX_NSEGS(buflen);
1089 		flags = le32toh(desc->flags);
1090 		if ((buflen & JME_RX_ERR_STAT) != 0 ||
1091 		    JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
1092 		    JME_RX_BYTES(buflen) >
1093 		    (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
1094 #ifdef JMEDEBUG_RX
1095 			printf("rx error flags 0x%x buflen 0x%x\n",
1096 			    flags, buflen);
1097 #endif
1098 			ifp->if_ierrors++;
1099 			/* reuse the mbufs */
1100 			for (seg = 0; seg < nsegs; seg++) {
1101 				m = sc->jme_rxmbuf[i];
1102 				sc->jme_rxmbuf[i] = NULL;
1103 				mmap = sc->jme_rxmbufm[i];
1104 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1105 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1106 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1107 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1108 					aprint_error_dev(sc->jme_dev,
1109 					    "can't reuse mbuf: %d\n", error);
1110 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1111 				i = sc->jme_rx_cons;
1112 			}
1113 			continue;
1114 		}
1115 		/* receive this packet */
1116 		mhead = m = sc->jme_rxmbuf[i];
1117 		sc->jme_rxmbuf[i] = NULL;
1118 		mmap = sc->jme_rxmbufm[i];
1119 		bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1120 		    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1121 		bus_dmamap_unload(sc->jme_dmatag, mmap);
1122 		/* add a new buffer to chain */
1123 		if (jme_add_rxbuf(sc, NULL) != 0) {
1124 			if ((error = jme_add_rxbuf(sc, m)) != 0)
1125 				aprint_error_dev(sc->jme_dev,
1126 				    "can't reuse mbuf: %d\n", error);
1127 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1128 			i = sc->jme_rx_cons;
1129 			for (seg = 1; seg < nsegs; seg++) {
1130 				m = sc->jme_rxmbuf[i];
1131 				sc->jme_rxmbuf[i] = NULL;
1132 				mmap = sc->jme_rxmbufm[i];
1133 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1134 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1135 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1136 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1137 					aprint_error_dev(sc->jme_dev,
1138 					    "can't reuse mbuf: %d\n", error);
1139 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1140 				i = sc->jme_rx_cons;
1141 			}
1142 			ifp->if_ierrors++;
1143 			continue;
1144 		}
1145 
1146 		/* build mbuf chain: head, then remaining segments */
1147 		m_set_rcvif(m, ifp);
1148 		m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
1149 		m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
1150 		    m->m_pkthdr.len;
1151 		m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
1152 		JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1153 		for (seg = 1; seg < nsegs; seg++) {
1154 			i = sc->jme_rx_cons;
1155 			m = sc->jme_rxmbuf[i];
1156 			sc->jme_rxmbuf[i] = NULL;
1157 			mmap = sc->jme_rxmbufm[i];
1158 			bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1159 			    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1160 			bus_dmamap_unload(sc->jme_dmatag, mmap);
1161 			if ((error = jme_add_rxbuf(sc, NULL)) != 0)
1162 				aprint_error_dev(sc->jme_dev,
1163 				    "can't add new mbuf: %d\n", error);
1164 			m->m_flags &= ~M_PKTHDR;
1165 			m_cat(mhead, m);
1166 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1167 		}
1168 		/* and adjust last mbuf's size */
1169 		if (nsegs > 1) {
1170 			m->m_len =
1171 			    JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
1172 		}
1173 		ipackets++;
1174 
1175 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
1176 		    (flags & JME_RD_IPV4)) {
1177 			mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1178 			if (!(flags & JME_RD_IPCSUM))
1179 				mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1180 		}
1181 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
1182 		    (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
1183 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1184 			if (!(flags & JME_RD_TCPCSUM))
1185 				mhead->m_pkthdr.csum_flags |=
1186 				    M_CSUM_TCP_UDP_BAD;
1187 		}
1188 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
1189 		    (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
1190 			mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1191 			if (!(flags & JME_RD_UDPCSUM))
1192 				mhead->m_pkthdr.csum_flags |=
1193 				    M_CSUM_TCP_UDP_BAD;
1194 		}
1195 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
1196 		    (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
1197 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
1198 			if (!(flags & JME_RD_TCPCSUM))
1199 				mhead->m_pkthdr.csum_flags |=
1200 				    M_CSUM_TCP_UDP_BAD;
1201 		}
1202 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
1203 		    (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
1204 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
1205 			if (!(flags & JME_RD_UDPCSUM))
1206 				mhead->m_pkthdr.csum_flags |=
1207 				    M_CSUM_TCP_UDP_BAD;
1208 		}
1209 		if (flags & JME_RD_VLAN_TAG) {
1210 			/* pass to vlan_input() */
1211 			vlan_set_tag(mhead, (flags & JME_RD_VLAN_MASK));
1212 		}
1213 		if_percpuq_enqueue(ifp->if_percpuq, mhead);
