xref: /netbsd-src/sys/dev/pci/if_jme.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: if_jme.c,v 1.49 2020/02/08 07:20:41 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 
54 
55 /*
56  * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
57  * Ethernet Controllers.
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.49 2020/02/08 07:20:41 maxv Exp $");
62 
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/mbuf.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/ioctl.h>
70 #include <sys/errno.h>
71 #include <sys/malloc.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>	/* only for declaration of wakeup() used by vm.h */
74 #include <sys/device.h>
75 #include <sys/syslog.h>
76 #include <sys/sysctl.h>
77 
78 #include <net/if.h>
79 #include <net/if_media.h>
80 #include <net/if_types.h>
81 #include <net/if_dl.h>
82 #include <net/route.h>
83 #include <net/netisr.h>
84 #include <net/bpf.h>
85 
86 #include <sys/rndsource.h>
87 
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #endif
95 
96 #include <netinet/tcp.h>
97 
98 #include <net/if_ether.h>
99 #if defined(INET)
100 #include <netinet/if_inarp.h>
101 #endif
102 
103 #include <sys/bus.h>
104 #include <sys/intr.h>
105 
106 #include <dev/pci/pcireg.h>
107 #include <dev/pci/pcivar.h>
108 #include <dev/pci/pcidevs.h>
109 #include <dev/pci/if_jmereg.h>
110 
111 #include <dev/mii/mii.h>
112 #include <dev/mii/miivar.h>
113 
114 struct jme_product_desc {
115 	uint32_t jme_product;
116 	const char *jme_desc;
117 };
118 
119 /* number of entries in transmit and receive rings */
120 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))
121 
122 #define JME_DESC_INC(x, y)	((x) = ((x) + 1) % (y))
123 
124 /* Water mark to kick reclaiming Tx buffers. */
125 #define JME_TX_DESC_HIWAT	(JME_NBUFS - (((JME_NBUFS) * 3) / 10))
126 
127 
128 struct jme_softc {
129 	device_t jme_dev;		/* base device */
130 	bus_space_tag_t jme_bt_mac;
131 	bus_space_handle_t jme_bh_mac;	/* Mac registers */
132 	bus_space_tag_t jme_bt_phy;
133 	bus_space_handle_t jme_bh_phy;	/* PHY registers */
134 	bus_space_tag_t jme_bt_misc;
135 	bus_space_handle_t jme_bh_misc; /* Misc registers */
136 	bus_dma_tag_t jme_dmatag;
137 	bus_dma_segment_t jme_txseg;	/* transmit ring seg */
138 	bus_dmamap_t jme_txmap;		/* transmit ring DMA map */
139 	struct jme_desc* jme_txring;	/* transmit ring */
140 	bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
141 	struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
142 	int jme_tx_cons;		/* transmit ring consumer */
143 	int jme_tx_prod;		/* transmit ring producer */
144 	int jme_tx_cnt;			/* transmit ring active count */
145 	bus_dma_segment_t jme_rxseg;	/* receive ring seg */
146 	bus_dmamap_t jme_rxmap;		/* receive ring DMA map */
147 	struct jme_desc* jme_rxring;	/* receive ring */
148 	bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
149 	struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
150 	int jme_rx_cons;		/* receive ring consumer */
151 	int jme_rx_prod;		/* receive ring producer */
152 	void* jme_ih;			/* our interrupt */
153 	struct ethercom jme_ec;
154 	struct callout jme_tick_ch;	/* tick callout */
155 	uint8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
156 	uint8_t jme_phyaddr;		/* address of integrated phy */
157 	uint8_t jme_chip_rev;		/* chip revision */
158 	uint8_t jme_rev;		/* PCI revision */
159 	mii_data_t jme_mii;		/* mii bus */
160 	uint32_t jme_flags;		/* device features, see below */
161 	uint32_t jme_txcsr;		/* TX config register */
162 	uint32_t jme_rxcsr;		/* RX config register */
163 	krndsource_t rnd_source;
164 	/* interrupt coalition parameters */
165 	struct sysctllog *jme_clog;
166 	int jme_intrxto;		/* interrupt RX timeout */
167 	int jme_intrxct;		/* interrupt RX packets counter */
168 	int jme_inttxto;		/* interrupt TX timeout */
169 	int jme_inttxct;		/* interrupt TX packets counter */
170 };
171 
172 #define JME_FLAG_FPGA	0x0001 /* FPGA version */
