xref: /netbsd-src/sys/dev/pci/if_jme.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: if_jme.c,v 1.4 2008/10/16 21:22:32 abs Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *  This product includes software developed by Manuel Bouyer.
17  * 4. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice unmodified, this list of conditions, and the following
41  *    disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  */
58 
59 
60 /*
61  * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
62  * Ethernet Controllers.
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.4 2008/10/16 21:22:32 abs Exp $");
67 
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/mbuf.h>
72 #include <sys/protosw.h>
73 #include <sys/socket.h>
74 #include <sys/ioctl.h>
75 #include <sys/errno.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/proc.h>	/* only for declaration of wakeup() used by vm.h */
79 #include <sys/device.h>
80 #include <sys/syslog.h>
81 #include <sys/sysctl.h>
82 
83 #include <net/if.h>
84 #if defined(SIOCSIFMEDIA)
85 #include <net/if_media.h>
86 #endif
87 #include <net/if_types.h>
88 #include <net/if_dl.h>
89 #include <net/route.h>
90 #include <net/netisr.h>
91 
92 #include "bpfilter.h"
93 #if NBPFILTER > 0
94 #include <net/bpf.h>
95 #include <net/bpfdesc.h>
96 #endif
97 
98 #include "rnd.h"
99 #if NRND > 0
100 #include <sys/rnd.h>
101 #endif
102 
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/tcp.h>
109 #endif
110 
111 
112 #include <net/if_ether.h>
113 #include <uvm/uvm_extern.h>
114 #if defined(INET)
115 #include <netinet/if_inarp.h>
116 #endif
117 
118 #include <sys/bus.h>
119 #include <sys/intr.h>
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124 #include <dev/pci/if_jmereg.h>
125 
126 #include <dev/mii/mii.h>
127 #include <dev/mii/miivar.h>
128 
129 struct jme_product_desc {
130 	u_int32_t jme_product;
131 	const char *jme_desc;
132 };
133 
134 /* number of entries in transmit and receive rings */
135 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))
136 
137 #define JME_DESC_INC(x, y)	((x) = ((x) + 1) % (y))
138 
139 /* Water mark to kick reclaiming Tx buffers. */
140 #define JME_TX_DESC_HIWAT	(JME_NBUFS - (((JME_NBUFS) * 3) / 10))
141 
142 
143 struct jme_softc {
144 	device_t jme_dev;		/* base device */
145 	bus_space_tag_t jme_bt_mac;
146 	bus_space_handle_t jme_bh_mac;  /* Mac registers */
147 	bus_space_tag_t jme_bt_phy;
148 	bus_space_handle_t jme_bh_phy;  /* PHY registers */
149 	bus_space_tag_t jme_bt_misc;
150 	bus_space_handle_t jme_bh_misc; /* Misc registers */
151 	bus_dma_tag_t jme_dmatag;
152 	bus_dma_segment_t jme_txseg;	/* transmit ring seg */
153 	bus_dmamap_t jme_txmap;		/* transmit ring DMA map */
154 	struct jme_desc* jme_txring;	/* transmit ring */
155 	bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
156 	struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
157 	int jme_tx_cons;		/* transmit ring consumer */
158 	int jme_tx_prod;		/* transmit ring producer */
159 	int jme_tx_cnt;			/* transmit ring active count */
160 	bus_dma_segment_t jme_rxseg;	/* receive ring seg */
161 	bus_dmamap_t jme_rxmap;		/* receive ring DMA map */
162 	struct jme_desc* jme_rxring;	/* receive ring */
163 	bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
164 	struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
165 	int jme_rx_cons;		/* receive ring consumer */
166 	int jme_rx_prod;		/* receive ring producer */
167 	void* jme_ih;			/* our interrupt */
168 	struct ethercom jme_ec;
169 	struct callout jme_tick_ch;	/* tick callout */
170 	u_int8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
171 	u_int8_t jme_phyaddr;		/* address of integrated phy */
172 	u_int8_t jme_chip_rev;		/* chip revision */
173 	u_int8_t jme_rev;		/* PCI revision */
174 	mii_data_t jme_mii;		/* mii bus */
175 	u_int32_t jme_flags;		/* device features, see below */
176 	uint32_t jme_txcsr;		/* TX config register */
177 	uint32_t jme_rxcsr;		/* RX config register */
178 #if NRND > 0
179 	rndsource_element_t rnd_source;
180 #endif
181 	/* interrupt coalition parameters */
182 	struct sysctllog *jme_clog;
183 	int jme_intrxto;		/* interrupt RX timeout */
184 	int jme_intrxct;		/* interrupt RX packets counter */
185 	int jme_inttxto;		/* interrupt TX timeout */
186 	int jme_inttxct;		/* interrupt TX packets counter */
187 };
188 
189 #define JME_FLAG_FPGA	0x0001 /* FPGA version */
190 #define JME_FLAG_GIGA	0x0002 /* giga Ethernet capable */
191 
192 
193 #define jme_if	jme_ec.ec_if
194 #define jme_bpf	jme_if.if_bpf
195 
196 typedef struct jme_softc jme_softc_t;
197 typedef u_long ioctl_cmd_t;
198 
199 static int jme_pci_match(device_t, cfdata_t, void *);
200 static void jme_pci_attach(device_t, device_t, void *);
201 static void jme_intr_rx(jme_softc_t *);
202 static int jme_intr(void *);
203 
204 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
205 static int jme_mediachange(struct ifnet *);
206 static void jme_ifwatchdog(struct ifnet *);
207 static void jme_shutdown(void *);
208 
209 static void jme_txeof(struct jme_softc *);
210 static void jme_ifstart(struct ifnet *);
211 static void jme_reset(jme_softc_t *);
212 static int  jme_ifinit(struct ifnet *);
213 static int  jme_init(struct ifnet *, int);
214 static void jme_stop(struct ifnet *, int);
215 // static void jme_restart(void *);
216 static void jme_ticks(void *);
217 static void jme_mac_config(jme_softc_t *);
218 static void jme_set_filter(jme_softc_t *);
219 
220 int jme_mii_read(device_t, int, int);
221 void jme_mii_write(device_t, int, int, int);
222 void jme_statchg(device_t);
223 
224 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
225 static int jme_eeprom_macaddr(struct jme_softc *);
226 
227 #define JME_TIMEOUT		1000
228 #define JME_PHY_TIMEOUT		1000
229 #define JME_EEPROM_TIMEOUT	1000
230 
231 static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
232 static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
233 static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
234 static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
235 static int jme_root_num;
236 
237 
238 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
239     jme_pci_match, jme_pci_attach, NULL, NULL);
240 
241 static const struct jme_product_desc jme_products[] = {
242 	{ PCI_PRODUCT_JMICRON_JMC250,
243 	  "JMicron JMC250 Gigabit Ethernet Controller" },
244 	{ PCI_PRODUCT_JMICRON_JMC260,
245 	  "JMicron JMC260 Gigabit Ethernet Controller" },
246 	{ 0, NULL },
247 };
248 
249 static const struct jme_product_desc *jme_lookup_product(uint32_t);
250 
251 static const struct jme_product_desc *
252 jme_lookup_product(uint32_t id)
253 {
254 	const struct jme_product_desc *jp;
255 
256 	for (jp = jme_products ; jp->jme_desc != NULL; jp++)
257 		if (PCI_PRODUCT(id) == jp->jme_product)
258 			return jp;
259 
260 	return NULL;
261 }
262 
263 static int
264 jme_pci_match(device_t parent, cfdata_t cf, void *aux)
265 {
266 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
267 
268 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_JMICRON)
269 		return 0;
270 
271 	if (jme_lookup_product(pa->pa_id) != NULL)
272 		return 1;
273 
274 	return 0;
275 }
276 
277 static void
278 jme_pci_attach(device_t parent, device_t self, void *aux)
279 {
280 	jme_softc_t *sc = device_private(self);
281 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
282 	const struct jme_product_desc *jp;
283 	struct ifnet * const ifp = &sc->jme_if;
284 	bus_space_tag_t iot1, iot2, memt;
285 	bus_space_handle_t ioh1, ioh2, memh;
286 	bus_size_t size, size2;
287 	pci_intr_handle_t intrhandle;
288 	const char *intrstr;
289 	pcireg_t csr;
290 	int nsegs, i;
291 	const struct sysctlnode *node;
292 	int jme_nodenum;
293 
294 	sc->jme_dev = self;
295 	aprint_normal("\n");
296 	callout_init(&sc->jme_tick_ch, 0);
297 
298 	jp = jme_lookup_product(pa->pa_id);
299 	if (jp == NULL)
300 		panic("jme_pci_attach: impossible");
301 
302 	if (jp->jme_product == PCI_PRODUCT_JMICRON_JMC250)
303 		sc->jme_flags = JME_FLAG_GIGA;
304 
305 	/*
306 	 * Map the card space. Try Mem first.