1214 	}
1215 	if (ipackets)
1216 		rnd_add_uint32(&sc->rnd_source, ipackets);
1217 }
1218 
1219 static int
1220 jme_intr(void *v)
1221 {
1222 	jme_softc_t *sc = v;
1223 	uint32_t istatus;
1224 
1225 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1226 	     JME_INTR_STATUS);
1227 	if (istatus == 0 || istatus == 0xFFFFFFFF)
1228 		return 0;
1229 	/* Disable interrupts. */
1230 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1231 	    JME_INTR_MASK_CLR, 0xFFFFFFFF);
1232 again:
1233 	/* and update istatus */
1234 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1235 	     JME_INTR_STATUS);
1236 	if ((istatus & JME_INTRS_CHECK) == 0)
1237 		goto done;
1238 	/* Reset PCC counter/timer and Ack interrupts. */
1239 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1240 		istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1241 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1242 		istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1243 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1244 	     JME_INTR_STATUS, istatus);
1245 
1246 	if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
1247 		goto done;
1248 #ifdef JMEDEBUG_RX
1249 	printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
1250 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
1251 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
1252 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
1253 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
1254 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
1255 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
1256 	printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
1257 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
1258 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
1259 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
1260 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
1261 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
1262 #endif
1263 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1264 		jme_intr_rx(sc);
1265 	if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
1266 		/*
1267 		 * Notify hardware availability of new Rx
1268 		 * buffers.
1269 		 * Reading RXCSR takes very long time under
1270 		 * heavy load so cache RXCSR value and writes
1271 		 * the ORed value with the kick command to
1272 		 * the RXCSR. This saves one register access
1273 		 * cycle.
1274 		 */
1275 		sc->jme_rx_cons = 0;
1276 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1277 		    JME_RXCSR,
1278 		    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
1279 	}
1280 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1281 		jme_ifstart(&sc->jme_if);
1282 
1283 	goto again;
1284 
1285 done:
1286 	/* enable interrupts. */
1287 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1288 	    JME_INTR_MASK_SET, JME_INTRS_ENABLE);
1289 	return 1;
1290 }
1291 
1292 
1293 static int
1294 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1295 {
1296 	struct jme_softc *sc = ifp->if_softc;
1297 	int s, error;
1298 	struct ifreq *ifr;
1299 	struct ifcapreq *ifcr;
1300 
1301 	s = splnet();
1302 	/*
1303 	 * we can't support at the same time jumbo frames and
1304 	 * TX checksums offload/TSO
1305 	 */
1306 	switch(cmd) {
1307 	case SIOCSIFMTU:
1308 		ifr = data;
1309 		if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
1310 		    (ifp->if_capenable & (
1311 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1312 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1313 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1314 			splx(s);
1315 			return EINVAL;
1316 		}
1317 		break;
1318 	case SIOCSIFCAP:
1319 		ifcr = data;
1320 		if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
1321 		    (ifcr->ifcr_capenable & (
1322 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1323 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1324 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1325 			splx(s);
1326 			return EINVAL;
1327 		}
1328 		break;
1329 	}
1330 
1331 	error = ether_ioctl(ifp, cmd, data);
1332 	if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
1333 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1334 			jme_set_filter(sc);
1335 			error = 0;
1336 		} else {
1337 			error = jme_init(ifp, 0);
1338 		}
1339 	}
1340 	splx(s);
1341 	return error;
1342 }
1343 
1344 static int
1345 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1346 {
1347 	struct jme_desc *desc;
1348 	struct mbuf *m;
1349 	int error, i, prod, headdsc, nsegs;
1350 	uint32_t cflags, tso_segsz;
1351 
1352 	if (((*m_head)->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0){
1353 		/*
1354 		 * Due to the adherence to NDIS specification JMC250
1355 		 * assumes upper stack computed TCP pseudo checksum
1356 		 * without including payload length. This breaks
1357 		 * checksum offload for TSO case so recompute TCP
1358 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1359 		 * be much burden on modern CPUs.
1360 		 */
1361 		bool v4 = ((*m_head)->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1362 		int iphl = v4 ?