173 #define JME_FLAG_GIGA	0x0002 /* giga Ethernet capable */
174 
175 
176 #define jme_if	jme_ec.ec_if
177 #define jme_bpf	jme_if.if_bpf
178 
179 typedef struct jme_softc jme_softc_t;
180 typedef u_long ioctl_cmd_t;
181 
182 static int jme_pci_match(device_t, cfdata_t, void *);
183 static void jme_pci_attach(device_t, device_t, void *);
184 static void jme_intr_rx(jme_softc_t *);
185 static int jme_intr(void *);
186 
187 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
188 static int jme_mediachange(struct ifnet *);
189 static void jme_ifwatchdog(struct ifnet *);
190 static bool jme_shutdown(device_t, int);
191 
192 static void jme_txeof(struct jme_softc *);
193 static void jme_ifstart(struct ifnet *);
194 static void jme_reset(jme_softc_t *);
195 static int  jme_ifinit(struct ifnet *);
196 static int  jme_init(struct ifnet *, int);
197 static void jme_stop(struct ifnet *, int);
198 // static void jme_restart(void *);
199 static void jme_ticks(void *);
200 static void jme_mac_config(jme_softc_t *);
201 static void jme_set_filter(jme_softc_t *);
202 
203 static int jme_mii_read(device_t, int, int, uint16_t *);
204 static int jme_mii_write(device_t, int, int, uint16_t);
205 static void jme_statchg(struct ifnet *);
206 
207 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
208 static int jme_eeprom_macaddr(struct jme_softc *);
209 static int jme_reg_macaddr(struct jme_softc *);
210 
211 #define JME_TIMEOUT		1000
212 #define JME_PHY_TIMEOUT		1000
213 #define JME_EEPROM_TIMEOUT	1000
214 
215 static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
216 static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
217 static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
218 static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
219 static int jme_root_num;
220 
221 
222 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
223     jme_pci_match, jme_pci_attach, NULL, NULL);
224 
225 static const struct jme_product_desc jme_products[] = {
226 	{ PCI_PRODUCT_JMICRON_JMC250,
227 	  "JMicron JMC250 Gigabit Ethernet Controller" },
228 	{ PCI_PRODUCT_JMICRON_JMC260,
229 	  "JMicron JMC260 Gigabit Ethernet Controller" },
230 	{ 0, NULL },
231 };
232 
233 static const struct jme_product_desc *jme_lookup_product(uint32_t);
234 
235 static const struct jme_product_desc *
236 jme_lookup_product(uint32_t id)
237 {
238 	const struct jme_product_desc *jp;
239 
240 	for (jp = jme_products ; jp->jme_desc != NULL; jp++)
241 		if (PCI_PRODUCT(id) == jp->jme_product)
242 			return jp;
243 
244 	return NULL;
245 }
246 
247 static int
248 jme_pci_match(device_t parent, cfdata_t cf, void *aux)
249 {
250 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
251 
252 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_JMICRON)
253 		return 0;
254 
255 	if (jme_lookup_product(pa->pa_id) != NULL)
256 		return 1;
257 
258 	return 0;
259 }
260 
261 static void
262 jme_pci_attach(device_t parent, device_t self, void *aux)
263 {
264 	jme_softc_t *sc = device_private(self);
265 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
266 	const struct jme_product_desc *jp;
267 	struct ifnet * const ifp = &sc->jme_if;
268 	struct mii_data * const mii = &sc->jme_mii;
269 	bus_space_tag_t iot1, iot2, memt;
270 	bus_space_handle_t ioh1, ioh2, memh;
271 	bus_size_t size, size2;
272 	pci_intr_handle_t intrhandle;
273 	const char *intrstr;
274 	pcireg_t csr;
275 	int nsegs, i;
276 	const struct sysctlnode *node;
277 	int jme_nodenum;
278 	char intrbuf[PCI_INTRSTR_LEN];
279 
280 	sc->jme_dev = self;
281 	aprint_normal("\n");
282 	callout_init(&sc->jme_tick_ch, 0);
283 	callout_setfunc(&sc->jme_tick_ch, jme_ticks, sc);
284 
285 	jp = jme_lookup_product(pa->pa_id);
286 	if (jp == NULL)
287 		panic("jme_pci_attach: impossible");
288 
289 	if (jp->jme_product == PCI_PRODUCT_JMICRON_JMC250)
290 		sc->jme_flags = JME_FLAG_GIGA;
291 
292 	/*
293 	 * Map the card space. Try Mem first.
