xref: /netbsd-src/sys/dev/pci/if_jme.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: if_jme.c,v 1.50 2021/05/08 00:27:02 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 
54 
55 /*
56  * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
57  * Ethernet Controllers.
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.50 2021/05/08 00:27:02 thorpej Exp $");
62 
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/mbuf.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/ioctl.h>
70 #include <sys/errno.h>
71 #include <sys/malloc.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>	/* only for declaration of wakeup() used by vm.h */
74 #include <sys/device.h>
75 #include <sys/syslog.h>
76 #include <sys/sysctl.h>
77 
78 #include <net/if.h>
79 #include <net/if_media.h>
80 #include <net/if_types.h>
81 #include <net/if_dl.h>
82 #include <net/route.h>
83 #include <net/netisr.h>
84 #include <net/bpf.h>
85 
86 #include <sys/rndsource.h>
87 
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #endif
95 
96 #include <netinet/tcp.h>
97 
98 #include <net/if_ether.h>
99 #if defined(INET)
100 #include <netinet/if_inarp.h>
101 #endif
102 
103 #include <sys/bus.h>
104 #include <sys/intr.h>
105 
106 #include <dev/pci/pcireg.h>
107 #include <dev/pci/pcivar.h>
108 #include <dev/pci/pcidevs.h>
109 #include <dev/pci/if_jmereg.h>
110 
111 #include <dev/mii/mii.h>
112 #include <dev/mii/miivar.h>
113 
114 /* number of entries in transmit and receive rings */
115 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))
116 
117 #define JME_DESC_INC(x, y)	((x) = ((x) + 1) % (y))
118 
119 /* Water mark to kick reclaiming Tx buffers. */
120 #define JME_TX_DESC_HIWAT	(JME_NBUFS - (((JME_NBUFS) * 3) / 10))
121 
122 
123 struct jme_softc {
124 	device_t jme_dev;		/* base device */
125 	bus_space_tag_t jme_bt_mac;
126 	bus_space_handle_t jme_bh_mac;	/* Mac registers */
127 	bus_space_tag_t jme_bt_phy;
128 	bus_space_handle_t jme_bh_phy;	/* PHY registers */
129 	bus_space_tag_t jme_bt_misc;
130 	bus_space_handle_t jme_bh_misc; /* Misc registers */
131 	bus_dma_tag_t jme_dmatag;
132 	bus_dma_segment_t jme_txseg;	/* transmit ring seg */
133 	bus_dmamap_t jme_txmap;		/* transmit ring DMA map */
134 	struct jme_desc* jme_txring;	/* transmit ring */
135 	bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
136 	struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
137 	int jme_tx_cons;		/* transmit ring consumer */
138 	int jme_tx_prod;		/* transmit ring producer */
139 	int jme_tx_cnt;			/* transmit ring active count */
140 	bus_dma_segment_t jme_rxseg;	/* receive ring seg */
141 	bus_dmamap_t jme_rxmap;		/* receive ring DMA map */
142 	struct jme_desc* jme_rxring;	/* receive ring */
143 	bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
144 	struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
145 	int jme_rx_cons;		/* receive ring consumer */
146 	int jme_rx_prod;		/* receive ring producer */
147 	void* jme_ih;			/* our interrupt */
148 	struct ethercom jme_ec;
149 	struct callout jme_tick_ch;	/* tick callout */
150 	uint8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
151 	uint8_t jme_phyaddr;		/* address of integrated phy */
152 	uint8_t jme_chip_rev;		/* chip revision */
153 	uint8_t jme_rev;		/* PCI revision */
154 	mii_data_t jme_mii;		/* mii bus */
155 	uint32_t jme_flags;		/* device features, see below */
156 	uint32_t jme_txcsr;		/* TX config register */
157 	uint32_t jme_rxcsr;		/* RX config register */
158 	krndsource_t rnd_source;
159 	/* interrupt coalition parameters */
160 	struct sysctllog *jme_clog;
161 	int jme_intrxto;		/* interrupt RX timeout */
162 	int jme_intrxct;		/* interrupt RX packets counter */
163 	int jme_inttxto;		/* interrupt TX timeout */
164 	int jme_inttxct;		/* interrupt TX packets counter */
165 };
166 
167 #define JME_FLAG_FPGA	0x0001 /* FPGA version */
168 #define JME_FLAG_GIGA	0x0002 /* giga Ethernet capable */
169 
170 
171 #define jme_if	jme_ec.ec_if
172 #define jme_bpf	jme_if.if_bpf
173 
174 typedef struct jme_softc jme_softc_t;
175 typedef u_long ioctl_cmd_t;
176 
177 static int jme_pci_match(device_t, cfdata_t, void *);
178 static void jme_pci_attach(device_t, device_t, void *);
179 static void jme_intr_rx(jme_softc_t *);
180 static int jme_intr(void *);
181 
182 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
183 static int jme_mediachange(struct ifnet *);
184 static void jme_ifwatchdog(struct ifnet *);
185 static bool jme_shutdown(device_t, int);
186 
187 static void jme_txeof(struct jme_softc *);
188 static void jme_ifstart(struct ifnet *);
189 static void jme_reset(jme_softc_t *);
190 static int  jme_ifinit(struct ifnet *);
191 static int  jme_init(struct ifnet *, int);
192 static void jme_stop(struct ifnet *, int);
193 // static void jme_restart(void *);
194 static void jme_ticks(void *);
195 static void jme_mac_config(jme_softc_t *);
196 static void jme_set_filter(jme_softc_t *);
197 
198 static int jme_mii_read(device_t, int, int, uint16_t *);
199 static int jme_mii_write(device_t, int, int, uint16_t);
200 static void jme_statchg(struct ifnet *);
201 
202 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
203 static int jme_eeprom_macaddr(struct jme_softc *);
204 static int jme_reg_macaddr(struct jme_softc *);
205 
206 #define JME_TIMEOUT		1000
207 #define JME_PHY_TIMEOUT		1000
208 #define JME_EEPROM_TIMEOUT	1000
209 
210 static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
211 static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
212 static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
213 static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
214 static int jme_root_num;
215 
216 
217 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
218     jme_pci_match, jme_pci_attach, NULL, NULL);
219 
220 static const struct device_compatible_entry compat_data[] = {
221 	{ .id = PCI_ID_CODE(PCI_VENDOR_JMICRON,
222 		PCI_PRODUCT_JMICRON_JMC250),
223 	  .data = "JMicron JMC250 Gigabit Ethernet Controller" },
224 
225 	{ .id = PCI_ID_CODE(PCI_VENDOR_JMICRON,
226 		PCI_PRODUCT_JMICRON_JMC260),
227 	  .data = "JMicron JMC260 Gigabit Ethernet Controller" },
228 
229 	PCI_COMPAT_EOL
230 };
231 
232 static int
233 jme_pci_match(device_t parent, cfdata_t cf, void *aux)
234 {
235 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
236 
237 	return pci_compatible_match(pa, compat_data);
238 }
239 
240 static void
241 jme_pci_attach(device_t parent, device_t self, void *aux)
242 {
243 	jme_softc_t *sc = device_private(self);
244 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
245 	const struct device_compatible_entry *dce;
246 	struct ifnet * const ifp = &sc->jme_if;
247 	struct mii_data * const mii = &sc->jme_mii;
248 	bus_space_tag_t iot1, iot2, memt;
249 	bus_space_handle_t ioh1, ioh2, memh;
250 	bus_size_t size, size2;
251 	pci_intr_handle_t intrhandle;
252 	const char *intrstr;
253 	pcireg_t csr;
254 	int nsegs, i;
255 	const struct sysctlnode *node;
256 	int jme_nodenum;
257 	char intrbuf[PCI_INTRSTR_LEN];
258 
259 	sc->jme_dev = self;
260 	aprint_normal("\n");
261 	callout_init(&sc->jme_tick_ch, 0);
262 	callout_setfunc(&sc->jme_tick_ch, jme_ticks, sc);
263 
264 	dce = pci_compatible_lookup(pa, compat_data);
265 	KASSERT(dce != NULL);
266 
267 	if (PCI_PRODUCT(dce->id) == PCI_PRODUCT_JMICRON_JMC250)
268 		sc->jme_flags = JME_FLAG_GIGA;
269 
270 	/*
271 	 * Map the card space. Try Mem first.