307 	 */
308 	if (pci_mapreg_map(pa, JME_PCI_BAR0,
309 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
310 	    0, &memt, &memh, NULL, &size) == 0) {
311 		sc->jme_bt_mac = memt;
312 		sc->jme_bh_mac = memh;
313 		sc->jme_bt_phy = memt;
314 		if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
315 		    JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
316 			aprint_error_dev(self, "can't subregion PHY space\n");
317 			bus_space_unmap(memt, memh, size);
318 			return;
319 		}
320 		sc->jme_bt_misc = memt;
321 		if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
322 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
323 			aprint_error_dev(self, "can't subregion misc space\n");
324 			bus_space_unmap(memt, memh, size);
325 			return;
326 		}
327 	} else {
328 		if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
329 		    0, &iot1, &ioh1, NULL, &size) != 0) {
330 			aprint_error_dev(self, "can't map I/O space 1\n");
331 			return;
332 		}
333 		sc->jme_bt_mac = iot1;
334 		sc->jme_bh_mac = ioh1;
335 		if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
336 		    0, &iot2, &ioh2, NULL, &size2) != 0) {
337 			aprint_error_dev(self, "can't map I/O space 2\n");
338 			bus_space_unmap(iot1, ioh1, size);
339 			return;
340 		}
341 		sc->jme_bt_phy = iot2;
342 		sc->jme_bh_phy = ioh2;
343 		sc->jme_bt_misc = iot2;
344 		if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
345 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
346 			aprint_error_dev(self, "can't subregion misc space\n");
347 			bus_space_unmap(iot1, ioh1, size);
348 			bus_space_unmap(iot2, ioh2, size2);
349 			return;
350 		}
351 	}
352 
353 	if (pci_dma64_available(pa))
354 		sc->jme_dmatag = pa->pa_dmat64;
355 	else
356 		sc->jme_dmatag = pa->pa_dmat;
357 
358 	/* Enable the device. */
359 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
360 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
361 	    csr | PCI_COMMAND_MASTER_ENABLE);
362 
363 	aprint_normal_dev(self, "%s\n", jp->jme_desc);
364 
365 	sc->jme_rev = PCI_REVISION(pa->pa_class);
366 
367 	csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
368 	if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
369 	    CHIPMODE_NOT_FPGA)
370 		sc->jme_flags |= JME_FLAG_FPGA;
371 	sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
372 	aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
373 	    "0x%x", sc->jme_rev, sc->jme_chip_rev);
374 	if (sc->jme_flags & JME_FLAG_FPGA)
375 		aprint_verbose(" FPGA revision: 0x%x",
376 		    (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
377 	aprint_verbose("\n");
378 
379 	/*
380 	 * Save PHY address.
381 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
382 	 * requires PHY probing to get correct PHY address.
383 	 */
384 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
385 		sc->jme_phyaddr =
386 		    bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
387 				     JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
388 	} else
389 		sc->jme_phyaddr = 0;
390 
391 
392 	jme_reset(sc);
393 
394 	/* read mac addr */
395 	if (jme_eeprom_macaddr(sc)) {
396 		aprint_error_dev(self, "error reading Ethernet address\n");
397 		/* return; */
398 	}
399 	aprint_normal_dev(self, "Ethernet address %s\n",
400 	    ether_sprintf(sc->jme_enaddr));
401 
402 	/* Map and establish interrupts */
403 	if (pci_intr_map(pa, &intrhandle)) {
404 		aprint_error_dev(self, "couldn't map interrupt\n");
405 		return;
406 	}
407 	intrstr = pci_intr_string(pa->pa_pc, intrhandle);
408 	sc->jme_if.if_softc = sc;
409 	sc->jme_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
410 	    jme_intr, sc);
411 	if (sc->jme_ih == NULL) {
412 		aprint_error_dev(self, "couldn't establish interrupt");
413 		if (intrstr != NULL)
414 			aprint_error(" at %s", intrstr);
415 		aprint_error("\n");
416 		return;
417 	}
418 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
419 
420 	/* allocate and map DMA-safe memory for transmit ring */
421 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
422 	    &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
423 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
424 	    nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
425 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
426 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
427 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
428 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
429 	    PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
430 		aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
431 		return;
432 	}
433 	/* allocate and map DMA-safe memory for receive ring */
434 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
435 	      &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
436 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
437 	      nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
438 	      BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
439 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
440 	      BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
441 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
442 	      PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
443 		aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
444 		return;
445 	}
446 	for (i = 0; i < JME_NBUFS; i++) {
447 		sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
448 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
449 		    JME_NBUFS, JME_MAX_TX_LEN, 0, BUS_DMA_NOWAIT,
450 		    &sc->jme_txmbufm[i]) != 0) {
451 			aprint_error_dev(self, "can't allocate DMA TX map\n");
452 			return;
453 		}
454 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
455 		    1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT,
456 		    &sc->jme_rxmbufm[i]) != 0) {
457 			aprint_error_dev(self, "can't allocate DMA RX map\n");
458 			return;
459 		}
460 	}
461 	/*
462 	 * Add shutdown hook so that DMA is disabled prior to reboot.
463 	 */
464 	(void)shutdownhook_establish(jme_shutdown, ifp);
465 
466 	/*
467 	 * Initialize our media structures and probe the MII.
468 	 *
469 	 * Note that we don't care about the media instance.  We
470 	 * are expecting to have multiple PHYs on the 10/100 cards,
471 	 * and on those cards we exclude the internal PHY from providing
472 	 * 10baseT.  By ignoring the instance, it allows us to not have
473 	 * to specify it on the command line when switching media.
474 	 */
475 	sc->jme_mii.mii_ifp = ifp;
476 	sc->jme_mii.mii_readreg = jme_mii_read;
477 	sc->jme_mii.mii_writereg = jme_mii_write;
478 	sc->jme_mii.mii_statchg = jme_statchg;
479 	sc->jme_ec.ec_mii = &sc->jme_mii;
480 	ifmedia_init(&sc->jme_mii.mii_media, IFM_IMASK, jme_mediachange,
481 	    ether_mediastatus);
482 	mii_attach(self, &sc->jme_mii, 0xffffffff, MII_PHY_ANY,
483 	    MII_OFFSET_ANY, 0);
484 	if (LIST_FIRST(&sc->jme_mii.mii_phys) == NULL) {
485 		ifmedia_add(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
486 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE);
487 	} else
488 		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_AUTO);
489 
490 	/*
491 	 * We can support 802.1Q VLAN-sized frames.
