xref: /netbsd-src/sys/dev/pci/if_jme.c (revision 46f5119e40af2e51998f686b2fdcc76b5488f7f3)
1 /*	$NetBSD: if_jme.c,v 1.17 2011/03/30 18:11:37 bouyer Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 
54 
55 /*
56  * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
57  * Ethernet Controllers.
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.17 2011/03/30 18:11:37 bouyer Exp $");
62 
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/mbuf.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/ioctl.h>
70 #include <sys/errno.h>
71 #include <sys/malloc.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>	/* only for declaration of wakeup() used by vm.h */
74 #include <sys/device.h>
75 #include <sys/syslog.h>
76 #include <sys/sysctl.h>
77 
78 #include <net/if.h>
79 #if defined(SIOCSIFMEDIA)
80 #include <net/if_media.h>
81 #endif
82 #include <net/if_types.h>
83 #include <net/if_dl.h>
84 #include <net/route.h>
85 #include <net/netisr.h>
86 
87 #include <net/bpf.h>
88 #include <net/bpfdesc.h>
89 
90 #include "rnd.h"
91 #if NRND > 0
92 #include <sys/rnd.h>
93 #endif
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/ip.h>
98 
99 #ifdef INET
100 #include <netinet/in_var.h>
101 #endif
102 
103 #include <netinet/tcp.h>
104 
105 #include <net/if_ether.h>
106 #if defined(INET)
107 #include <netinet/if_inarp.h>
108 #endif
109 
110 #include <sys/bus.h>
111 #include <sys/intr.h>
112 
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116 #include <dev/pci/if_jmereg.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 
121 struct jme_product_desc {
122 	u_int32_t jme_product;
123 	const char *jme_desc;
124 };
125 
126 /* number of entries in transmit and receive rings */
127 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))
128 
129 #define JME_DESC_INC(x, y)	((x) = ((x) + 1) % (y))
130 
131 /* Water mark to kick reclaiming Tx buffers. */
132 #define JME_TX_DESC_HIWAT	(JME_NBUFS - (((JME_NBUFS) * 3) / 10))
133 
134 
135 struct jme_softc {
136 	device_t jme_dev;		/* base device */
137 	bus_space_tag_t jme_bt_mac;
138 	bus_space_handle_t jme_bh_mac;  /* Mac registers */
139 	bus_space_tag_t jme_bt_phy;
140 	bus_space_handle_t jme_bh_phy;  /* PHY registers */
141 	bus_space_tag_t jme_bt_misc;
142 	bus_space_handle_t jme_bh_misc; /* Misc registers */
143 	bus_dma_tag_t jme_dmatag;
144 	bus_dma_segment_t jme_txseg;	/* transmit ring seg */
145 	bus_dmamap_t jme_txmap;		/* transmit ring DMA map */
146 	struct jme_desc* jme_txring;	/* transmit ring */
147 	bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
148 	struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
149 	int jme_tx_cons;		/* transmit ring consumer */
150 	int jme_tx_prod;		/* transmit ring producer */
151 	int jme_tx_cnt;			/* transmit ring active count */
152 	bus_dma_segment_t jme_rxseg;	/* receive ring seg */
153 	bus_dmamap_t jme_rxmap;		/* receive ring DMA map */
154 	struct jme_desc* jme_rxring;	/* receive ring */
155 	bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
156 	struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
157 	int jme_rx_cons;		/* receive ring consumer */
158 	int jme_rx_prod;		/* receive ring producer */
159 	void* jme_ih;			/* our interrupt */
160 	struct ethercom jme_ec;
161 	struct callout jme_tick_ch;	/* tick callout */
162 	u_int8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
163 	u_int8_t jme_phyaddr;		/* address of integrated phy */
164 	u_int8_t jme_chip_rev;		/* chip revision */
165 	u_int8_t jme_rev;		/* PCI revision */
166 	mii_data_t jme_mii;		/* mii bus */
167 	u_int32_t jme_flags;		/* device features, see below */
168 	uint32_t jme_txcsr;		/* TX config register */
169 	uint32_t jme_rxcsr;		/* RX config register */
170 #if NRND > 0
171 	rndsource_element_t rnd_source;
172 #endif
173 	/* interrupt coalition parameters */
174 	struct sysctllog *jme_clog;
175 	int jme_intrxto;		/* interrupt RX timeout */
176 	int jme_intrxct;		/* interrupt RX packets counter */
177 	int jme_inttxto;		/* interrupt TX timeout */
178 	int jme_inttxct;		/* interrupt TX packets counter */
179 };
180 
181 #define JME_FLAG_FPGA	0x0001 /* FPGA version */
182 #define JME_FLAG_GIGA	0x0002 /* giga Ethernet capable */
183 
184 
185 #define jme_if	jme_ec.ec_if
186 #define jme_bpf	jme_if.if_bpf
187 
188 typedef struct jme_softc jme_softc_t;
189 typedef u_long ioctl_cmd_t;
190 
191 static int jme_pci_match(device_t, cfdata_t, void *);
192 static void jme_pci_attach(device_t, device_t, void *);
193 static void jme_intr_rx(jme_softc_t *);
194 static int jme_intr(void *);
195 
196 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
197 static int jme_mediachange(struct ifnet *);
198 static void jme_ifwatchdog(struct ifnet *);
199 static bool jme_shutdown(device_t, int);
200 
201 static void jme_txeof(struct jme_softc *);
202 static void jme_ifstart(struct ifnet *);
203 static void jme_reset(jme_softc_t *);
204 static int  jme_ifinit(struct ifnet *);
205 static int  jme_init(struct ifnet *, int);
206 static void jme_stop(struct ifnet *, int);
207 // static void jme_restart(void *);
208 static void jme_ticks(void *);
209 static void jme_mac_config(jme_softc_t *);
210 static void jme_set_filter(jme_softc_t *);
211 
212 int jme_mii_read(device_t, int, int);
213 void jme_mii_write(device_t, int, int, int);
214 void jme_statchg(device_t);
215 
216 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
217 static int jme_eeprom_macaddr(struct jme_softc *);
218 static int jme_reg_macaddr(struct jme_softc *);
219 
220 #define JME_TIMEOUT		1000
221 #define JME_PHY_TIMEOUT		1000
222 #define JME_EEPROM_TIMEOUT	1000
223 
224 static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
225 static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
226 static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
227 static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
228 static int jme_root_num;
229 
230 
231 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
232     jme_pci_match, jme_pci_attach, NULL, NULL);
233 
234 static const struct jme_product_desc jme_products[] = {
235 	{ PCI_PRODUCT_JMICRON_JMC250,
236 	  "JMicron JMC250 Gigabit Ethernet Controller" },
237 	{ PCI_PRODUCT_JMICRON_JMC260,
238 	  "JMicron JMC260 Gigabit Ethernet Controller" },
239 	{ 0, NULL },
240 };
241 
242 static const struct jme_product_desc *jme_lookup_product(uint32_t);
243 
244 static const struct jme_product_desc *
245 jme_lookup_product(uint32_t id)
246 {
247 	const struct jme_product_desc *jp;
248 
249 	for (jp = jme_products ; jp->jme_desc != NULL; jp++)
250 		if (PCI_PRODUCT(id) == jp->jme_product)
251 			return jp;
252 
253 	return NULL;
254 }
255 
256 static int
257 jme_pci_match(device_t parent, cfdata_t cf, void *aux)
258 {
259 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
260 
261 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_JMICRON)
262 		return 0;
263 
264 	if (jme_lookup_product(pa->pa_id) != NULL)
265 		return 1;
266 
267 	return 0;
268 }
269 
270 static void
271 jme_pci_attach(device_t parent, device_t self, void *aux)
272 {
273 	jme_softc_t *sc = device_private(self);
274 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
275 	const struct jme_product_desc *jp;
276 	struct ifnet * const ifp = &sc->jme_if;
277 	bus_space_tag_t iot1, iot2, memt;
278 	bus_space_handle_t ioh1, ioh2, memh;
279 	bus_size_t size, size2;
280 	pci_intr_handle_t intrhandle;
281 	const char *intrstr;
282 	pcireg_t csr;
283 	int nsegs, i;
284 	const struct sysctlnode *node;
285 	int jme_nodenum;
286 
287 	sc->jme_dev = self;
288 	aprint_normal("\n");
289 	callout_init(&sc->jme_tick_ch, 0);
290 
291 	jp = jme_lookup_product(pa->pa_id);
292 	if (jp == NULL)
293 		panic("jme_pci_attach: impossible");
294 
295 	if (jp->jme_product == PCI_PRODUCT_JMICRON_JMC250)
296 		sc->jme_flags = JME_FLAG_GIGA;
297 
298 	/*
299 	 * Map the card space. Try Mem first.