294 	 */
295 	if (pci_mapreg_map(pa, JME_PCI_BAR0,
296 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
297 	    0, &memt, &memh, NULL, &size) == 0) {
298 		sc->jme_bt_mac = memt;
299 		sc->jme_bh_mac = memh;
300 		sc->jme_bt_phy = memt;
301 		if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
302 		    JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
303 			aprint_error_dev(self, "can't subregion PHY space\n");
304 			bus_space_unmap(memt, memh, size);
305 			return;
306 		}
307 		sc->jme_bt_misc = memt;
308 		if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
309 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
310 			aprint_error_dev(self, "can't subregion misc space\n");
311 			bus_space_unmap(memt, memh, size);
312 			return;
313 		}
314 	} else {
315 		if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
316 		    0, &iot1, &ioh1, NULL, &size) != 0) {
317 			aprint_error_dev(self, "can't map I/O space 1\n");
318 			return;
319 		}
320 		sc->jme_bt_mac = iot1;
321 		sc->jme_bh_mac = ioh1;
322 		if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
323 		    0, &iot2, &ioh2, NULL, &size2) != 0) {
324 			aprint_error_dev(self, "can't map I/O space 2\n");
325 			bus_space_unmap(iot1, ioh1, size);
326 			return;
327 		}
328 		sc->jme_bt_phy = iot2;
329 		sc->jme_bh_phy = ioh2;
330 		sc->jme_bt_misc = iot2;
331 		if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
332 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
333 			aprint_error_dev(self, "can't subregion misc space\n");
334 			bus_space_unmap(iot1, ioh1, size);
335 			bus_space_unmap(iot2, ioh2, size2);
336 			return;
337 		}
338 	}
339 
340 	if (pci_dma64_available(pa))
341 		sc->jme_dmatag = pa->pa_dmat64;
342 	else
343 		sc->jme_dmatag = pa->pa_dmat;
344 
345 	/* Enable the device. */
346 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
347 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
348 	    csr | PCI_COMMAND_MASTER_ENABLE);
349 
350 	aprint_normal_dev(self, "%s\n", jp->jme_desc);
351 
352 	sc->jme_rev = PCI_REVISION(pa->pa_class);
353 
354 	csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
355 	if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
356 	    CHIPMODE_NOT_FPGA)
357 		sc->jme_flags |= JME_FLAG_FPGA;
358 	sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
359 	aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
360 	    "0x%x", sc->jme_rev, sc->jme_chip_rev);
361 	if (sc->jme_flags & JME_FLAG_FPGA)
362 		aprint_verbose(" FPGA revision: 0x%x",
363 		    (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
364 	aprint_verbose("\n");
365 
366 	/*
367 	 * Save PHY address.
368 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
369 	 * requires PHY probing to get correct PHY address.
370 	 */
371 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
372 		sc->jme_phyaddr =
373 		    bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
374 				     JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
375 	} else
376 		sc->jme_phyaddr = 0;
377 
378 
379 	jme_reset(sc);
380 
381 	/* read mac addr */
382 	if (jme_eeprom_macaddr(sc) && jme_reg_macaddr(sc)) {
383 		aprint_error_dev(self, "error reading Ethernet address\n");
384 		/* return; */
385 	}
386 	aprint_normal_dev(self, "Ethernet address %s\n",
387 	    ether_sprintf(sc->jme_enaddr));
388 
389 	/* Map and establish interrupts */
390 	if (pci_intr_map(pa, &intrhandle)) {
391 		aprint_error_dev(self, "couldn't map interrupt\n");
392 		return;
393 	}
394 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf));
395 	sc->jme_if.if_softc = sc;
396 	sc->jme_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
397 	    jme_intr, sc, device_xname(self));
398 	if (sc->jme_ih == NULL) {
399 		aprint_error_dev(self, "couldn't establish interrupt");
400 		if (intrstr != NULL)
401 			aprint_error(" at %s", intrstr);
402 		aprint_error("\n");
403 		return;
404 	}
405 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
406 
407 	/* allocate and map DMA-safe memory for transmit ring */
408 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
409 	    &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
410 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
411 	    nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
412 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
413 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
414 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
415 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
416 	    PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
417 		aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
418 		return;
419 	}
420 	/* allocate and map DMA-safe memory for receive ring */
421 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
422 	      &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
423 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
424 	      nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
425 	      BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
426 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
427 	      BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
428 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
429 	      PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
430 		aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
431 		return;
432 	}
433 	for (i = 0; i < JME_NBUFS; i++) {
434 		sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
435 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
436 		    JME_NBUFS, JME_MAX_TX_LEN, 0,
437 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
438 		    &sc->jme_txmbufm[i]) != 0) {
439 			aprint_error_dev(self, "can't allocate DMA TX map\n");
440 			return;
441 		}
442 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
443 		    1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
444 		    &sc->jme_rxmbufm[i]) != 0) {
445 			aprint_error_dev(self, "can't allocate DMA RX map\n");
446 			return;
447 		}
448 	}
449 	/*
450 	 * Initialize our media structures and probe the MII.