492 	 */
493 	sc->jme_ec.ec_capabilities |=
494 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
495 
496 	if (sc->jme_flags & JME_FLAG_GIGA)
497 		sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
498 
499 
500 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
501 	ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
502 	ifp->if_ioctl = jme_ifioctl;
503 	ifp->if_start = jme_ifstart;
504 	ifp->if_watchdog = jme_ifwatchdog;
505 	ifp->if_init = jme_ifinit;
506 	ifp->if_stop = jme_stop;
507 	ifp->if_timer = 0;
508 	ifp->if_capabilities |=
509 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
510 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
511 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
512 	    IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
513 	    IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
514 	    IFCAP_TSOv4 | IFCAP_TSOv6;
515 	IFQ_SET_READY(&ifp->if_snd);
516 	if_attach(ifp);
517 	ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);
518 
519 #if NRND > 0
520 	rnd_attach_source(&sc->rnd_source, device_xname(self),
521 	    RND_TYPE_NET, 0);
522 #endif
523 	sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
524 	sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
525 	sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
526 	sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
527 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
528 	    0, CTLTYPE_NODE, device_xname(sc->jme_dev),
529 	    SYSCTL_DESCR("jme per-controller controls"),
530 	    NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
531 	    CTL_EOL) != 0) {
532 		aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
533 		return;
534 	}
535 	jme_nodenum = node->sysctl_num;
536 
537 	/* interrupt moderation sysctls */
538 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
539 	    CTLFLAG_READWRITE,
540 	    CTLTYPE_INT, "int_rxto",
541 	    SYSCTL_DESCR("jme RX interrupt moderation timer"),
542 	    jme_sysctl_intrxto, 0, sc,
543 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
544 	    CTL_EOL) != 0) {
545 		aprint_normal_dev(sc->jme_dev,
546 		    "couldn't create int_rxto sysctl node\n");
547 	}
548 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
549 	    CTLFLAG_READWRITE,
550 	    CTLTYPE_INT, "int_rxct",
551 	    SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
552 	    jme_sysctl_intrxct, 0, sc,
553 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
554 	    CTL_EOL) != 0) {
555 		aprint_normal_dev(sc->jme_dev,
556 		    "couldn't create int_rxct sysctl node\n");
557 	}
558 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
559 	    CTLFLAG_READWRITE,
560 	    CTLTYPE_INT, "int_txto",
561 	    SYSCTL_DESCR("jme TX interrupt moderation timer"),
562 	    jme_sysctl_inttxto, 0, sc,
563 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
564 	    CTL_EOL) != 0) {
565 		aprint_normal_dev(sc->jme_dev,
566 		    "couldn't create int_txto sysctl node\n");
567 	}
568 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
569 	    CTLFLAG_READWRITE,
570 	    CTLTYPE_INT, "int_txct",
571 	    SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
572 	    jme_sysctl_inttxct, 0, sc,
573 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
574 	    CTL_EOL) != 0) {
575 		aprint_normal_dev(sc->jme_dev,
576 		    "couldn't create int_txct sysctl node\n");
577 	}
578 }
579 
580 static void
581 jme_stop_rx(jme_softc_t *sc)
582 {
583 	uint32_t reg;
584 	int i;
585 
586 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
587 	if ((reg & RXCSR_RX_ENB) == 0)
588 		return;
589 	reg &= ~RXCSR_RX_ENB;
590 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
591 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
592 		DELAY(10);
593 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
594 		    JME_RXCSR) & RXCSR_RX_ENB) == 0)
595 			break;
596 	}
597 	if (i == 0)
598 		aprint_error_dev(sc->jme_dev, "stopping recevier timeout!\n");
599 
600 }
601 
602 static void
603 jme_stop_tx(jme_softc_t *sc)
604 {
605 	uint32_t reg;
606 	int i;
607 
608 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
609 	if ((reg & TXCSR_TX_ENB) == 0)
610 		return;
611 	reg &= ~TXCSR_TX_ENB;
612 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
613 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
614 		DELAY(10);
615 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
616 		    JME_TXCSR) & TXCSR_TX_ENB) == 0)
617 			break;
618 	}
619 	if (i == 0)
620 		aprint_error_dev(sc->jme_dev,
621 		    "stopping transmitter timeout!\n");
622 }
623 
624 static void
625 jme_reset(jme_softc_t *sc)
626 {
627 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
628 	DELAY(10);
629 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
630 }
631 
632 static void
633 jme_shutdown(void *v)
634 {
635 
636 	jme_stop(v, 1);
637 }
638 
639 static void
640 jme_stop(struct ifnet *ifp, int disable)
641 {
642 	jme_softc_t *sc = ifp->if_softc;
643 	int i;
644 	/* Stop receiver, transmitter. */
645 	jme_stop_rx(sc);
646 	jme_stop_tx(sc);
647 	/* free receive mbufs */
648 	for (i = 0; i < JME_NBUFS; i++) {
649 		if (sc->jme_rxmbuf[i]) {
650 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
651 			m_freem(sc->jme_rxmbuf[i]);
652 		}
653 		sc->jme_rxmbuf[i] = NULL;
654 	}
655 	/* process completed transmits */
656 	jme_txeof(sc);
657 	/* free abort pending transmits */
658 	for (i = 0; i < JME_NBUFS; i++) {
659 		if (sc->jme_txmbuf[i]) {
660 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
661 			m_freem(sc->jme_txmbuf[i]);
662 			sc->jme_txmbuf[i] = NULL;
663 		}
664 	}
665 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
666 	ifp->if_timer = 0;
667 }
668 
669 #if 0
670 static void
671 jme_restart(void *v)
672 {
673 
674 	jme_init(v);
675 }
676 #endif
677 
678 static int
679 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
680 {
681 	int error;
682 	bus_dmamap_t map;
683 	int i = sc->jme_rx_prod;
684 
685 	if (sc->jme_rxmbuf[i] != NULL) {
686 		aprint_error_dev(sc->jme_dev,
687 		    "mbuf already here: rxprod %d rxcons %d\n",
688 		    sc->jme_rx_prod, sc->jme_rx_cons);
689 		if (m)
690 			m_freem(m);
691 		return EINVAL;
692 	}
693 
694 	if (m == NULL) {
695 		sc->jme_rxmbuf[i] = NULL;
696 		MGETHDR(m, M_DONTWAIT, MT_DATA);
697 		if (m == NULL)
698 			return (ENOBUFS);
699 		MCLGET(m, M_DONTWAIT);
700 		if ((m->m_flags & M_EXT) == 0) {
701 			m_freem(m);
702 			return (ENOBUFS);
703 		}
704 	}
705 	map = sc->jme_rxmbufm[i];
706 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
707 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
708 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
709 	if (error) {
710 		sc->jme_rxmbuf[i] = NULL;
711 		aprint_error_dev(sc->jme_dev,
712 		    "unable to load rx DMA map %d, error = %d\n",
713 		    i, error);
714 		m_freem(m);
715 		return (error);
716 	}
717 	bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
718 	    BUS_DMASYNC_PREREAD);
719 
720 	sc->jme_rxmbuf[i] = m;
721 
722 	sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
723 	sc->jme_rxring[i].addr_lo =
724 	    htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
725 	sc->jme_rxring[i].addr_hi =
726 	    htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
727 	sc->jme_rxring[i].flags =
728 	    htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
729 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
730 	    i * sizeof(struct jme_desc), sizeof(struct jme_desc),
731 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
732 	JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
733 	return (0);
734 }
735 
736 static int
737 jme_ifinit(struct ifnet *ifp)
738 {
739 	return jme_init(ifp, 1);
740 }
741 
742 static int
743 jme_init(struct ifnet *ifp, int do_ifinit)
744 {
745 	jme_softc_t *sc = ifp->if_softc;
746 	int i, s;
747 	uint8_t eaddr[ETHER_ADDR_LEN];
748 	uint32_t reg;
749 
750 	s = splnet();
751 	/* cancel any pending IO */
752 	jme_stop(ifp, 1);
753 	jme_reset(sc);
754 	if ((sc->jme_if.if_flags & IFF_UP) == 0) {
755 		splx(s);
756 		return 0;
757 	}
758 	/* allocate receive ring */
759 	sc->jme_rx_prod = 0;
760 	for (i = 0; i < JME_NBUFS; i++) {
761 		if (jme_add_rxbuf(sc, NULL) < 0) {
762 			aprint_error_dev(sc->jme_dev,
763 			    "can't allocate rx mbuf\n");
764 			for (i--; i >= 0; i--) {
765 				bus_dmamap_unload(sc->jme_dmatag,
766 				    sc->jme_rxmbufm[i]);
767 				m_freem(sc->jme_rxmbuf[i]);
768 				sc->jme_rxmbuf[i] = NULL;
769 			}
770 			splx(s);
771 			return ENOMEM;
772 		}
773 	}
774 	/* init TX ring */
775 	memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
776 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
777 	    0, JME_NBUFS * sizeof(struct jme_desc),
778 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
779 	for (i = 0; i < JME_NBUFS; i++)
780 		sc->jme_txmbuf[i] = NULL;
781 	sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;
782 
783 	/* Reprogram the station address. */
784 	bcopy(CLLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
785 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
786 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
787 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
788 	    JME_PAR1, eaddr[5] << 8 | eaddr[4]);
789 
790 	/*
791 	 * Configure Tx queue.
792 	 *  Tx priority queue weight value : 0
793 	 *  Tx FIFO threshold for processing next packet : 16QW
794 	 *  Maximum Tx DMA length : 512
795 	 *  Allow Tx DMA burst.
796 	 */
797 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
798 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
799 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
800 	sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
801 	sc->jme_txcsr |= TXCSR_DMA_BURST;
802 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
803 	     JME_TXCSR, sc->jme_txcsr);
804 
805 	/* Set Tx descriptor counter. */
806 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
807 	     JME_TXQDC, JME_NBUFS);
808 
809 	/* Set Tx ring address to the hardware. */
810 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
811 	    JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
812 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
813 	    JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));
814 
815 	/* Configure TxMAC parameters. */
816 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
817 	    TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
818 	    TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);
819 
820 	/*
821 	 * Configure Rx queue.