300 	 */
301 	if (pci_mapreg_map(pa, JME_PCI_BAR0,
302 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
303 	    0, &memt, &memh, NULL, &size) == 0) {
304 		sc->jme_bt_mac = memt;
305 		sc->jme_bh_mac = memh;
306 		sc->jme_bt_phy = memt;
307 		if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
308 		    JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
309 			aprint_error_dev(self, "can't subregion PHY space\n");
310 			bus_space_unmap(memt, memh, size);
311 			return;
312 		}
313 		sc->jme_bt_misc = memt;
314 		if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
315 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
316 			aprint_error_dev(self, "can't subregion misc space\n");
317 			bus_space_unmap(memt, memh, size);
318 			return;
319 		}
320 	} else {
321 		if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
322 		    0, &iot1, &ioh1, NULL, &size) != 0) {
323 			aprint_error_dev(self, "can't map I/O space 1\n");
324 			return;
325 		}
326 		sc->jme_bt_mac = iot1;
327 		sc->jme_bh_mac = ioh1;
328 		if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
329 		    0, &iot2, &ioh2, NULL, &size2) != 0) {
330 			aprint_error_dev(self, "can't map I/O space 2\n");
331 			bus_space_unmap(iot1, ioh1, size);
332 			return;
333 		}
334 		sc->jme_bt_phy = iot2;
335 		sc->jme_bh_phy = ioh2;
336 		sc->jme_bt_misc = iot2;
337 		if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
338 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
339 			aprint_error_dev(self, "can't subregion misc space\n");
340 			bus_space_unmap(iot1, ioh1, size);
341 			bus_space_unmap(iot2, ioh2, size2);
342 			return;
343 		}
344 	}
345 
346 	if (pci_dma64_available(pa))
347 		sc->jme_dmatag = pa->pa_dmat64;
348 	else
349 		sc->jme_dmatag = pa->pa_dmat;
350 
351 	/* Enable the device. */
352 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
353 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
354 	    csr | PCI_COMMAND_MASTER_ENABLE);
355 
356 	aprint_normal_dev(self, "%s\n", jp->jme_desc);
357 
358 	sc->jme_rev = PCI_REVISION(pa->pa_class);
359 
360 	csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
361 	if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
362 	    CHIPMODE_NOT_FPGA)
363 		sc->jme_flags |= JME_FLAG_FPGA;
364 	sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
365 	aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
366 	    "0x%x", sc->jme_rev, sc->jme_chip_rev);
367 	if (sc->jme_flags & JME_FLAG_FPGA)
368 		aprint_verbose(" FPGA revision: 0x%x",
369 		    (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
370 	aprint_verbose("\n");
371 
372 	/*
373 	 * Save PHY address.
374 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
375 	 * requires PHY probing to get correct PHY address.
376 	 */
377 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
378 		sc->jme_phyaddr =
379 		    bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
380 				     JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
381 	} else
382 		sc->jme_phyaddr = 0;
383 
384 
385 	jme_reset(sc);
386 
387 	/* read mac addr */
388 	if (jme_eeprom_macaddr(sc) && jme_reg_macaddr(sc)) {
389 		aprint_error_dev(self, "error reading Ethernet address\n");
390 		/* return; */
391 	}
392 	aprint_normal_dev(self, "Ethernet address %s\n",
393 	    ether_sprintf(sc->jme_enaddr));
394 
395 	/* Map and establish interrupts */
396 	if (pci_intr_map(pa, &intrhandle)) {
397 		aprint_error_dev(self, "couldn't map interrupt\n");
398 		return;
399 	}
400 	intrstr = pci_intr_string(pa->pa_pc, intrhandle);
401 	sc->jme_if.if_softc = sc;
402 	sc->jme_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
403 	    jme_intr, sc);
404 	if (sc->jme_ih == NULL) {
405 		aprint_error_dev(self, "couldn't establish interrupt");
406 		if (intrstr != NULL)
407 			aprint_error(" at %s", intrstr);
408 		aprint_error("\n");
409 		return;
410 	}
411 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
412 
413 	/* allocate and map DMA-safe memory for transmit ring */
414 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
415 	    &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
416 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
417 	    nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
418 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
419 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
420 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
421 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
422 	    PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
423 		aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
424 		return;
425 	}
426 	/* allocate and map DMA-safe memory for receive ring */
427 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
428 	      &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
429 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
430 	      nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
431 	      BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
432 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
433 	      BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
434 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
435 	      PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
436 		aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
437 		return;
438 	}
439 	for (i = 0; i < JME_NBUFS; i++) {
440 		sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
441 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
442 		    JME_NBUFS, JME_MAX_TX_LEN, 0,
443 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
444 		    &sc->jme_txmbufm[i]) != 0) {
445 			aprint_error_dev(self, "can't allocate DMA TX map\n");
446 			return;
447 		}
448 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
449 		    1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
450 		    &sc->jme_rxmbufm[i]) != 0) {
451 			aprint_error_dev(self, "can't allocate DMA RX map\n");
452 			return;
453 		}
454 	}
455 	/*
456 	 * Initialize our media structures and probe the MII.
457 	 *
458 	 * Note that we don't care about the media instance.  We
459 	 * are expecting to have multiple PHYs on the 10/100 cards,
460 	 * and on those cards we exclude the internal PHY from providing
461 	 * 10baseT.  By ignoring the instance, it allows us to not have
462 	 * to specify it on the command line when switching media.
463 	 */
464 	sc->jme_mii.mii_ifp = ifp;
465 	sc->jme_mii.mii_readreg = jme_mii_read;
466 	sc->jme_mii.mii_writereg = jme_mii_write;
467 	sc->jme_mii.mii_statchg = jme_statchg;
468 	sc->jme_ec.ec_mii = &sc->jme_mii;
469 	ifmedia_init(&sc->jme_mii.mii_media, IFM_IMASK, jme_mediachange,
470 	    ether_mediastatus);
471 	mii_attach(self, &sc->jme_mii, 0xffffffff, MII_PHY_ANY,
472 	    MII_OFFSET_ANY, 0);
473 	if (LIST_FIRST(&sc->jme_mii.mii_phys) == NULL) {
474 		ifmedia_add(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
475 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE);
476 	} else
477 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_AUTO);
478 
479 	/*
480 	 * We can support 802.1Q VLAN-sized frames.
481 	 */
482 	sc->jme_ec.ec_capabilities |=
483 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
484 
485 	if (sc->jme_flags & JME_FLAG_GIGA)
486 		sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
487 
488 
489 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
490 	ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
491 	ifp->if_ioctl = jme_ifioctl;
492 	ifp->if_start = jme_ifstart;
493 	ifp->if_watchdog = jme_ifwatchdog;
494 	ifp->if_init = jme_ifinit;
495 	ifp->if_stop = jme_stop;
496 	ifp->if_timer = 0;
497 	ifp->if_capabilities |=
498 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
499 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
500 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
501 	    IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
502 	    IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
503 	    IFCAP_TSOv4 | IFCAP_TSOv6;
504 	IFQ_SET_READY(&ifp->if_snd);
505 	if_attach(ifp);
506 	ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);
507 
508 	/*
509 	 * Add shutdown hook so that DMA is disabled prior to reboot.
