xref: /netbsd-src/sys/dev/pci/if_jme.c (revision 4817a0b0b8fe9612e8ebe21a9bf2d97b95038a97)
1 /*	$NetBSD: if_jme.c,v 1.15 2010/11/13 13:52:06 uebayasi Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 
54 
55 /*
56  * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
57  * Ethernet Controllers.
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.15 2010/11/13 13:52:06 uebayasi Exp $");
62 
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/mbuf.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/ioctl.h>
70 #include <sys/errno.h>
71 #include <sys/malloc.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>	/* only for declaration of wakeup() used by vm.h */
74 #include <sys/device.h>
75 #include <sys/syslog.h>
76 #include <sys/sysctl.h>
77 
78 #include <net/if.h>
79 #if defined(SIOCSIFMEDIA)
80 #include <net/if_media.h>
81 #endif
82 #include <net/if_types.h>
83 #include <net/if_dl.h>
84 #include <net/route.h>
85 #include <net/netisr.h>
86 
87 #include <net/bpf.h>
88 #include <net/bpfdesc.h>
89 
90 #include "rnd.h"
91 #if NRND > 0
92 #include <sys/rnd.h>
93 #endif
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/ip.h>
98 
99 #ifdef INET
100 #include <netinet/in_var.h>
101 #endif
102 
103 #include <netinet/tcp.h>
104 
105 #include <net/if_ether.h>
106 #if defined(INET)
107 #include <netinet/if_inarp.h>
108 #endif
109 
110 #include <sys/bus.h>
111 #include <sys/intr.h>
112 
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116 #include <dev/pci/if_jmereg.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 
121 struct jme_product_desc {
122 	u_int32_t jme_product;
123 	const char *jme_desc;
124 };
125 
126 /* number of entries in transmit and receive rings */
127 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))
128 
129 #define JME_DESC_INC(x, y)	((x) = ((x) + 1) % (y))
130 
131 /* Water mark to kick reclaiming Tx buffers. */
132 #define JME_TX_DESC_HIWAT	(JME_NBUFS - (((JME_NBUFS) * 3) / 10))
133 
134 
135 struct jme_softc {
136 	device_t jme_dev;		/* base device */
137 	bus_space_tag_t jme_bt_mac;
138 	bus_space_handle_t jme_bh_mac;  /* Mac registers */
139 	bus_space_tag_t jme_bt_phy;
140 	bus_space_handle_t jme_bh_phy;  /* PHY registers */
141 	bus_space_tag_t jme_bt_misc;
142 	bus_space_handle_t jme_bh_misc; /* Misc registers */
143 	bus_dma_tag_t jme_dmatag;
144 	bus_dma_segment_t jme_txseg;	/* transmit ring seg */
145 	bus_dmamap_t jme_txmap;		/* transmit ring DMA map */
146 	struct jme_desc* jme_txring;	/* transmit ring */
147 	bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
148 	struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
149 	int jme_tx_cons;		/* transmit ring consumer */
150 	int jme_tx_prod;		/* transmit ring producer */
151 	int jme_tx_cnt;			/* transmit ring active count */
152 	bus_dma_segment_t jme_rxseg;	/* receive ring seg */
153 	bus_dmamap_t jme_rxmap;		/* receive ring DMA map */
154 	struct jme_desc* jme_rxring;	/* receive ring */
155 	bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
156 	struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
157 	int jme_rx_cons;		/* receive ring consumer */
158 	int jme_rx_prod;		/* receive ring producer */
159 	void* jme_ih;			/* our interrupt */
160 	struct ethercom jme_ec;
161 	struct callout jme_tick_ch;	/* tick callout */
162 	u_int8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
163 	u_int8_t jme_phyaddr;		/* address of integrated phy */
164 	u_int8_t jme_chip_rev;		/* chip revision */
165 	u_int8_t jme_rev;		/* PCI revision */
166 	mii_data_t jme_mii;		/* mii bus */
167 	u_int32_t jme_flags;		/* device features, see below */
168 	uint32_t jme_txcsr;		/* TX config register */
169 	uint32_t jme_rxcsr;		/* RX config register */
170 #if NRND > 0
171 	rndsource_element_t rnd_source;
172 #endif
173 	/* interrupt coalition parameters */
174 	struct sysctllog *jme_clog;
175 	int jme_intrxto;		/* interrupt RX timeout */
176 	int jme_intrxct;		/* interrupt RX packets counter */
177 	int jme_inttxto;		/* interrupt TX timeout */
178 	int jme_inttxct;		/* interrupt TX packets counter */
179 };
180 
181 #define JME_FLAG_FPGA	0x0001 /* FPGA version */
182 #define JME_FLAG_GIGA	0x0002 /* giga Ethernet capable */
183 
184 
185 #define jme_if	jme_ec.ec_if
186 #define jme_bpf	jme_if.if_bpf
187 
188 typedef struct jme_softc jme_softc_t;
189 typedef u_long ioctl_cmd_t;
190 
191 static int jme_pci_match(device_t, cfdata_t, void *);
192 static void jme_pci_attach(device_t, device_t, void *);
193 static void jme_intr_rx(jme_softc_t *);
194 static int jme_intr(void *);
195 
196 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
197 static int jme_mediachange(struct ifnet *);
198 static void jme_ifwatchdog(struct ifnet *);
199 static bool jme_shutdown(device_t, int);
200 
201 static void jme_txeof(struct jme_softc *);
202 static void jme_ifstart(struct ifnet *);
203 static void jme_reset(jme_softc_t *);
204 static int  jme_ifinit(struct ifnet *);
205 static int  jme_init(struct ifnet *, int);
206 static void jme_stop(struct ifnet *, int);
207 // static void jme_restart(void *);
208 static void jme_ticks(void *);
209 static void jme_mac_config(jme_softc_t *);
210 static void jme_set_filter(jme_softc_t *);
211 
212 int jme_mii_read(device_t, int, int);
213 void jme_mii_write(device_t, int, int, int);
214 void jme_statchg(device_t);
215 
216 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
217 static int jme_eeprom_macaddr(struct jme_softc *);
218 
219 #define JME_TIMEOUT		1000
220 #define JME_PHY_TIMEOUT		1000
221 #define JME_EEPROM_TIMEOUT	1000
222 
223 static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
224 static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
225 static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
226 static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
227 static int jme_root_num;
228 
229 
230 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
231     jme_pci_match, jme_pci_attach, NULL, NULL);
232 
233 static const struct jme_product_desc jme_products[] = {
234 	{ PCI_PRODUCT_JMICRON_JMC250,
235 	  "JMicron JMC250 Gigabit Ethernet Controller" },
236 	{ PCI_PRODUCT_JMICRON_JMC260,
237 	  "JMicron JMC260 Gigabit Ethernet Controller" },
238 	{ 0, NULL },
239 };
240 
241 static const struct jme_product_desc *jme_lookup_product(uint32_t);
242 
243 static const struct jme_product_desc *
244 jme_lookup_product(uint32_t id)
245 {
246 	const struct jme_product_desc *jp;
247 
248 	for (jp = jme_products ; jp->jme_desc != NULL; jp++)
249 		if (PCI_PRODUCT(id) == jp->jme_product)
250 			return jp;
251 
252 	return NULL;
253 }
254 
255 static int
256 jme_pci_match(device_t parent, cfdata_t cf, void *aux)
257 {
258 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
259 
260 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_JMICRON)
261 		return 0;
262 
263 	if (jme_lookup_product(pa->pa_id) != NULL)
264 		return 1;
265 
266 	return 0;
267 }
268 
269 static void
270 jme_pci_attach(device_t parent, device_t self, void *aux)
271 {
272 	jme_softc_t *sc = device_private(self);
273 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
274 	const struct jme_product_desc *jp;
275 	struct ifnet * const ifp = &sc->jme_if;
276 	bus_space_tag_t iot1, iot2, memt;
277 	bus_space_handle_t ioh1, ioh2, memh;
278 	bus_size_t size, size2;
279 	pci_intr_handle_t intrhandle;
280 	const char *intrstr;
281 	pcireg_t csr;
282 	int nsegs, i;
283 	const struct sysctlnode *node;
284 	int jme_nodenum;
285 
286 	sc->jme_dev = self;
287 	aprint_normal("\n");
288 	callout_init(&sc->jme_tick_ch, 0);
289 
290 	jp = jme_lookup_product(pa->pa_id);
291 	if (jp == NULL)
292 		panic("jme_pci_attach: impossible");
293 
294 	if (jp->jme_product == PCI_PRODUCT_JMICRON_JMC250)
295 		sc->jme_flags = JME_FLAG_GIGA;
296 
297 	/*
298 	 * Map the card space. Try Mem first.