822 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
823 	 *  FIFO threshold for processing next packet : 128QW
824 	 *  Rx queue 0 select
825 	 *  Max Rx DMA length : 128
826 	 *  Rx descriptor retry : 32
827 	 *  Rx descriptor retry time gap : 256ns
828 	 *  Don't receive runt/bad frame.
829 	 */
830 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
831 	/*
832 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
833 	 * than 4K bytes will suffer from Rx FIFO overruns. So
834 	 * decrease FIFO threshold to reduce the FIFO overruns for
835 	 * frames larger than 4000 bytes.
836 	 * For best performance of standard MTU sized frames use
837 	 * maximum allowable FIFO threshold, 128QW.
838 	 */
839 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
840 	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
841 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
842 	else
843 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
844 	sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
845 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
846 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
847 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
848 	     JME_RXCSR, sc->jme_rxcsr);
849 
850 	/* Set Rx descriptor counter. */
851 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
852 	     JME_RXQDC, JME_NBUFS);
853 
854 	/* Set Rx ring address to the hardware. */
855 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
856 	    JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
857 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
858 	    JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));
859 
860 	/* Clear receive filter. */
861 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
862 	/* Set up the receive filter. */
863 	jme_set_filter(sc);
864 
865 	/*
866 	 * Disable all WOL bits as WOL can interfere normal Rx
867 	 * operation. Also clear WOL detection status bits.
868 	 */
869 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
870 	reg &= ~PMCS_WOL_ENB_MASK;
871 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);
872 
873 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
874 	/*
875 	 * Pad 10bytes right before received frame. This will greatly
876 	 * help Rx performance on strict-alignment architectures as
877 	 * it does not need to copy the frame to align the payload.
878 	 */
879 	reg |= RXMAC_PAD_10BYTES;
880 	if ((ifp->if_capenable &
881 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx|
882 	     IFCAP_CSUM_TCPv6_Rx|IFCAP_CSUM_UDPv6_Rx)) != 0)
883 		reg |= RXMAC_CSUM_ENB;
884 	reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
885 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);
886 
887 	/* Configure general purpose reg0 */
888 	reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
889 	reg &= ~GPREG0_PCC_UNIT_MASK;
890 	/* Set PCC timer resolution to micro-seconds unit. */
891 	reg |= GPREG0_PCC_UNIT_US;
892 	/*
893 	 * Disable all shadow register posting as we have to read
894 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
895 	 * that it's hard to synchronize interrupt status between
896 	 * hardware and software with shadow posting due to
897 	 * requirements of bus_dmamap_sync(9).
898 	 */
899 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
900 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
901 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
902 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
903 	/* Disable posting of DW0. */
904 	reg &= ~GPREG0_POST_DW0_ENB;
905 	/* Clear PME message. */
906 	reg &= ~GPREG0_PME_ENB;
907 	/* Set PHY address. */
908 	reg &= ~GPREG0_PHY_ADDR_MASK;
909 	reg |= sc->jme_phyaddr;
910 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);
911 
912 	/* Configure Tx queue 0 packet completion coalescing. */
913 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
914 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
915 	reg |= PCCTX_COAL_TXQ0;
916 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
917 
918 	/* Configure Rx queue 0 packet completion coalescing. */
919 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
920 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
921 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
922 
923 	/* Disable Timer 1 and Timer 2. */
924 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
925 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);
926 
927 	/* Configure retry transmit period, retry limit value. */
928 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
929 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
930 	    TXTRHD_RT_PERIOD_MASK) |
931 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
932 	    TXTRHD_RT_LIMIT_SHIFT));
933 
934 	/* Disable RSS. */
935 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
936 	    JME_RSSC, RSSC_DIS_RSS);
937 
938 	/* Initialize the interrupt mask. */
939 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
940 	     JME_INTR_MASK_SET, JME_INTRS_ENABLE);
941 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
942 	     JME_INTR_STATUS, 0xFFFFFFFF);
943 
944 	/* set media, if not already handling a media change */
945 	if (do_ifinit) {
946 		int error;
947 		if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
948 			error = 0;
949 		else if (error != 0) {
950 			aprint_error_dev(sc->jme_dev, "could not set media\n");
951 			return error;
952 		}
953 	}
954 
955 	/* Program MAC with resolved speed/duplex/flow-control. */
956 	jme_mac_config(sc);
957 
958 	/* Start receiver/transmitter. */
959 	sc->jme_rx_cons = 0;
960 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
961 	    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
962 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
963 	    sc->jme_txcsr | TXCSR_TX_ENB);
964 
965 	/* start ticks calls */
966 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
967 	sc->jme_if.if_flags |= IFF_RUNNING;
968 	sc->jme_if.if_flags &= ~IFF_OACTIVE;
969 	splx(s);
970 	return 0;
971 }
972 
973 
974 int
975 jme_mii_read(device_t self, int phy, int reg)
976 {
977 	struct jme_softc *sc = device_private(self);
978 	int val, i;
979 
980 	/* For FPGA version, PHY address 0 should be ignored. */
981 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
982 		if (phy == 0)
983 			return (0);
984 	} else {
985 		if (sc->jme_phyaddr != phy)
986 			return (0);
987 	}
988 
989 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
990 	    SMI_OP_READ | SMI_OP_EXECUTE |
991 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
992 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
993 		delay(10);
994 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
995 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
996 			break;
997 	}
998 
999 	if (i == 0) {
1000 		aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
1001 		return (0);
1002 	}
1003 
1004 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
1005 }
1006 
1007 void
1008 jme_mii_write(device_t self, int phy, int reg, int val)
1009 {
1010 	struct jme_softc *sc = device_private(self);
1011 	int i;
1012 
1013 	/* For FPGA version, PHY address 0 should be ignored. */
1014 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
1015 		if (phy == 0)
1016 			return;
1017 	} else {
1018 		if (sc->jme_phyaddr != phy)
1019 			return;
1020 	}
1021 
1022 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
1023 	    SMI_OP_WRITE | SMI_OP_EXECUTE |
1024 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
1025 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
1026 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
1027 		delay(10);
1028 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1029 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1030 			break;
1031 	}
1032 
1033 	if (i == 0)
1034 		aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
1035 
1036 	return;
1037 }
1038 
1039 void
1040 jme_statchg(device_t self)
1041 {
1042 	jme_softc_t *sc = device_private(self);
1043 	struct ifnet *ifp = &sc->jme_if;
1044 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING))
1045 		jme_init(ifp, 0);
1046 }
1047 
1048 static void
1049 jme_intr_rx(jme_softc_t *sc) {
1050 	struct mbuf *m, *mhead;
1051 	struct ifnet *ifp = &sc->jme_if;
1052 	uint32_t flags,  buflen;
1053 	int i, ipackets, nsegs, seg, error;
1054 	struct jme_desc *desc;
1055 
1056 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
1057 	    sizeof(struct jme_desc) * JME_NBUFS,
1058 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1059 #ifdef JMEDEBUG_RX
1060 	printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
1061 	    sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
1062 #endif
1063 	ipackets = 0;
1064 	while((le32toh(sc->jme_rxring[ sc->jme_rx_cons].flags) & JME_RD_OWN)
1065 	    == 0) {
1066 		i = sc->jme_rx_cons;
1067 		desc = &sc->jme_rxring[i];
1068 #ifdef JMEDEBUG_RX
1069 		printf("rxintr i %d flags 0x%x buflen 0x%x\n",
1070 		    i,  le32toh(desc->flags), le32toh(desc->buflen));
1071 #endif
1072 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
1073 			break;
1074 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmbufm[i], 0,
1075 		    sc->jme_rxmbufm[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
1076 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
1077 
1078 		buflen = le32toh(desc->buflen);
1079 		nsegs = JME_RX_NSEGS(buflen);
1080 		flags = le32toh(desc->flags);
1081 		if ((buflen & JME_RX_ERR_STAT) != 0 ||