272 	 */
273 	if (pci_mapreg_map(pa, JME_PCI_BAR0,
274 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
275 	    0, &memt, &memh, NULL, &size) == 0) {
276 		sc->jme_bt_mac = memt;
277 		sc->jme_bh_mac = memh;
278 		sc->jme_bt_phy = memt;
279 		if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
280 		    JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
281 			aprint_error_dev(self, "can't subregion PHY space\n");
282 			bus_space_unmap(memt, memh, size);
283 			return;
284 		}
285 		sc->jme_bt_misc = memt;
286 		if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
287 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
288 			aprint_error_dev(self, "can't subregion misc space\n");
289 			bus_space_unmap(memt, memh, size);
290 			return;
291 		}
292 	} else {
293 		if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
294 		    0, &iot1, &ioh1, NULL, &size) != 0) {
295 			aprint_error_dev(self, "can't map I/O space 1\n");
296 			return;
297 		}
298 		sc->jme_bt_mac = iot1;
299 		sc->jme_bh_mac = ioh1;
300 		if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
301 		    0, &iot2, &ioh2, NULL, &size2) != 0) {
302 			aprint_error_dev(self, "can't map I/O space 2\n");
303 			bus_space_unmap(iot1, ioh1, size);
304 			return;
305 		}
306 		sc->jme_bt_phy = iot2;
307 		sc->jme_bh_phy = ioh2;
308 		sc->jme_bt_misc = iot2;
309 		if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
310 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
311 			aprint_error_dev(self, "can't subregion misc space\n");
312 			bus_space_unmap(iot1, ioh1, size);
313 			bus_space_unmap(iot2, ioh2, size2);
314 			return;
315 		}
316 	}
317 
318 	if (pci_dma64_available(pa))
319 		sc->jme_dmatag = pa->pa_dmat64;
320 	else
321 		sc->jme_dmatag = pa->pa_dmat;
322 
323 	/* Enable the device. */
324 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
325 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
326 	    csr | PCI_COMMAND_MASTER_ENABLE);
327 
328 	aprint_normal_dev(self, "%s\n", (const char *)dce->data);
329 
330 	sc->jme_rev = PCI_REVISION(pa->pa_class);
331 
332 	csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
333 	if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
334 	    CHIPMODE_NOT_FPGA)
335 		sc->jme_flags |= JME_FLAG_FPGA;
336 	sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
337 	aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
338 	    "0x%x", sc->jme_rev, sc->jme_chip_rev);
339 	if (sc->jme_flags & JME_FLAG_FPGA)
340 		aprint_verbose(" FPGA revision: 0x%x",
341 		    (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
342 	aprint_verbose("\n");
343 
344 	/*
345 	 * Save PHY address.
346 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
347 	 * requires PHY probing to get correct PHY address.
348 	 */
349 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
350 		sc->jme_phyaddr =
351 		    bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
352 				     JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
353 	} else
354 		sc->jme_phyaddr = 0;
355 
356 
357 	jme_reset(sc);
358 
359 	/* read mac addr */
360 	if (jme_eeprom_macaddr(sc) && jme_reg_macaddr(sc)) {
361 		aprint_error_dev(self, "error reading Ethernet address\n");
362 		/* return; */
363 	}
364 	aprint_normal_dev(self, "Ethernet address %s\n",
365 	    ether_sprintf(sc->jme_enaddr));
366 
367 	/* Map and establish interrupts */
368 	if (pci_intr_map(pa, &intrhandle)) {
369 		aprint_error_dev(self, "couldn't map interrupt\n");
370 		return;
371 	}
372 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf));
373 	sc->jme_if.if_softc = sc;
374 	sc->jme_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
375 	    jme_intr, sc, device_xname(self));
376 	if (sc->jme_ih == NULL) {
377 		aprint_error_dev(self, "couldn't establish interrupt");
378 		if (intrstr != NULL)
379 			aprint_error(" at %s", intrstr);
380 		aprint_error("\n");
381 		return;
382 	}
383 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
384 
385 	/* allocate and map DMA-safe memory for transmit ring */
386 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
387 	    &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
388 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
389 	    nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
390 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
391 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
392 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
393 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
394 	    PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
395 		aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
396 		return;
397 	}
398 	/* allocate and map DMA-safe memory for receive ring */
399 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
400 	      &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
401 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
402 	      nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
403 	      BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
404 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
405 	      BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
406 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
407 	      PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
408 		aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
409 		return;
410 	}
411 	for (i = 0; i < JME_NBUFS; i++) {
412 		sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
413 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
414 		    JME_NBUFS, JME_MAX_TX_LEN, 0,
415 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
416 		    &sc->jme_txmbufm[i]) != 0) {
417 			aprint_error_dev(self, "can't allocate DMA TX map\n");
418 			return;
419 		}
420 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
421 		    1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
422 		    &sc->jme_rxmbufm[i]) != 0) {
423 			aprint_error_dev(self, "can't allocate DMA RX map\n");
424 			return;
425 		}
426 	}
427 	/*
428 	 * Initialize our media structures and probe the MII.
429 	 *
430 	 * Note that we don't care about the media instance.  We
431 	 * are expecting to have multiple PHYs on the 10/100 cards,
432 	 * and on those cards we exclude the internal PHY from providing
433 	 * 10baseT.  By ignoring the instance, it allows us to not have
434 	 * to specify it on the command line when switching media.
435 	 */
436 	mii->mii_ifp = ifp;
437 	mii->mii_readreg = jme_mii_read;
438 	mii->mii_writereg = jme_mii_write;
439 	mii->mii_statchg = jme_statchg;
440 	sc->jme_ec.ec_mii = mii;
441 	ifmedia_init(&mii->mii_media, IFM_IMASK, jme_mediachange,
442 	    ether_mediastatus);
443 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
444 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
445 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
446 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
447 	} else
448 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
449 
450 	/*
451 	 * We can support 802.1Q VLAN-sized frames.
452 	 */
453 	sc->jme_ec.ec_capabilities |=
454 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
455 	sc->jme_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
456 
457 	if (sc->jme_flags & JME_FLAG_GIGA)
458 		sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
459 
460 
461 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
462 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
463 	ifp->if_ioctl = jme_ifioctl;
464 	ifp->if_start = jme_ifstart;
465 	ifp->if_watchdog = jme_ifwatchdog;
466 	ifp->if_init = jme_ifinit;
467 	ifp->if_stop = jme_stop;
468 	ifp->if_timer = 0;
469 	ifp->if_capabilities |=
470 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
471 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
472 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
473 	    IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
474 	    IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
475 	    IFCAP_TSOv4 | IFCAP_TSOv6;
476 	IFQ_SET_READY(&ifp->if_snd);
477 	if_attach(ifp);
478 	ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);
479 
480 	/*
481 	 * Add shutdown hook so that DMA is disabled prior to reboot.