299 	 */
300 	if (pci_mapreg_map(pa, JME_PCI_BAR0,
301 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
302 	    0, &memt, &memh, NULL, &size) == 0) {
303 		sc->jme_bt_mac = memt;
304 		sc->jme_bh_mac = memh;
305 		sc->jme_bt_phy = memt;
306 		if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
307 		    JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
308 			aprint_error_dev(self, "can't subregion PHY space\n");
309 			bus_space_unmap(memt, memh, size);
310 			return;
311 		}
312 		sc->jme_bt_misc = memt;
313 		if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
314 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
315 			aprint_error_dev(self, "can't subregion misc space\n");
316 			bus_space_unmap(memt, memh, size);
317 			return;
318 		}
319 	} else {
320 		if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
321 		    0, &iot1, &ioh1, NULL, &size) != 0) {
322 			aprint_error_dev(self, "can't map I/O space 1\n");
323 			return;
324 		}
325 		sc->jme_bt_mac = iot1;
326 		sc->jme_bh_mac = ioh1;
327 		if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
328 		    0, &iot2, &ioh2, NULL, &size2) != 0) {
329 			aprint_error_dev(self, "can't map I/O space 2\n");
330 			bus_space_unmap(iot1, ioh1, size);
331 			return;
332 		}
333 		sc->jme_bt_phy = iot2;
334 		sc->jme_bh_phy = ioh2;
335 		sc->jme_bt_misc = iot2;
336 		if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
337 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
338 			aprint_error_dev(self, "can't subregion misc space\n");
339 			bus_space_unmap(iot1, ioh1, size);
340 			bus_space_unmap(iot2, ioh2, size2);
341 			return;
342 		}
343 	}
344 
345 	if (pci_dma64_available(pa))
346 		sc->jme_dmatag = pa->pa_dmat64;
347 	else
348 		sc->jme_dmatag = pa->pa_dmat;
349 
350 	/* Enable the device. */
351 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
352 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
353 	    csr | PCI_COMMAND_MASTER_ENABLE);
354 
355 	aprint_normal_dev(self, "%s\n", jp->jme_desc);
356 
357 	sc->jme_rev = PCI_REVISION(pa->pa_class);
358 
359 	csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
360 	if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
361 	    CHIPMODE_NOT_FPGA)
362 		sc->jme_flags |= JME_FLAG_FPGA;
363 	sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
364 	aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
365 	    "0x%x", sc->jme_rev, sc->jme_chip_rev);
366 	if (sc->jme_flags & JME_FLAG_FPGA)
367 		aprint_verbose(" FPGA revision: 0x%x",
368 		    (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
369 	aprint_verbose("\n");
370 
371 	/*
372 	 * Save PHY address.
373 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
374 	 * requires PHY probing to get correct PHY address.
375 	 */
376 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
377 		sc->jme_phyaddr =
378 		    bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
379 				     JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
380 	} else
381 		sc->jme_phyaddr = 0;
382 
383 
384 	jme_reset(sc);
385 
386 	/* read mac addr */
387 	if (jme_eeprom_macaddr(sc)) {
388 		aprint_error_dev(self, "error reading Ethernet address\n");
389 		/* return; */
390 	}
391 	aprint_normal_dev(self, "Ethernet address %s\n",
392 	    ether_sprintf(sc->jme_enaddr));
393 
394 	/* Map and establish interrupts */
395 	if (pci_intr_map(pa, &intrhandle)) {
396 		aprint_error_dev(self, "couldn't map interrupt\n");
397 		return;
398 	}
399 	intrstr = pci_intr_string(pa->pa_pc, intrhandle);
400 	sc->jme_if.if_softc = sc;
401 	sc->jme_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
402 	    jme_intr, sc);
403 	if (sc->jme_ih == NULL) {
404 		aprint_error_dev(self, "couldn't establish interrupt");
405 		if (intrstr != NULL)
406 			aprint_error(" at %s", intrstr);
407 		aprint_error("\n");
408 		return;
409 	}
410 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
411 
412 	/* allocate and map DMA-safe memory for transmit ring */
413 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
414 	    &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
415 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
416 	    nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
417 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
418 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
419 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
420 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
421 	    PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
422 		aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
423 		return;
424 	}
425 	/* allocate and map DMA-safe memory for receive ring */
426 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
427 	      &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
428 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
429 	      nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
430 	      BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
431 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
432 	      BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
433 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
434 	      PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
435 		aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
436 		return;
437 	}
438 	for (i = 0; i < JME_NBUFS; i++) {
439 		sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
440 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
441 		    JME_NBUFS, JME_MAX_TX_LEN, 0, BUS_DMA_NOWAIT,
442 		    &sc->jme_txmbufm[i]) != 0) {
443 			aprint_error_dev(self, "can't allocate DMA TX map\n");
444 			return;
445 		}
446 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
447 		    1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT,
448 		    &sc->jme_rxmbufm[i]) != 0) {
449 			aprint_error_dev(self, "can't allocate DMA RX map\n");
450 			return;
451 		}
452 	}
453 	/*
454 	 * Initialize our media structures and probe the MII.
455 	 *
456 	 * Note that we don't care about the media instance.  We
457 	 * are expecting to have multiple PHYs on the 10/100 cards,
458 	 * and on those cards we exclude the internal PHY from providing
459 	 * 10baseT.  By ignoring the instance, it allows us to not have
460 	 * to specify it on the command line when switching media.
461 	 */
462 	sc->jme_mii.mii_ifp = ifp;
463 	sc->jme_mii.mii_readreg = jme_mii_read;
464 	sc->jme_mii.mii_writereg = jme_mii_write;
465 	sc->jme_mii.mii_statchg = jme_statchg;
466 	sc->jme_ec.ec_mii = &sc->jme_mii;
467 	ifmedia_init(&sc->jme_mii.mii_media, IFM_IMASK, jme_mediachange,
468 	    ether_mediastatus);
469 	mii_attach(self, &sc->jme_mii, 0xffffffff, MII_PHY_ANY,
470 	    MII_OFFSET_ANY, 0);
471 	if (LIST_FIRST(&sc->jme_mii.mii_phys) == NULL) {
472 		ifmedia_add(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
473 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE);
474 	} else
475 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_AUTO);
476 
477 	/*
478 	 * We can support 802.1Q VLAN-sized frames.
479 	 */
480 	sc->jme_ec.ec_capabilities |=
481 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
482 
483 	if (sc->jme_flags & JME_FLAG_GIGA)
484 		sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
485 
486 
487 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
488 	ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
489 	ifp->if_ioctl = jme_ifioctl;
490 	ifp->if_start = jme_ifstart;
491 	ifp->if_watchdog = jme_ifwatchdog;
492 	ifp->if_init = jme_ifinit;
493 	ifp->if_stop = jme_stop;
494 	ifp->if_timer = 0;
495 	ifp->if_capabilities |=
496 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
497 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
498 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
499 	    IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
500 	    IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
501 	    IFCAP_TSOv4 | IFCAP_TSOv6;
502 	IFQ_SET_READY(&ifp->if_snd);
503 	if_attach(ifp);
504 	ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);
505 
506 	/*
507 	 * Add shutdown hook so that DMA is disabled prior to reboot.