1363 		    M_CSUM_DATA_IPv4_IPHL((*m_head)->m_pkthdr.csum_data) :
1364 		    M_CSUM_DATA_IPv6_HL((*m_head)->m_pkthdr.csum_data);
1365 		/*
1366 		 * note: we support vlan offloading, so we should never have
1367 		 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
1368 		 * right.
1369 		 */
1370 		int hlen = ETHER_HDR_LEN + iphl;
1371 
1372 		if (__predict_false((*m_head)->m_len <
1373 		    (hlen + sizeof(struct tcphdr)))) {
1374 			   /*
1375 			    * TCP/IP headers are not in the first mbuf; we need
1376 			    * to do this the slow and painful way.  Let's just
1377 			    * hope this doesn't happen very often.
1378 			    */
1379 			   struct tcphdr th;
1380 
1381 			   m_copydata((*m_head), hlen, sizeof(th), &th);
1382 			   if (v4) {
1383 				    struct ip ip;
1384 
1385 				    m_copydata((*m_head), ETHER_HDR_LEN,
1386 				    sizeof(ip), &ip);
1387 				    ip.ip_len = 0;
1388 				    m_copyback((*m_head),
1389 					 ETHER_HDR_LEN + offsetof(struct ip, ip_len),
1390 					 sizeof(ip.ip_len), &ip.ip_len);
1391 				    th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1392 					 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1393 			   } else {
1394 #if INET6
1395 				    struct ip6_hdr ip6;
1396 
1397 				    m_copydata((*m_head), ETHER_HDR_LEN,
1398 				    sizeof(ip6), &ip6);
1399 				    ip6.ip6_plen = 0;
1400 				    m_copyback((*m_head), ETHER_HDR_LEN +
1401 				    offsetof(struct ip6_hdr, ip6_plen),
1402 					 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1403 				    th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1404 					 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1405 #endif /* INET6 */
1406 			   }
1407 			   m_copyback((*m_head),
1408 			    hlen + offsetof(struct tcphdr, th_sum),
1409 				sizeof(th.th_sum), &th.th_sum);
1410 
1411 			   hlen += th.th_off << 2;
1412 		} else {
1413 			   /*
1414 			    * TCP/IP headers are in the first mbuf; we can do
1415 			    * this the easy way.
1416 			    */
1417 			   struct tcphdr *th;
1418 
1419 			   if (v4) {
1420 				    struct ip *ip =
1421 					 (void *)(mtod((*m_head), char *) +
1422 					ETHER_HDR_LEN);
1423 				    th = (void *)(mtod((*m_head), char *) + hlen);
1424 
1425 				    ip->ip_len = 0;
1426 				    th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1427 					 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1428 			   } else {
1429 #if INET6
1430 				    struct ip6_hdr *ip6 =
1431 				    (void *)(mtod((*m_head), char *) +
1432 				    ETHER_HDR_LEN);
1433 				    th = (void *)(mtod((*m_head), char *) + hlen);
1434 
1435 				    ip6->ip6_plen = 0;
1436 				    th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1437 					 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1438 #endif /* INET6 */
1439 			   }
1440 			hlen += th->th_off << 2;
1441 		}
1442 
1443 	}
1444 
1445 	prod = sc->jme_tx_prod;
1446 
1447 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
1448 	    *m_head, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1449 	if (error) {
1450 		if (error == EFBIG) {
1451 			log(LOG_ERR, "%s: Tx packet consumes too many "
1452 			    "DMA segments, dropping...\n",
1453 			    device_xname(sc->jme_dev));
1454 			m_freem(*m_head);
1455 			m_head = NULL;
1456 		}
1457 		return (error);
1458 	}
1459 	/*
1460 	 * Check descriptor overrun. Leave one free descriptor.
1461 	 * Since we always use 64bit address mode for transmitting,
1462 	 * each Tx request requires one more dummy descriptor.