482 	 */
483 	if (pmf_device_register1(self, NULL, NULL, jme_shutdown))
484 		pmf_class_network_register(self, ifp);
485 	else
486 		aprint_error_dev(self, "couldn't establish power handler\n");
487 
488 	rnd_attach_source(&sc->rnd_source, device_xname(self),
489 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
490 
491 	sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
492 	sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
493 	sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
494 	sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
495 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
496 	    0, CTLTYPE_NODE, device_xname(sc->jme_dev),
497 	    SYSCTL_DESCR("jme per-controller controls"),
498 	    NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
499 	    CTL_EOL) != 0) {
500 		aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
501 		return;
502 	}
503 	jme_nodenum = node->sysctl_num;
504 
505 	/* interrupt moderation sysctls */
506 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
507 	    CTLFLAG_READWRITE,
508 	    CTLTYPE_INT, "int_rxto",
509 	    SYSCTL_DESCR("jme RX interrupt moderation timer"),
510 	    jme_sysctl_intrxto, 0, (void *)sc,
511 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
512 	    CTL_EOL) != 0) {
513 		aprint_normal_dev(sc->jme_dev,
514 		    "couldn't create int_rxto sysctl node\n");
515 	}
516 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
517 	    CTLFLAG_READWRITE,
518 	    CTLTYPE_INT, "int_rxct",
519 	    SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
520 	    jme_sysctl_intrxct, 0, (void *)sc,
521 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
522 	    CTL_EOL) != 0) {
523 		aprint_normal_dev(sc->jme_dev,
524 		    "couldn't create int_rxct sysctl node\n");
525 	}
526 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
527 	    CTLFLAG_READWRITE,
528 	    CTLTYPE_INT, "int_txto",
529 	    SYSCTL_DESCR("jme TX interrupt moderation timer"),
530 	    jme_sysctl_inttxto, 0, (void *)sc,
531 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
532 	    CTL_EOL) != 0) {
533 		aprint_normal_dev(sc->jme_dev,
534 		    "couldn't create int_txto sysctl node\n");
535 	}
536 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
537 	    CTLFLAG_READWRITE,
538 	    CTLTYPE_INT, "int_txct",
539 	    SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
540 	    jme_sysctl_inttxct, 0, (void *)sc,
541 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
542 	    CTL_EOL) != 0) {
543 		aprint_normal_dev(sc->jme_dev,
544 		    "couldn't create int_txct sysctl node\n");
545 	}
546 }
547 
548 static void
549 jme_stop_rx(jme_softc_t *sc)
550 {
551 	uint32_t reg;
552 	int i;
553 
554 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
555 	if ((reg & RXCSR_RX_ENB) == 0)
556 		return;
557 	reg &= ~RXCSR_RX_ENB;
558 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
559 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
560 		DELAY(10);
561 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
562 		    JME_RXCSR) & RXCSR_RX_ENB) == 0)
563 			break;
564 	}
565 	if (i == 0)
566 		aprint_error_dev(sc->jme_dev, "stopping receiver timeout!\n");
567 
568 }
569 
570 static void
571 jme_stop_tx(jme_softc_t *sc)
572 {
573 	uint32_t reg;
574 	int i;
575 
576 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
577 	if ((reg & TXCSR_TX_ENB) == 0)
578 		return;
579 	reg &= ~TXCSR_TX_ENB;
580 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
581 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
582 		DELAY(10);
583 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
584 		    JME_TXCSR) & TXCSR_TX_ENB) == 0)
585 			break;
586 	}
587 	if (i == 0)
588 		aprint_error_dev(sc->jme_dev,
589 		    "stopping transmitter timeout!\n");
590 }
591 
592 static void
593 jme_reset(jme_softc_t *sc)
594 {
595 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
596 	DELAY(10);
597 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
598 }
599 
600 static bool
601 jme_shutdown(device_t self, int howto)
602 {
603 	jme_softc_t *sc;
604 	struct ifnet *ifp;
605 
606 	sc = device_private(self);
607 	ifp = &sc->jme_if;
608 	jme_stop(ifp, 1);
609 
610 	return true;
611 }
612 
613 static void
614 jme_stop(struct ifnet *ifp, int disable)
615 {
616 	jme_softc_t *sc = ifp->if_softc;
617 	int i;
618 	/* Stop receiver, transmitter. */
619 	jme_stop_rx(sc);
620 	jme_stop_tx(sc);
621 	/* free receive mbufs */
622 	for (i = 0; i < JME_NBUFS; i++) {
623 		if (sc->jme_rxmbuf[i]) {
624 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
625 			m_freem(sc->jme_rxmbuf[i]);
626 		}
627 		sc->jme_rxmbuf[i] = NULL;
628 	}
629 	/* process completed transmits */
630 	jme_txeof(sc);
631 	/* free abort pending transmits */
632 	for (i = 0; i < JME_NBUFS; i++) {
633 		if (sc->jme_txmbuf[i]) {
634 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
635 			m_freem(sc->jme_txmbuf[i]);
636 			sc->jme_txmbuf[i] = NULL;
637 		}
638 	}
639 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
640 	ifp->if_timer = 0;
641 }
642 
643 #if 0
644 static void
645 jme_restart(void *v)
646 {
647 
648 	jme_init(v);
649 }
650 #endif
651 
652 static int
653 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
654 {
655 	int error;
656 	bus_dmamap_t map;
657 	int i = sc->jme_rx_prod;
658 
659 	if (sc->jme_rxmbuf[i] != NULL) {
660 		aprint_error_dev(sc->jme_dev,
661 		    "mbuf already here: rxprod %d rxcons %d\n",
662 		    sc->jme_rx_prod, sc->jme_rx_cons);
663 		if (m)
664 			m_freem(m);
665 		return EINVAL;
666 	}
667 
668 	if (m == NULL) {
669 		sc->jme_rxmbuf[i] = NULL;
670 		MGETHDR(m, M_DONTWAIT, MT_DATA);
671 		if (m == NULL)
672 			return (ENOBUFS);
673 		MCLGET(m, M_DONTWAIT);
674 		if ((m->m_flags & M_EXT) == 0) {
675 			m_freem(m);
676 			return (ENOBUFS);
677 		}
678 	}
679 	map = sc->jme_rxmbufm[i];
680 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
681 	KASSERT(m->m_len == MCLBYTES);
682 
683 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
684 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
685 	if (error) {
686 		sc->jme_rxmbuf[i] = NULL;
687 		aprint_error_dev(sc->jme_dev,
688 		    "unable to load rx DMA map %d, error = %d\n",
689 		    i, error);
690 		m_freem(m);
691 		return (error);
692 	}
693 	bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
694 	    BUS_DMASYNC_PREREAD);
695 
696 	sc->jme_rxmbuf[i] = m;
697 
698 	sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
699 	sc->jme_rxring[i].addr_lo =
700 	    htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
701 	sc->jme_rxring[i].addr_hi =
702 	    htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
703 	sc->jme_rxring[i].flags =
704 	    htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
705 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
706 	    i * sizeof(struct jme_desc), sizeof(struct jme_desc),
707 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
708 	JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
709 	return (0);
710 }
711 
712 static int
713 jme_ifinit(struct ifnet *ifp)
714 {
715 	return jme_init(ifp, 1);
716 }
717 
718 static int
719 jme_init(struct ifnet *ifp, int do_ifinit)
720 {
721 	jme_softc_t *sc = ifp->if_softc;
722 	int i, s;
723 	uint8_t eaddr[ETHER_ADDR_LEN];
724 	uint32_t reg;
725 
726 	s = splnet();
727 	/* cancel any pending IO */
728 	jme_stop(ifp, 1);
729 	jme_reset(sc);
730 	if ((sc->jme_if.if_flags & IFF_UP) == 0) {
731 		splx(s);
732 		return 0;
733 	}
734 	/* allocate receive ring */
735 	sc->jme_rx_prod = 0;
736 	for (i = 0; i < JME_NBUFS; i++) {
737 		if (jme_add_rxbuf(sc, NULL) < 0) {
738 			aprint_error_dev(sc->jme_dev,
739 			    "can't allocate rx mbuf\n");
740 			for (i--; i >= 0; i--) {
741 				bus_dmamap_unload(sc->jme_dmatag,
742 				    sc->jme_rxmbufm[i]);
743 				m_freem(sc->jme_rxmbuf[i]);
744 				sc->jme_rxmbuf[i] = NULL;
745 			}
746 			splx(s);
747 			return ENOMEM;
748 		}
749 	}
750 	/* init TX ring */
751 	memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
752 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
753 	    0, JME_NBUFS * sizeof(struct jme_desc),
754 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
755 	for (i = 0; i < JME_NBUFS; i++)
756 		sc->jme_txmbuf[i] = NULL;
757 	sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;
758 
759 	/* Reprogram the station address. */
760 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
761 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
762 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
763 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
764 	    JME_PAR1, eaddr[5] << 8 | eaddr[4]);
765 
766 	/*
767 	 * Configure Tx queue.
768 	 *  Tx priority queue weight value : 0
769 	 *  Tx FIFO threshold for processing next packet : 16QW
770 	 *  Maximum Tx DMA length : 512
771 	 *  Allow Tx DMA burst.
772 	 */
773 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
774 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
775 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
776 	sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
777 	sc->jme_txcsr |= TXCSR_DMA_BURST;
778 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
779 	     JME_TXCSR, sc->jme_txcsr);
780 
781 	/* Set Tx descriptor counter. */
782 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
783 	     JME_TXQDC, JME_NBUFS);
784 
785 	/* Set Tx ring address to the hardware. */
786 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
787 	    JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
788 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
789 	    JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));
790 
791 	/* Configure TxMAC parameters. */
792 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
793 	    TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
794 	    TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);
795 
796 	/*
797 	 * Configure Rx queue.
798 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
799 	 *  FIFO threshold for processing next packet : 128QW
800 	 *  Rx queue 0 select
801 	 *  Max Rx DMA length : 128
802 	 *  Rx descriptor retry : 32
803 	 *  Rx descriptor retry time gap : 256ns
804 	 *  Don't receive runt/bad frame.
805 	 */
806 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
807 	/*
808 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
809 	 * than 4K bytes will suffer from Rx FIFO overruns. So
810 	 * decrease FIFO threshold to reduce the FIFO overruns for
811 	 * frames larger than 4000 bytes.
812 	 * For best performance of standard MTU sized frames use
813 	 * maximum allowable FIFO threshold, 128QW.