508 	 */
509 	if (pmf_device_register1(self, NULL, NULL, jme_shutdown))
510 		pmf_class_network_register(self, ifp);
511 	else
512 		aprint_error_dev(self, "couldn't establish power handler\n");
513 
514 #if NRND > 0
515 	rnd_attach_source(&sc->rnd_source, device_xname(self),
516 	    RND_TYPE_NET, 0);
517 #endif
518 	sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
519 	sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
520 	sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
521 	sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
522 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
523 	    0, CTLTYPE_NODE, device_xname(sc->jme_dev),
524 	    SYSCTL_DESCR("jme per-controller controls"),
525 	    NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
526 	    CTL_EOL) != 0) {
527 		aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
528 		return;
529 	}
530 	jme_nodenum = node->sysctl_num;
531 
532 	/* interrupt moderation sysctls */
533 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
534 	    CTLFLAG_READWRITE,
535 	    CTLTYPE_INT, "int_rxto",
536 	    SYSCTL_DESCR("jme RX interrupt moderation timer"),
537 	    jme_sysctl_intrxto, 0, sc,
538 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
539 	    CTL_EOL) != 0) {
540 		aprint_normal_dev(sc->jme_dev,
541 		    "couldn't create int_rxto sysctl node\n");
542 	}
543 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
544 	    CTLFLAG_READWRITE,
545 	    CTLTYPE_INT, "int_rxct",
546 	    SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
547 	    jme_sysctl_intrxct, 0, sc,
548 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
549 	    CTL_EOL) != 0) {
550 		aprint_normal_dev(sc->jme_dev,
551 		    "couldn't create int_rxct sysctl node\n");
552 	}
553 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
554 	    CTLFLAG_READWRITE,
555 	    CTLTYPE_INT, "int_txto",
556 	    SYSCTL_DESCR("jme TX interrupt moderation timer"),
557 	    jme_sysctl_inttxto, 0, sc,
558 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
559 	    CTL_EOL) != 0) {
560 		aprint_normal_dev(sc->jme_dev,
561 		    "couldn't create int_txto sysctl node\n");
562 	}
563 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
564 	    CTLFLAG_READWRITE,
565 	    CTLTYPE_INT, "int_txct",
566 	    SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
567 	    jme_sysctl_inttxct, 0, sc,
568 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
569 	    CTL_EOL) != 0) {
570 		aprint_normal_dev(sc->jme_dev,
571 		    "couldn't create int_txct sysctl node\n");
572 	}
573 }
574 
575 static void
576 jme_stop_rx(jme_softc_t *sc)
577 {
578 	uint32_t reg;
579 	int i;
580 
581 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
582 	if ((reg & RXCSR_RX_ENB) == 0)
583 		return;
584 	reg &= ~RXCSR_RX_ENB;
585 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
586 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
587 		DELAY(10);
588 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
589 		    JME_RXCSR) & RXCSR_RX_ENB) == 0)
590 			break;
591 	}
592 	if (i == 0)
593 		aprint_error_dev(sc->jme_dev, "stopping recevier timeout!\n");
594 
595 }
596 
597 static void
598 jme_stop_tx(jme_softc_t *sc)
599 {
600 	uint32_t reg;
601 	int i;
602 
603 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
604 	if ((reg & TXCSR_TX_ENB) == 0)
605 		return;
606 	reg &= ~TXCSR_TX_ENB;
607 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
608 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
609 		DELAY(10);
610 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
611 		    JME_TXCSR) & TXCSR_TX_ENB) == 0)
612 			break;
613 	}
614 	if (i == 0)
615 		aprint_error_dev(sc->jme_dev,
616 		    "stopping transmitter timeout!\n");
617 }
618 
619 static void
620 jme_reset(jme_softc_t *sc)
621 {
622 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
623 	DELAY(10);
624 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
625 }
626 
627 static bool
628 jme_shutdown(device_t self, int howto)
629 {
630 	jme_softc_t *sc;
631 	struct ifnet *ifp;
632 
633 	sc = device_private(self);
634 	ifp = &sc->jme_if;
635 	jme_stop(ifp, 1);
636 
637 	return true;
638 }
639 
640 static void
641 jme_stop(struct ifnet *ifp, int disable)
642 {
643 	jme_softc_t *sc = ifp->if_softc;
644 	int i;
645 	/* Stop receiver, transmitter. */
646 	jme_stop_rx(sc);
647 	jme_stop_tx(sc);
648 	/* free receive mbufs */
649 	for (i = 0; i < JME_NBUFS; i++) {
650 		if (sc->jme_rxmbuf[i]) {
651 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
652 			m_freem(sc->jme_rxmbuf[i]);
653 		}
654 		sc->jme_rxmbuf[i] = NULL;
655 	}
656 	/* process completed transmits */
657 	jme_txeof(sc);
658 	/* free abort pending transmits */
659 	for (i = 0; i < JME_NBUFS; i++) {
660 		if (sc->jme_txmbuf[i]) {
661 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
662 			m_freem(sc->jme_txmbuf[i]);
663 			sc->jme_txmbuf[i] = NULL;
664 		}
665 	}
666 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
667 	ifp->if_timer = 0;
668 }
669 
670 #if 0
671 static void
672 jme_restart(void *v)
673 {
674 
675 	jme_init(v);
676 }
677 #endif
678 
679 static int
680 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
681 {
682 	int error;
683 	bus_dmamap_t map;
684 	int i = sc->jme_rx_prod;
685 
686 	if (sc->jme_rxmbuf[i] != NULL) {
687 		aprint_error_dev(sc->jme_dev,
688 		    "mbuf already here: rxprod %d rxcons %d\n",
689 		    sc->jme_rx_prod, sc->jme_rx_cons);
690 		if (m)
691 			m_freem(m);
692 		return EINVAL;
693 	}
694 
695 	if (m == NULL) {
696 		sc->jme_rxmbuf[i] = NULL;
697 		MGETHDR(m, M_DONTWAIT, MT_DATA);
698 		if (m == NULL)
699 			return (ENOBUFS);
700 		MCLGET(m, M_DONTWAIT);
701 		if ((m->m_flags & M_EXT) == 0) {
702 			m_freem(m);
703 			return (ENOBUFS);
704 		}
705 	}
706 	map = sc->jme_rxmbufm[i];
707 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
708 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
709 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
710 	if (error) {
711 		sc->jme_rxmbuf[i] = NULL;
712 		aprint_error_dev(sc->jme_dev,
713 		    "unable to load rx DMA map %d, error = %d\n",
714 		    i, error);
715 		m_freem(m);
716 		return (error);
717 	}
718 	bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
719 	    BUS_DMASYNC_PREREAD);
720 
721 	sc->jme_rxmbuf[i] = m;
722 
723 	sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
724 	sc->jme_rxring[i].addr_lo =
725 	    htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
726 	sc->jme_rxring[i].addr_hi =
727 	    htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
728 	sc->jme_rxring[i].flags =
729 	    htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
730 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
731 	    i * sizeof(struct jme_desc), sizeof(struct jme_desc),
732 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
733 	JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
734 	return (0);
735 }
736 
737 static int
738 jme_ifinit(struct ifnet *ifp)
739 {
740 	return jme_init(ifp, 1);
741 }
742 
743 static int
744 jme_init(struct ifnet *ifp, int do_ifinit)
745 {
746 	jme_softc_t *sc = ifp->if_softc;
747 	int i, s;
748 	uint8_t eaddr[ETHER_ADDR_LEN];
749 	uint32_t reg;
750 
751 	s = splnet();
752 	/* cancel any pending IO */
753 	jme_stop(ifp, 1);
754 	jme_reset(sc);
755 	if ((sc->jme_if.if_flags & IFF_UP) == 0) {
756 		splx(s);
757 		return 0;
758 	}
759 	/* allocate receive ring */
760 	sc->jme_rx_prod = 0;
761 	for (i = 0; i < JME_NBUFS; i++) {
762 		if (jme_add_rxbuf(sc, NULL) < 0) {
763 			aprint_error_dev(sc->jme_dev,
764 			    "can't allocate rx mbuf\n");
765 			for (i--; i >= 0; i--) {
766 				bus_dmamap_unload(sc->jme_dmatag,
767 				    sc->jme_rxmbufm[i]);
768 				m_freem(sc->jme_rxmbuf[i]);
769 				sc->jme_rxmbuf[i] = NULL;
770 			}
771 			splx(s);
772 			return ENOMEM;
773 		}
774 	}
775 	/* init TX ring */
776 	memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
777 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
778 	    0, JME_NBUFS * sizeof(struct jme_desc),
779 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
780 	for (i = 0; i < JME_NBUFS; i++)
781 		sc->jme_txmbuf[i] = NULL;
782 	sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;
783 
784 	/* Reprogram the station address. */
785 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
786 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
787 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
788 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
789 	    JME_PAR1, eaddr[5] << 8 | eaddr[4]);
790 
791 	/*
792 	 * Configure Tx queue.
793 	 *  Tx priority queue weight value : 0
794 	 *  Tx FIFO threshold for processing next packet : 16QW
795 	 *  Maximum Tx DMA length : 512
796 	 *  Allow Tx DMA burst.