1082 		    JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
1083 		    JME_RX_BYTES(buflen) >
1084 		    (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
1085 #ifdef JMEDEBUG_RX
1086 			printf("rx error flags 0x%x buflen 0x%x\n",
1087 			    flags, buflen);
1088 #endif
1089 			ifp->if_ierrors++;
1090 			/* reuse the mbufs */
1091 			for (seg = 0; seg < nsegs; seg++) {
1092 				m = sc->jme_rxmbuf[i];
1093 				sc->jme_rxmbuf[i] = NULL;
1094 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1095 					aprint_error_dev(sc->jme_dev,
1096 					    "can't reuse mbuf: %d\n", error);
1097 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1098 				i = sc->jme_rx_cons;
1099 			}
1100 			continue;
1101 		}
1102 		/* receive this packet */
1103 		mhead = m = sc->jme_rxmbuf[i];
1104 		sc->jme_rxmbuf[i] = NULL;
1105 		/* add a new buffer to chain */
1106 		if (jme_add_rxbuf(sc, NULL) == ENOBUFS) {
1107 			for (seg = 0; seg < nsegs; seg++) {
1108 				m = sc->jme_rxmbuf[i];
1109 				sc->jme_rxmbuf[i] = NULL;
1110 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1111 					aprint_error_dev(sc->jme_dev,
1112 					    "can't reuse mbuf: %d\n", error);
1113 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1114 				i = sc->jme_rx_cons;
1115 			}
1116 			ifp->if_ierrors++;
1117 			continue;
1118 		}
1119 
1120 		/* build mbuf chain: head, then remaining segments */
1121 		m->m_pkthdr.rcvif = ifp;
1122 		m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
1123 		m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
1124 		    m->m_pkthdr.len;
1125 		m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
1126 		JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1127 		for (seg = 1; seg < nsegs; seg++) {
1128 			i = sc->jme_rx_cons;
1129 			m = sc->jme_rxmbuf[i];
1130 			sc->jme_rxmbuf[i] = NULL;
1131 			(void)jme_add_rxbuf(sc, NULL);
1132 			m->m_flags &= ~M_PKTHDR;
1133 			m_cat(mhead, m);
1134 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1135 		}
1136 		/* and adjust last mbuf's size */
1137 		if (nsegs > 1) {
1138 			m->m_len =
1139 			    JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
1140 		}
1141 		ifp->if_ipackets++;
1142 		ipackets++;
1143 #if NBPFILTER > 0
1144 		if (ifp->if_bpf)
1145 			bpf_mtap(ifp->if_bpf, mhead);
1146 #endif /* NBPFILTER > 0 */
1147 
1148 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
1149 		    (flags & JME_RD_IPV4)) {
1150 			mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1151 			if (!(flags & JME_RD_IPCSUM))
1152 				mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1153 		}
1154 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
1155 		    (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
1156 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1157 			if (!(flags & JME_RD_TCPCSUM))
1158 				mhead->m_pkthdr.csum_flags |=
1159 				    M_CSUM_TCP_UDP_BAD;
1160 		}
1161 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
1162 		    (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
1163 			mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1164 			if (!(flags & JME_RD_UDPCSUM))
1165 				mhead->m_pkthdr.csum_flags |=
1166 				    M_CSUM_TCP_UDP_BAD;
1167 		}
1168 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
1169 		    (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
1170 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
1171 			if (!(flags & JME_RD_TCPCSUM))
1172 				mhead->m_pkthdr.csum_flags |=
1173 				    M_CSUM_TCP_UDP_BAD;
1174 		}
1175 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
1176 		    (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
1177 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
1178 			if (!(flags & JME_RD_UDPCSUM))
1179 				mhead->m_pkthdr.csum_flags |=
1180 				    M_CSUM_TCP_UDP_BAD;
1181 		}
1182 		if (flags & JME_RD_VLAN_TAG) {
1183 			/* pass to vlan_input() */
1184 			VLAN_INPUT_TAG(ifp, mhead,
1185 			    (flags & JME_RD_VLAN_MASK), continue);
1186 		}
1187 		(*ifp->if_input)(ifp, mhead);
1188 	}
1189 #if NRND > 0
1190 	if (ipackets && RND_ENABLED(&sc->rnd_source))
1191 		rnd_add_uint32(&sc->rnd_source, ipackets);
1192 #endif /* NRND > 0 */
1193 
1194 }
1195 
1196 static int
1197 jme_intr(void *v)
1198 {
1199 	jme_softc_t *sc = v;
1200 	uint32_t istatus;
1201 
1202 again:
1203 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1204 	     JME_INTR_STATUS);
1205 
1206 	if ((istatus & JME_INTRS_CHECK) == 0 || istatus == 0xFFFFFFFF)
1207 		goto done;
1208 	/* Reset PCC counter/timer and Ack interrupts. */
1209 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1210 		istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1211 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1212 		istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1213 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1214 	     JME_INTR_STATUS, istatus);
1215 
1216 	if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
1217 		goto done;
1218 #ifdef JMEDEBUG_RX
1219 	printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
1220 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
1221 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
1222 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
1223 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
1224 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
1225 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
1226 	printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
1227 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
1228 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
1229 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
1230 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
1231 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
1232 #endif
1233 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1234 		jme_intr_rx(sc);
1235 	if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
1236 		/*
1237 		 * Notify hardware availability of new Rx
1238 		 * buffers.
1239 		 * Reading RXCSR takes very long time under
1240 		 * heavy load so cache RXCSR value and writes
1241 		 * the ORed value with the kick command to
1242 		 * the RXCSR. This saves one register access
1243 		 * cycle.
1244 		 */
1245 		sc->jme_rx_cons = 0;
1246 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1247 		    JME_RXCSR,
1248 		    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
1249 	}
1250 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1251 		jme_ifstart(&sc->jme_if);
1252 
1253 	goto again;
1254 
1255 done:
1256 	return 1;
1257 }
1258 
1259 
1260 static int
1261 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1262 {
1263 	struct jme_softc *sc = ifp->if_softc;
1264 	int s, error;
1265 	struct ifreq *ifr;
1266 	struct ifcapreq *ifcr;
1267 
1268 	s = splnet();
1269 	/*
1270 	 * we can't support at the same time jumbo frames and
1271 	 * TX checksums offload/TSO
1272 	 */
1273 	switch(cmd) {
1274 	case SIOCSIFMTU:
1275 		ifr = data;
1276 		if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
1277 		    (ifp->if_capenable & (
1278 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1279 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1280 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1281 			splx(s);
1282 			return EINVAL;
1283 		}
1284 		break;
1285 	case SIOCSIFCAP:
1286 		ifcr = data;
1287 		if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
1288 		    (ifcr->ifcr_capenable & (
1289 		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1290 		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1291 		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1292 			splx(s);
1293 			return EINVAL;
1294 		}
1295 		break;
1296 	}
1297 
1298 	error = ether_ioctl(ifp, cmd, data);
1299 	if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
1300 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1301 			jme_set_filter(sc);
1302 			error = 0;
1303 		} else {
1304 			error = jme_init(ifp, 0);
1305 		}
1306 	}
1307 	splx(s);
1308 	return error;
1309 }
1310 
1311 static int
1312 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1313 {
1314 	struct jme_desc *txd;
1315 	struct jme_desc *desc;
1316 	struct mbuf *m;
1317 	struct m_tag *mtag;
1318 	int error, i, prod, headdsc, nsegs;
1319 	uint32_t cflags, tso_segsz;
1320 
1321 	if (((*m_head)->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0){
1322 		/*
1323 		 * Due to the adherence to NDIS specification JMC250
1324 		 * assumes upper stack computed TCP pseudo checksum
1325 		 * without including payload length. This breaks
1326 		 * checksum offload for TSO case so recompute TCP
1327 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1328 		 * be much burden on modern CPUs.
1329 		 */
1330 		bool v4 = ((*m_head)->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1331 		int iphl = v4 ?
1332 		    M_CSUM_DATA_IPv4_IPHL((*m_head)->m_pkthdr.csum_data) :
1333 		    M_CSUM_DATA_IPv6_HL((*m_head)->m_pkthdr.csum_data);
1334 		/*
1335 		 * note: we support vlan offloading, so we should never have
1336 		 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
1337 		 * right.
1338 		 */
1339 		int hlen = ETHER_HDR_LEN + iphl;
1340 
1341 		if (__predict_false((*m_head)->m_len <
1342 		    (hlen + sizeof(struct tcphdr)))) {
1343 			   /*
1344 			    * TCP/IP headers are not in the first mbuf; we need
1345 			    * to do this the slow and painful way.  Let's just
1346 			    * hope this doesn't happen very often.