1463 	 */
1464 	nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
1465 #ifdef JMEDEBUG_TX
1466 	printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
1467 #endif
1468 	if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
1469 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
1470 		return (ENOBUFS);
1471 	}
1472 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
1473 	    0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1474 
1475 	m = *m_head;
1476 	cflags = 0;
1477 	tso_segsz = 0;
1478 	/* Configure checksum offload and TSO. */
1479 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0) {
1480 		tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
1481 		cflags |= JME_TD_TSO;
1482 	} else {
1483 		if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
1484 			cflags |= JME_TD_IPCSUM;
1485 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_TCPv6)) != 0)
1486 			cflags |= JME_TD_TCPCSUM;
1487 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4|M_CSUM_UDPv6)) != 0)
1488 			cflags |= JME_TD_UDPCSUM;
1489 	}
1490 	/* Configure VLAN. */
1491 	if (vlan_has_tag(m)) {
1492 		cflags |= (vlan_get_tag(m) & JME_TD_VLAN_MASK);
1493 		cflags |= JME_TD_VLAN_TAG;
1494 	}
1495 
1496 	desc = &sc->jme_txring[prod];
1497 	desc->flags = htole32(cflags);
1498 	desc->buflen = htole32(tso_segsz);
1499 	desc->addr_hi = htole32(m->m_pkthdr.len);
1500 	desc->addr_lo = 0;
1501 	headdsc = prod;
1502 	sc->jme_tx_cnt++;
1503 	JME_DESC_INC(prod, JME_NBUFS);
1504 	for (i = 0; i < nsegs; i++) {
1505 		desc = &sc->jme_txring[prod];
1506 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1507 		desc->buflen =
1508 		    htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
1509 		desc->addr_hi = htole32(
1510 		    JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1511 		desc->addr_lo = htole32(
1512 		    JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1513 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1514 		    prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
1515 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1516 		sc->jme_txmbuf[prod] = NULL;
1517 		sc->jme_tx_cnt++;
1518 		JME_DESC_INC(prod, JME_NBUFS);
1519 	}
1520 
1521 	/* Update producer index. */
1522 	sc->jme_tx_prod = prod;
1523 #ifdef JMEDEBUG_TX
1524 	printf("jme_encap prod now %d\n", sc->jme_tx_prod);
1525 #endif
1526 	/*
1527 	 * Finally request interrupt and give the first descriptor
1528 	 * owenership to hardware.
1529 	 */
1530 	desc = &sc->jme_txring[headdsc];
1531 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1532 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1533 	    headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
1534 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1535 
1536 	sc->jme_txmbuf[headdsc] = m;
1537 	return (0);
1538 }
1539 
1540 static void
1541 jme_txeof(struct jme_softc *sc)
1542 {
1543 	struct ifnet *ifp;
1544 	struct jme_desc *desc;
1545 	uint32_t status;
1546 	int cons, cons0, nsegs, seg;
1547 
1548 	ifp = &sc->jme_if;
1549 
1550 #ifdef JMEDEBUG_TX
1551 	printf("jme_txeof cons %d prod %d\n",
1552 	    sc->jme_tx_cons, sc->jme_tx_prod);
1553 	printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1554 	    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1555 	    "JME_TXTRHD 0x%x\n",
1556 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1557 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1558 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1559 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1560 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1561 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1562 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1563 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1564 	for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
1565 		desc = &sc->jme_txring[cons];
1566 		printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
1567 		    desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
1568 		JME_DESC_INC(cons, JME_NBUFS);
1569 	}
1570 #endif
1571 
1572 	cons = sc->jme_tx_cons;
1573 	if (cons == sc->jme_tx_prod)
1574 		return;
1575 
1576 	/*
1577 	 * Go through our Tx list and free mbufs for those
1578 	 * frames which have been transmitted.
1579 	 */
1580 	for (; cons != sc->jme_tx_prod;) {
1581 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1582 		    cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
1583 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1584 
1585 		desc = &sc->jme_txring[cons];
1586 		status = le32toh(desc->flags);
1587 #ifdef JMEDEBUG_TX
1588 		printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
1589 		    sc->jme_txmbufm[cons]->dm_nsegs);
1590 #endif
1591 		if (status & JME_TD_OWN)
1592 			break;
1593 
1594 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
1595 			ifp->if_oerrors++;
1596 		else {
1597 			ifp->if_opackets++;
1598 			if ((status & JME_TD_COLLISION) != 0)
1599 				ifp->if_collisions +=
1600 				    le32toh(desc->buflen) &
1601 				    JME_TD_BUF_LEN_MASK;
1602 		}
1603 		/*
1604 		 * Only the first descriptor of multi-descriptor
1605 		 * transmission is updated so driver have to skip entire
1606 		 * chained buffers for the transmiited frame. In other
1607 		 * words, JME_TD_OWN bit is valid only at the first
1608 		 * descriptor of a multi-descriptor transmission.