797 	 */
798 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
799 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
800 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
801 	sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
802 	sc->jme_txcsr |= TXCSR_DMA_BURST;
803 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
804 	     JME_TXCSR, sc->jme_txcsr);
805 
806 	/* Set Tx descriptor counter. */
807 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
808 	     JME_TXQDC, JME_NBUFS);
809 
810 	/* Set Tx ring address to the hardware. */
811 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
812 	    JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
813 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
814 	    JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));
815 
816 	/* Configure TxMAC parameters. */
817 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
818 	    TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
819 	    TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);
820 
821 	/*
822 	 * Configure Rx queue.
823 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
824 	 *  FIFO threshold for processing next packet : 128QW
825 	 *  Rx queue 0 select
826 	 *  Max Rx DMA length : 128
827 	 *  Rx descriptor retry : 32
828 	 *  Rx descriptor retry time gap : 256ns
829 	 *  Don't receive runt/bad frame.
830 	 */
831 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
832 	/*
833 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
834 	 * than 4K bytes will suffer from Rx FIFO overruns. So
835 	 * decrease FIFO threshold to reduce the FIFO overruns for
836 	 * frames larger than 4000 bytes.
837 	 * For best performance of standard MTU sized frames use
838 	 * maximum allowable FIFO threshold, 128QW.
839 	 */
840 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
841 	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
842 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
843 	else
844 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
845 	sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
846 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
847 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
848 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
849 	     JME_RXCSR, sc->jme_rxcsr);
850 
851 	/* Set Rx descriptor counter. */
852 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
853 	     JME_RXQDC, JME_NBUFS);
854 
855 	/* Set Rx ring address to the hardware. */
856 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
857 	    JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
858 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
859 	    JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));
860 
861 	/* Clear receive filter. */
862 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
863 	/* Set up the receive filter. */
864 	jme_set_filter(sc);
865 
866 	/*
867 	 * Disable all WOL bits as WOL can interfere normal Rx
868 	 * operation. Also clear WOL detection status bits.
869 	 */
870 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
871 	reg &= ~PMCS_WOL_ENB_MASK;
872 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);
873 
874 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
875 	/*
876 	 * Pad 10bytes right before received frame. This will greatly
877 	 * help Rx performance on strict-alignment architectures as
878 	 * it does not need to copy the frame to align the payload.
879 	 */
880 	reg |= RXMAC_PAD_10BYTES;
881 	if ((ifp->if_capenable &
882 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx|
883 	     IFCAP_CSUM_TCPv6_Rx|IFCAP_CSUM_UDPv6_Rx)) != 0)
884 		reg |= RXMAC_CSUM_ENB;
885 	reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
886 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);
887 
888 	/* Configure general purpose reg0 */
889 	reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
890 	reg &= ~GPREG0_PCC_UNIT_MASK;
891 	/* Set PCC timer resolution to micro-seconds unit. */
892 	reg |= GPREG0_PCC_UNIT_US;
893 	/*
894 	 * Disable all shadow register posting as we have to read
895 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
896 	 * that it's hard to synchronize interrupt status between
897 	 * hardware and software with shadow posting due to
898 	 * requirements of bus_dmamap_sync(9).
899 	 */
900 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
901 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
902 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
903 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
904 	/* Disable posting of DW0. */
905 	reg &= ~GPREG0_POST_DW0_ENB;
906 	/* Clear PME message. */
907 	reg &= ~GPREG0_PME_ENB;
908 	/* Set PHY address. */
909 	reg &= ~GPREG0_PHY_ADDR_MASK;
910 	reg |= sc->jme_phyaddr;
911 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);
912 
913 	/* Configure Tx queue 0 packet completion coalescing. */
914 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
915 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
916 	reg |= PCCTX_COAL_TXQ0;
917 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
918 
919 	/* Configure Rx queue 0 packet completion coalescing. */
920 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
921 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
922 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
923 
924 	/* Disable Timers */
925 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0);
926 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
927 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);
928 
929 	/* Configure retry transmit period, retry limit value. */
930 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
931 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
932 	    TXTRHD_RT_PERIOD_MASK) |
933 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
934 	    TXTRHD_RT_LIMIT_SHIFT));
935 
936 	/* Disable RSS. */
937 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
938 	    JME_RSSC, RSSC_DIS_RSS);
939 
940 	/* Initialize the interrupt mask. */
941 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
942 	     JME_INTR_MASK_SET, JME_INTRS_ENABLE);
943 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
944 	     JME_INTR_STATUS, 0xFFFFFFFF);
945 
946 	/* set media, if not already handling a media change */
947 	if (do_ifinit) {
948 		int error;
949 		if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
950 			error = 0;
951 		else if (error != 0) {
952 			aprint_error_dev(sc->jme_dev, "could not set media\n");
953 			return error;
954 		}
955 	}
956 
957 	/* Program MAC with resolved speed/duplex/flow-control. */
958 	jme_mac_config(sc);
959 
960 	/* Start receiver/transmitter. */
961 	sc->jme_rx_cons = 0;
962 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
963 	    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
964 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
965 	    sc->jme_txcsr | TXCSR_TX_ENB);
966 
967 	/* start ticks calls */
968 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
969 	sc->jme_if.if_flags |= IFF_RUNNING;
970 	sc->jme_if.if_flags &= ~IFF_OACTIVE;
971 	splx(s);
972 	return 0;
973 }
974 
975 
976 int
977 jme_mii_read(device_t self, int phy, int reg)
978 {
979 	struct jme_softc *sc = device_private(self);
980 	int val, i;
981 
982 	/* For FPGA version, PHY address 0 should be ignored. */
983 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
984 		if (phy == 0)
985 			return (0);
986 	} else {
987 		if (sc->jme_phyaddr != phy)
988 			return (0);
989 	}
990 
991 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
992 	    SMI_OP_READ | SMI_OP_EXECUTE |
993 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
994 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
995 		delay(10);
996 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
997 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
998 			break;
999 	}
1000 
1001 	if (i == 0) {
1002 		aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
1003 		return (0);
1004 	}
1005 
1006 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
1007 }
1008 
1009 void
1010 jme_mii_write(device_t self, int phy, int reg, int val)
1011 {
1012 	struct jme_softc *sc = device_private(self);
1013 	int i;
1014 
1015 	/* For FPGA version, PHY address 0 should be ignored. */
1016 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
1017 		if (phy == 0)
1018 			return;
1019 	} else {
1020 		if (sc->jme_phyaddr != phy)
1021 			return;
1022 	}
1023 
1024 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
1025 	    SMI_OP_WRITE | SMI_OP_EXECUTE |
1026 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
1027 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
1028 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
1029 		delay(10);
1030 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1031 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1032 			break;
1033 	}
1034 
1035 	if (i == 0)
1036 		aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
1037 
1038 	return;
1039 }
1040 
1041 void
1042 jme_statchg(device_t self)
1043 {
1044 	jme_softc_t *sc = device_private(self);
1045 	struct ifnet *ifp = &sc->jme_if;
1046 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING))
1047 		jme_init(ifp, 0);
1048 }
1049 
1050 static void
1051 jme_intr_rx(jme_softc_t *sc) {
1052 	struct mbuf *m, *mhead;
1053 	struct ifnet *ifp = &sc->jme_if;
1054 	uint32_t flags,  buflen;
1055 	int i, ipackets, nsegs, seg, error;
1056 	struct jme_desc *desc;
1057 
1058 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
1059 	    sizeof(struct jme_desc) * JME_NBUFS,
1060 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1061 #ifdef JMEDEBUG_RX
1062 	printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
1063 	    sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
1064 #endif
1065 	ipackets = 0;
1066 	while((le32toh(sc->jme_rxring[ sc->jme_rx_cons].flags) & JME_RD_OWN)
1067 	    == 0) {
1068 		i = sc->jme_rx_cons;
1069 		desc = &sc->jme_rxring[i];
1070 #ifdef JMEDEBUG_RX
1071 		printf("rxintr i %d flags 0x%x buflen 0x%x\n",
1072 		    i,  le32toh(desc->flags), le32toh(desc->buflen));
1073 #endif
1074 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