451 	 *
452 	 * Note that we don't care about the media instance.  We
453 	 * are expecting to have multiple PHYs on the 10/100 cards,
454 	 * and on those cards we exclude the internal PHY from providing
455 	 * 10baseT.  By ignoring the instance, it allows us to not have
456 	 * to specify it on the command line when switching media.
457 	 */
458 	mii->mii_ifp = ifp;
459 	mii->mii_readreg = jme_mii_read;
460 	mii->mii_writereg = jme_mii_write;
461 	mii->mii_statchg = jme_statchg;
462 	sc->jme_ec.ec_mii = mii;
463 	ifmedia_init(&mii->mii_media, IFM_IMASK, jme_mediachange,
464 	    ether_mediastatus);
465 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
466 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
467 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
468 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
469 	} else
470 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
471 
472 	/*
473 	 * We can support 802.1Q VLAN-sized frames.
474 	 */
475 	sc->jme_ec.ec_capabilities |=
476 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
477 	sc->jme_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
478 
479 	if (sc->jme_flags & JME_FLAG_GIGA)
480 		sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
481 
482 
483 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
484 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
485 	ifp->if_ioctl = jme_ifioctl;
486 	ifp->if_start = jme_ifstart;
487 	ifp->if_watchdog = jme_ifwatchdog;
488 	ifp->if_init = jme_ifinit;
489 	ifp->if_stop = jme_stop;
490 	ifp->if_timer = 0;
491 	ifp->if_capabilities |=
492 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
493 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
494 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
495 	    IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
496 	    IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
497 	    IFCAP_TSOv4 | IFCAP_TSOv6;
498 	IFQ_SET_READY(&ifp->if_snd);
499 	if_attach(ifp);
500 	ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);
501 
502 	/*
503 	 * Add shutdown hook so that DMA is disabled prior to reboot.
504 	 */
505 	if (pmf_device_register1(self, NULL, NULL, jme_shutdown))
506 		pmf_class_network_register(self, ifp);
507 	else
508 		aprint_error_dev(self, "couldn't establish power handler\n");
509 
510 	rnd_attach_source(&sc->rnd_source, device_xname(self),
511 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
512 
513 	sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
514 	sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
515 	sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
516 	sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
517 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
518 	    0, CTLTYPE_NODE, device_xname(sc->jme_dev),
519 	    SYSCTL_DESCR("jme per-controller controls"),
520 	    NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
521 	    CTL_EOL) != 0) {
522 		aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
523 		return;
524 	}
525 	jme_nodenum = node->sysctl_num;
526 
527 	/* interrupt moderation sysctls */
528 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
529 	    CTLFLAG_READWRITE,
530 	    CTLTYPE_INT, "int_rxto",
531 	    SYSCTL_DESCR("jme RX interrupt moderation timer"),
532 	    jme_sysctl_intrxto, 0, (void *)sc,
533 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
534 	    CTL_EOL) != 0) {
535 		aprint_normal_dev(sc->jme_dev,
536 		    "couldn't create int_rxto sysctl node\n");
537 	}
538 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
539 	    CTLFLAG_READWRITE,
540 	    CTLTYPE_INT, "int_rxct",
541 	    SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
542 	    jme_sysctl_intrxct, 0, (void *)sc,
543 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
544 	    CTL_EOL) != 0) {
545 		aprint_normal_dev(sc->jme_dev,
546 		    "couldn't create int_rxct sysctl node\n");
547 	}
548 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
549 	    CTLFLAG_READWRITE,
550 	    CTLTYPE_INT, "int_txto",
551 	    SYSCTL_DESCR("jme TX interrupt moderation timer"),
552 	    jme_sysctl_inttxto, 0, (void *)sc,
553 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
554 	    CTL_EOL) != 0) {
555 		aprint_normal_dev(sc->jme_dev,
556 		    "couldn't create int_txto sysctl node\n");
557 	}
558 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
559 	    CTLFLAG_READWRITE,
560 	    CTLTYPE_INT, "int_txct",
561 	    SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
562 	    jme_sysctl_inttxct, 0, (void *)sc,
563 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
564 	    CTL_EOL) != 0) {
565 		aprint_normal_dev(sc->jme_dev,
566 		    "couldn't create int_txct sysctl node\n");
567 	}
568 }
569 
570 static void
571 jme_stop_rx(jme_softc_t *sc)
572 {
573 	uint32_t reg;
574 	int i;
575 
576 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
577 	if ((reg & RXCSR_RX_ENB) == 0)
578 		return;
579 	reg &= ~RXCSR_RX_ENB;
580 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
581 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
582 		DELAY(10);