1609 		 */
1610 		nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
1611 		cons0 = cons;
1612 		JME_DESC_INC(cons, JME_NBUFS);
1613 		for (seg = 1; seg < nsegs + 1; seg++) {
1614 			bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1615 			    cons * sizeof(struct jme_desc),
1616 			    sizeof(struct jme_desc),
1617 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1618 			sc->jme_txring[cons].flags = 0;
1619 			JME_DESC_INC(cons, JME_NBUFS);
1620 		}
1621 		/* Reclaim transferred mbufs. */
1622 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
1623 		    0, sc->jme_txmbufm[cons0]->dm_mapsize,
1624 		    BUS_DMASYNC_POSTWRITE);
1625 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);
1626 
1627 		KASSERT(sc->jme_txmbuf[cons0] != NULL);
1628 		m_freem(sc->jme_txmbuf[cons0]);
1629 		sc->jme_txmbuf[cons0] = NULL;
1630 		sc->jme_tx_cnt -= nsegs + 1;
1631 		KASSERT(sc->jme_tx_cnt >= 0);
1632 		sc->jme_if.if_flags &= ~IFF_OACTIVE;
1633 	}
1634 	sc->jme_tx_cons = cons;
1635 	/* Unarm watchog timer when there is no pending descriptors in queue. */
1636 	if (sc->jme_tx_cnt == 0)
1637 		ifp->if_timer = 0;
1638 #ifdef JMEDEBUG_TX
1639 	printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
1640 #endif
1641 }
1642 
1643 static void
1644 jme_ifstart(struct ifnet *ifp)
1645 {
1646 	jme_softc_t *sc = ifp->if_softc;
1647 	struct mbuf *mb_head;
1648 	int enq;
1649 
1650 	/*
1651 	 * check if we can free some desc.
1652 	 * Clear TX interrupt status to reset TX coalescing counters.
1653 	 */
1654 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1655 	     JME_INTR_STATUS, INTR_TXQ_COMP);
1656 	jme_txeof(sc);
1657 
1658 	if ((sc->jme_if.if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1659 		return;
1660 	for (enq = 0;; enq++) {
1661 nexttx:
1662 		/* Grab a paquet for output */
1663 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1664 		if (mb_head == NULL) {
1665 #ifdef JMEDEBUG_TX
1666 			printf("%s: nothing to send\n", __func__);
1667 #endif
1668 			break;
1669 		}
1670 		/* try to add this mbuf to the TX ring */
1671 		if (jme_encap(sc, &mb_head)) {
1672 			if (mb_head == NULL) {
1673 				ifp->if_oerrors++;
1674 				/* packet dropped, try next one */
1675 				goto nexttx;
1676 			}
1677 			/* resource shortage, try again later */
1678 			IF_PREPEND(&ifp->if_snd, mb_head);
1679 			ifp->if_flags |= IFF_OACTIVE;
1680 			break;
1681 		}
1682 		/* Pass packet to bpf if there is a listener */
1683 		bpf_mtap(ifp, mb_head);
1684 	}
1685 #ifdef JMEDEBUG_TX
1686 	printf("jme_ifstart enq %d\n", enq);
1687 #endif
1688 	if (enq) {
1689 		/*
1690 		 * Set a 5 second timer just in case we don't hear from
1691 		 * the card again.
1692 		 */
1693 		ifp->if_timer = 5;
1694 		/*
1695 		 * Reading TXCSR takes very long time under heavy load
1696 		 * so cache TXCSR value and writes the ORed value with
1697 		 * the kick command to the TXCSR. This saves one register
1698 		 * access cycle.