1075 			break;
1076 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmbufm[i], 0,
1077 		    sc->jme_rxmbufm[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
1078 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
1079 
1080 		buflen = le32toh(desc->buflen);
1081 		nsegs = JME_RX_NSEGS(buflen);
1082 		flags = le32toh(desc->flags);
1083 		if ((buflen & JME_RX_ERR_STAT) != 0 ||
1084 		    JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
1085 		    JME_RX_BYTES(buflen) >
1086 		    (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
1087 #ifdef JMEDEBUG_RX
1088 			printf("rx error flags 0x%x buflen 0x%x\n",
1089 			    flags, buflen);
1090 #endif
1091 			ifp->if_ierrors++;
1092 			/* reuse the mbufs */
1093 			for (seg = 0; seg < nsegs; seg++) {
1094 				m = sc->jme_rxmbuf[i];
1095 				sc->jme_rxmbuf[i] = NULL;
1096 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1097 					aprint_error_dev(sc->jme_dev,
1098 					    "can't reuse mbuf: %d\n", error);
1099 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1100 				i = sc->jme_rx_cons;
1101 			}
1102 			continue;
1103 		}
1104 		/* receive this packet */
1105 		mhead = m = sc->jme_rxmbuf[i];
1106 		sc->jme_rxmbuf[i] = NULL;
1107 		/* add a new buffer to chain */
1108 		if (jme_add_rxbuf(sc, NULL) == ENOBUFS) {
1109 			for (seg = 0; seg < nsegs; seg++) {
1110 				m = sc->jme_rxmbuf[i];
1111 				sc->jme_rxmbuf[i] = NULL;
1112 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1113 					aprint_error_dev(sc->jme_dev,
1114 					    "can't reuse mbuf: %d\n", error);
1115 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1116 				i = sc->jme_rx_cons;
1117 			}
1118 			ifp->if_ierrors++;
1119 			continue;
1120 		}
1121 
1122 		/* build mbuf chain: head, then remaining segments */
1123 		m->m_pkthdr.rcvif = ifp;
1124 		m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
1125 		m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
1126 		    m->m_pkthdr.len;
1127 		m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
1128 		JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1129 		for (seg = 1; seg < nsegs; seg++) {
1130 			i = sc->jme_rx_cons;
1131 			m = sc->jme_rxmbuf[i];
1132 			sc->jme_rxmbuf[i] = NULL;
1133 			(void)jme_add_rxbuf(sc, NULL);
1134 			m->m_flags &= ~M_PKTHDR;
1135 			m_cat(mhead, m);
1136 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1137 		}
1138 		/* and adjust last mbuf's size */
1139 		if (nsegs > 1) {
1140 			m->m_len =
1141 			    JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
1142 		}
1143 		ifp->if_ipackets++;
1144 		ipackets++;
1145 		bpf_mtap(ifp, mhead);
1146 
1147 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
1148 		    (flags & JME_RD_IPV4)) {
1149 			mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1150 			if (!(flags & JME_RD_IPCSUM))
1151 				mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1152 		}
1153 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
1154 		    (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
1155 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1156 			if (!(flags & JME_RD_TCPCSUM))
1157 				mhead->m_pkthdr.csum_flags |=
1158 				    M_CSUM_TCP_UDP_BAD;
1159 		}
1160 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
1161 		    (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
1162 			mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1163 			if (!(flags & JME_RD_UDPCSUM))
1164 				mhead->m_pkthdr.csum_flags |=
1165 				    M_CSUM_TCP_UDP_BAD;
1166 		}
1167 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
1168 		    (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
1169 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
1170 			if (!(flags & JME_RD_TCPCSUM))
1171 				mhead->m_pkthdr.csum_flags |=
1172 				    M_CSUM_TCP_UDP_BAD;
1173 		}
1174 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
1175 		    (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
1176 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
1177 			if (!(flags & JME_RD_UDPCSUM))
1178 				mhead->m_pkthdr.csum_flags |=
1179 				    M_CSUM_TCP_UDP_BAD;
1180 		}
1181 		if (flags & JME_RD_VLAN_TAG) {
1182 			/* pass to vlan_input() */
1183 			VLAN_INPUT_TAG(ifp, mhead,
1184 			    (flags & JME_RD_VLAN_MASK), continue);
1185 		}
1186 		(*ifp->if_input)(ifp, mhead);
1187 	}
1188 #if NRND > 0
1189 	if (ipackets && RND_ENABLED(&sc->rnd_source))
1190 		rnd_add_uint32(&sc->rnd_source, ipackets);
1191 #endif /* NRND > 0 */
1192 
1193 }
1194 
1195 static int
1196 jme_intr(void *v)
1197 {
1198 	jme_softc_t *sc = v;
1199 	uint32_t istatus;
1200 
1201 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1202 	     JME_INTR_STATUS);
1203 	if (istatus == 0 || istatus == 0xFFFFFFFF)
1204 		return 0;
1205 	/* Disable interrupts. */
1206 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1207 	    JME_INTR_MASK_CLR, 0xFFFFFFFF);
1208 again:
1209 	/* and update istatus */
1210 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1211 	     JME_INTR_STATUS);
1212 	if ((istatus & JME_INTRS_CHECK) == 0)
1213 		goto done;
1214 	/* Reset PCC counter/timer and Ack interrupts. */
1215 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1216 		istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1217 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1218 		istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1219 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1220 	     JME_INTR_STATUS, istatus);
1221 
1222 	if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
1223 		goto done;
1224 #ifdef JMEDEBUG_RX
1225 	printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
1226 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
1227 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
1228 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
1229 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
1230 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
1231 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
1232 	printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
1233 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
1234 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
1235 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
1236 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
1237 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
1238 #endif
1239 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1240 		jme_intr_rx(sc);
1241 	if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
1242 		/*
1243 		 * Notify hardware availability of new Rx
1244 		 * buffers.
1245 		 * Reading RXCSR takes very long time under
1246 		 * heavy load so cache RXCSR value and writes
1247 		 * the ORed value with the kick command to
1248 		 * the RXCSR. This saves one register access
1249 		 * cycle.
1250 		 */
1251 		sc->jme_rx_cons = 0;
1252 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1253 		    JME_RXCSR,
1254 		    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
1255 	}
1256 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1257 		jme_ifstart(&sc->jme_if);
1258 
1259 	goto again;
1260 
1261 done:
1262 	/* enable interrupts. */
1263 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1264 	    JME_INTR_MASK_SET, JME_INTRS_ENABLE);
1265 	return 1;
1266 }
1267 
1268 
1269 static int
1270 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1271 {
1272 	struct jme_softc *sc = ifp->if_softc;
1273 	int s, error;
1274 	struct ifreq *ifr;
1275 	struct ifcapreq *ifcr;
1276 
1277 	s = splnet();
1278 	/*
1279 	 * we can't support at the same time jumbo frames and
1280 	 * TX checksums offload/TSO
1281 	 */
1282 	switch(cmd) {
1283 	case SIOCSIFMTU:
1284 		ifr = data;
1285 		if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
1286 		    (ifp->if_capenable & (
1287 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1288 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1289 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1290 			splx(s);
1291 			return EINVAL;
1292 		}
1293 		break;
1294 	case SIOCSIFCAP:
1295 		ifcr = data;
1296 		if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
1297 		    (ifcr->ifcr_capenable & (
1298 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1299 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1300 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1301 			splx(s);
1302 			return EINVAL;
1303 		}
1304 		break;
1305 	}
1306 
1307 	error = ether_ioctl(ifp, cmd, data);
1308 	if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
1309 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1310 			jme_set_filter(sc);
1311 			error = 0;
1312 		} else {
1313 			error = jme_init(ifp, 0);
1314 		}
1315 	}
1316 	splx(s);
1317 	return error;
1318 }
1319 
1320 static int
1321 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1322 {
1323 	struct jme_desc *txd;
1324 	struct jme_desc *desc;
1325 	struct mbuf *m;
1326 	struct m_tag *mtag;
1327 	int error, i, prod, headdsc, nsegs;
1328 	uint32_t cflags, tso_segsz;
1329 
1330 	if (((*m_head)->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0){
1331 		/*
1332 		 * Due to the adherence to NDIS specification JMC250
1333 		 * assumes upper stack computed TCP pseudo checksum
1334 		 * without including payload length. This breaks
1335 		 * checksum offload for TSO case so recompute TCP
1336 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1337 		 * be much burden on modern CPUs.
1338 		 */
1339 		bool v4 = ((*m_head)->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1340 		int iphl = v4 ?
1341 		    M_CSUM_DATA_IPv4_IPHL((*m_head)->m_pkthdr.csum_data) :
1342 		    M_CSUM_DATA_IPv6_HL((*m_head)->m_pkthdr.csum_data);
1343 		/*
1344 		 * note: we support vlan offloading, so we should never have
1345 		 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
1346 		 * right.
1347 		 */
1348 		int hlen = ETHER_HDR_LEN + iphl;
1349 
1350 		if (__predict_false((*m_head)->m_len <
1351 		    (hlen + sizeof(struct tcphdr)))) {
1352 			   /*
1353 			    * TCP/IP headers are not in the first mbuf; we need
1354 			    * to do this the slow and painful way.  Let's just
1355 			    * hope this doesn't happen very often.