510 	 */
511 	if (pmf_device_register1(self, NULL, NULL, jme_shutdown))
512 		pmf_class_network_register(self, ifp);
513 	else
514 		aprint_error_dev(self, "couldn't establish power handler\n");
515 
516 #if NRND > 0
517 	rnd_attach_source(&sc->rnd_source, device_xname(self),
518 	    RND_TYPE_NET, 0);
519 #endif
520 	sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
521 	sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
522 	sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
523 	sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
524 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
525 	    0, CTLTYPE_NODE, device_xname(sc->jme_dev),
526 	    SYSCTL_DESCR("jme per-controller controls"),
527 	    NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
528 	    CTL_EOL) != 0) {
529 		aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
530 		return;
531 	}
532 	jme_nodenum = node->sysctl_num;
533 
534 	/* interrupt moderation sysctls */
535 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
536 	    CTLFLAG_READWRITE,
537 	    CTLTYPE_INT, "int_rxto",
538 	    SYSCTL_DESCR("jme RX interrupt moderation timer"),
539 	    jme_sysctl_intrxto, 0, sc,
540 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
541 	    CTL_EOL) != 0) {
542 		aprint_normal_dev(sc->jme_dev,
543 		    "couldn't create int_rxto sysctl node\n");
544 	}
545 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
546 	    CTLFLAG_READWRITE,
547 	    CTLTYPE_INT, "int_rxct",
548 	    SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
549 	    jme_sysctl_intrxct, 0, sc,
550 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
551 	    CTL_EOL) != 0) {
552 		aprint_normal_dev(sc->jme_dev,
553 		    "couldn't create int_rxct sysctl node\n");
554 	}
555 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
556 	    CTLFLAG_READWRITE,
557 	    CTLTYPE_INT, "int_txto",
558 	    SYSCTL_DESCR("jme TX interrupt moderation timer"),
559 	    jme_sysctl_inttxto, 0, sc,
560 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
561 	    CTL_EOL) != 0) {
562 		aprint_normal_dev(sc->jme_dev,
563 		    "couldn't create int_txto sysctl node\n");
564 	}
565 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
566 	    CTLFLAG_READWRITE,
567 	    CTLTYPE_INT, "int_txct",
568 	    SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
569 	    jme_sysctl_inttxct, 0, sc,
570 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
571 	    CTL_EOL) != 0) {
572 		aprint_normal_dev(sc->jme_dev,
573 		    "couldn't create int_txct sysctl node\n");
574 	}
575 }
576 
577 static void
578 jme_stop_rx(jme_softc_t *sc)
579 {
580 	uint32_t reg;
581 	int i;
582 
583 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
584 	if ((reg & RXCSR_RX_ENB) == 0)
585 		return;
586 	reg &= ~RXCSR_RX_ENB;
587 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
588 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
589 		DELAY(10);
590 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
591 		    JME_RXCSR) & RXCSR_RX_ENB) == 0)
592 			break;
593 	}
594 	if (i == 0)
595 		aprint_error_dev(sc->jme_dev, "stopping recevier timeout!\n");
596 
597 }
598 
599 static void
600 jme_stop_tx(jme_softc_t *sc)
601 {
602 	uint32_t reg;
603 	int i;
604 
605 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
606 	if ((reg & TXCSR_TX_ENB) == 0)
607 		return;
608 	reg &= ~TXCSR_TX_ENB;
609 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
610 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
611 		DELAY(10);
612 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
613 		    JME_TXCSR) & TXCSR_TX_ENB) == 0)
614 			break;
615 	}
616 	if (i == 0)
617 		aprint_error_dev(sc->jme_dev,
618 		    "stopping transmitter timeout!\n");
619 }
620 
621 static void
622 jme_reset(jme_softc_t *sc)
623 {
624 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
625 	DELAY(10);
626 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
627 }
628 
629 static bool
630 jme_shutdown(device_t self, int howto)
631 {
632 	jme_softc_t *sc;
633 	struct ifnet *ifp;
634 
635 	sc = device_private(self);
636 	ifp = &sc->jme_if;
637 	jme_stop(ifp, 1);
638 
639 	return true;
640 }
641 
642 static void
643 jme_stop(struct ifnet *ifp, int disable)
644 {
645 	jme_softc_t *sc = ifp->if_softc;
646 	int i;
647 	/* Stop receiver, transmitter. */
648 	jme_stop_rx(sc);
649 	jme_stop_tx(sc);
650 	/* free receive mbufs */
651 	for (i = 0; i < JME_NBUFS; i++) {
652 		if (sc->jme_rxmbuf[i]) {
653 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
654 			m_freem(sc->jme_rxmbuf[i]);
655 		}
656 		sc->jme_rxmbuf[i] = NULL;
657 	}
658 	/* process completed transmits */
659 	jme_txeof(sc);
660 	/* free abort pending transmits */
661 	for (i = 0; i < JME_NBUFS; i++) {
662 		if (sc->jme_txmbuf[i]) {
663 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
664 			m_freem(sc->jme_txmbuf[i]);
665 			sc->jme_txmbuf[i] = NULL;
666 		}
667 	}
668 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
669 	ifp->if_timer = 0;
670 }
671 
672 #if 0
673 static void
674 jme_restart(void *v)
675 {
676 
677 	jme_init(v);
678 }
679 #endif
680 
681 static int
682 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
683 {
684 	int error;
685 	bus_dmamap_t map;
686 	int i = sc->jme_rx_prod;
687 
688 	if (sc->jme_rxmbuf[i] != NULL) {
689 		aprint_error_dev(sc->jme_dev,
690 		    "mbuf already here: rxprod %d rxcons %d\n",
691 		    sc->jme_rx_prod, sc->jme_rx_cons);
692 		if (m)
693 			m_freem(m);
694 		return EINVAL;
695 	}
696 
697 	if (m == NULL) {
698 		sc->jme_rxmbuf[i] = NULL;
699 		MGETHDR(m, M_DONTWAIT, MT_DATA);
700 		if (m == NULL)
701 			return (ENOBUFS);
702 		MCLGET(m, M_DONTWAIT);
703 		if ((m->m_flags & M_EXT) == 0) {
704 			m_freem(m);
705 			return (ENOBUFS);
706 		}
707 	}
708 	map = sc->jme_rxmbufm[i];
709 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
710 	KASSERT(m->m_len == MCLBYTES);
711 
712 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
713 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
714 	if (error) {
715 		sc->jme_rxmbuf[i] = NULL;
716 		aprint_error_dev(sc->jme_dev,
717 		    "unable to load rx DMA map %d, error = %d\n",
718 		    i, error);
719 		m_freem(m);
720 		return (error);
721 	}
722 	bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
723 	    BUS_DMASYNC_PREREAD);
724 
725 	sc->jme_rxmbuf[i] = m;
726 
727 	sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
728 	sc->jme_rxring[i].addr_lo =
729 	    htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
730 	sc->jme_rxring[i].addr_hi =
731 	    htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
732 	sc->jme_rxring[i].flags =
733 	    htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
734 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
735 	    i * sizeof(struct jme_desc), sizeof(struct jme_desc),
736 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
737 	JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
738 	return (0);
739 }
740 
741 static int
742 jme_ifinit(struct ifnet *ifp)
743 {
744 	return jme_init(ifp, 1);
745 }
746 
747 static int
748 jme_init(struct ifnet *ifp, int do_ifinit)
749 {
750 	jme_softc_t *sc = ifp->if_softc;
751 	int i, s;
752 	uint8_t eaddr[ETHER_ADDR_LEN];
753 	uint32_t reg;
754 
755 	s = splnet();
756 	/* cancel any pending IO */
757 	jme_stop(ifp, 1);
758 	jme_reset(sc);
759 	if ((sc->jme_if.if_flags & IFF_UP) == 0) {
760 		splx(s);
761 		return 0;
762 	}
763 	/* allocate receive ring */
764 	sc->jme_rx_prod = 0;
765 	for (i = 0; i < JME_NBUFS; i++) {
766 		if (jme_add_rxbuf(sc, NULL) < 0) {
767 			aprint_error_dev(sc->jme_dev,
768 			    "can't allocate rx mbuf\n");
769 			for (i--; i >= 0; i--) {
770 				bus_dmamap_unload(sc->jme_dmatag,
771 				    sc->jme_rxmbufm[i]);
772 				m_freem(sc->jme_rxmbuf[i]);
773 				sc->jme_rxmbuf[i] = NULL;
774 			}
775 			splx(s);
776 			return ENOMEM;
777 		}
778 	}
779 	/* init TX ring */
780 	memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
781 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
782 	    0, JME_NBUFS * sizeof(struct jme_desc),
783 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
784 	for (i = 0; i < JME_NBUFS; i++)
785 		sc->jme_txmbuf[i] = NULL;
786 	sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;
787 
788 	/* Reprogram the station address. */
789 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
790 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
791 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
792 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
793 	    JME_PAR1, eaddr[5] << 8 | eaddr[4]);
794 
795 	/*
796 	 * Configure Tx queue.
797 	 *  Tx priority queue weight value : 0
798 	 *  Tx FIFO threshold for processing next packet : 16QW
799 	 *  Maximum Tx DMA length : 512
800 	 *  Allow Tx DMA burst.
801 	 */
802 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
803 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
804 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
805 	sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
806 	sc->jme_txcsr |= TXCSR_DMA_BURST;
807 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
808 	     JME_TXCSR, sc->jme_txcsr);
809 
810 	/* Set Tx descriptor counter. */
811 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
812 	     JME_TXQDC, JME_NBUFS);
813 
814 	/* Set Tx ring address to the hardware. */
815 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
816 	    JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
817 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
818 	    JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));
819 
820 	/* Configure TxMAC parameters. */
821 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
822 	    TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
823 	    TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);
824 
825 	/*
826 	 * Configure Rx queue.
827 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
828 	 *  FIFO threshold for processing next packet : 128QW
829 	 *  Rx queue 0 select
830 	 *  Max Rx DMA length : 128
831 	 *  Rx descriptor retry : 32
832 	 *  Rx descriptor retry time gap : 256ns
833 	 *  Don't receive runt/bad frame.
834 	 */
835 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
836 	/*
837 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
838 	 * than 4K bytes will suffer from Rx FIFO overruns. So
839 	 * decrease FIFO threshold to reduce the FIFO overruns for
840 	 * frames larger than 4000 bytes.