814 	 */
815 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
816 	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
817 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
818 	else
819 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
820 	sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
821 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
822 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
823 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
824 	     JME_RXCSR, sc->jme_rxcsr);
825 
826 	/* Set Rx descriptor counter. */
827 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
828 	     JME_RXQDC, JME_NBUFS);
829 
830 	/* Set Rx ring address to the hardware. */
831 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
832 	    JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
833 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
834 	    JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));
835 
836 	/* Clear receive filter. */
837 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
838 	/* Set up the receive filter. */
839 	jme_set_filter(sc);
840 
841 	/*
842 	 * Disable all WOL bits as WOL can interfere normal Rx
843 	 * operation. Also clear WOL detection status bits.
844 	 */
845 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
846 	reg &= ~PMCS_WOL_ENB_MASK;
847 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);
848 
849 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
850 	/*
851 	 * Pad 10bytes right before received frame. This will greatly
852 	 * help Rx performance on strict-alignment architectures as
853 	 * it does not need to copy the frame to align the payload.
854 	 */
855 	reg |= RXMAC_PAD_10BYTES;
856 	if ((ifp->if_capenable &
857 	    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
858 	     IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) != 0)
859 		reg |= RXMAC_CSUM_ENB;
860 	reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
861 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);
862 
863 	/* Configure general purpose reg0 */
864 	reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
865 	reg &= ~GPREG0_PCC_UNIT_MASK;
866 	/* Set PCC timer resolution to micro-seconds unit. */
867 	reg |= GPREG0_PCC_UNIT_US;
868 	/*
869 	 * Disable all shadow register posting as we have to read
870 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
871 	 * that it's hard to synchronize interrupt status between
872 	 * hardware and software with shadow posting due to
873 	 * requirements of bus_dmamap_sync(9).
874 	 */
875 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
876 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
877 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
878 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
879 	/* Disable posting of DW0. */
880 	reg &= ~GPREG0_POST_DW0_ENB;
881 	/* Clear PME message. */
882 	reg &= ~GPREG0_PME_ENB;
883 	/* Set PHY address. */
884 	reg &= ~GPREG0_PHY_ADDR_MASK;
885 	reg |= sc->jme_phyaddr;
886 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);
887 
888 	/* Configure Tx queue 0 packet completion coalescing. */
889 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
890 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
891 	reg |= PCCTX_COAL_TXQ0;
892 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
893 
894 	/* Configure Rx queue 0 packet completion coalescing. */
895 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
896 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
897 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
898 
899 	/* Disable Timers */
900 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0);
901 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
902 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);
903 
904 	/* Configure retry transmit period, retry limit value. */
905 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
906 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
907 	    TXTRHD_RT_PERIOD_MASK) |
908 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
909 	    TXTRHD_RT_LIMIT_SHIFT));
910 
911 	/* Disable RSS. */
912 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
913 	    JME_RSSC, RSSC_DIS_RSS);
914 
915 	/* Initialize the interrupt mask. */
916 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
917 	     JME_INTR_MASK_SET, JME_INTRS_ENABLE);
918 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
919 	     JME_INTR_STATUS, 0xFFFFFFFF);
920 
921 	/* set media, if not already handling a media change */
922 	if (do_ifinit) {
923 		int error;
924 		if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
925 			error = 0;
926 		else if (error != 0) {
927 			aprint_error_dev(sc->jme_dev, "could not set media\n");
928 			splx(s);
929 			return error;
930 		}
931 	}
932 
933 	/* Program MAC with resolved speed/duplex/flow-control. */
934 	jme_mac_config(sc);
935 
936 	/* Start receiver/transmitter. */
937 	sc->jme_rx_cons = 0;
938 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
939 	    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
940 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
941 	    sc->jme_txcsr | TXCSR_TX_ENB);
942 
943 	/* start ticks calls */
944 	callout_schedule(&sc->jme_tick_ch, hz);
945 	sc->jme_if.if_flags |= IFF_RUNNING;
946 	sc->jme_if.if_flags &= ~IFF_OACTIVE;
947 	splx(s);
948 	return 0;
949 }
950 
951 static int
952 jme_mii_read(device_t self, int phy, int reg, uint16_t *val)
953 {
954 	struct jme_softc *sc = device_private(self);
955 	int data, i;
956 
957 	/* For FPGA version, PHY address 0 should be ignored. */
958 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
959 		if (phy == 0)
960 			return -1;
961 	} else {
962 		if (sc->jme_phyaddr != phy)
963 			return -1;
964 	}
965 
966 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
967 	    SMI_OP_READ | SMI_OP_EXECUTE |
968 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
969 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
970 		delay(10);
971 		if (((data = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
972 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
973 			break;
974 	}
975 
976 	if (i == 0) {
977 		aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
978 		return ETIMEDOUT;
979 	}
980 
981 	*val = (data & SMI_DATA_MASK) >> SMI_DATA_SHIFT;
982 	return 0;
983 }
984 
985 static int
986 jme_mii_write(device_t self, int phy, int reg, uint16_t val)
987 {
988 	struct jme_softc *sc = device_private(self);
989 	int i;
990 
991 	/* For FPGA version, PHY address 0 should be ignored. */
992 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
993 		if (phy == 0)
994 			return -1;
995 	} else {
996 		if (sc->jme_phyaddr != phy)
997 			return -1;
998 	}
999 
1000 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
1001 	    SMI_OP_WRITE | SMI_OP_EXECUTE |
1002 	    (((uint32_t)val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
1003 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
1004 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
1005 		delay(10);
1006 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1007 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1008 			break;
1009 	}
1010 
1011 	if (i == 0) {
1012 		aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
1013 		return ETIMEDOUT;
1014 	}
1015 
1016 	return 0;
1017 }
1018 
1019 static void
1020 jme_statchg(struct ifnet *ifp)
1021 {
1022 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
1023 		jme_init(ifp, 0);
1024 }
1025 
1026 static void
1027 jme_intr_rx(jme_softc_t *sc) {
1028 	struct mbuf *m, *mhead;
1029 	bus_dmamap_t mmap;
1030 	struct ifnet *ifp = &sc->jme_if;
1031 	uint32_t flags,	 buflen;
1032 	int i, ipackets, nsegs, seg, error;
1033 	struct jme_desc *desc;
1034 
1035 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
1036 	    sizeof(struct jme_desc) * JME_NBUFS,
1037 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1038 #ifdef JMEDEBUG_RX
1039 	printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
1040 	    sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
1041 #endif
1042 	ipackets = 0;
1043 	while ((le32toh(sc->jme_rxring[sc->jme_rx_cons].flags) & JME_RD_OWN)
1044 	    == 0) {
1045 		i = sc->jme_rx_cons;
1046 		desc = &sc->jme_rxring[i];
1047 #ifdef JMEDEBUG_RX
1048 		printf("rxintr i %d flags 0x%x buflen 0x%x\n",
1049 		    i, le32toh(desc->flags), le32toh(desc->buflen));
1050 #endif
1051 		if (sc->jme_rxmbuf[i] == NULL) {
1052 			if ((error = jme_add_rxbuf(sc, NULL)) != 0) {
1053 				aprint_error_dev(sc->jme_dev,
1054 				    "can't add new mbuf to empty slot: %d\n",
1055 				    error);
1056 				break;
1057 			}
1058 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1059 			i = sc->jme_rx_cons;
1060 			continue;
1061 		}
1062 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
1063 			break;
1064 
1065 		buflen = le32toh(desc->buflen);
1066 		nsegs = JME_RX_NSEGS(buflen);
1067 		flags = le32toh(desc->flags);
1068 		if ((buflen & JME_RX_ERR_STAT) != 0 ||
1069 		    JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
1070 		    JME_RX_BYTES(buflen) >
1071 		    (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
1072 #ifdef JMEDEBUG_RX
1073 			printf("rx error flags 0x%x buflen 0x%x\n",
1074 			    flags, buflen);
1075 #endif
1076 			if_statinc(ifp, if_ierrors);
1077 			/* reuse the mbufs */
1078 			for (seg = 0; seg < nsegs; seg++) {
1079 				m = sc->jme_rxmbuf[i];
1080 				sc->jme_rxmbuf[i] = NULL;
1081 				mmap = sc->jme_rxmbufm[i];
1082 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1083 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1084 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1085 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1086 					aprint_error_dev(sc->jme_dev,
1087 					    "can't reuse mbuf: %d\n", error);
1088 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1089 				i = sc->jme_rx_cons;