1356 			    */
1357 			   struct tcphdr th;
1358 
1359 			   m_copydata((*m_head), hlen, sizeof(th), &th);
1360 			   if (v4) {
1361 				    struct ip ip;
1362 
1363 				    m_copydata((*m_head), ETHER_HDR_LEN,
1364 				    sizeof(ip), &ip);
1365 				    ip.ip_len = 0;
1366 				    m_copyback((*m_head),
1367 					 ETHER_HDR_LEN + offsetof(struct ip, ip_len),
1368 					 sizeof(ip.ip_len), &ip.ip_len);
1369 				    th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1370 					 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1371 			   } else {
1372 #if INET6
1373 				    struct ip6_hdr ip6;
1374 
1375 				    m_copydata((*m_head), ETHER_HDR_LEN,
1376 				    sizeof(ip6), &ip6);
1377 				    ip6.ip6_plen = 0;
1378 				    m_copyback((*m_head), ETHER_HDR_LEN +
1379 				    offsetof(struct ip6_hdr, ip6_plen),
1380 					 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1381 				    th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1382 					 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1383 #endif /* INET6 */
1384 			   }
1385 			   m_copyback((*m_head),
1386 			    hlen + offsetof(struct tcphdr, th_sum),
1387 				sizeof(th.th_sum), &th.th_sum);
1388 
1389 			   hlen += th.th_off << 2;
1390 		} else {
1391 			   /*
1392 			    * TCP/IP headers are in the first mbuf; we can do
1393 			    * this the easy way.
1394 			    */
1395 			   struct tcphdr *th;
1396 
1397 			   if (v4) {
1398 				    struct ip *ip =
1399 					 (void *)(mtod((*m_head), char *) +
1400 					ETHER_HDR_LEN);
1401 				    th = (void *)(mtod((*m_head), char *) + hlen);
1402 
1403 				    ip->ip_len = 0;
1404 				    th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1405 					 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1406 			   } else {
1407 #if INET6
1408 				    struct ip6_hdr *ip6 =
1409 				    (void *)(mtod((*m_head), char *) +
1410 				    ETHER_HDR_LEN);
1411 				    th = (void *)(mtod((*m_head), char *) + hlen);
1412 
1413 				    ip6->ip6_plen = 0;
1414 				    th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1415 					 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1416 #endif /* INET6 */
1417 			   }
1418 			hlen += th->th_off << 2;
1419 		}
1420 
1421 	}
1422 
1423 	prod = sc->jme_tx_prod;
1424 	txd = &sc->jme_txring[prod];
1425 
1426 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
1427 	    *m_head, BUS_DMA_WRITE);
1428 	if (error) {
1429 		if (error == EFBIG) {
1430 			log(LOG_ERR, "%s: Tx packet consumes too many "
1431 			    "DMA segments, dropping...\n",
1432 			    device_xname(sc->jme_dev));
1433 			m_freem(*m_head);
1434 			m_head = NULL;
1435 		}
1436 		return (error);
1437 	}
1438 	/*
1439 	 * Check descriptor overrun. Leave one free descriptor.
1440 	 * Since we always use 64bit address mode for transmitting,
1441 	 * each Tx request requires one more dummy descriptor.
1442 	 */
1443 	nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
1444 #ifdef JMEDEBUG_TX
1445 	printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
1446 #endif
1447 	if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
1448 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
1449 		return (ENOBUFS);
1450 	}
1451 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
1452 	    0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1453 
1454 	m = *m_head;
1455 	cflags = 0;
1456 	tso_segsz = 0;
1457 	/* Configure checksum offload and TSO. */
1458 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0) {
1459 		tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
1460 		cflags |= JME_TD_TSO;
1461 	} else {
1462 		if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
1463 			cflags |= JME_TD_IPCSUM;
1464 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_TCPv6)) != 0)
1465 			cflags |= JME_TD_TCPCSUM;
1466 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4|M_CSUM_UDPv6)) != 0)
1467 			cflags |= JME_TD_UDPCSUM;
1468 	}
1469 	/* Configure VLAN. */
1470 	if ((mtag = VLAN_OUTPUT_TAG(&sc->jme_ec, m)) != NULL) {
1471 		cflags |= (VLAN_TAG_VALUE(mtag) & JME_TD_VLAN_MASK);
1472 		cflags |= JME_TD_VLAN_TAG;
1473 	}
1474 
1475 	desc = &sc->jme_txring[prod];
1476 	desc->flags = htole32(cflags);
1477 	desc->buflen = htole32(tso_segsz);
1478 	desc->addr_hi = htole32(m->m_pkthdr.len);
1479 	desc->addr_lo = 0;
1480 	headdsc = prod;
1481 	sc->jme_tx_cnt++;
1482 	JME_DESC_INC(prod, JME_NBUFS);
1483 	for (i = 0; i < nsegs; i++) {
1484 		desc = &sc->jme_txring[prod];
1485 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1486 		desc->buflen =
1487 		    htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
1488 		desc->addr_hi = htole32(
1489 		    JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1490 		desc->addr_lo = htole32(
1491 		    JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1492 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1493 		    prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
1494 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1495 		sc->jme_txmbuf[prod] = NULL;
1496 		sc->jme_tx_cnt++;
1497 		JME_DESC_INC(prod, JME_NBUFS);
1498 	}
1499 
1500 	/* Update producer index. */
1501 	sc->jme_tx_prod = prod;
1502 #ifdef JMEDEBUG_TX
1503 	printf("jme_encap prod now %d\n", sc->jme_tx_prod);
1504 #endif
1505 	/*
1506 	 * Finally request interrupt and give the first descriptor
1507 	 * owenership to hardware.
1508 	 */
1509 	desc = &sc->jme_txring[headdsc];
1510 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1511 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1512 	    headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
1513 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1514 
1515 	sc->jme_txmbuf[headdsc] = m;
1516 	return (0);
1517 }
1518 
1519 static void
1520 jme_txeof(struct jme_softc *sc)
1521 {
1522 	struct ifnet *ifp;
1523 	struct jme_desc *desc;
1524 	uint32_t status;
1525 	int cons, cons0, nsegs, seg;
1526 
1527 	ifp = &sc->jme_if;
1528 
1529 #ifdef JMEDEBUG_TX
1530 	printf("jme_txeof cons %d prod %d\n",
1531 	    sc->jme_tx_cons, sc->jme_tx_prod);
1532 	printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1533 	    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1534 	    "JME_TXTRHD 0x%x\n",
1535 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1536 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1537 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1538 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1539 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1540 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1541 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1542 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1543 	for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
1544 		desc = &sc->jme_txring[cons];
1545 		printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
1546 		    desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
1547 		JME_DESC_INC(cons, JME_NBUFS);
1548 	}
1549 #endif
1550 
1551 	cons = sc->jme_tx_cons;
1552 	if (cons == sc->jme_tx_prod)
1553 		return;
1554 
1555 	/*
1556 	 * Go through our Tx list and free mbufs for those
1557 	 * frames which have been transmitted.
1558 	 */
1559 	for (; cons != sc->jme_tx_prod;) {
1560 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1561 		    cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
1562 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1563 
1564 		desc = &sc->jme_txring[cons];
1565 		status = le32toh(desc->flags);
1566 #ifdef JMEDEBUG_TX
1567 		printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
1568 		    sc->jme_txmbufm[cons]->dm_nsegs);
1569 #endif
1570 		if (status & JME_TD_OWN)
1571 			break;
1572 
1573 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
1574 			ifp->if_oerrors++;
1575 		else {
1576 			ifp->if_opackets++;
1577 			if ((status & JME_TD_COLLISION) != 0)
1578 				ifp->if_collisions +=
1579 				    le32toh(desc->buflen) &
1580 				    JME_TD_BUF_LEN_MASK;
1581 		}
1582 		/*
1583 		 * Only the first descriptor of multi-descriptor
1584 		 * transmission is updated so driver have to skip entire
1585 		 * chained buffers for the transmiited frame. In other
1586 		 * words, JME_TD_OWN bit is valid only at the first
1587 		 * descriptor of a multi-descriptor transmission.