841 	 * For best performance of standard MTU sized frames use
842 	 * maximum allowable FIFO threshold, 128QW.
843 	 */
844 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
845 	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
846 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
847 	else
848 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
849 	sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
850 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
851 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
852 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
853 	     JME_RXCSR, sc->jme_rxcsr);
854 
855 	/* Set Rx descriptor counter. */
856 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
857 	     JME_RXQDC, JME_NBUFS);
858 
859 	/* Set Rx ring address to the hardware. */
860 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
861 	    JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
862 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
863 	    JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));
864 
865 	/* Clear receive filter. */
866 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
867 	/* Set up the receive filter. */
868 	jme_set_filter(sc);
869 
870 	/*
871 	 * Disable all WOL bits as WOL can interfere normal Rx
872 	 * operation. Also clear WOL detection status bits.
873 	 */
874 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
875 	reg &= ~PMCS_WOL_ENB_MASK;
876 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);
877 
878 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
879 	/*
880 	 * Pad 10bytes right before received frame. This will greatly
881 	 * help Rx performance on strict-alignment architectures as
882 	 * it does not need to copy the frame to align the payload.
883 	 */
884 	reg |= RXMAC_PAD_10BYTES;
885 	if ((ifp->if_capenable &
886 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx|
887 	     IFCAP_CSUM_TCPv6_Rx|IFCAP_CSUM_UDPv6_Rx)) != 0)
888 		reg |= RXMAC_CSUM_ENB;
889 	reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
890 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);
891 
892 	/* Configure general purpose reg0 */
893 	reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
894 	reg &= ~GPREG0_PCC_UNIT_MASK;
895 	/* Set PCC timer resolution to micro-seconds unit. */
896 	reg |= GPREG0_PCC_UNIT_US;
897 	/*
898 	 * Disable all shadow register posting as we have to read
899 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
900 	 * that it's hard to synchronize interrupt status between
901 	 * hardware and software with shadow posting due to
902 	 * requirements of bus_dmamap_sync(9).
903 	 */
904 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
905 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
906 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
907 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
908 	/* Disable posting of DW0. */
909 	reg &= ~GPREG0_POST_DW0_ENB;
910 	/* Clear PME message. */
911 	reg &= ~GPREG0_PME_ENB;
912 	/* Set PHY address. */
913 	reg &= ~GPREG0_PHY_ADDR_MASK;
914 	reg |= sc->jme_phyaddr;
915 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);
916 
917 	/* Configure Tx queue 0 packet completion coalescing. */
918 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
919 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
920 	reg |= PCCTX_COAL_TXQ0;
921 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
922 
923 	/* Configure Rx queue 0 packet completion coalescing. */
924 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
925 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
926 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
927 
928 	/* Disable Timers */
929 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0);
930 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
931 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);
932 
933 	/* Configure retry transmit period, retry limit value. */
934 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
935 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
936 	    TXTRHD_RT_PERIOD_MASK) |
937 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
938 	    TXTRHD_RT_LIMIT_SHIFT));
939 
940 	/* Disable RSS. */
941 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
942 	    JME_RSSC, RSSC_DIS_RSS);
943 
944 	/* Initialize the interrupt mask. */
945 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
946 	     JME_INTR_MASK_SET, JME_INTRS_ENABLE);
947 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
948 	     JME_INTR_STATUS, 0xFFFFFFFF);
949 
950 	/* set media, if not already handling a media change */
951 	if (do_ifinit) {
952 		int error;
953 		if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
954 			error = 0;
955 		else if (error != 0) {
956 			aprint_error_dev(sc->jme_dev, "could not set media\n");
957 			return error;
958 		}
959 	}
960 
961 	/* Program MAC with resolved speed/duplex/flow-control. */
962 	jme_mac_config(sc);
963 
964 	/* Start receiver/transmitter. */
965 	sc->jme_rx_cons = 0;
966 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
967 	    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
968 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
969 	    sc->jme_txcsr | TXCSR_TX_ENB);
970 
971 	/* start ticks calls */
972 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
973 	sc->jme_if.if_flags |= IFF_RUNNING;
974 	sc->jme_if.if_flags &= ~IFF_OACTIVE;
975 	splx(s);
976 	return 0;
977 }
978 
979 
980 int
981 jme_mii_read(device_t self, int phy, int reg)
982 {
983 	struct jme_softc *sc = device_private(self);
984 	int val, i;
985 
986 	/* For FPGA version, PHY address 0 should be ignored. */
987 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
988 		if (phy == 0)
989 			return (0);
990 	} else {
991 		if (sc->jme_phyaddr != phy)
992 			return (0);
993 	}
994 
995 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
996 	    SMI_OP_READ | SMI_OP_EXECUTE |
997 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
998 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
999 		delay(10);
1000 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1001 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1002 			break;
1003 	}
1004 
1005 	if (i == 0) {
1006 		aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
1007 		return (0);
1008 	}
1009 
1010 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
1011 }
1012 
1013 void
1014 jme_mii_write(device_t self, int phy, int reg, int val)
1015 {
1016 	struct jme_softc *sc = device_private(self);
1017 	int i;
1018 
1019 	/* For FPGA version, PHY address 0 should be ignored. */
1020 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
1021 		if (phy == 0)
1022 			return;
1023 	} else {
1024 		if (sc->jme_phyaddr != phy)
1025 			return;
1026 	}
1027 
1028 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
1029 	    SMI_OP_WRITE | SMI_OP_EXECUTE |
1030 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
1031 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
1032 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
1033 		delay(10);
1034 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1035 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1036 			break;
1037 	}
1038 
1039 	if (i == 0)
1040 		aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
1041 
1042 	return;
1043 }
1044 
1045 void
1046 jme_statchg(device_t self)
1047 {
1048 	jme_softc_t *sc = device_private(self);
1049 	struct ifnet *ifp = &sc->jme_if;
1050 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING))
1051 		jme_init(ifp, 0);
1052 }
1053 
1054 static void
1055 jme_intr_rx(jme_softc_t *sc) {
1056 	struct mbuf *m, *mhead;
1057 	bus_dmamap_t mmap;
1058 	struct ifnet *ifp = &sc->jme_if;
1059 	uint32_t flags,  buflen;
1060 	int i, ipackets, nsegs, seg, error;
1061 	struct jme_desc *desc;
1062 
1063 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
1064 	    sizeof(struct jme_desc) * JME_NBUFS,
1065 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1066 #ifdef JMEDEBUG_RX
1067 	printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
1068 	    sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
1069 #endif
1070 	ipackets = 0;
1071 	while((le32toh(sc->jme_rxring[sc->jme_rx_cons].flags) & JME_RD_OWN)
1072 	    == 0) {
1073 		i = sc->jme_rx_cons;
1074 		desc = &sc->jme_rxring[i];
1075 #ifdef JMEDEBUG_RX
1076 		printf("rxintr i %d flags 0x%x buflen 0x%x\n",
1077 		    i,  le32toh(desc->flags), le32toh(desc->buflen));
1078 #endif
1079 		if (sc->jme_rxmbuf[i] == NULL) {
1080 			if ((error = jme_add_rxbuf(sc, NULL)) != 0) {
1081 				aprint_error_dev(sc->jme_dev,
1082 				    "can't add new mbuf to empty slot: %d\n",
1083 				    error);
1084 				break;
1085 			}
1086 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1087 			i = sc->jme_rx_cons;
1088 			continue;
1089 		}
1090 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
1091 			break;
1092 
1093 		buflen = le32toh(desc->buflen);
1094 		nsegs = JME_RX_NSEGS(buflen);
1095 		flags = le32toh(desc->flags);
1096 		if ((buflen & JME_RX_ERR_STAT) != 0 ||
1097 		    JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
1098 		    JME_RX_BYTES(buflen) >
1099 		    (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
1100 #ifdef JMEDEBUG_RX
1101 			printf("rx error flags 0x%x buflen 0x%x\n",
1102 			    flags, buflen);
1103 #endif
1104 			ifp->if_ierrors++;
1105 			/* reuse the mbufs */
1106 			for (seg = 0; seg < nsegs; seg++) {
1107 				m = sc->jme_rxmbuf[i];
1108 				sc->jme_rxmbuf[i] = NULL;
1109 				mmap = sc->jme_rxmbufm[i];
1110 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1111 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1112 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1113 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1114 					aprint_error_dev(sc->jme_dev,
1115 					    "can't reuse mbuf: %d\n", error);
1116 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1117 				i = sc->jme_rx_cons;
1118 			}
1119 			continue;
1120 		}