1699 		 */
1700 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
1701 		  sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1702 #ifdef JMEDEBUG_TX
1703 		printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1704 		    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1705 		    "JME_TXTRHD 0x%x\n",
1706 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1707 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1708 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1709 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1710 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1711 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1712 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1713 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1714 #endif
1715 	}
1716 }
1717 
1718 static void
1719 jme_ifwatchdog(struct ifnet *ifp)
1720 {
1721 	jme_softc_t *sc = ifp->if_softc;
1722 
1723 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1724 		return;
1725 	printf("%s: device timeout\n", device_xname(sc->jme_dev));
1726 	ifp->if_oerrors++;
1727 	jme_init(ifp, 0);
1728 }
1729 
1730 static int
1731 jme_mediachange(struct ifnet *ifp)
1732 {
1733 	int error;
1734 	jme_softc_t *sc = ifp->if_softc;
1735 
1736 	if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
1737 		error = 0;
1738 	else if (error != 0) {
1739 		aprint_error_dev(sc->jme_dev, "could not set media\n");
1740 		return error;
1741 	}
1742 	return 0;
1743 }
1744 
1745 static void
1746 jme_ticks(void *v)
1747 {
1748 	jme_softc_t *sc = v;
1749 	int s = splnet();
1750 
1751 	/* Tick the MII. */
1752 	mii_tick(&sc->jme_mii);
1753 
1754 	/* every seconds */
1755 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
1756 	splx(s);
1757 }
1758 
1759 static void
1760 jme_mac_config(jme_softc_t *sc)
1761 {
1762 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1763 	struct mii_data *mii = &sc->jme_mii;
1764 
1765 	ghc = 0;
1766 	rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1767 	rxmac &= ~RXMAC_FC_ENB;
1768 	txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
1769 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1770 	txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
1771 	txpause &= ~TXPFC_PAUSE_ENB;
1772 
1773 	if (mii->mii_media_active & IFM_FDX) {
1774 		ghc |= GHC_FULL_DUPLEX;
1775 		rxmac &= ~RXMAC_COLL_DET_ENB;
1776 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1777 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1778 		    TXMAC_FRAME_BURST);
1779 		/* Disable retry transmit timer/retry limit. */
1780 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1781 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
1782 		    & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1783 	} else {
1784 		rxmac |= RXMAC_COLL_DET_ENB;
1785 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1786 		/* Enable retry transmit timer/retry limit. */
1787 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1788 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)		    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1789 	}
1790 	/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1791 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1792 	case IFM_10_T:
1793 		ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100;
1794 		break;
1795 	case IFM_100_TX:
1796 		ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100;
1797 		break;
1798 	case IFM_1000_T:
1799 		ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000;
1800 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1801 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1802 		break;
1803 	default:
1804 		break;
1805 	}
1806 	if ((sc->jme_flags & JME_FLAG_GIGA) &&
1807 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
1808 		/*
1809 		 * Workaround occasional packet loss issue of JMC250 A2
1810 		 * when it runs on half-duplex media.
1811 		 */
1812 #ifdef JMEDEBUG
1813 		printf("JME250 A2 workaround\n");
1814 #endif
1815 		gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1816 		    JME_GPREG1);
1817 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1818 			gpreg &= ~GPREG1_HDPX_FIX;
1819 		else
1820 			gpreg |= GPREG1_HDPX_FIX;
1821 		bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1822 		    JME_GPREG1, gpreg);
1823 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
1824 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
1825 			/* Extend interface FIFO depth. */
1826 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1827 			    0x1B, 0x0000);
1828 		} else {
1829 			/* Select default interface FIFO depth. */
1830 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1831 			    0x1B, 0x0004);
1832 		}
1833 	}
1834 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
1835 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
1836 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
1837 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
1838 }
1839 
1840 static void
1841 jme_set_filter(jme_softc_t *sc)
1842 {
1843 	struct ifnet *ifp = &sc->jme_if;
1844 	struct ether_multistep step;
1845 	struct ether_multi *enm;
1846 	uint32_t hash[2] = {0, 0};
1847 	int i;
1848 	uint32_t rxcfg;
1849 
1850 	rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1851 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
1852 	    RXMAC_ALLMULTI);
1853 	/* Always accept frames destined to our station address. */
1854 	rxcfg |= RXMAC_UNICAST;
1855 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1856 		rxcfg |= RXMAC_BROADCAST;
1857 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1858 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1859 			rxcfg |= RXMAC_PROMISC;
1860 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1861 			rxcfg |= RXMAC_ALLMULTI;
1862 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1863 		     JME_MAR0, 0xFFFFFFFF);
1864 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1865 		     JME_MAR1, 0xFFFFFFFF);
1866 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1867 		     JME_RXMAC, rxcfg);
1868 		return;
1869 	}
1870 	/*
1871 	 * Set up the multicast address filter by passing all multicast
1872 	 * addresses through a CRC generator, and then using the low-order
1873 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1874 	 * high order bits select the register, while the rest of the bits
1875 	 * select the bit within the register.