1588 		 */
1589 		nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
1590 		cons0 = cons;
1591 		JME_DESC_INC(cons, JME_NBUFS);
1592 		for (seg = 1; seg < nsegs + 1; seg++) {
1593 			bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1594 			    cons * sizeof(struct jme_desc),
1595 			    sizeof(struct jme_desc),
1596 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1597 			sc->jme_txring[cons].flags = 0;
1598 			JME_DESC_INC(cons, JME_NBUFS);
1599 		}
1600 		/* Reclaim transferred mbufs. */
1601 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
1602 		    0, sc->jme_txmbufm[cons0]->dm_mapsize,
1603 		    BUS_DMASYNC_POSTWRITE);
1604 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);
1605 
1606 		KASSERT(sc->jme_txmbuf[cons0] != NULL);
1607 		m_freem(sc->jme_txmbuf[cons0]);
1608 		sc->jme_txmbuf[cons0] = NULL;
1609 		sc->jme_tx_cnt -= nsegs + 1;
1610 		KASSERT(sc->jme_tx_cnt >= 0);
1611 		sc->jme_if.if_flags &= ~IFF_OACTIVE;
1612 	}
1613 	sc->jme_tx_cons = cons;
1614 	/* Unarm watchog timer when there is no pending descriptors in queue. */
1615 	if (sc->jme_tx_cnt == 0)
1616 		ifp->if_timer = 0;
1617 #ifdef JMEDEBUG_TX
1618 	printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
1619 #endif
1620 }
1621 
1622 static void
1623 jme_ifstart(struct ifnet *ifp)
1624 {
1625 	jme_softc_t *sc = ifp->if_softc;
1626 	struct mbuf *mb_head;
1627 	int enq;
1628 
1629 	/*
1630 	 * check if we can free some desc.
1631 	 * Clear TX interrupt status to reset TX coalescing counters.
1632 	 */
1633 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1634 	     JME_INTR_STATUS, INTR_TXQ_COMP);
1635 	jme_txeof(sc);
1636 
1637 	if ((sc->jme_if.if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1638 		return;
1639 	for (enq = 0;; enq++) {
1640 nexttx:
1641 		/* Grab a paquet for output */
1642 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1643 		if (mb_head == NULL) {
1644 #ifdef JMEDEBUG_TX
1645 			printf("%s: nothing to send\n", __func__);
1646 #endif
1647 			break;
1648 		}
1649 		/* try to add this mbuf to the TX ring */
1650 		if (jme_encap(sc, &mb_head)) {
1651 			if (mb_head == NULL) {
1652 				ifp->if_oerrors++;
1653 				/* packet dropped, try next one */
1654 				goto nexttx;
1655 			}
1656 			/* resource shortage, try again later */
1657 			IF_PREPEND(&ifp->if_snd, mb_head);
1658 			ifp->if_flags |= IFF_OACTIVE;
1659 			break;
1660 		}
1661 		/* Pass packet to bpf if there is a listener */
1662 		bpf_mtap(ifp, mb_head);
1663 	}
1664 #ifdef JMEDEBUG_TX
1665 	printf("jme_ifstart enq %d\n", enq);
1666 #endif
1667 	if (enq) {
1668 		/*
1669 		 * Set a 5 second timer just in case we don't hear from
1670 		 * the card again.
1671 		 */
1672 		ifp->if_timer = 5;
1673 		/*
1674 		 * Reading TXCSR takes very long time under heavy load
1675 		 * so cache TXCSR value and writes the ORed value with
1676 		 * the kick command to the TXCSR. This saves one register
1677 		 * access cycle.
1678 		 */
1679 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
1680 		  sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1681 #ifdef JMEDEBUG_TX
1682 		printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1683 		    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1684 		    "JME_TXTRHD 0x%x\n",
1685 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1686 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1687 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1688 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1689 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1690 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1691 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1692 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1693 #endif
1694 	}
1695 }
1696 
1697 static void
1698 jme_ifwatchdog(struct ifnet *ifp)
1699 {
1700 	jme_softc_t *sc = ifp->if_softc;
1701 
1702 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1703 		return;
1704 	printf("%s: device timeout\n", device_xname(sc->jme_dev));
1705 	ifp->if_oerrors++;
1706 	jme_init(ifp, 0);
1707 }
1708 
1709 static int
1710 jme_mediachange(struct ifnet *ifp)
1711 {
1712 	int error;
1713 	jme_softc_t *sc = ifp->if_softc;
1714 
1715 	if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
1716 		error = 0;
1717 	else if (error != 0) {
1718 		aprint_error_dev(sc->jme_dev, "could not set media\n");
1719 		return error;
1720 	}
1721 	return 0;
1722 }
1723 
1724 static void
1725 jme_ticks(void *v)
1726 {
1727 	jme_softc_t *sc = v;
1728 	int s = splnet();
1729 
1730 	/* Tick the MII. */
1731 	mii_tick(&sc->jme_mii);
1732 
1733 	/* every seconds */
1734 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
1735 	splx(s);
1736 }
1737 
1738 static void
1739 jme_mac_config(jme_softc_t *sc)
1740 {
1741 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1742 	struct mii_data *mii = &sc->jme_mii;
1743 
1744 	ghc = 0;
1745 	rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1746 	rxmac &= ~RXMAC_FC_ENB;
1747 	txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
1748 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1749 	txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
1750 	txpause &= ~TXPFC_PAUSE_ENB;
1751 
1752 	if (mii->mii_media_active & IFM_FDX) {
1753 		ghc |= GHC_FULL_DUPLEX;
1754 		rxmac &= ~RXMAC_COLL_DET_ENB;
1755 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1756 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1757 		    TXMAC_FRAME_BURST);
1758 		/* Disable retry transmit timer/retry limit. */
1759 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1760 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
1761 		    & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1762 	} else {
1763 		rxmac |= RXMAC_COLL_DET_ENB;
1764 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1765 		/* Enable retry transmit timer/retry limit. */
1766 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1767 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)		    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1768 	}
1769 	/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1770 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1771 	case IFM_10_T:
1772 		ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100;
1773 		break;
1774 	case IFM_100_TX:
1775 		ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100;
1776 		break;
1777 	case IFM_1000_T:
1778 		ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000;
1779 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1780 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1781 		break;
1782 	default:
1783 		break;
1784 	}
1785 	if ((sc->jme_flags & JME_FLAG_GIGA) &&
1786 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
1787 		/*
1788 		 * Workaround occasional packet loss issue of JMC250 A2
1789 		 * when it runs on half-duplex media.
1790 		 */
1791 #ifdef JMEDEBUG
1792 		printf("JME250 A2 workaround\n");
1793 #endif
1794 		gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1795 		    JME_GPREG1);
1796 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1797 			gpreg &= ~GPREG1_HDPX_FIX;
1798 		else
1799 			gpreg |= GPREG1_HDPX_FIX;
1800 		bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1801 		    JME_GPREG1, gpreg);
1802 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
1803 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
1804 			/* Extend interface FIFO depth. */
1805 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1806 			    0x1B, 0x0000);
1807 		} else {
1808 			/* Select default interface FIFO depth. */
1809 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1810 			    0x1B, 0x0004);
1811 		}
1812 	}
1813 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
1814 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
1815 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
1816 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
1817 }
1818 
1819 static void
1820 jme_set_filter(jme_softc_t *sc)
1821 {
1822 	struct ifnet *ifp = &sc->jme_if;
1823 	struct ether_multistep step;
1824 	struct ether_multi *enm;
1825 	uint32_t hash[2] = {0, 0};
1826 	int i;
1827 	uint32_t rxcfg;
1828 
1829 	rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1830 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
1831 	    RXMAC_ALLMULTI);
1832 	/* Always accept frames destined to our station address. */
1833 	rxcfg |= RXMAC_UNICAST;
1834 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1835 		rxcfg |= RXMAC_BROADCAST;
1836 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1837 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1838 			rxcfg |= RXMAC_PROMISC;
1839 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1840 			rxcfg |= RXMAC_ALLMULTI;
1841 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1842 		     JME_MAR0, 0xFFFFFFFF);
1843 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1844 		     JME_MAR1, 0xFFFFFFFF);
1845 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1846 		     JME_RXMAC, rxcfg);
1847 		return;
1848 	}
1849 	/*
1850 	 * Set up the multicast address filter by passing all multicast
1851 	 * addresses through a CRC generator, and then using the low-order
1852 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1853 	 * high order bits select the register, while the rest of the bits
1854 	 * select the bit within the register.