1121 		/* receive this packet */
1122 		mhead = m = sc->jme_rxmbuf[i];
1123 		sc->jme_rxmbuf[i] = NULL;
1124 		mmap = sc->jme_rxmbufm[i];
1125 		bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1126 		    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1127 		bus_dmamap_unload(sc->jme_dmatag, mmap);
1128 		/* add a new buffer to chain */
1129 		if (jme_add_rxbuf(sc, NULL) != 0) {
1130 			if ((error = jme_add_rxbuf(sc, m)) != 0)
1131 				aprint_error_dev(sc->jme_dev,
1132 				    "can't reuse mbuf: %d\n", error);
1133 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1134 			i = sc->jme_rx_cons;
1135 			for (seg = 1; seg < nsegs; seg++) {
1136 				m = sc->jme_rxmbuf[i];
1137 				sc->jme_rxmbuf[i] = NULL;
1138 				mmap = sc->jme_rxmbufm[i];
1139 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1140 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1141 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1142 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1143 					aprint_error_dev(sc->jme_dev,
1144 					    "can't reuse mbuf: %d\n", error);
1145 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1146 				i = sc->jme_rx_cons;
1147 			}
1148 			ifp->if_ierrors++;
1149 			continue;
1150 		}
1151 
1152 		/* build mbuf chain: head, then remaining segments */
1153 		m->m_pkthdr.rcvif = ifp;
1154 		m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
1155 		m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
1156 		    m->m_pkthdr.len;
1157 		m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
1158 		JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1159 		for (seg = 1; seg < nsegs; seg++) {
1160 			i = sc->jme_rx_cons;
1161 			m = sc->jme_rxmbuf[i];
1162 			sc->jme_rxmbuf[i] = NULL;
1163 			mmap = sc->jme_rxmbufm[i];
1164 			bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1165 			    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1166 			bus_dmamap_unload(sc->jme_dmatag, mmap);
1167 			if ((error = jme_add_rxbuf(sc, NULL)) != 0)
1168 				aprint_error_dev(sc->jme_dev,
1169 				    "can't add new mbuf: %d\n", error);
1170 			m->m_flags &= ~M_PKTHDR;
1171 			m_cat(mhead, m);
1172 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1173 		}
1174 		/* and adjust last mbuf's size */
1175 		if (nsegs > 1) {
1176 			m->m_len =
1177 			    JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
1178 		}
1179 		ifp->if_ipackets++;
1180 		ipackets++;
1181 		bpf_mtap(ifp, mhead);
1182 
1183 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
1184 		    (flags & JME_RD_IPV4)) {
1185 			mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1186 			if (!(flags & JME_RD_IPCSUM))
1187 				mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1188 		}
1189 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
1190 		    (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
1191 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1192 			if (!(flags & JME_RD_TCPCSUM))
1193 				mhead->m_pkthdr.csum_flags |=
1194 				    M_CSUM_TCP_UDP_BAD;
1195 		}
1196 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
1197 		    (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
1198 			mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1199 			if (!(flags & JME_RD_UDPCSUM))
1200 				mhead->m_pkthdr.csum_flags |=
1201 				    M_CSUM_TCP_UDP_BAD;
1202 		}
1203 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
1204 		    (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
1205 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
1206 			if (!(flags & JME_RD_TCPCSUM))
1207 				mhead->m_pkthdr.csum_flags |=
1208 				    M_CSUM_TCP_UDP_BAD;
1209 		}
1210 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
1211 		    (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
1212 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
1213 			if (!(flags & JME_RD_UDPCSUM))
1214 				mhead->m_pkthdr.csum_flags |=
1215 				    M_CSUM_TCP_UDP_BAD;
1216 		}
1217 		if (flags & JME_RD_VLAN_TAG) {
1218 			/* pass to vlan_input() */
1219 			VLAN_INPUT_TAG(ifp, mhead,
1220 			    (flags & JME_RD_VLAN_MASK), continue);
1221 		}
1222 		(*ifp->if_input)(ifp, mhead);
1223 	}
1224 #if NRND > 0
1225 	if (ipackets && RND_ENABLED(&sc->rnd_source))
1226 		rnd_add_uint32(&sc->rnd_source, ipackets);
1227 #endif /* NRND > 0 */
1228 
1229 }
1230 
1231 static int
1232 jme_intr(void *v)
1233 {
1234 	jme_softc_t *sc = v;
1235 	uint32_t istatus;
1236 
1237 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1238 	     JME_INTR_STATUS);
1239 	if (istatus == 0 || istatus == 0xFFFFFFFF)
1240 		return 0;
1241 	/* Disable interrupts. */
1242 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1243 	    JME_INTR_MASK_CLR, 0xFFFFFFFF);
1244 again:
1245 	/* and update istatus */
1246 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1247 	     JME_INTR_STATUS);
1248 	if ((istatus & JME_INTRS_CHECK) == 0)
1249 		goto done;
1250 	/* Reset PCC counter/timer and Ack interrupts. */
1251 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1252 		istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1253 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1254 		istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1255 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1256 	     JME_INTR_STATUS, istatus);
1257 
1258 	if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
1259 		goto done;
1260 #ifdef JMEDEBUG_RX
1261 	printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
1262 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
1263 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
1264 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
1265 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
1266 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
1267 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
1268 	printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
1269 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
1270 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
1271 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
1272 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
1273 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
1274 #endif
1275 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1276 		jme_intr_rx(sc);
1277 	if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
1278 		/*
1279 		 * Notify hardware availability of new Rx
1280 		 * buffers.
1281 		 * Reading RXCSR takes very long time under
1282 		 * heavy load so cache RXCSR value and writes
1283 		 * the ORed value with the kick command to
1284 		 * the RXCSR. This saves one register access
1285 		 * cycle.
1286 		 */
1287 		sc->jme_rx_cons = 0;
1288 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1289 		    JME_RXCSR,
1290 		    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
1291 	}
1292 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1293 		jme_ifstart(&sc->jme_if);
1294 
1295 	goto again;
1296 
1297 done:
1298 	/* enable interrupts. */
1299 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1300 	    JME_INTR_MASK_SET, JME_INTRS_ENABLE);
1301 	return 1;
1302 }
1303 
1304 
1305 static int
1306 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1307 {
1308 	struct jme_softc *sc = ifp->if_softc;
1309 	int s, error;
1310 	struct ifreq *ifr;
1311 	struct ifcapreq *ifcr;
1312 
1313 	s = splnet();
1314 	/*
1315 	 * we can't support at the same time jumbo frames and
1316 	 * TX checksums offload/TSO
1317 	 */
1318 	switch(cmd) {
1319 	case SIOCSIFMTU:
1320 		ifr = data;
1321 		if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
1322 		    (ifp->if_capenable & (
1323 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1324 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1325 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1326 			splx(s);
1327 			return EINVAL;
1328 		}
1329 		break;
1330 	case SIOCSIFCAP:
1331 		ifcr = data;
1332 		if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
1333 		    (ifcr->ifcr_capenable & (
1334 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1335 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1336 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1337 			splx(s);
1338 			return EINVAL;
1339 		}
1340 		break;
1341 	}
1342 
1343 	error = ether_ioctl(ifp, cmd, data);
1344 	if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
1345 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1346 			jme_set_filter(sc);
1347 			error = 0;
1348 		} else {
1349 			error = jme_init(ifp, 0);
1350 		}
1351 	}
1352 	splx(s);
1353 	return error;
1354 }
1355 
1356 static int
1357 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1358 {
1359 	struct jme_desc *txd;
1360 	struct jme_desc *desc;
1361 	struct mbuf *m;
1362 	struct m_tag *mtag;
1363 	int error, i, prod, headdsc, nsegs;
1364 	uint32_t cflags, tso_segsz;
1365 
1366 	if (((*m_head)->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0){
1367 		/*
1368 		 * Due to the adherence to NDIS specification JMC250
1369 		 * assumes upper stack computed TCP pseudo checksum
1370 		 * without including payload length. This breaks
1371 		 * checksum offload for TSO case so recompute TCP
1372 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1373 		 * be much burden on modern CPUs.
1374 		 */
1375 		bool v4 = ((*m_head)->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1376 		int iphl = v4 ?
1377 		    M_CSUM_DATA_IPv4_IPHL((*m_head)->m_pkthdr.csum_data) :
1378 		    M_CSUM_DATA_IPv6_HL((*m_head)->m_pkthdr.csum_data);
1379 		/*
1380 		 * note: we support vlan offloading, so we should never have
1381 		 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
1382 		 * right.
1383 		 */
1384 		int hlen = ETHER_HDR_LEN + iphl;
1385 
1386 		if (__predict_false((*m_head)->m_len <
1387 		    (hlen + sizeof(struct tcphdr)))) {
1388 			   /*
1389 			    * TCP/IP headers are not in the first mbuf; we need
1390 			    * to do this the slow and painful way.  Let's just
1391 			    * hope this doesn't happen very often.