583 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
584 		    JME_RXCSR) & RXCSR_RX_ENB) == 0)
585 			break;
586 	}
587 	if (i == 0)
588 		aprint_error_dev(sc->jme_dev, "stopping receiver timeout!\n");
589 
590 }
591 
592 static void
593 jme_stop_tx(jme_softc_t *sc)
594 {
595 	uint32_t reg;
596 	int i;
597 
598 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
599 	if ((reg & TXCSR_TX_ENB) == 0)
600 		return;
601 	reg &= ~TXCSR_TX_ENB;
602 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
603 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
604 		DELAY(10);
605 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
606 		    JME_TXCSR) & TXCSR_TX_ENB) == 0)
607 			break;
608 	}
609 	if (i == 0)
610 		aprint_error_dev(sc->jme_dev,
611 		    "stopping transmitter timeout!\n");
612 }
613 
614 static void
615 jme_reset(jme_softc_t *sc)
616 {
617 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
618 	DELAY(10);
619 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
620 }
621 
622 static bool
623 jme_shutdown(device_t self, int howto)
624 {
625 	jme_softc_t *sc;
626 	struct ifnet *ifp;
627 
628 	sc = device_private(self);
629 	ifp = &sc->jme_if;
630 	jme_stop(ifp, 1);
631 
632 	return true;
633 }
634 
635 static void
636 jme_stop(struct ifnet *ifp, int disable)
637 {
638 	jme_softc_t *sc = ifp->if_softc;
639 	int i;
640 	/* Stop receiver, transmitter. */
641 	jme_stop_rx(sc);
642 	jme_stop_tx(sc);
643 	/* free receive mbufs */
644 	for (i = 0; i < JME_NBUFS; i++) {
645 		if (sc->jme_rxmbuf[i]) {
646 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
647 			m_freem(sc->jme_rxmbuf[i]);
648 		}
649 		sc->jme_rxmbuf[i] = NULL;
650 	}
651 	/* process completed transmits */
652 	jme_txeof(sc);
653 	/* free abort pending transmits */
654 	for (i = 0; i < JME_NBUFS; i++) {
655 		if (sc->jme_txmbuf[i]) {
656 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
657 			m_freem(sc->jme_txmbuf[i]);
658 			sc->jme_txmbuf[i] = NULL;
659 		}
660 	}
661 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
662 	ifp->if_timer = 0;
663 }
664 
665 #if 0
666 static void
667 jme_restart(void *v)
668 {
669 
670 	jme_init(v);
671 }
672 #endif
673 
674 static int
675 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
676 {
677 	int error;
678 	bus_dmamap_t map;
679 	int i = sc->jme_rx_prod;
680 
681 	if (sc->jme_rxmbuf[i] != NULL) {
682 		aprint_error_dev(sc->jme_dev,
683 		    "mbuf already here: rxprod %d rxcons %d\n",
684 		    sc->jme_rx_prod, sc->jme_rx_cons);
685 		if (m)
686 			m_freem(m);
687 		return EINVAL;
688 	}
689 
690 	if (m == NULL) {
691 		sc->jme_rxmbuf[i] = NULL;
692 		MGETHDR(m, M_DONTWAIT, MT_DATA);
693 		if (m == NULL)
694 			return (ENOBUFS);
695 		MCLGET(m, M_DONTWAIT);
696 		if ((m->m_flags & M_EXT) == 0) {
697 			m_freem(m);
698 			return (ENOBUFS);
699 		}
700 	}
701 	map = sc->jme_rxmbufm[i];
702 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
703 	KASSERT(m->m_len == MCLBYTES);
704 
705 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
706 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
707 	if (error) {
708 		sc->jme_rxmbuf[i] = NULL;
709 		aprint_error_dev(sc->jme_dev,
710 		    "unable to load rx DMA map %d, error = %d\n",
711 		    i, error);
712 		m_freem(m);
713 		return (error);
714 	}
715 	bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
716 	    BUS_DMASYNC_PREREAD);
717 
718 	sc->jme_rxmbuf[i] = m;
719 
720 	sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
721 	sc->jme_rxring[i].addr_lo =
722 	    htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
723 	sc->jme_rxring[i].addr_hi =
724 	    htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
725 	sc->jme_rxring[i].flags =
726 	    htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
727 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
728 	    i * sizeof(struct jme_desc), sizeof(struct jme_desc),
729 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
730 	JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
731 	return (0);
732 }
733 
734 static int
735 jme_ifinit(struct ifnet *ifp)
736 {
737 	return jme_init(ifp, 1);
738 }
739 
740 static int
741 jme_init(struct ifnet *ifp, int do_ifinit)
742 {
743 	jme_softc_t *sc = ifp->if_softc;
744 	int i, s;
745 	uint8_t eaddr[ETHER_ADDR_LEN];
746 	uint32_t reg;
747 
748 	s = splnet();
749 	/* cancel any pending IO */
750 	jme_stop(ifp, 1);
751 	jme_reset(sc);
752 	if ((sc->jme_if.if_flags & IFF_UP) == 0) {
753 		splx(s);
754 		return 0;
755 	}
756 	/* allocate receive ring */
757 	sc->jme_rx_prod = 0;
758 	for (i = 0; i < JME_NBUFS; i++) {
759 		if (jme_add_rxbuf(sc, NULL) < 0) {
760 			aprint_error_dev(sc->jme_dev,
761 			    "can't allocate rx mbuf\n");
762 			for (i--; i >= 0; i--) {
763 				bus_dmamap_unload(sc->jme_dmatag,
764 				    sc->jme_rxmbufm[i]);
765 				m_freem(sc->jme_rxmbuf[i]);
766 				sc->jme_rxmbuf[i] = NULL;
767 			}
768 			splx(s);
769 			return ENOMEM;
770 		}
771 	}
772 	/* init TX ring */
773 	memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
774 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