1347 			    */
1348 			   struct tcphdr th;
1349 
1350 			   m_copydata((*m_head), hlen, sizeof(th), &th);
1351 			   if (v4) {
1352 				    struct ip ip;
1353 
1354 				    m_copydata((*m_head), ETHER_HDR_LEN,
1355 				    sizeof(ip), &ip);
1356 				    ip.ip_len = 0;
1357 				    m_copyback((*m_head),
1358 					 ETHER_HDR_LEN + offsetof(struct ip, ip_len),
1359 					 sizeof(ip.ip_len), &ip.ip_len);
1360 				    th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1361 					 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1362 			   } else {
1363 #if INET6
1364 				    struct ip6_hdr ip6;
1365 
1366 				    m_copydata((*m_head), ETHER_HDR_LEN,
1367 				    sizeof(ip6), &ip6);
1368 				    ip6.ip6_plen = 0;
1369 				    m_copyback((*m_head), ETHER_HDR_LEN +
1370 				    offsetof(struct ip6_hdr, ip6_plen),
1371 					 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1372 				    th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1373 					 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1374 #endif /* INET6 */
1375 			   }
1376 			   m_copyback((*m_head),
1377 			    hlen + offsetof(struct tcphdr, th_sum),
1378 				sizeof(th.th_sum), &th.th_sum);
1379 
1380 			   hlen += th.th_off << 2;
1381 		} else {
1382 			   /*
1383 			    * TCP/IP headers are in the first mbuf; we can do
1384 			    * this the easy way.
1385 			    */
1386 			   struct tcphdr *th;
1387 
1388 			   if (v4) {
1389 				    struct ip *ip =
1390 					 (void *)(mtod((*m_head), char *) +
1391 					ETHER_HDR_LEN);
1392 				    th = (void *)(mtod((*m_head), char *) + hlen);
1393 
1394 				    ip->ip_len = 0;
1395 				    th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1396 					 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1397 			   } else {
1398 #if INET6
1399 				    struct ip6_hdr *ip6 =
1400 				    (void *)(mtod((*m_head), char *) +
1401 				    ETHER_HDR_LEN);
1402 				    th = (void *)(mtod((*m_head), char *) + hlen);
1403 
1404 				    ip6->ip6_plen = 0;
1405 				    th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1406 					 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1407 #endif /* INET6 */
1408 			   }
1409 			hlen += th->th_off << 2;
1410 		}
1411 
1412 	}
1413 
1414 	prod = sc->jme_tx_prod;
1415 	txd = &sc->jme_txring[prod];
1416 
1417 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
1418 	    *m_head, BUS_DMA_WRITE);
1419 	if (error) {
1420 		if (error == EFBIG) {
1421 			log(LOG_ERR, "%s: Tx packet consumes too many "
1422 			    "DMA segments, dropping...\n",
1423 			    device_xname(sc->jme_dev));
1424 			m_freem(*m_head);
1425 			m_head = NULL;
1426 		}
1427 		return (error);
1428 	}
1429 	/*
1430 	 * Check descriptor overrun. Leave one free descriptor.
1431 	 * Since we always use 64bit address mode for transmitting,
1432 	 * each Tx request requires one more dummy descriptor.
1433 	 */
1434 	nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
1435 #ifdef JMEDEBUG_TX
1436 	printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
1437 #endif
1438 	if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
1439 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
1440 		return (ENOBUFS);
1441 	}
1442 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
1443 	    0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1444 
1445 	m = *m_head;
1446 	cflags = 0;
1447 	tso_segsz = 0;
1448 	/* Configure checksum offload and TSO. */
1449 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0) {
1450 		tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
1451 		cflags |= JME_TD_TSO;
1452 	} else {
1453 		if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
1454 			cflags |= JME_TD_IPCSUM;
1455 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_TCPv6)) != 0)
1456 			cflags |= JME_TD_TCPCSUM;
1457 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4|M_CSUM_UDPv6)) != 0)
1458 			cflags |= JME_TD_UDPCSUM;
1459 	}
1460 	/* Configure VLAN. */
1461 	if ((mtag = VLAN_OUTPUT_TAG(&sc->jme_ec, m)) != NULL) {
1462 		cflags |= (VLAN_TAG_VALUE(mtag) & JME_TD_VLAN_MASK);
1463 		cflags |= JME_TD_VLAN_TAG;
1464 	}
1465 
1466 	desc = &sc->jme_txring[prod];
1467 	desc->flags = htole32(cflags);
1468 	desc->buflen = htole32(tso_segsz);
1469 	desc->addr_hi = htole32(m->m_pkthdr.len);
1470 	desc->addr_lo = 0;
1471 	headdsc = prod;
1472 	sc->jme_tx_cnt++;
1473 	JME_DESC_INC(prod, JME_NBUFS);
1474 	for (i = 0; i < nsegs; i++) {
1475 		desc = &sc->jme_txring[prod];
1476 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1477 		desc->buflen =
1478 		    htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
1479 		desc->addr_hi = htole32(
1480 		    JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1481 		desc->addr_lo = htole32(
1482 		    JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1483 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1484 		    prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
1485 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1486 		sc->jme_txmbuf[prod] = NULL;
1487 		sc->jme_tx_cnt++;
1488 		JME_DESC_INC(prod, JME_NBUFS);
1489 	}
1490 
1491 	/* Update producer index. */
1492 	sc->jme_tx_prod = prod;
1493 #ifdef JMEDEBUG_TX
1494 	printf("jme_encap prod now %d\n", sc->jme_tx_prod);
1495 #endif
1496 	/*
1497 	 * Finally request interrupt and give the first descriptor
1498 	 * owenership to hardware.
1499 	 */
1500 	desc = &sc->jme_txring[headdsc];
1501 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1502 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1503 	    headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
1504 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1505 
1506 	sc->jme_txmbuf[headdsc] = m;
1507 	return (0);
1508 }
1509 
1510 static void
1511 jme_txeof(struct jme_softc *sc)
1512 {
1513 	struct ifnet *ifp;
1514 	struct jme_desc *desc;
1515 	uint32_t status;
1516 	int cons, cons0, nsegs, seg;
1517 
1518 	ifp = &sc->jme_if;
1519 
1520 #ifdef JMEDEBUG_TX
1521 	printf("jme_txeof cons %d prod %d\n",
1522 	    sc->jme_tx_cons, sc->jme_tx_prod);
1523 	printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1524 	    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1525 	    "JME_TXTRHD 0x%x\n",
1526 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1527 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1528 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1529 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1530 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1531 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1532 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1533 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1534 	for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
1535 		desc = &sc->jme_txring[cons];
1536 		printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
1537 		    desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
1538 		JME_DESC_INC(cons, JME_NBUFS);
1539 	}
1540 #endif
1541 
1542 	cons = sc->jme_tx_cons;
1543 	if (cons == sc->jme_tx_prod)
1544 		return;
1545 
1546 	/*
1547 	 * Go through our Tx list and free mbufs for those
1548 	 * frames which have been transmitted.
1549 	 */
1550 	for (; cons != sc->jme_tx_prod;) {
1551 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1552 		    cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
1553 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1554 
1555 		desc = &sc->jme_txring[cons];
1556 		status = le32toh(desc->flags);
1557 #ifdef JMEDEBUG_TX
1558 		printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
1559 		    sc->jme_txmbufm[cons]->dm_nsegs);
1560 #endif
1561 		if (status & JME_TD_OWN)
1562 			break;
1563 
1564 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
1565 			ifp->if_oerrors++;
1566 		else {
1567 			ifp->if_opackets++;
1568 			if ((status & JME_TD_COLLISION) != 0)
1569 				ifp->if_collisions +=
1570 				    le32toh(desc->buflen) &
1571 				    JME_TD_BUF_LEN_MASK;
1572 		}
1573 		/*
1574 		 * Only the first descriptor of multi-descriptor
1575 		 * transmission is updated so driver have to skip entire
1576 		 * chained buffers for the transmiited frame. In other
1577 		 * words, JME_TD_OWN bit is valid only at the first
1578 		 * descriptor of a multi-descriptor transmission.