1392 			    */
1393 			   struct tcphdr th;
1394 
1395 			   m_copydata((*m_head), hlen, sizeof(th), &th);
1396 			   if (v4) {
1397 				    struct ip ip;
1398 
1399 				    m_copydata((*m_head), ETHER_HDR_LEN,
1400 				    sizeof(ip), &ip);
1401 				    ip.ip_len = 0;
1402 				    m_copyback((*m_head),
1403 					 ETHER_HDR_LEN + offsetof(struct ip, ip_len),
1404 					 sizeof(ip.ip_len), &ip.ip_len);
1405 				    th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1406 					 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1407 			   } else {
1408 #if INET6
1409 				    struct ip6_hdr ip6;
1410 
1411 				    m_copydata((*m_head), ETHER_HDR_LEN,
1412 				    sizeof(ip6), &ip6);
1413 				    ip6.ip6_plen = 0;
1414 				    m_copyback((*m_head), ETHER_HDR_LEN +
1415 				    offsetof(struct ip6_hdr, ip6_plen),
1416 					 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1417 				    th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1418 					 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1419 #endif /* INET6 */
1420 			   }
1421 			   m_copyback((*m_head),
1422 			    hlen + offsetof(struct tcphdr, th_sum),
1423 				sizeof(th.th_sum), &th.th_sum);
1424 
1425 			   hlen += th.th_off << 2;
1426 		} else {
1427 			   /*
1428 			    * TCP/IP headers are in the first mbuf; we can do
1429 			    * this the easy way.
1430 			    */
1431 			   struct tcphdr *th;
1432 
1433 			   if (v4) {
1434 				    struct ip *ip =
1435 					 (void *)(mtod((*m_head), char *) +
1436 					ETHER_HDR_LEN);
1437 				    th = (void *)(mtod((*m_head), char *) + hlen);
1438 
1439 				    ip->ip_len = 0;
1440 				    th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1441 					 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1442 			   } else {
1443 #if INET6
1444 				    struct ip6_hdr *ip6 =
1445 				    (void *)(mtod((*m_head), char *) +
1446 				    ETHER_HDR_LEN);
1447 				    th = (void *)(mtod((*m_head), char *) + hlen);
1448 
1449 				    ip6->ip6_plen = 0;
1450 				    th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1451 					 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1452 #endif /* INET6 */
1453 			   }
1454 			hlen += th->th_off << 2;
1455 		}
1456 
1457 	}
1458 
1459 	prod = sc->jme_tx_prod;
1460 	txd = &sc->jme_txring[prod];
1461 
1462 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
1463 	    *m_head, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1464 	if (error) {
1465 		if (error == EFBIG) {
1466 			log(LOG_ERR, "%s: Tx packet consumes too many "
1467 			    "DMA segments, dropping...\n",
1468 			    device_xname(sc->jme_dev));
1469 			m_freem(*m_head);
1470 			m_head = NULL;
1471 		}
1472 		return (error);
1473 	}
1474 	/*
1475 	 * Check descriptor overrun. Leave one free descriptor.
1476 	 * Since we always use 64bit address mode for transmitting,
1477 	 * each Tx request requires one more dummy descriptor.
1478 	 */
1479 	nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
1480 #ifdef JMEDEBUG_TX
1481 	printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
1482 #endif
1483 	if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
1484 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
1485 		return (ENOBUFS);
1486 	}
1487 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
1488 	    0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1489 
1490 	m = *m_head;
1491 	cflags = 0;
1492 	tso_segsz = 0;
1493 	/* Configure checksum offload and TSO. */
1494 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0) {
1495 		tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
1496 		cflags |= JME_TD_TSO;
1497 	} else {
1498 		if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
1499 			cflags |= JME_TD_IPCSUM;
1500 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_TCPv6)) != 0)
1501 			cflags |= JME_TD_TCPCSUM;
1502 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4|M_CSUM_UDPv6)) != 0)
1503 			cflags |= JME_TD_UDPCSUM;
1504 	}
1505 	/* Configure VLAN. */
1506 	if ((mtag = VLAN_OUTPUT_TAG(&sc->jme_ec, m)) != NULL) {
1507 		cflags |= (VLAN_TAG_VALUE(mtag) & JME_TD_VLAN_MASK);
1508 		cflags |= JME_TD_VLAN_TAG;
1509 	}
1510 
1511 	desc = &sc->jme_txring[prod];
1512 	desc->flags = htole32(cflags);
1513 	desc->buflen = htole32(tso_segsz);
1514 	desc->addr_hi = htole32(m->m_pkthdr.len);
1515 	desc->addr_lo = 0;
1516 	headdsc = prod;
1517 	sc->jme_tx_cnt++;
1518 	JME_DESC_INC(prod, JME_NBUFS);
1519 	for (i = 0; i < nsegs; i++) {
1520 		desc = &sc->jme_txring[prod];
1521 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1522 		desc->buflen =
1523 		    htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
1524 		desc->addr_hi = htole32(
1525 		    JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1526 		desc->addr_lo = htole32(
1527 		    JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1528 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1529 		    prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
1530 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1531 		sc->jme_txmbuf[prod] = NULL;
1532 		sc->jme_tx_cnt++;
1533 		JME_DESC_INC(prod, JME_NBUFS);
1534 	}
1535 
1536 	/* Update producer index. */
1537 	sc->jme_tx_prod = prod;
1538 #ifdef JMEDEBUG_TX
1539 	printf("jme_encap prod now %d\n", sc->jme_tx_prod);
1540 #endif
1541 	/*
1542 	 * Finally request interrupt and give the first descriptor
1543 	 * owenership to hardware.
1544 	 */
1545 	desc = &sc->jme_txring[headdsc];
1546 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1547 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1548 	    headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
1549 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1550 
1551 	sc->jme_txmbuf[headdsc] = m;
1552 	return (0);
1553 }
1554 
1555 static void
1556 jme_txeof(struct jme_softc *sc)
1557 {
1558 	struct ifnet *ifp;
1559 	struct jme_desc *desc;
1560 	uint32_t status;
1561 	int cons, cons0, nsegs, seg;
1562 
1563 	ifp = &sc->jme_if;
1564 
1565 #ifdef JMEDEBUG_TX
1566 	printf("jme_txeof cons %d prod %d\n",
1567 	    sc->jme_tx_cons, sc->jme_tx_prod);
1568 	printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1569 	    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1570 	    "JME_TXTRHD 0x%x\n",
1571 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1572 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1573 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1574 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1575 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1576 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1577 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1578 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1579 	for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
1580 		desc = &sc->jme_txring[cons];
1581 		printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
1582 		    desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
1583 		JME_DESC_INC(cons, JME_NBUFS);
1584 	}
1585 #endif
1586 
1587 	cons = sc->jme_tx_cons;
1588 	if (cons == sc->jme_tx_prod)
1589 		return;
1590 
1591 	/*
1592 	 * Go through our Tx list and free mbufs for those
1593 	 * frames which have been transmitted.
1594 	 */
1595 	for (; cons != sc->jme_tx_prod;) {
1596 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1597 		    cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
1598 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1599 
1600 		desc = &sc->jme_txring[cons];
1601 		status = le32toh(desc->flags);
1602 #ifdef JMEDEBUG_TX
1603 		printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
1604 		    sc->jme_txmbufm[cons]->dm_nsegs);
1605 #endif
1606 		if (status & JME_TD_OWN)
1607 			break;
1608 
1609 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
1610 			ifp->if_oerrors++;
1611 		else {
1612 			ifp->if_opackets++;
1613 			if ((status & JME_TD_COLLISION) != 0)
1614 				ifp->if_collisions +=
1615 				    le32toh(desc->buflen) &
1616 				    JME_TD_BUF_LEN_MASK;
1617 		}
1618 		/*
1619 		 * Only the first descriptor of multi-descriptor
1620 		 * transmission is updated so driver have to skip entire
1621 		 * chained buffers for the transmiited frame. In other
1622 		 * words, JME_TD_OWN bit is valid only at the first
1623 		 * descriptor of a multi-descriptor transmission.