775 	    0, JME_NBUFS * sizeof(struct jme_desc),
776 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
777 	for (i = 0; i < JME_NBUFS; i++)
778 		sc->jme_txmbuf[i] = NULL;
779 	sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;
780 
781 	/* Reprogram the station address. */
782 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
783 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
784 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
785 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
786 	    JME_PAR1, eaddr[5] << 8 | eaddr[4]);
787 
788 	/*
789 	 * Configure Tx queue.
790 	 *  Tx priority queue weight value : 0
791 	 *  Tx FIFO threshold for processing next packet : 16QW
792 	 *  Maximum Tx DMA length : 512
793 	 *  Allow Tx DMA burst.
794 	 */
795 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
796 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
797 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
798 	sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
799 	sc->jme_txcsr |= TXCSR_DMA_BURST;
800 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
801 	     JME_TXCSR, sc->jme_txcsr);
802 
803 	/* Set Tx descriptor counter. */
804 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
805 	     JME_TXQDC, JME_NBUFS);
806 
807 	/* Set Tx ring address to the hardware. */
808 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
809 	    JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
810 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
811 	    JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));
812 
813 	/* Configure TxMAC parameters. */
814 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
815 	    TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
816 	    TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);
817 
818 	/*
819 	 * Configure Rx queue.
820 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
821 	 *  FIFO threshold for processing next packet : 128QW
822 	 *  Rx queue 0 select
823 	 *  Max Rx DMA length : 128
824 	 *  Rx descriptor retry : 32
825 	 *  Rx descriptor retry time gap : 256ns
826 	 *  Don't receive runt/bad frame.
827 	 */
828 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
829 	/*
830 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
831 	 * than 4K bytes will suffer from Rx FIFO overruns. So
832 	 * decrease FIFO threshold to reduce the FIFO overruns for
833 	 * frames larger than 4000 bytes.
834 	 * For best performance of standard MTU sized frames use
835 	 * maximum allowable FIFO threshold, 128QW.
836 	 */
837 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
838 	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
839 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
840 	else
841 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
842 	sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
843 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
844 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
845 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
846 	     JME_RXCSR, sc->jme_rxcsr);
847 
848 	/* Set Rx descriptor counter. */
849 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
850 	     JME_RXQDC, JME_NBUFS);
851 
852 	/* Set Rx ring address to the hardware. */
853 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
854 	    JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
855 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
856 	    JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));
857 
858 	/* Clear receive filter. */
859 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
860 	/* Set up the receive filter. */
861 	jme_set_filter(sc);
862 
863 	/*
864 	 * Disable all WOL bits as WOL can interfere normal Rx
865 	 * operation. Also clear WOL detection status bits.
866 	 */
867 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
868 	reg &= ~PMCS_WOL_ENB_MASK;
869 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);
870 
871 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
872 	/*
873 	 * Pad 10bytes right before received frame. This will greatly
874 	 * help Rx performance on strict-alignment architectures as
875 	 * it does not need to copy the frame to align the payload.
876 	 */
877 	reg |= RXMAC_PAD_10BYTES;
878 	if ((ifp->if_capenable &
879 	    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
880 	     IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) != 0)
881 		reg |= RXMAC_CSUM_ENB;
882 	reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
883 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);
884 
885 	/* Configure general purpose reg0 */
886 	reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
887 	reg &= ~GPREG0_PCC_UNIT_MASK;
888 	/* Set PCC timer resolution to micro-seconds unit. */
889 	reg |= GPREG0_PCC_UNIT_US;
890 	/*
891 	 * Disable all shadow register posting as we have to read
892 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
893 	 * that it's hard to synchronize interrupt status between
894 	 * hardware and software with shadow posting due to
895 	 * requirements of bus_dmamap_sync(9).