1876 	 */
1877 	rxcfg |= RXMAC_MULTICAST;
1878 	memset(hash, 0, sizeof(hash));
1879 
1880 	ETHER_FIRST_MULTI(step, &sc->jme_ec, enm);
1881 	while (enm != NULL) {
1882 #ifdef JEMDBUG
1883 		printf("%s: addrs %s %s\n", __func__,
1884 		   ether_sprintf(enm->enm_addrlo),
1885 		   ether_sprintf(enm->enm_addrhi));
1886 #endif
1887 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
1888 			i = ether_crc32_be(enm->enm_addrlo, 6);
1889 			/* Just want the 6 least significant bits. */
1890 			i &= 0x3f;
1891 			hash[i / 32] |= 1 << (i%32);
1892 		} else {
1893 			hash[0] = hash[1] = 0xffffffff;
1894 			sc->jme_if.if_flags |= IFF_ALLMULTI;
1895 			break;
1896 		}
1897 		ETHER_NEXT_MULTI(step, enm);
1898 	}
1899 #ifdef JMEDEBUG
1900 	printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
1901 #endif
1902 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
1903 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
1904 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
1905 }
1906 
1907 #if 0
1908 static int
1909 jme_multicast_hash(uint8_t *a)
1910 {
1911 	int hash;
1912 
1913 #define DA(addr,bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
1914 #define xor8(a,b,c,d,e,f,g,h)						\
1915 	(((a != 0) + (b != 0) + (c != 0) + (d != 0) + 			\
1916 	  (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
1917 
1918 	hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
1919 	    DA(a,36), DA(a,42));
1920 	hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
1921 	    DA(a,37), DA(a,43)) << 1;
1922 	hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
1923 	    DA(a,38), DA(a,44)) << 2;
1924 	hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
1925 	    DA(a,39), DA(a,45)) << 3;
1926 	hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
1927 	    DA(a,40), DA(a,46)) << 4;
1928 	hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
1929 	    DA(a,41), DA(a,47)) << 5;
1930 
1931 	return hash;
1932 }
1933 #endif
1934 
1935 static int
1936 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
1937 {
1938 	 uint32_t reg;
1939 	 int i;
1940 
1941 	 *val = 0;
1942 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1943 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1944 		      JME_SMBCSR);
1945 		  if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
1946 			   break;
1947 		  delay(10);
1948 	 }
1949 
1950 	 if (i == 0) {
1951 		  aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
1952 		  return (ETIMEDOUT);
1953 	 }
1954 
1955 	 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
1956 	 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
1957 	     JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
1958 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1959 		  delay(10);
1960 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1961 		      JME_SMBINTF);
1962 		  if ((reg & SMBINTF_CMD_TRIGGER) == 0)
1963 			   break;
1964 	 }
1965 
1966 	 if (i == 0) {
1967 		  aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
1968 		  return (ETIMEDOUT);
1969 	 }
1970 
1971 	 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
1972 	 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
1973 	 return (0);
1974 }
1975 
1976 
1977 static int
1978 jme_eeprom_macaddr(struct jme_softc *sc)
1979 {
1980 	uint8_t eaddr[ETHER_ADDR_LEN];
1981 	uint8_t fup, reg, val;
1982 	uint32_t offset;
1983 	int match;
1984 
1985 	offset = 0;
1986 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1987 	    fup != JME_EEPROM_SIG0)
1988 		return (ENOENT);
1989 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1990 	    fup != JME_EEPROM_SIG1)
1991 		return (ENOENT);
1992 	match = 0;
1993 	do {
1994 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
1995 			break;
1996 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
1997 		    == (fup & (JME_EEPROM_FUNC_MASK|JME_EEPROM_PAGE_MASK))) {
1998 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
1999 				break;
2000 			if (reg >= JME_PAR0 &&
2001 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
2002 				if (jme_eeprom_read_byte(sc, offset + 2,
2003 				    &val) != 0)
2004 					break;
2005 				eaddr[reg - JME_PAR0] = val;
2006 				match++;
2007 			}
2008 		}
2009 		if (fup & JME_EEPROM_DESC_END)
2010 			break;
2011 
2012 		/* Try next eeprom descriptor. */
2013 		offset += JME_EEPROM_DESC_BYTES;
2014 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
2015 
2016 	if (match == ETHER_ADDR_LEN) {
2017 		memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN);
2018 		return (0);
2019 	}
2020 
2021 	return (ENOENT);
2022 }
2023 
2024 static int
2025 jme_reg_macaddr(struct jme_softc *sc)
2026 {
2027 	uint32_t par0, par1;
2028 
2029 	par0 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0);