1090 			}
1091 			continue;
1092 		}
1093 		/* receive this packet */
1094 		mhead = m = sc->jme_rxmbuf[i];
1095 		sc->jme_rxmbuf[i] = NULL;
1096 		mmap = sc->jme_rxmbufm[i];
1097 		bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1098 		    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1099 		bus_dmamap_unload(sc->jme_dmatag, mmap);
1100 		/* add a new buffer to chain */
1101 		if (jme_add_rxbuf(sc, NULL) != 0) {
1102 			if ((error = jme_add_rxbuf(sc, m)) != 0)
1103 				aprint_error_dev(sc->jme_dev,
1104 				    "can't reuse mbuf: %d\n", error);
1105 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1106 			i = sc->jme_rx_cons;
1107 			for (seg = 1; seg < nsegs; seg++) {
1108 				m = sc->jme_rxmbuf[i];
1109 				sc->jme_rxmbuf[i] = NULL;
1110 				mmap = sc->jme_rxmbufm[i];
1111 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1112 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1113 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1114 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1115 					aprint_error_dev(sc->jme_dev,
1116 					    "can't reuse mbuf: %d\n", error);
1117 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1118 				i = sc->jme_rx_cons;
1119 			}
1120 			if_statinc(ifp, if_ierrors);
1121 			continue;
1122 		}
1123 
1124 		/* build mbuf chain: head, then remaining segments */
1125 		m_set_rcvif(m, ifp);
1126 		m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
1127 		m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
1128 		    m->m_pkthdr.len;
1129 		m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
1130 		JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1131 		for (seg = 1; seg < nsegs; seg++) {
1132 			i = sc->jme_rx_cons;
1133 			m = sc->jme_rxmbuf[i];
1134 			sc->jme_rxmbuf[i] = NULL;
1135 			mmap = sc->jme_rxmbufm[i];
1136 			bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1137 			    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1138 			bus_dmamap_unload(sc->jme_dmatag, mmap);
1139 			if ((error = jme_add_rxbuf(sc, NULL)) != 0)
1140 				aprint_error_dev(sc->jme_dev,
1141 				    "can't add new mbuf: %d\n", error);
1142 			m->m_flags &= ~M_PKTHDR;
1143 			m_cat(mhead, m);
1144 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1145 		}
1146 		/* and adjust last mbuf's size */
1147 		if (nsegs > 1) {
1148 			m->m_len =
1149 			    JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
1150 		}
1151 		ipackets++;
1152 
1153 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
1154 		    (flags & JME_RD_IPV4)) {
1155 			mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1156 			if (!(flags & JME_RD_IPCSUM))
1157 				mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1158 		}
1159 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
1160 		    (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
1161 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1162 			if (!(flags & JME_RD_TCPCSUM))
1163 				mhead->m_pkthdr.csum_flags |=
1164 				    M_CSUM_TCP_UDP_BAD;
1165 		}
1166 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
1167 		    (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
1168 			mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1169 			if (!(flags & JME_RD_UDPCSUM))
1170 				mhead->m_pkthdr.csum_flags |=
1171 				    M_CSUM_TCP_UDP_BAD;
1172 		}
1173 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
1174 		    (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
1175 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
1176 			if (!(flags & JME_RD_TCPCSUM))
1177 				mhead->m_pkthdr.csum_flags |=
1178 				    M_CSUM_TCP_UDP_BAD;
1179 		}
1180 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
1181 		    (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
1182 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
1183 			if (!(flags & JME_RD_UDPCSUM))
1184 				mhead->m_pkthdr.csum_flags |=
1185 				    M_CSUM_TCP_UDP_BAD;
1186 		}
1187 		if (flags & JME_RD_VLAN_TAG) {
1188 			/* pass to vlan_input() */
1189 			vlan_set_tag(mhead, (flags & JME_RD_VLAN_MASK));
1190 		}
1191 		if_percpuq_enqueue(ifp->if_percpuq, mhead);
1192 	}
1193 	if (ipackets)
1194 		rnd_add_uint32(&sc->rnd_source, ipackets);
1195 }
1196 
1197 static int
1198 jme_intr(void *v)
1199 {
1200 	jme_softc_t *sc = v;
1201 	uint32_t istatus;
1202 
1203 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1204 	     JME_INTR_STATUS);
1205 	if (istatus == 0 || istatus == 0xFFFFFFFF)
1206 		return 0;
1207 	/* Disable interrupts. */
1208 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1209 	    JME_INTR_MASK_CLR, 0xFFFFFFFF);
1210 again:
1211 	/* and update istatus */
1212 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1213 	     JME_INTR_STATUS);
1214 	if ((istatus & JME_INTRS_CHECK) == 0)
1215 		goto done;
1216 	/* Reset PCC counter/timer and Ack interrupts. */
1217 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1218 		istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1219 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1220 		istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1221 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1222 	     JME_INTR_STATUS, istatus);
1223 
1224 	if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
1225 		goto done;
1226 #ifdef JMEDEBUG_RX
1227 	printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
1228 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
1229 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
1230 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
1231 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
1232 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
1233 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
1234 	printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
1235 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
1236 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
1237 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
1238 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
1239 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
1240 #endif
1241 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1242 		jme_intr_rx(sc);
1243 	if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
1244 		/*
1245 		 * Notify hardware availability of new Rx
1246 		 * buffers.
1247 		 * Reading RXCSR takes very long time under
1248 		 * heavy load so cache RXCSR value and writes
1249 		 * the ORed value with the kick command to
1250 		 * the RXCSR. This saves one register access
1251 		 * cycle.
1252 		 */
1253 		sc->jme_rx_cons = 0;
1254 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1255 		    JME_RXCSR,
1256 		    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
1257 	}
1258 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1259 		jme_ifstart(&sc->jme_if);
1260 
1261 	goto again;
1262 
1263 done:
1264 	/* enable interrupts. */
1265 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1266 	    JME_INTR_MASK_SET, JME_INTRS_ENABLE);
1267 	return 1;
1268 }
1269 
1270 
1271 static int
1272 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1273 {
1274 	struct jme_softc *sc = ifp->if_softc;
1275 	int s, error;
1276 	struct ifreq *ifr;
1277 	struct ifcapreq *ifcr;
1278 
1279 	s = splnet();
1280 	/*
1281 	 * we can't support at the same time jumbo frames and
1282 	 * TX checksums offload/TSO
1283 	 */
1284 	switch (cmd) {
1285 	case SIOCSIFMTU:
1286 		ifr = data;
1287 		if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
1288 		    (ifp->if_capenable & (
1289 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx |
1290 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv6_Tx |
1291 		    IFCAP_CSUM_UDPv6_Tx | IFCAP_TSOv4 | IFCAP_TSOv6)) != 0) {
1292 			splx(s);
1293 			return EINVAL;
1294 		}
1295 		break;
1296 	case SIOCSIFCAP:
1297 		ifcr = data;
1298 		if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
1299 		    (ifcr->ifcr_capenable & (
1300 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx |
1301 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv6_Tx |
1302 		    IFCAP_CSUM_UDPv6_Tx | IFCAP_TSOv4 | IFCAP_TSOv6)) != 0) {
1303 			splx(s);
1304 			return EINVAL;
1305 		}
1306 		break;
1307 	}
1308 
1309 	error = ether_ioctl(ifp, cmd, data);
1310 	if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
1311 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1312 			jme_set_filter(sc);
1313 			error = 0;
1314 		} else {
1315 			error = jme_init(ifp, 0);
1316 		}
1317 	}
1318 	splx(s);
1319 	return error;
1320 }
1321 
1322 static int
1323 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1324 {
1325 	struct jme_desc *desc;
1326 	struct mbuf *m;
1327 	int error, i, prod, headdsc, nsegs;
1328 	uint32_t cflags, tso_segsz;
1329 
1330 	if (((*m_head)->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6))
1331 	    != 0) {
1332 		/*
1333 		 * Due to the adherence to NDIS specification JMC250
1334 		 * assumes upper stack computed TCP pseudo checksum
1335 		 * without including payload length. This breaks
1336 		 * checksum offload for TSO case so recompute TCP
1337 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1338 		 * be much burden on modern CPUs.
1339 		 */
1340 		bool v4 = ((*m_head)->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1341 		int iphl = v4 ?
1342 		    M_CSUM_DATA_IPv4_IPHL((*m_head)->m_pkthdr.csum_data) :
1343 		    M_CSUM_DATA_IPv6_IPHL((*m_head)->m_pkthdr.csum_data);
1344 		/*
1345 		 * note: we support vlan offloading, so we should never have
1346 		 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
1347 		 * right.
1348 		 */
1349 		int hlen = ETHER_HDR_LEN + iphl;
1350 
1351 		if (__predict_false((*m_head)->m_len <
1352 		    (hlen + sizeof(struct tcphdr)))) {
1353 			   /*
1354 			    * TCP/IP headers are not in the first mbuf; we need
1355 			    * to do this the slow and painful way.  Let's just
1356 			    * hope this doesn't happen very often.