1579 		 */
1580 		nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
1581 		cons0 = cons;
1582 		JME_DESC_INC(cons, JME_NBUFS);
1583 		for (seg = 1; seg < nsegs + 1; seg++) {
1584 			bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1585 			    cons * sizeof(struct jme_desc),
1586 			    sizeof(struct jme_desc),
1587 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1588 			sc->jme_txring[cons].flags = 0;
1589 			JME_DESC_INC(cons, JME_NBUFS);
1590 		}
1591 		/* Reclaim transferred mbufs. */
1592 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
1593 		    0, sc->jme_txmbufm[cons0]->dm_mapsize,
1594 		    BUS_DMASYNC_POSTWRITE);
1595 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);
1596 
1597 		KASSERT(sc->jme_txmbuf[cons0] != NULL);
1598 		m_freem(sc->jme_txmbuf[cons0]);
1599 		sc->jme_txmbuf[cons0] = NULL;
1600 		sc->jme_tx_cnt -= nsegs + 1;
1601 		KASSERT(sc->jme_tx_cnt >= 0);
1602 		sc->jme_if.if_flags &= ~IFF_OACTIVE;
1603 	}
1604 	sc->jme_tx_cons = cons;
1605 	/* Unarm watchog timer when there is no pending descriptors in queue. */
1606 	if (sc->jme_tx_cnt == 0)
1607 		ifp->if_timer = 0;
1608 #ifdef JMEDEBUG_TX
1609 	printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
1610 #endif
1611 }
1612 
1613 static void
1614 jme_ifstart(struct ifnet *ifp)
1615 {
1616 	jme_softc_t *sc = ifp->if_softc;
1617 	struct mbuf *mb_head;
1618 	int enq;
1619 
1620 	/*
1621 	 * check if we can free some desc.
1622 	 * Clear TX interrupt status to reset TX coalescing counters.
1623 	 */
1624 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1625 	     JME_INTR_STATUS, INTR_TXQ_COMP);
1626 	jme_txeof(sc);
1627 
1628 	if ((sc->jme_if.if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1629 		return;
1630 	for (enq = 0;; enq++) {
1631 nexttx:
1632 		/* Grab a paquet for output */
1633 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1634 		if (mb_head == NULL) {
1635 #ifdef JMEDEBUG_TX
1636 			printf("%s: nothing to send\n", __func__);
1637 #endif
1638 			break;
1639 		}
1640 		/* try to add this mbuf to the TX ring */
1641 		if (jme_encap(sc, &mb_head)) {
1642 			if (mb_head == NULL) {
1643 				ifp->if_oerrors++;
1644 				/* packet dropped, try next one */
1645 				goto nexttx;
1646 			}
1647 			/* resource shortage, try again later */
1648 			IF_PREPEND(&ifp->if_snd, mb_head);
1649 			ifp->if_flags |= IFF_OACTIVE;
1650 			break;
1651 		}
1652 #if NBPFILTER > 0
1653 		/* Pass packet to bpf if there is a listener */
1654 		if (ifp->if_bpf)
1655 			bpf_mtap(ifp->if_bpf, mb_head);
1656 #endif
1657 	}
1658 #ifdef JMEDEBUG_TX
1659 	printf("jme_ifstart enq %d\n", enq);
1660 #endif
1661 	if (enq) {
1662 		/*
1663 		 * Set a 5 second timer just in case we don't hear from
1664 		 * the card again.
1665 		 */
1666 		ifp->if_timer = 5;
1667 		/*
1668 		 * Reading TXCSR takes very long time under heavy load
1669 		 * so cache TXCSR value and writes the ORed value with
1670 		 * the kick command to the TXCSR. This saves one register
1671 		 * access cycle.
1672 		 */
1673 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
1674 		  sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1675 #ifdef JMEDEBUG_TX
1676 		printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1677 		    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1678 		    "JME_TXTRHD 0x%x\n",
1679 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1680 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1681 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1682 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1683 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1684 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1685 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1686 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1687 #endif
1688 	}
1689 }
1690 
1691 static void
1692 jme_ifwatchdog(struct ifnet *ifp)
1693 {
1694 	jme_softc_t *sc = ifp->if_softc;
1695 
1696 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1697 		return;
1698 	printf("%s: device timeout\n", device_xname(sc->jme_dev));
1699 	ifp->if_oerrors++;
1700 	jme_init(ifp, 0);
1701 }
1702 
1703 static int
1704 jme_mediachange(struct ifnet *ifp)
1705 {
1706 	int error;
1707 	jme_softc_t *sc = ifp->if_softc;
1708 
1709 	if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
1710 		error = 0;
1711 	else if (error != 0) {
1712 		aprint_error_dev(sc->jme_dev, "could not set media\n");
1713 		return error;
1714 	}
1715 	return 0;
1716 }
1717 
1718 static void
1719 jme_ticks(void *v)
1720 {
1721 	jme_softc_t *sc = v;
1722 	int s = splnet();
1723 
1724 	/* Tick the MII. */
1725 	mii_tick(&sc->jme_mii);
1726 
1727 	/* every seconds */
1728 	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
1729 	splx(s);
1730 }
1731 
1732 static void
1733 jme_mac_config(jme_softc_t *sc)
1734 {
1735 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1736 	struct mii_data *mii = &sc->jme_mii;
1737 
1738 	ghc = 0;
1739 	rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1740 	rxmac &= ~RXMAC_FC_ENB;
1741 	txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
1742 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1743 	txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
1744 	txpause &= ~TXPFC_PAUSE_ENB;
1745 
1746 	if (mii->mii_media_active & IFM_FDX) {
1747 		ghc |= GHC_FULL_DUPLEX;
1748 		rxmac &= ~RXMAC_COLL_DET_ENB;
1749 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1750 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1751 		    TXMAC_FRAME_BURST);
1752 		/* Disable retry transmit timer/retry limit. */
1753 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1754 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
1755 		    & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1756 	} else {
1757 		rxmac |= RXMAC_COLL_DET_ENB;
1758 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1759 		/* Enable retry transmit timer/retry limit. */
1760 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1761 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)		    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1762 	}
1763 	/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1764 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1765 	case IFM_10_T:
1766 		ghc |= GHC_SPEED_10;
1767 		break;
1768 	case IFM_100_TX:
1769 		ghc |= GHC_SPEED_100;
1770 		break;
1771 	case IFM_1000_T:
1772 		ghc |= GHC_SPEED_1000;
1773 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1774 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1775 		break;
1776 	default:
1777 		break;
1778 	}
1779 	if ((sc->jme_flags & JME_FLAG_GIGA) &&
1780 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
1781 		/*
1782 		 * Workaround occasional packet loss issue of JMC250 A2
1783 		 * when it runs on half-duplex media.
1784 		 */
1785 #ifdef JMEDEBUG
1786 		printf("JME250 A2 workaround\n");
1787 #endif
1788 		gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1789 		    JME_GPREG1);
1790 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1791 			gpreg &= ~GPREG1_HDPX_FIX;
1792 		else
1793 			gpreg |= GPREG1_HDPX_FIX;
1794 		bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1795 		    JME_GPREG1, gpreg);
1796 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
1797 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
1798 			/* Extend interface FIFO depth. */
1799 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1800 			    0x1B, 0x0000);
1801 		} else {
1802 			/* Select default interface FIFO depth. */
1803 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1804 			    0x1B, 0x0004);
1805 		}
1806 	}
1807 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
1808 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
1809 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
1810 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
1811 }
1812 
1813 static void
1814 jme_set_filter(jme_softc_t *sc)
1815 {
1816 	struct ifnet *ifp = &sc->jme_if;
1817 	struct ether_multistep step;
1818 	struct ether_multi *enm;
1819 	uint32_t hash[2] = {0, 0};
1820 	int i;
1821 	uint32_t rxcfg;
1822 
1823 	rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1824 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
1825 	    RXMAC_ALLMULTI);
1826 	/* Always accept frames destined to our station address. */
1827 	rxcfg |= RXMAC_UNICAST;
1828 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1829 		rxcfg |= RXMAC_BROADCAST;
1830 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1831 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1832 			rxcfg |= RXMAC_PROMISC;
1833 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1834 			rxcfg |= RXMAC_ALLMULTI;
1835 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1836 		     JME_MAR0, 0xFFFFFFFF);
1837 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1838 		     JME_MAR1, 0xFFFFFFFF);
1839 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1840 		     JME_RXMAC, rxcfg);
1841 		return;
1842 	}
1843 	/*
1844 	 * Set up the multicast address filter by passing all multicast
1845 	 * addresses through a CRC generator, and then using the low-order
1846 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1847 	 * high order bits select the register, while the rest of the bits
1848 	 * select the bit within the register.