2030 	par1 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1);
2031 	par1 &= 0xffff;
2032 	if ((par0 == 0 && par1 == 0) ||
2033 	    (par0 == 0xffffffff && par1 == 0xffff)) {
2034 		return (ENOENT);
2035 	} else {
2036 		sc->jme_enaddr[0] = (par0 >> 0) & 0xff;
2037 		sc->jme_enaddr[1] = (par0 >> 8) & 0xff;
2038 		sc->jme_enaddr[2] = (par0 >> 16) & 0xff;
2039 		sc->jme_enaddr[3] = (par0 >> 24) & 0xff;
2040 		sc->jme_enaddr[4] = (par1 >> 0) & 0xff;
2041 		sc->jme_enaddr[5] = (par1 >> 8) & 0xff;
2042 	}
2043 	return (0);
2044 }
2045 
2046 /*
2047  * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
2048  * set up in jme_pci_attach()
2049  */
2050 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
2051 {
2052 	int rc;
2053 	const struct sysctlnode *node;
2054 
2055 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2056 	    0, CTLTYPE_NODE, "jme",
2057 	    SYSCTL_DESCR("jme interface controls"),
2058 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2059 		goto err;
2060 	}
2061 
2062 	jme_root_num = node->sysctl_num;
2063 	return;
2064 
2065 err:
2066 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2067 }
2068 
2069 static int
2070 jme_sysctl_intrxto(SYSCTLFN_ARGS)
2071 {
2072 	int error, t;
2073 	struct sysctlnode node;
2074 	struct jme_softc *sc;
2075 	uint32_t reg;
2076 
2077 	node = *rnode;
2078 	sc = node.sysctl_data;
2079 	t = sc->jme_intrxto;
2080 	node.sysctl_data = &t;
2081 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2082 	if (error || newp == NULL)
2083 		return error;
2084 
2085 	if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
2086 		return EINVAL;
2087 
2088 	/*
2089 	 * update the softc with sysctl-changed value, and mark
2090 	 * for hardware update
2091 	 */
2092 	sc->jme_intrxto = t;
2093 	/* Configure Rx queue 0 packet completion coalescing. */
2094 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2095 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2096 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2097 	return 0;
2098 }
2099 
2100 static int
2101 jme_sysctl_intrxct(SYSCTLFN_ARGS)
2102 {
2103 	int error, t;
2104 	struct sysctlnode node;
2105 	struct jme_softc *sc;
2106 	uint32_t reg;
2107 
2108 	node = *rnode;
2109 	sc = node.sysctl_data;
2110 	t = sc->jme_intrxct;
2111 	node.sysctl_data = &t;
2112 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2113 	if (error || newp == NULL)
2114 		return error;
2115 
2116 	if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
2117 		return EINVAL;
2118 
2119 	/*
2120 	 * update the softc with sysctl-changed value, and mark
2121 	 * for hardware update
2122 	 */
2123 	sc->jme_intrxct = t;
2124 	/* Configure Rx queue 0 packet completion coalescing. */
2125 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2126 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2127 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2128 	return 0;
2129 }
2130 
2131 static int
2132 jme_sysctl_inttxto(SYSCTLFN_ARGS)
2133 {
2134 	int error, t;
2135 	struct sysctlnode node;
2136 	struct jme_softc *sc;
2137 	uint32_t reg;
2138 
2139 	node = *rnode;
2140 	sc = node.sysctl_data;
2141 	t = sc->jme_inttxto;
2142 	node.sysctl_data = &t;
2143 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2144 	if (error || newp == NULL)
2145 		return error;
2146 
2147 	if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
2148 		return EINVAL;
2149 
2150 	/*
2151 	 * update the softc with sysctl-changed value, and mark
2152 	 * for hardware update
2153 	 */
2154 	sc->jme_inttxto = t;
2155 	/* Configure Tx queue 0 packet completion coalescing. */
2156 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2157 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2158 	reg |= PCCTX_COAL_TXQ0;
2159 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2160 	return 0;
2161 }
2162 
2163 static int
2164 jme_sysctl_inttxct(SYSCTLFN_ARGS)
2165 {
2166 	int error, t;
2167 	struct sysctlnode node;
2168 	struct jme_softc *sc;
2169 	uint32_t reg;
2170 
2171 	node = *rnode;
2172 	sc = node.sysctl_data;
2173 	t = sc->jme_inttxct;
2174 	node.sysctl_data = &t;
2175 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2176 	if (error || newp == NULL)
2177 		return error;
2178 
2179 	if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
2180 		return EINVAL;
2181 
2182 	/*
2183 	 * update the softc with sysctl-changed value, and mark
2184 	 * for hardware update
2185 	 */
2186 	sc->jme_inttxct = t;
2187 	/* Configure Tx queue 0 packet completion coalescing. */
2188 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2189 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2190 	reg |= PCCTX_COAL_TXQ0;
2191 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2192 	return 0;
2193 }
2194