1357 			    */
1358 			   struct tcphdr th;
1359 
1360 			   m_copydata((*m_head), hlen, sizeof(th), &th);
1361 			   if (v4) {
1362 				    struct ip ip;
1363 
1364 				    m_copydata((*m_head), ETHER_HDR_LEN,
1365 				    sizeof(ip), &ip);
1366 				    ip.ip_len = 0;
1367 				    m_copyback((*m_head),
1368 					 ETHER_HDR_LEN + offsetof(struct ip, ip_len),
1369 					 sizeof(ip.ip_len), &ip.ip_len);
1370 				    th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1371 					 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1372 			   } else {
1373 #if INET6
1374 				    struct ip6_hdr ip6;
1375 
1376 				    m_copydata((*m_head), ETHER_HDR_LEN,
1377 				    sizeof(ip6), &ip6);
1378 				    ip6.ip6_plen = 0;
1379 				    m_copyback((*m_head), ETHER_HDR_LEN +
1380 				    offsetof(struct ip6_hdr, ip6_plen),
1381 					 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1382 				    th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1383 					 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1384 #endif /* INET6 */
1385 			   }
1386 			   m_copyback((*m_head),
1387 			    hlen + offsetof(struct tcphdr, th_sum),
1388 				sizeof(th.th_sum), &th.th_sum);
1389 
1390 			   hlen += th.th_off << 2;
1391 		} else {
1392 			   /*
1393 			    * TCP/IP headers are in the first mbuf; we can do
1394 			    * this the easy way.
1395 			    */
1396 			   struct tcphdr *th;
1397 
1398 			   if (v4) {
1399 				    struct ip *ip =
1400 					 (void *)(mtod((*m_head), char *) +
1401 					ETHER_HDR_LEN);
1402 				    th = (void *)(mtod((*m_head), char *) + hlen);
1403 
1404 				    ip->ip_len = 0;
1405 				    th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1406 					 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1407 			   } else {
1408 #if INET6
1409 				    struct ip6_hdr *ip6 =
1410 				    (void *)(mtod((*m_head), char *) +
1411 				    ETHER_HDR_LEN);
1412 				    th = (void *)(mtod((*m_head), char *) + hlen);
1413 
1414 				    ip6->ip6_plen = 0;
1415 				    th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1416 					 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1417 #endif /* INET6 */
1418 			   }
1419 			hlen += th->th_off << 2;
1420 		}
1421 
1422 	}
1423 
1424 	prod = sc->jme_tx_prod;
1425 
1426 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
1427 	    *m_head, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1428 	if (error) {
1429 		if (error == EFBIG) {
1430 			log(LOG_ERR, "%s: Tx packet consumes too many "
1431 			    "DMA segments, dropping...\n",
1432 			    device_xname(sc->jme_dev));
1433 			m_freem(*m_head);
1434 			*m_head = NULL;
1435 		}
1436 		return (error);
1437 	}
1438 	/*
1439 	 * Check descriptor overrun. Leave one free descriptor.
1440 	 * Since we always use 64bit address mode for transmitting,
1441 	 * each Tx request requires one more dummy descriptor.
1442 	 */
1443 	nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
1444 #ifdef JMEDEBUG_TX
1445 	printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
1446 #endif
1447 	if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
1448 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
1449 		return (ENOBUFS);
1450 	}
1451 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
1452 	    0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1453 
1454 	m = *m_head;
1455 	cflags = 0;
1456 	tso_segsz = 0;
1457 	/* Configure checksum offload and TSO. */
1458 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
1459 		tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
1460 		cflags |= JME_TD_TSO;
1461 	} else {
1462 		if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
1463 			cflags |= JME_TD_IPCSUM;
1464 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6))
1465 		    != 0)
1466 			cflags |= JME_TD_TCPCSUM;
1467 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6))
1468 		    != 0)
1469 			cflags |= JME_TD_UDPCSUM;
1470 	}
1471 	/* Configure VLAN. */
1472 	if (vlan_has_tag(m)) {
1473 		cflags |= (vlan_get_tag(m) & JME_TD_VLAN_MASK);
1474 		cflags |= JME_TD_VLAN_TAG;
1475 	}
1476 
1477 	desc = &sc->jme_txring[prod];
1478 	desc->flags = htole32(cflags);
1479 	desc->buflen = htole32(tso_segsz);
1480 	desc->addr_hi = htole32(m->m_pkthdr.len);
1481 	desc->addr_lo = 0;
1482 	headdsc = prod;
1483 	sc->jme_tx_cnt++;
1484 	JME_DESC_INC(prod, JME_NBUFS);
1485 	for (i = 0; i < nsegs; i++) {
1486 		desc = &sc->jme_txring[prod];
1487 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1488 		desc->buflen =
1489 		    htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
1490 		desc->addr_hi = htole32(
1491 		    JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1492 		desc->addr_lo = htole32(
1493 		    JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1494 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1495 		    prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
1496 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1497 		sc->jme_txmbuf[prod] = NULL;
1498 		sc->jme_tx_cnt++;
1499 		JME_DESC_INC(prod, JME_NBUFS);
1500 	}
1501 
1502 	/* Update producer index. */
1503 	sc->jme_tx_prod = prod;
1504 #ifdef JMEDEBUG_TX
1505 	printf("jme_encap prod now %d\n", sc->jme_tx_prod);
1506 #endif
1507 	/*
1508 	 * Finally request interrupt and give the first descriptor
1509 	 * ownership to hardware.
1510 	 */
1511 	desc = &sc->jme_txring[headdsc];
1512 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1513 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1514 	    headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
1515 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1516 
1517 	sc->jme_txmbuf[headdsc] = m;
1518 	return (0);
1519 }
1520 
1521 static void
1522 jme_txeof(struct jme_softc *sc)
1523 {
1524 	struct ifnet *ifp;
1525 	struct jme_desc *desc;
1526 	uint32_t status;
1527 	int cons, cons0, nsegs, seg;
1528 
1529 	ifp = &sc->jme_if;
1530 
1531 #ifdef JMEDEBUG_TX
1532 	printf("jme_txeof cons %d prod %d\n",
1533 	    sc->jme_tx_cons, sc->jme_tx_prod);
1534 	printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1535 	    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1536 	    "JME_TXTRHD 0x%x\n",
1537 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1538 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1539 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1540 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1541 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1542 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1543 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1544 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1545 	for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
1546 		desc = &sc->jme_txring[cons];
1547 		printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
1548 		    desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
1549 		JME_DESC_INC(cons, JME_NBUFS);
1550 	}
1551 #endif
1552 
1553 	cons = sc->jme_tx_cons;
1554 	if (cons == sc->jme_tx_prod)
1555 		return;
1556 
1557 	/*
1558 	 * Go through our Tx list and free mbufs for those
1559 	 * frames which have been transmitted.
1560 	 */
1561 	for (; cons != sc->jme_tx_prod;) {
1562 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1563 		    cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
1564 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1565 
1566 		desc = &sc->jme_txring[cons];
1567 		status = le32toh(desc->flags);
1568 #ifdef JMEDEBUG_TX
1569 		printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
1570 		    sc->jme_txmbufm[cons]->dm_nsegs);
1571 #endif
1572 		if (status & JME_TD_OWN)
1573 			break;
1574 
1575 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
1576 			if_statinc(ifp, if_oerrors);
1577 		else {
1578 			if_statinc(ifp, if_opackets);
1579 			if ((status & JME_TD_COLLISION) != 0) {
1580 				if_statadd(ifp, if_collisions,
1581 				    le32toh(desc->buflen) &
1582 				    JME_TD_BUF_LEN_MASK);
1583 			}
1584 		}
1585 		/*
1586 		 * Only the first descriptor of multi-descriptor
1587 		 * transmission is updated so driver have to skip entire
1588 		 * chained buffers for the transmitted frame. In other
1589 		 * words, JME_TD_OWN bit is valid only at the first
1590 		 * descriptor of a multi-descriptor transmission.