1624 		 */
1625 		nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
1626 		cons0 = cons;
1627 		JME_DESC_INC(cons, JME_NBUFS);
1628 		for (seg = 1; seg < nsegs + 1; seg++) {
1629 			bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1630 			    cons * sizeof(struct jme_desc),
1631 			    sizeof(struct jme_desc),
1632 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1633 			sc->jme_txring[cons].flags = 0;
1634 			JME_DESC_INC(cons, JME_NBUFS);
1635 		}
1636 		/* Reclaim transferred mbufs. */
1637 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
1638 		    0, sc->jme_txmbufm[cons0]->dm_mapsize,
1639 		    BUS_DMASYNC_POSTWRITE);
1640 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);
1641 
1642 		KASSERT(sc->jme_txmbuf[cons0] != NULL);
1643 		m_freem(sc->jme_txmbuf[cons0]);
1644 		sc->jme_txmbuf[cons0] = NULL;
1645 		sc->jme_tx_cnt -= nsegs + 1;
1646 		KASSERT(sc->jme_tx_cnt >= 0);
1647 		sc->jme_if.if_flags &= ~IFF_OACTIVE;
1648 	}
1649 	sc->jme_tx_cons = cons;
1650 	/* Unarm watchog timer when there is no pending descriptors in queue. */
1651 	if (sc->jme_tx_cnt == 0)
1652 		ifp->if_timer = 0;
1653 #ifdef JMEDEBUG_TX
1654 	printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
1655 #endif
1656 }
1657 
1658 static void
1659 jme_ifstart(struct ifnet *ifp)
1660 {
1661 	jme_softc_t *sc = ifp->if_softc;
1662 	struct mbuf *mb_head;
1663 	int enq;
1664 
1665 	/*
1666 	 * check if we can free some desc.
1667 	 * Clear TX interrupt status to reset TX coalescing counters.
1668 	 */
1669 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1670 	     JME_INTR_STATUS, INTR_TXQ_COMP);
1671 	jme_txeof(sc);
1672 
1673 	if ((sc->jme_if.if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1674 		return;
1675 	for (enq = 0;; enq++) {
1676 nexttx:
1677 		/* Grab a paquet for output */
1678 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1679 		if (mb_head == NULL) {
1680 #ifdef JMEDEBUG_TX
1681 			printf("%s: nothing to send\n", __func__);
1682 #endif
1683 			break;
1684 		}
1685 		/* try to add this mbuf to the TX ring */
1686 		if (jme_encap(sc, &mb_head)) {
1687 			if (mb_head == NULL) {
1688 				ifp->if_oerrors++;
1689 				/* packet dropped, try next one */
1690 				goto nexttx;
1691 			}
1692 			/* resource shortage, try again later */
1693 			IF_PREPEND(&ifp->if_snd, mb_head);
1694 			ifp->if_flags |= IFF_OACTIVE;
1695 			break;
1696 		}
1697 		/* Pass packet to bpf if there is a listener */
1698 		bpf_mtap(ifp, mb_head);
1699 	}
1700 #ifdef JMEDEBUG_TX
1701 	printf("jme_ifstart enq %d\n", enq);
1702 #endif
1703 	if (enq) {
1704 		/*
1705 		 * Set a 5 second timer just in case we don't hear from
1706 		 * the card again.
1707 		 */
1708 		ifp->if_timer = 5;
1709 		/*
1710 		 * Reading TXCSR takes very long time under heavy load
1711 		 * so cache TXCSR value and writes the ORed value with
1712 		 * the kick command to the TXCSR. This saves one register
1713 		 * access cycle.
1714 		 */
1715 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
1716 		  sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1717 #ifdef JMEDEBUG_TX
1718 		printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1719 		    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1720 		    "JME_TXTRHD 0x%x\n",
1721 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1722 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1723 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1724 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1725 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1726 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1727 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1728 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1729 #endif
1730 	}
1731 }
1732 
1733 static void
1734 jme_ifwatchdog(struct ifnet *ifp)
1735 {
1736 	jme_softc_t *sc = ifp->if_softc;
1737 
1738 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1739 		return;
1740 	printf("%s: device timeout\n", device_xname(sc->jme_dev));
1741 	ifp->if_oerrors++;
1742 	jme_init(ifp, 0);
1743 }
1744 
1745 static int
1746 jme_mediachange(struct ifnet *ifp)
1747 {
1748 	int error;
1749 	jme_softc_t *sc = ifp->if_softc;
1750 
1751 	if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
1752 		error = 0;
1753 	else if (error != 0) {
1754 		aprint_error_dev(sc->jme_dev, "could not set media\n");
1755 		return error;
1756 	}
1757 	return 0;
1758 }
1759 
1760 static void
1761 jme_ticks(void *v)
1762 {
1763 	jme_softc_t *sc = v;
1764 	int s = splnet();
1765 
1766 	/* Tick the MII. */
1767 	mii_tick(&sc->jme_mii);
1768 
1769 	/* every seconds */
1770 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
1771 	splx(s);
1772 }
1773 
1774 static void
1775 jme_mac_config(jme_softc_t *sc)
1776 {
1777 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1778 	struct mii_data *mii = &sc->jme_mii;
1779 
1780 	ghc = 0;
1781 	rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1782 	rxmac &= ~RXMAC_FC_ENB;
1783 	txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
1784 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1785 	txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
1786 	txpause &= ~TXPFC_PAUSE_ENB;
1787 
1788 	if (mii->mii_media_active & IFM_FDX) {
1789 		ghc |= GHC_FULL_DUPLEX;
1790 		rxmac &= ~RXMAC_COLL_DET_ENB;
1791 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1792 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1793 		    TXMAC_FRAME_BURST);
1794 		/* Disable retry transmit timer/retry limit. */
1795 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1796 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
1797 		    & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1798 	} else {
1799 		rxmac |= RXMAC_COLL_DET_ENB;
1800 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1801 		/* Enable retry transmit timer/retry limit. */
1802 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1803 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)		    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1804 	}
1805 	/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1806 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1807 	case IFM_10_T:
1808 		ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100;
1809 		break;
1810 	case IFM_100_TX:
1811 		ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100;
1812 		break;
1813 	case IFM_1000_T:
1814 		ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000;
1815 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1816 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1817 		break;
1818 	default:
1819 		break;
1820 	}
1821 	if ((sc->jme_flags & JME_FLAG_GIGA) &&
1822 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
1823 		/*
1824 		 * Workaround occasional packet loss issue of JMC250 A2
1825 		 * when it runs on half-duplex media.
1826 		 */
1827 #ifdef JMEDEBUG
1828 		printf("JME250 A2 workaround\n");
1829 #endif
1830 		gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1831 		    JME_GPREG1);
1832 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1833 			gpreg &= ~GPREG1_HDPX_FIX;
1834 		else
1835 			gpreg |= GPREG1_HDPX_FIX;
1836 		bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1837 		    JME_GPREG1, gpreg);
1838 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
1839 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
1840 			/* Extend interface FIFO depth. */
1841 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1842 			    0x1B, 0x0000);
1843 		} else {
1844 			/* Select default interface FIFO depth. */
1845 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1846 			    0x1B, 0x0004);
1847 		}
1848 	}
1849 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
1850 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
1851 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
1852 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
1853 }
1854 
1855 static void
1856 jme_set_filter(jme_softc_t *sc)
1857 {
1858 	struct ifnet *ifp = &sc->jme_if;
1859 	struct ether_multistep step;
1860 	struct ether_multi *enm;
1861 	uint32_t hash[2] = {0, 0};
1862 	int i;
1863 	uint32_t rxcfg;
1864 
1865 	rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1866 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
1867 	    RXMAC_ALLMULTI);
1868 	/* Always accept frames destined to our station address. */
1869 	rxcfg |= RXMAC_UNICAST;
1870 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1871 		rxcfg |= RXMAC_BROADCAST;
1872 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1873 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1874 			rxcfg |= RXMAC_PROMISC;
1875 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1876 			rxcfg |= RXMAC_ALLMULTI;
1877 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1878 		     JME_MAR0, 0xFFFFFFFF);
1879 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1880 		     JME_MAR1, 0xFFFFFFFF);
1881 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1882 		     JME_RXMAC, rxcfg);
1883 		return;
1884 	}
1885 	/*
1886 	 * Set up the multicast address filter by passing all multicast
1887 	 * addresses through a CRC generator, and then using the low-order
1888 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1889 	 * high order bits select the register, while the rest of the bits
1890 	 * select the bit within the register.