1849 	 */
1850 	rxcfg |= RXMAC_MULTICAST;
1851 	bzero(hash, sizeof(hash));
1852 
1853 	ETHER_FIRST_MULTI(step, &sc->jme_ec, enm);
1854 	while (enm != NULL) {
1855 #ifdef JEMDBUG
1856 		printf("%s: addrs %s %s\n", __func__,
1857 		   ether_sprintf(enm->enm_addrlo),
1858 		   ether_sprintf(enm->enm_addrhi));
1859 #endif
1860 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
1861 			i = ether_crc32_be(enm->enm_addrlo, 6);
1862 			/* Just want the 6 least significant bits. */
1863 			i &= 0x3f;
1864 			hash[i / 32] |= 1 << (i%32);
1865 		} else {
1866 			hash[0] = hash[1] = 0xffffffff;
1867 			sc->jme_if.if_flags |= IFF_ALLMULTI;
1868 			break;
1869 		}
1870 		ETHER_NEXT_MULTI(step, enm);
1871 	}
1872 #ifdef JMEDEBUG
1873 	printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
1874 #endif
1875 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
1876 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
1877 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
1878 }
1879 
1880 #if 0
1881 static int
1882 jme_multicast_hash(uint8_t *a)
1883 {
1884 	int hash;
1885 
1886 #define DA(addr,bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
1887 #define xor8(a,b,c,d,e,f,g,h)						\
1888 	(((a != 0) + (b != 0) + (c != 0) + (d != 0) + 			\
1889 	  (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
1890 
1891 	hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
1892 	    DA(a,36), DA(a,42));
1893 	hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
1894 	    DA(a,37), DA(a,43)) << 1;
1895 	hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
1896 	    DA(a,38), DA(a,44)) << 2;
1897 	hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
1898 	    DA(a,39), DA(a,45)) << 3;
1899 	hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
1900 	    DA(a,40), DA(a,46)) << 4;
1901 	hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
1902 	    DA(a,41), DA(a,47)) << 5;
1903 
1904 	return hash;
1905 }
1906 #endif
1907 
1908 static int
1909 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
1910 {
1911 	 uint32_t reg;
1912 	 int i;
1913 
1914 	 *val = 0;
1915 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1916 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1917 		      JME_SMBCSR);
1918 		  if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
1919 			   break;
1920 		  delay(10);
1921 	 }
1922 
1923 	 if (i == 0) {
1924 		  aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
1925 		  return (ETIMEDOUT);
1926 	 }
1927 
1928 	 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
1929 	 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
1930 	     JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
1931 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1932 		  delay(10);
1933 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1934 		      JME_SMBINTF);
1935 		  if ((reg & SMBINTF_CMD_TRIGGER) == 0)
1936 			   break;
1937 	 }
1938 
1939 	 if (i == 0) {
1940 		  aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
1941 		  return (ETIMEDOUT);
1942 	 }
1943 
1944 	 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
1945 	 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
1946 	 return (0);
1947 }
1948 
1949 
1950 static int
1951 jme_eeprom_macaddr(struct jme_softc *sc)
1952 {
1953 	uint8_t eaddr[ETHER_ADDR_LEN];
1954 	uint8_t fup, reg, val;
1955 	uint32_t offset;
1956 	int match;
1957 
1958 	offset = 0;
1959 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1960 	    fup != JME_EEPROM_SIG0)
1961 		return (ENOENT);
1962 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1963 	    fup != JME_EEPROM_SIG1)
1964 		return (ENOENT);
1965 	match = 0;
1966 	do {
1967 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
1968 			break;
1969 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
1970 		    == (fup & (JME_EEPROM_FUNC_MASK|JME_EEPROM_PAGE_MASK))) {
1971 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
1972 				break;
1973 			if (reg >= JME_PAR0 &&
1974 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
1975 				if (jme_eeprom_read_byte(sc, offset + 2,
1976 				    &val) != 0)
1977 					break;
1978 				eaddr[reg - JME_PAR0] = val;
1979 				match++;
1980 			}
1981 		}
1982 		if (fup & JME_EEPROM_DESC_END)
1983 			break;
1984 
1985 		/* Try next eeprom descriptor. */
1986 		offset += JME_EEPROM_DESC_BYTES;
1987 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
1988 
1989 	if (match == ETHER_ADDR_LEN) {
1990 		bcopy(eaddr, sc->jme_enaddr, ETHER_ADDR_LEN);
1991 		return (0);
1992 	}
1993 
1994 	return (ENOENT);
1995 }
1996 
1997 /*
1998  * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
1999  * set up in jme_pci_attach()
2000  */
2001 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
2002 {
2003 	int rc;
2004 	const struct sysctlnode *node;
2005 
2006 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2007 	    0, CTLTYPE_NODE, "hw", NULL,
2008 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2009 		goto err;
2010 	}
2011 
2012 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2013 	    0, CTLTYPE_NODE, "jme",
2014 	    SYSCTL_DESCR("jme interface controls"),
2015 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2016 		goto err;
2017 	}
2018 
2019 	jme_root_num = node->sysctl_num;
2020 	return;
2021 
2022 err:
2023 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2024 }
2025 
2026 static int
2027 jme_sysctl_intrxto(SYSCTLFN_ARGS)
2028 {
2029 	int error, t;
2030 	struct sysctlnode node;
2031 	struct jme_softc *sc;
2032 	uint32_t reg;
2033 
2034 	node = *rnode;
2035 	sc = node.sysctl_data;
2036 	t = sc->jme_intrxto;
2037 	node.sysctl_data = &t;
2038 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2039 	if (error || newp == NULL)
2040 		return error;
2041 
2042 	if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
2043 		return EINVAL;
2044 
2045 	/*
2046 	 * update the softc with sysctl-changed value, and mark
2047 	 * for hardware update
2048 	 */
2049 	sc->jme_intrxto = t;
2050 	/* Configure Rx queue 0 packet completion coalescing. */
2051 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2052 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2053 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2054 	return 0;
2055 }
2056 
2057 static int
2058 jme_sysctl_intrxct(SYSCTLFN_ARGS)
2059 {
2060 	int error, t;
2061 	struct sysctlnode node;
2062 	struct jme_softc *sc;
2063 	uint32_t reg;
2064 
2065 	node = *rnode;
2066 	sc = node.sysctl_data;
2067 	t = sc->jme_intrxct;
2068 	node.sysctl_data = &t;
2069 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2070 	if (error || newp == NULL)
2071 		return error;
2072 
2073 	if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
2074 		return EINVAL;
2075 
2076 	/*
2077 	 * update the softc with sysctl-changed value, and mark
2078 	 * for hardware update
2079 	 */
2080 	sc->jme_intrxct = t;
2081 	/* Configure Rx queue 0 packet completion coalescing. */
2082 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2083 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2084 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2085 	return 0;
2086 }
2087 
2088 static int
2089 jme_sysctl_inttxto(SYSCTLFN_ARGS)
2090 {
2091 	int error, t;
2092 	struct sysctlnode node;
2093 	struct jme_softc *sc;
2094 	uint32_t reg;
2095 
2096 	node = *rnode;
2097 	sc = node.sysctl_data;
2098 	t = sc->jme_inttxto;
2099 	node.sysctl_data = &t;
2100 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2101 	if (error || newp == NULL)
2102 		return error;
2103 
2104 	if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
2105 		return EINVAL;
2106 
2107 	/*
2108 	 * update the softc with sysctl-changed value, and mark
2109 	 * for hardware update
2110 	 */
2111 	sc->jme_inttxto = t;
2112 	/* Configure Tx queue 0 packet completion coalescing. */
2113 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2114 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2115 	reg |= PCCTX_COAL_TXQ0;
2116 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2117 	return 0;
2118 }
2119 
2120 static int
2121 jme_sysctl_inttxct(SYSCTLFN_ARGS)
2122 {
2123 	int error, t;
2124 	struct sysctlnode node;
2125 	struct jme_softc *sc;
2126 	uint32_t reg;
2127 
2128 	node = *rnode;
2129 	sc = node.sysctl_data;
2130 	t = sc->jme_inttxct;
2131 	node.sysctl_data = &t;
2132 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2133 	if (error || newp == NULL)
2134 		return error;
2135 
2136 	if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
2137 		return EINVAL;
2138 
2139 	/*
2140 	 * update the softc with sysctl-changed value, and mark
2141 	 * for hardware update
2142 	 */
2143 	sc->jme_inttxct = t;
2144 	/* Configure Tx queue 0 packet completion coalescing. */
2145 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2146 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2147 	reg |= PCCTX_COAL_TXQ0;
2148 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2149 	return 0;
2150 }
2151