896 	 */
897 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
898 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
899 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
900 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
901 	/* Disable posting of DW0. */
902 	reg &= ~GPREG0_POST_DW0_ENB;
903 	/* Clear PME message. */
904 	reg &= ~GPREG0_PME_ENB;
905 	/* Set PHY address. */
906 	reg &= ~GPREG0_PHY_ADDR_MASK;
907 	reg |= sc->jme_phyaddr;
908 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);
909 
910 	/* Configure Tx queue 0 packet completion coalescing. */
911 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
912 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
913 	reg |= PCCTX_COAL_TXQ0;
914 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
915 
916 	/* Configure Rx queue 0 packet completion coalescing. */
917 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
918 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
919 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
920 
921 	/* Disable Timers */
922 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0);
923 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
924 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);
925 
926 	/* Configure retry transmit period, retry limit value. */
927 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
928 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
929 	    TXTRHD_RT_PERIOD_MASK) |
930 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
931 	    TXTRHD_RT_LIMIT_SHIFT));
932 
933 	/* Disable RSS. */
934 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
935 	    JME_RSSC, RSSC_DIS_RSS);
936 
937 	/* Initialize the interrupt mask. */
938 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
939 	     JME_INTR_MASK_SET, JME_INTRS_ENABLE);
940 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
941 	     JME_INTR_STATUS, 0xFFFFFFFF);
942 
943 	/* set media, if not already handling a media change */
944 	if (do_ifinit) {
945 		int error;
946 		if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
947 			error = 0;
948 		else if (error != 0) {
949 			aprint_error_dev(sc->jme_dev, "could not set media\n");
950 			splx(s);
951 			return error;
952 		}
953 	}
954 
955 	/* Program MAC with resolved speed/duplex/flow-control. */
956 	jme_mac_config(sc);
957 
958 	/* Start receiver/transmitter. */
959 	sc->jme_rx_cons = 0;
960 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
961 	    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
962 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
963 	    sc->jme_txcsr | TXCSR_TX_ENB);
964 
965 	/* start ticks calls */
966 	callout_schedule(&sc->jme_tick_ch, hz);
967 	sc->jme_if.if_flags |= IFF_RUNNING;
968 	sc->jme_if.if_flags &= ~IFF_OACTIVE;
969 	splx(s);
970 	return 0;
971 }
972 
973 static int
974 jme_mii_read(device_t self, int phy, int reg, uint16_t *val)
975 {
976 	struct jme_softc *sc = device_private(self);
977 	int data, i;
978 
979 	/* For FPGA version, PHY address 0 should be ignored. */
980 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
981 		if (phy == 0)
982 			return -1;
983 	} else {
984 		if (sc->jme_phyaddr != phy)
985 			return -1;
986 	}
987 
988 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
989 	    SMI_OP_READ | SMI_OP_EXECUTE |
990 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
991 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
992 		delay(10);
993 		if (((data = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
994 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
995 			break;
996 	}
997 
998 	if (i == 0) {
999 		aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
1000 		return ETIMEDOUT;
1001 	}
1002 
1003 	*val = (data & SMI_DATA_MASK) >> SMI_DATA_SHIFT;
1004 	return 0;
1005 }
1006 
1007 static int
1008 jme_mii_write(device_t self, int phy, int reg, uint16_t val)
1009 {
1010 	struct jme_softc *sc = device_private(self);
1011 	int i;
1012 
1013 	/* For FPGA version, PHY address 0 should be ignored. */
1014 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
1015 		if (phy == 0)
1016 			return -1;
1017 	} else {
1018 		if (sc->jme_phyaddr != phy)
1019 			return -1;
1020 	}
1021 
1022 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
1023 	    SMI_OP_WRITE | SMI_OP_EXECUTE |
1024 	    (((uint32_t)val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
1025 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
1026 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
1027 		delay(10);
1028 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1029 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1030 			break;
1031 	}
1032 
1033 	if (i == 0) {
1034 		aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
1035 		return ETIMEDOUT;