1891 	 */
1892 	rxcfg |= RXMAC_MULTICAST;
1893 	memset(hash, 0, sizeof(hash));
1894 
1895 	ETHER_FIRST_MULTI(step, &sc->jme_ec, enm);
1896 	while (enm != NULL) {
1897 #ifdef JEMDBUG
1898 		printf("%s: addrs %s %s\n", __func__,
1899 		   ether_sprintf(enm->enm_addrlo),
1900 		   ether_sprintf(enm->enm_addrhi));
1901 #endif
1902 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
1903 			i = ether_crc32_be(enm->enm_addrlo, 6);
1904 			/* Just want the 6 least significant bits. */
1905 			i &= 0x3f;
1906 			hash[i / 32] |= 1 << (i%32);
1907 		} else {
1908 			hash[0] = hash[1] = 0xffffffff;
1909 			sc->jme_if.if_flags |= IFF_ALLMULTI;
1910 			break;
1911 		}
1912 		ETHER_NEXT_MULTI(step, enm);
1913 	}
1914 #ifdef JMEDEBUG
1915 	printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
1916 #endif
1917 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
1918 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
1919 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
1920 }
1921 
1922 #if 0
1923 static int
1924 jme_multicast_hash(uint8_t *a)
1925 {
1926 	int hash;
1927 
1928 #define DA(addr,bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
1929 #define xor8(a,b,c,d,e,f,g,h)						\
1930 	(((a != 0) + (b != 0) + (c != 0) + (d != 0) + 			\
1931 	  (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
1932 
1933 	hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
1934 	    DA(a,36), DA(a,42));
1935 	hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
1936 	    DA(a,37), DA(a,43)) << 1;
1937 	hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
1938 	    DA(a,38), DA(a,44)) << 2;
1939 	hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
1940 	    DA(a,39), DA(a,45)) << 3;
1941 	hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
1942 	    DA(a,40), DA(a,46)) << 4;
1943 	hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
1944 	    DA(a,41), DA(a,47)) << 5;
1945 
1946 	return hash;
1947 }
1948 #endif
1949 
1950 static int
1951 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
1952 {
1953 	 uint32_t reg;
1954 	 int i;
1955 
1956 	 *val = 0;
1957 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1958 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1959 		      JME_SMBCSR);
1960 		  if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
1961 			   break;
1962 		  delay(10);
1963 	 }
1964 
1965 	 if (i == 0) {
1966 		  aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
1967 		  return (ETIMEDOUT);
1968 	 }
1969 
1970 	 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
1971 	 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
1972 	     JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
1973 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1974 		  delay(10);
1975 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1976 		      JME_SMBINTF);
1977 		  if ((reg & SMBINTF_CMD_TRIGGER) == 0)
1978 			   break;
1979 	 }
1980 
1981 	 if (i == 0) {
1982 		  aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
1983 		  return (ETIMEDOUT);
1984 	 }
1985 
1986 	 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
1987 	 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
1988 	 return (0);
1989 }
1990 
1991 
1992 static int
1993 jme_eeprom_macaddr(struct jme_softc *sc)
1994 {
1995 	uint8_t eaddr[ETHER_ADDR_LEN];
1996 	uint8_t fup, reg, val;
1997 	uint32_t offset;
1998 	int match;
1999 
2000 	offset = 0;
2001 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
2002 	    fup != JME_EEPROM_SIG0)
2003 		return (ENOENT);
2004 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
2005 	    fup != JME_EEPROM_SIG1)
2006 		return (ENOENT);
2007 	match = 0;
2008 	do {
2009 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
2010 			break;
2011 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
2012 		    == (fup & (JME_EEPROM_FUNC_MASK|JME_EEPROM_PAGE_MASK))) {
2013 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
2014 				break;
2015 			if (reg >= JME_PAR0 &&
2016 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
2017 				if (jme_eeprom_read_byte(sc, offset + 2,
2018 				    &val) != 0)
2019 					break;
2020 				eaddr[reg - JME_PAR0] = val;
2021 				match++;
2022 			}
2023 		}
2024 		if (fup & JME_EEPROM_DESC_END)
2025 			break;
2026 
2027 		/* Try next eeprom descriptor. */
2028 		offset += JME_EEPROM_DESC_BYTES;
2029 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
2030 
2031 	if (match == ETHER_ADDR_LEN) {
2032 		memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN);
2033 		return (0);
2034 	}
2035 
2036 	return (ENOENT);
2037 }
2038 
2039 static int
2040 jme_reg_macaddr(struct jme_softc *sc)
2041 {
2042 	uint32_t par0, par1;
2043 
2044 	par0 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0);
2045 	par1 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1);
2046 	par1 &= 0xffff;
2047 	if ((par0 == 0 && par1 == 0) ||
2048 	    (par0 == 0xffffffff && par1 == 0xffff)) {
2049 		return (ENOENT);
2050 	} else {
2051 		sc->jme_enaddr[0] = (par0 >> 0) & 0xff;
2052 		sc->jme_enaddr[1] = (par0 >> 8) & 0xff;
2053 		sc->jme_enaddr[2] = (par0 >> 16) & 0xff;
2054 		sc->jme_enaddr[3] = (par0 >> 24) & 0xff;
2055 		sc->jme_enaddr[4] = (par1 >> 0) & 0xff;
2056 		sc->jme_enaddr[5] = (par1 >> 8) & 0xff;
2057 	}
2058 	return (0);
2059 }
2060 
2061 /*
2062  * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
2063  * set up in jme_pci_attach()
2064  */
2065 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
2066 {
2067 	int rc;
2068 	const struct sysctlnode *node;
2069 
2070 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2071 	    0, CTLTYPE_NODE, "hw", NULL,
2072 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2073 		goto err;
2074 	}
2075 
2076 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2077 	    0, CTLTYPE_NODE, "jme",
2078 	    SYSCTL_DESCR("jme interface controls"),
2079 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2080 		goto err;
2081 	}
2082 
2083 	jme_root_num = node->sysctl_num;
2084 	return;
2085 
2086 err:
2087 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2088 }
2089 
2090 static int
2091 jme_sysctl_intrxto(SYSCTLFN_ARGS)
2092 {
2093 	int error, t;
2094 	struct sysctlnode node;
2095 	struct jme_softc *sc;
2096 	uint32_t reg;
2097 
2098 	node = *rnode;
2099 	sc = node.sysctl_data;
2100 	t = sc->jme_intrxto;
2101 	node.sysctl_data = &t;
2102 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2103 	if (error || newp == NULL)
2104 		return error;
2105 
2106 	if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
2107 		return EINVAL;
2108 
2109 	/*
2110 	 * update the softc with sysctl-changed value, and mark
2111 	 * for hardware update
2112 	 */
2113 	sc->jme_intrxto = t;
2114 	/* Configure Rx queue 0 packet completion coalescing. */
2115 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2116 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2117 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2118 	return 0;
2119 }
2120 
2121 static int
2122 jme_sysctl_intrxct(SYSCTLFN_ARGS)
2123 {
2124 	int error, t;
2125 	struct sysctlnode node;
2126 	struct jme_softc *sc;
2127 	uint32_t reg;
2128 
2129 	node = *rnode;
2130 	sc = node.sysctl_data;
2131 	t = sc->jme_intrxct;
2132 	node.sysctl_data = &t;
2133 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2134 	if (error || newp == NULL)
2135 		return error;
2136 
2137 	if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
2138 		return EINVAL;
2139 
2140 	/*
2141 	 * update the softc with sysctl-changed value, and mark
2142 	 * for hardware update
2143 	 */
2144 	sc->jme_intrxct = t;
2145 	/* Configure Rx queue 0 packet completion coalescing. */
2146 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2147 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2148 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2149 	return 0;
2150 }
2151 
2152 static int
2153 jme_sysctl_inttxto(SYSCTLFN_ARGS)
2154 {
2155 	int error, t;
2156 	struct sysctlnode node;
2157 	struct jme_softc *sc;
2158 	uint32_t reg;
2159 
2160 	node = *rnode;
2161 	sc = node.sysctl_data;
2162 	t = sc->jme_inttxto;
2163 	node.sysctl_data = &t;
2164 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2165 	if (error || newp == NULL)
2166 		return error;
2167 
2168 	if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
2169 		return EINVAL;
2170 
2171 	/*
2172 	 * update the softc with sysctl-changed value, and mark
2173 	 * for hardware update
2174 	 */
2175 	sc->jme_inttxto = t;
2176 	/* Configure Tx queue 0 packet completion coalescing. */
2177 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2178 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2179 	reg |= PCCTX_COAL_TXQ0;
2180 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2181 	return 0;
2182 }
2183 
2184 static int
2185 jme_sysctl_inttxct(SYSCTLFN_ARGS)
2186 {
2187 	int error, t;
2188 	struct sysctlnode node;
2189 	struct jme_softc *sc;
2190 	uint32_t reg;
2191 
2192 	node = *rnode;
2193 	sc = node.sysctl_data;
2194 	t = sc->jme_inttxct;
2195 	node.sysctl_data = &t;
2196 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2197 	if (error || newp == NULL)
2198 		return error;
2199 
2200 	if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
2201 		return EINVAL;
2202 
2203 	/*
2204 	 * update the softc with sysctl-changed value, and mark
2205 	 * for hardware update
2206 	 */
2207 	sc->jme_inttxct = t;
2208 	/* Configure Tx queue 0 packet completion coalescing. */
2209 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2210 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2211 	reg |= PCCTX_COAL_TXQ0;
2212 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2213 	return 0;
2214 }
2215