1591 		 */
1592 		nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
1593 		cons0 = cons;
1594 		JME_DESC_INC(cons, JME_NBUFS);
1595 		for (seg = 1; seg < nsegs + 1; seg++) {
1596 			bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1597 			    cons * sizeof(struct jme_desc),
1598 			    sizeof(struct jme_desc),
1599 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1600 			sc->jme_txring[cons].flags = 0;
1601 			JME_DESC_INC(cons, JME_NBUFS);
1602 		}
1603 		/* Reclaim transferred mbufs. */
1604 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
1605 		    0, sc->jme_txmbufm[cons0]->dm_mapsize,
1606 		    BUS_DMASYNC_POSTWRITE);
1607 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);
1608 
1609 		KASSERT(sc->jme_txmbuf[cons0] != NULL);
1610 		m_freem(sc->jme_txmbuf[cons0]);
1611 		sc->jme_txmbuf[cons0] = NULL;
1612 		sc->jme_tx_cnt -= nsegs + 1;
1613 		KASSERT(sc->jme_tx_cnt >= 0);
1614 		sc->jme_if.if_flags &= ~IFF_OACTIVE;
1615 	}
1616 	sc->jme_tx_cons = cons;
1617 	/* Unarm watchog timer when there is no pending descriptors in queue. */
1618 	if (sc->jme_tx_cnt == 0)
1619 		ifp->if_timer = 0;
1620 #ifdef JMEDEBUG_TX
1621 	printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
1622 #endif
1623 }
1624 
1625 static void
1626 jme_ifstart(struct ifnet *ifp)
1627 {
1628 	jme_softc_t *sc = ifp->if_softc;
1629 	struct mbuf *mb_head;
1630 	int enq;
1631 
1632 	/*
1633 	 * check if we can free some desc.
1634 	 * Clear TX interrupt status to reset TX coalescing counters.
1635 	 */
1636 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1637 	     JME_INTR_STATUS, INTR_TXQ_COMP);
1638 	jme_txeof(sc);
1639 
1640 	if ((sc->jme_if.if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1641 		return;
1642 	for (enq = 0;; enq++) {
1643 nexttx:
1644 		/* Grab a paquet for output */
1645 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1646 		if (mb_head == NULL) {
1647 #ifdef JMEDEBUG_TX
1648 			printf("%s: nothing to send\n", __func__);
1649 #endif
1650 			break;
1651 		}
1652 		/* try to add this mbuf to the TX ring */
1653 		if (jme_encap(sc, &mb_head)) {
1654 			if (mb_head == NULL) {
1655 				if_statinc(ifp, if_oerrors);
1656 				/* packet dropped, try next one */
1657 				goto nexttx;
1658 			}
1659 			/* resource shortage, try again later */
1660 			IF_PREPEND(&ifp->if_snd, mb_head);
1661 			ifp->if_flags |= IFF_OACTIVE;
1662 			break;
1663 		}
1664 		/* Pass packet to bpf if there is a listener */
1665 		bpf_mtap(ifp, mb_head, BPF_D_OUT);
1666 	}
1667 #ifdef JMEDEBUG_TX
1668 	printf("jme_ifstart enq %d\n", enq);
1669 #endif
1670 	if (enq) {
1671 		/*
1672 		 * Set a 5 second timer just in case we don't hear from
1673 		 * the card again.
1674 		 */
1675 		ifp->if_timer = 5;
1676 		/*
1677 		 * Reading TXCSR takes very long time under heavy load
1678 		 * so cache TXCSR value and writes the ORed value with
1679 		 * the kick command to the TXCSR. This saves one register
1680 		 * access cycle.
1681 		 */
1682 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
1683 		  sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1684 #ifdef JMEDEBUG_TX
1685 		printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1686 		    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1687 		    "JME_TXTRHD 0x%x\n",
1688 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1689 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1690 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1691 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1692 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1693 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1694 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1695 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1696 #endif
1697 	}
1698 }
1699 
1700 static void
1701 jme_ifwatchdog(struct ifnet *ifp)
1702 {
1703 	jme_softc_t *sc = ifp->if_softc;
1704 
1705 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1706 		return;
1707 	printf("%s: device timeout\n", device_xname(sc->jme_dev));
1708 	if_statinc(ifp, if_oerrors);
1709 	jme_init(ifp, 0);
1710 }
1711 
1712 static int
1713 jme_mediachange(struct ifnet *ifp)
1714 {
1715 	int error;
1716 	jme_softc_t *sc = ifp->if_softc;
1717 
1718 	if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
1719 		error = 0;
1720 	else if (error != 0) {
1721 		aprint_error_dev(sc->jme_dev, "could not set media\n");
1722 		return error;
1723 	}
1724 	return 0;
1725 }
1726 
1727 static void
1728 jme_ticks(void *v)
1729 {
1730 	jme_softc_t *sc = v;
1731 	int s = splnet();
1732 
1733 	/* Tick the MII. */
1734 	mii_tick(&sc->jme_mii);
1735 
1736 	/* every seconds */
1737 	callout_schedule(&sc->jme_tick_ch, hz);
1738 	splx(s);
1739 }
1740 
1741 static void
1742 jme_mac_config(jme_softc_t *sc)
1743 {
1744 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1745 	struct mii_data *mii = &sc->jme_mii;
1746 
1747 	ghc = 0;
1748 	rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1749 	rxmac &= ~RXMAC_FC_ENB;
1750 	txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
1751 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1752 	txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
1753 	txpause &= ~TXPFC_PAUSE_ENB;
1754 
1755 	if (mii->mii_media_active & IFM_FDX) {
1756 		ghc |= GHC_FULL_DUPLEX;
1757 		rxmac &= ~RXMAC_COLL_DET_ENB;
1758 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1759 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1760 		    TXMAC_FRAME_BURST);
1761 		/* Disable retry transmit timer/retry limit. */
1762 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1763 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
1764 		    & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1765 	} else {
1766 		rxmac |= RXMAC_COLL_DET_ENB;
1767 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1768 		/* Enable retry transmit timer/retry limit. */
1769 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1770 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)		    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1771 	}
1772 	/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1773 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1774 	case IFM_10_T:
1775 		ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100;
1776 		break;
1777 	case IFM_100_TX:
1778 		ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100;
1779 		break;
1780 	case IFM_1000_T:
1781 		ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000;
1782 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1783 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1784 		break;
1785 	default:
1786 		break;
1787 	}
1788 	if ((sc->jme_flags & JME_FLAG_GIGA) &&
1789 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
1790 		/*
1791 		 * Workaround occasional packet loss issue of JMC250 A2
1792 		 * when it runs on half-duplex media.
1793 		 */
1794 #ifdef JMEDEBUG
1795 		printf("JME250 A2 workaround\n");
1796 #endif
1797 		gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1798 		    JME_GPREG1);
1799 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1800 			gpreg &= ~GPREG1_HDPX_FIX;
1801 		else
1802 			gpreg |= GPREG1_HDPX_FIX;
1803 		bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1804 		    JME_GPREG1, gpreg);
1805 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
1806 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
1807 			/* Extend interface FIFO depth. */
1808 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1809 			    0x1B, 0x0000);
1810 		} else {
1811 			/* Select default interface FIFO depth. */
1812 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1813 			    0x1B, 0x0004);
1814 		}
1815 	}
1816 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
1817 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
1818 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
1819 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
1820 }
1821 
1822 static void
1823 jme_set_filter(jme_softc_t *sc)
1824 {
1825 	struct ethercom *ec = &sc->jme_ec;
1826 	struct ifnet *ifp = &sc->jme_if;
1827 	struct ether_multistep step;
1828 	struct ether_multi *enm;
1829 	uint32_t hash[2] = {0, 0};
1830 	int i;
1831 	uint32_t rxcfg;
1832 
1833 	rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1834 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
1835 	    RXMAC_ALLMULTI);
1836 	/* Always accept frames destined to our station address. */
1837 	rxcfg |= RXMAC_UNICAST;
1838 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1839 		rxcfg |= RXMAC_BROADCAST;
1840 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1841 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1842 			rxcfg |= RXMAC_PROMISC;
1843 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1844 			rxcfg |= RXMAC_ALLMULTI;
1845 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1846 		     JME_MAR0, 0xFFFFFFFF);
1847 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1848 		     JME_MAR1, 0xFFFFFFFF);
1849 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1850 		     JME_RXMAC, rxcfg);
1851 		return;
1852 	}
1853 	/*
1854 	 * Set up the multicast address filter by passing all multicast
1855 	 * addresses through a CRC generator, and then using the low-order
1856 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1857 	 * high order bits select the register, while the rest of the bits
1858 	 * select the bit within the register.