1855 	 */
1856 	rxcfg |= RXMAC_MULTICAST;
1857 	memset(hash, 0, sizeof(hash));
1858 
1859 	ETHER_FIRST_MULTI(step, &sc->jme_ec, enm);
1860 	while (enm != NULL) {
1861 #ifdef JEMDBUG
1862 		printf("%s: addrs %s %s\n", __func__,
1863 		   ether_sprintf(enm->enm_addrlo),
1864 		   ether_sprintf(enm->enm_addrhi));
1865 #endif
1866 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
1867 			i = ether_crc32_be(enm->enm_addrlo, 6);
1868 			/* Just want the 6 least significant bits. */
1869 			i &= 0x3f;
1870 			hash[i / 32] |= 1 << (i%32);
1871 		} else {
1872 			hash[0] = hash[1] = 0xffffffff;
1873 			sc->jme_if.if_flags |= IFF_ALLMULTI;
1874 			break;
1875 		}
1876 		ETHER_NEXT_MULTI(step, enm);
1877 	}
1878 #ifdef JMEDEBUG
1879 	printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
1880 #endif
1881 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
1882 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
1883 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
1884 }
1885 
1886 #if 0
1887 static int
1888 jme_multicast_hash(uint8_t *a)
1889 {
1890 	int hash;
1891 
1892 #define DA(addr,bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
1893 #define xor8(a,b,c,d,e,f,g,h)						\
1894 	(((a != 0) + (b != 0) + (c != 0) + (d != 0) + 			\
1895 	  (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
1896 
1897 	hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
1898 	    DA(a,36), DA(a,42));
1899 	hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
1900 	    DA(a,37), DA(a,43)) << 1;
1901 	hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
1902 	    DA(a,38), DA(a,44)) << 2;
1903 	hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
1904 	    DA(a,39), DA(a,45)) << 3;
1905 	hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
1906 	    DA(a,40), DA(a,46)) << 4;
1907 	hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
1908 	    DA(a,41), DA(a,47)) << 5;
1909 
1910 	return hash;
1911 }
1912 #endif
1913 
1914 static int
1915 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
1916 {
1917 	 uint32_t reg;
1918 	 int i;
1919 
1920 	 *val = 0;
1921 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1922 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1923 		      JME_SMBCSR);
1924 		  if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
1925 			   break;
1926 		  delay(10);
1927 	 }
1928 
1929 	 if (i == 0) {
1930 		  aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
1931 		  return (ETIMEDOUT);
1932 	 }
1933 
1934 	 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
1935 	 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
1936 	     JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
1937 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1938 		  delay(10);
1939 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1940 		      JME_SMBINTF);
1941 		  if ((reg & SMBINTF_CMD_TRIGGER) == 0)
1942 			   break;
1943 	 }
1944 
1945 	 if (i == 0) {
1946 		  aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
1947 		  return (ETIMEDOUT);
1948 	 }
1949 
1950 	 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
1951 	 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
1952 	 return (0);
1953 }
1954 
1955 
1956 static int
1957 jme_eeprom_macaddr(struct jme_softc *sc)
1958 {
1959 	uint8_t eaddr[ETHER_ADDR_LEN];
1960 	uint8_t fup, reg, val;
1961 	uint32_t offset;
1962 	int match;
1963 
1964 	offset = 0;
1965 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1966 	    fup != JME_EEPROM_SIG0)
1967 		return (ENOENT);
1968 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1969 	    fup != JME_EEPROM_SIG1)
1970 		return (ENOENT);
1971 	match = 0;
1972 	do {
1973 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
1974 			break;
1975 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
1976 		    == (fup & (JME_EEPROM_FUNC_MASK|JME_EEPROM_PAGE_MASK))) {
1977 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
1978 				break;
1979 			if (reg >= JME_PAR0 &&
1980 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
1981 				if (jme_eeprom_read_byte(sc, offset + 2,
1982 				    &val) != 0)
1983 					break;
1984 				eaddr[reg - JME_PAR0] = val;
1985 				match++;
1986 			}
1987 		}
1988 		if (fup & JME_EEPROM_DESC_END)
1989 			break;
1990 
1991 		/* Try next eeprom descriptor. */
1992 		offset += JME_EEPROM_DESC_BYTES;
1993 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
1994 
1995 	if (match == ETHER_ADDR_LEN) {
1996 		memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN);
1997 		return (0);
1998 	}
1999 
2000 	return (ENOENT);
2001 }
2002 
2003 /*
2004  * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
2005  * set up in jme_pci_attach()
2006  */
2007 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
2008 {
2009 	int rc;
2010 	const struct sysctlnode *node;
2011 
2012 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2013 	    0, CTLTYPE_NODE, "hw", NULL,
2014 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2015 		goto err;
2016 	}
2017 
2018 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2019 	    0, CTLTYPE_NODE, "jme",
2020 	    SYSCTL_DESCR("jme interface controls"),
2021 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2022 		goto err;
2023 	}
2024 
2025 	jme_root_num = node->sysctl_num;
2026 	return;
2027 
2028 err:
2029 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2030 }
2031 
2032 static int
2033 jme_sysctl_intrxto(SYSCTLFN_ARGS)
2034 {
2035 	int error, t;
2036 	struct sysctlnode node;
2037 	struct jme_softc *sc;
2038 	uint32_t reg;
2039 
2040 	node = *rnode;
2041 	sc = node.sysctl_data;
2042 	t = sc->jme_intrxto;
2043 	node.sysctl_data = &t;
2044 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2045 	if (error || newp == NULL)
2046 		return error;
2047 
2048 	if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
2049 		return EINVAL;
2050 
2051 	/*
2052 	 * update the softc with sysctl-changed value, and mark
2053 	 * for hardware update
2054 	 */
2055 	sc->jme_intrxto = t;
2056 	/* Configure Rx queue 0 packet completion coalescing. */
2057 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2058 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2059 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2060 	return 0;
2061 }
2062 
2063 static int
2064 jme_sysctl_intrxct(SYSCTLFN_ARGS)
2065 {
2066 	int error, t;
2067 	struct sysctlnode node;
2068 	struct jme_softc *sc;
2069 	uint32_t reg;
2070 
2071 	node = *rnode;
2072 	sc = node.sysctl_data;
2073 	t = sc->jme_intrxct;
2074 	node.sysctl_data = &t;
2075 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2076 	if (error || newp == NULL)
2077 		return error;
2078 
2079 	if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
2080 		return EINVAL;
2081 
2082 	/*
2083 	 * update the softc with sysctl-changed value, and mark
2084 	 * for hardware update
2085 	 */
2086 	sc->jme_intrxct = t;
2087 	/* Configure Rx queue 0 packet completion coalescing. */
2088 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2089 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2090 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2091 	return 0;
2092 }
2093 
2094 static int
2095 jme_sysctl_inttxto(SYSCTLFN_ARGS)
2096 {
2097 	int error, t;
2098 	struct sysctlnode node;
2099 	struct jme_softc *sc;
2100 	uint32_t reg;
2101 
2102 	node = *rnode;
2103 	sc = node.sysctl_data;
2104 	t = sc->jme_inttxto;
2105 	node.sysctl_data = &t;
2106 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2107 	if (error || newp == NULL)
2108 		return error;
2109 
2110 	if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
2111 		return EINVAL;
2112 
2113 	/*
2114 	 * update the softc with sysctl-changed value, and mark
2115 	 * for hardware update
2116 	 */
2117 	sc->jme_inttxto = t;
2118 	/* Configure Tx queue 0 packet completion coalescing. */
2119 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2120 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2121 	reg |= PCCTX_COAL_TXQ0;
2122 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2123 	return 0;
2124 }
2125 
2126 static int
2127 jme_sysctl_inttxct(SYSCTLFN_ARGS)
2128 {
2129 	int error, t;
2130 	struct sysctlnode node;
2131 	struct jme_softc *sc;
2132 	uint32_t reg;
2133 
2134 	node = *rnode;
2135 	sc = node.sysctl_data;
2136 	t = sc->jme_inttxct;
2137 	node.sysctl_data = &t;
2138 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2139 	if (error || newp == NULL)
2140 		return error;
2141 
2142 	if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
2143 		return EINVAL;
2144 
2145 	/*
2146 	 * update the softc with sysctl-changed value, and mark
2147 	 * for hardware update
2148 	 */
2149 	sc->jme_inttxct = t;
2150 	/* Configure Tx queue 0 packet completion coalescing. */
2151 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2152 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2153 	reg |= PCCTX_COAL_TXQ0;
2154 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2155 	return 0;
2156 }
2157