1859 	 */
1860 	rxcfg |= RXMAC_MULTICAST;
1861 	memset(hash, 0, sizeof(hash));
1862 
1863 	ETHER_LOCK(ec);
1864 	ETHER_FIRST_MULTI(step, ec, enm);
1865 	while (enm != NULL) {
1866 #ifdef JEMDBUG
1867 		printf("%s: addrs %s %s\n", __func__,
1868 		   ether_sprintf(enm->enm_addrlo),
1869 		   ether_sprintf(enm->enm_addrhi));
1870 #endif
1871 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
1872 			i = ether_crc32_be(enm->enm_addrlo, 6);
1873 			/* Just want the 6 least significant bits. */
1874 			i &= 0x3f;
1875 			hash[i / 32] |= 1 << (i%32);
1876 		} else {
1877 			hash[0] = hash[1] = 0xffffffff;
1878 			sc->jme_if.if_flags |= IFF_ALLMULTI;
1879 			break;
1880 		}
1881 		ETHER_NEXT_MULTI(step, enm);
1882 	}
1883 	ETHER_UNLOCK(ec);
1884 #ifdef JMEDEBUG
1885 	printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
1886 #endif
1887 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
1888 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
1889 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
1890 }
1891 
1892 #if 0
1893 static int
1894 jme_multicast_hash(uint8_t *a)
1895 {
1896 	int hash;
1897 
1898 #define DA(addr, bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
1899 #define xor8(a,b,c,d,e,f,g,h)						\
1900 	(((a != 0) + (b != 0) + (c != 0) + (d != 0) +			\
1901 	  (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
1902 
1903 	hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
1904 	    DA(a,36), DA(a,42));
1905 	hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
1906 	    DA(a,37), DA(a,43)) << 1;
1907 	hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
1908 	    DA(a,38), DA(a,44)) << 2;
1909 	hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
1910 	    DA(a,39), DA(a,45)) << 3;
1911 	hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
1912 	    DA(a,40), DA(a,46)) << 4;
1913 	hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
1914 	    DA(a,41), DA(a,47)) << 5;
1915 
1916 	return hash;
1917 }
1918 #endif
1919 
1920 static int
1921 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
1922 {
1923 	 uint32_t reg;
1924 	 int i;
1925 
1926 	 *val = 0;
1927 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1928 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1929 		      JME_SMBCSR);
1930 		  if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
1931 			   break;
1932 		  delay(10);
1933 	 }
1934 
1935 	 if (i == 0) {
1936 		  aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
1937 		  return (ETIMEDOUT);
1938 	 }
1939 
1940 	 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
1941 	 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
1942 	     JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
1943 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1944 		  delay(10);
1945 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1946 		      JME_SMBINTF);
1947 		  if ((reg & SMBINTF_CMD_TRIGGER) == 0)
1948 			   break;
1949 	 }
1950 
1951 	 if (i == 0) {
1952 		  aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
1953 		  return (ETIMEDOUT);
1954 	 }
1955 
1956 	 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
1957 	 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
1958 	 return (0);
1959 }
1960 
1961 
1962 static int
1963 jme_eeprom_macaddr(struct jme_softc *sc)
1964 {
1965 	uint8_t eaddr[ETHER_ADDR_LEN];
1966 	uint8_t fup, reg, val;
1967 	uint32_t offset;
1968 	int match;
1969 
1970 	offset = 0;
1971 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1972 	    fup != JME_EEPROM_SIG0)
1973 		return (ENOENT);
1974 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1975 	    fup != JME_EEPROM_SIG1)
1976 		return (ENOENT);
1977 	match = 0;
1978 	do {
1979 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
1980 			break;
1981 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
1982 		    == (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
1983 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
1984 				break;
1985 			if (reg >= JME_PAR0 &&
1986 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
1987 				if (jme_eeprom_read_byte(sc, offset + 2,
1988 				    &val) != 0)
1989 					break;
1990 				eaddr[reg - JME_PAR0] = val;
1991 				match++;
1992 			}
1993 		}
1994 		if (fup & JME_EEPROM_DESC_END)
1995 			break;
1996 
1997 		/* Try next eeprom descriptor. */
1998 		offset += JME_EEPROM_DESC_BYTES;
1999 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
2000 
2001 	if (match == ETHER_ADDR_LEN) {
2002 		memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN);
2003 		return (0);
2004 	}
2005 
2006 	return (ENOENT);
2007 }
2008 
2009 static int
2010 jme_reg_macaddr(struct jme_softc *sc)
2011 {
2012 	uint32_t par0, par1;
2013 
2014 	par0 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0);
2015 	par1 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1);
2016 	par1 &= 0xffff;
2017 	if ((par0 == 0 && par1 == 0) ||
2018 	    (par0 == 0xffffffff && par1 == 0xffff)) {
2019 		return (ENOENT);
2020 	} else {
2021 		sc->jme_enaddr[0] = (par0 >> 0) & 0xff;
2022 		sc->jme_enaddr[1] = (par0 >> 8) & 0xff;
2023 		sc->jme_enaddr[2] = (par0 >> 16) & 0xff;
2024 		sc->jme_enaddr[3] = (par0 >> 24) & 0xff;
2025 		sc->jme_enaddr[4] = (par1 >> 0) & 0xff;
2026 		sc->jme_enaddr[5] = (par1 >> 8) & 0xff;
2027 	}
2028 	return (0);
2029 }
2030 
2031 /*
2032  * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
2033  * set up in jme_pci_attach()
2034  */
2035 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
2036 {
2037 	int rc;
2038 	const struct sysctlnode *node;
2039 
2040 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2041 	    0, CTLTYPE_NODE, "jme",
2042 	    SYSCTL_DESCR("jme interface controls"),
2043 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2044 		goto err;
2045 	}
2046 
2047 	jme_root_num = node->sysctl_num;
2048 	return;
2049 
2050 err:
2051 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2052 }
2053 
2054 static int
2055 jme_sysctl_intrxto(SYSCTLFN_ARGS)
2056 {
2057 	int error, t;
2058 	struct sysctlnode node;
2059 	struct jme_softc *sc;
2060 	uint32_t reg;
2061 
2062 	node = *rnode;
2063 	sc = node.sysctl_data;
2064 	t = sc->jme_intrxto;
2065 	node.sysctl_data = &t;
2066 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2067 	if (error || newp == NULL)
2068 		return error;
2069 
2070 	if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
2071 		return EINVAL;
2072 
2073 	/*
2074 	 * update the softc with sysctl-changed value, and mark
2075 	 * for hardware update
2076 	 */
2077 	sc->jme_intrxto = t;
2078 	/* Configure Rx queue 0 packet completion coalescing. */
2079 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2080 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2081 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2082 	return 0;
2083 }
2084 
2085 static int
2086 jme_sysctl_intrxct(SYSCTLFN_ARGS)
2087 {
2088 	int error, t;
2089 	struct sysctlnode node;
2090 	struct jme_softc *sc;
2091 	uint32_t reg;
2092 
2093 	node = *rnode;
2094 	sc = node.sysctl_data;
2095 	t = sc->jme_intrxct;
2096 	node.sysctl_data = &t;
2097 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2098 	if (error || newp == NULL)
2099 		return error;
2100 
2101 	if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
2102 		return EINVAL;
2103 
2104 	/*
2105 	 * update the softc with sysctl-changed value, and mark
2106 	 * for hardware update
2107 	 */
2108 	sc->jme_intrxct = t;
2109 	/* Configure Rx queue 0 packet completion coalescing. */
2110 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2111 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2112 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2113 	return 0;
2114 }
2115 
2116 static int
2117 jme_sysctl_inttxto(SYSCTLFN_ARGS)
2118 {
2119 	int error, t;
2120 	struct sysctlnode node;
2121 	struct jme_softc *sc;
2122 	uint32_t reg;
2123 
2124 	node = *rnode;
2125 	sc = node.sysctl_data;
2126 	t = sc->jme_inttxto;
2127 	node.sysctl_data = &t;
2128 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2129 	if (error || newp == NULL)
2130 		return error;
2131 
2132 	if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
2133 		return EINVAL;
2134 
2135 	/*
2136 	 * update the softc with sysctl-changed value, and mark
2137 	 * for hardware update
2138 	 */
2139 	sc->jme_inttxto = t;
2140 	/* Configure Tx queue 0 packet completion coalescing. */
2141 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2142 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2143 	reg |= PCCTX_COAL_TXQ0;
2144 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2145 	return 0;
2146 }
2147 
2148 static int
2149 jme_sysctl_inttxct(SYSCTLFN_ARGS)
2150 {
2151 	int error, t;
2152 	struct sysctlnode node;
2153 	struct jme_softc *sc;
2154 	uint32_t reg;
2155 
2156 	node = *rnode;
2157 	sc = node.sysctl_data;
2158 	t = sc->jme_inttxct;
2159 	node.sysctl_data = &t;
2160 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2161 	if (error || newp == NULL)
2162 		return error;
2163 
2164 	if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
2165 		return EINVAL;
2166 
2167 	/*
2168 	 * update the softc with sysctl-changed value, and mark
2169 	 * for hardware update
2170 	 */
2171 	sc->jme_inttxct = t;
2172 	/* Configure Tx queue 0 packet completion coalescing. */
2173 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2174 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2175 	reg |= PCCTX_COAL_TXQ0;
2176 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2177 	return 0;
2178 }
2179