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 static void
1042 jme_statchg(struct ifnet *ifp)
1043 {
1044 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
1045 		jme_init(ifp, 0);
1046 }
1047 
1048 static void
1049 jme_intr_rx(jme_softc_t *sc) {
1050 	struct mbuf *m, *mhead;
1051 	bus_dmamap_t mmap;
1052 	struct ifnet *ifp = &sc->jme_if;
1053 	uint32_t flags,	 buflen;
1054 	int i, ipackets, nsegs, seg, error;
1055 	struct jme_desc *desc;
1056 
1057 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
1058 	    sizeof(struct jme_desc) * JME_NBUFS,
1059 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1060 #ifdef JMEDEBUG_RX
1061 	printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
1062 	    sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
1063 #endif
1064 	ipackets = 0;
1065 	while ((le32toh(sc->jme_rxring[sc->jme_rx_cons].flags) & JME_RD_OWN)
1066 	    == 0) {
1067 		i = sc->jme_rx_cons;
1068 		desc = &sc->jme_rxring[i];
1069 #ifdef JMEDEBUG_RX
1070 		printf("rxintr i %d flags 0x%x buflen 0x%x\n",
1071 		    i, le32toh(desc->flags), le32toh(desc->buflen));
1072 #endif
1073 		if (sc->jme_rxmbuf[i] == NULL) {
1074 			if ((error = jme_add_rxbuf(sc, NULL)) != 0) {
1075 				aprint_error_dev(sc->jme_dev,
1076 				    "can't add new mbuf to empty slot: %d\n",
1077 				    error);
1078 				break;
1079 			}
1080 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1081 			i = sc->jme_rx_cons;
1082 			continue;
1083 		}
1084 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
1085 			break;
1086 
1087 		buflen = le32toh(desc->buflen);
1088 		nsegs = JME_RX_NSEGS(buflen);
1089 		flags = le32toh(desc->flags);
1090 		if ((buflen & JME_RX_ERR_STAT) != 0 ||
1091 		    JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
1092 		    JME_RX_BYTES(buflen) >
1093 		    (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
1094 #ifdef JMEDEBUG_RX
1095 			printf("rx error flags 0x%x buflen 0x%x\n",
1096 			    flags, buflen);
1097 #endif
1098 			if_statinc(ifp, if_ierrors);
1099 			/* reuse the mbufs */
1100 			for (seg = 0; seg < nsegs; seg++) {
1101 				m = sc->jme_rxmbuf[i];
1102 				sc->jme_rxmbuf[i] = NULL;
1103 				mmap = sc->jme_rxmbufm[i];
1104 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1105 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1106 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1107 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1108 					aprint_error_dev(sc->jme_dev,
1109 					    "can't reuse mbuf: %d\n", error);
1110 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1111 				i = sc->jme_rx_cons;
1112 			}
1113 			continue;
1114 		}
1115 		/* receive this packet */
1116 		mhead = m = sc->jme_rxmbuf[i];
1117 		sc->jme_rxmbuf[i] = NULL;
1118 		mmap = sc->jme_rxmbufm[i];
1119 		bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1120 		    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1121 		bus_dmamap_unload(sc->jme_dmatag, mmap);
1122 		/* add a new buffer to chain */
1123 		if (jme_add_rxbuf(sc, NULL) != 0) {
1124 			if ((error = jme_add_rxbuf(sc, m)) != 0)
1125 				aprint_error_dev(sc->jme_dev,
1126 				    "can't reuse mbuf: %d\n", error);
1127 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1128 			i = sc->jme_rx_cons;
1129 			for (seg = 1; seg < nsegs; seg++) {
1130 				m = sc->jme_rxmbuf[i];
1131 				sc->jme_rxmbuf[i] = NULL;
1132 				mmap = sc->jme_rxmbufm[i];
1133 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1134 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1135 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1136 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1137 					aprint_error_dev(sc->jme_dev,
1138 					    "can't reuse mbuf: %d\n", error);
1139 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1140 				i = sc->jme_rx_cons;
1141 			}
1142 			if_statinc(ifp, if_ierrors);
1143 			continue;
1144 		}
1145 
1146 		/* build mbuf chain: head, then remaining segments */
1147 		m_set_rcvif(m, ifp);
1148 		m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
1149 		m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
1150 		    m->m_pkthdr.len;
1151 		m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
1152 		JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1153 		for (seg = 1; seg < nsegs; seg++) {
1154 			i = sc->jme_rx_cons;
1155 			m = sc->jme_rxmbuf[i];
1156 			sc->jme_rxmbuf[i] = NULL;
1157 			mmap = sc->jme_rxmbufm[i];
1158 			bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1159 			    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1160 			bus_dmamap_unload(sc->jme_dmatag, mmap);
1161 			if ((error = jme_add_rxbuf(sc, NULL)) != 0)
1162 				aprint_error_dev(sc->jme_dev,
1163 				    "can't add new mbuf: %d\n", error);
1164 			m->m_flags &= ~M_PKTHDR;
1165 			m_cat(mhead, m);
1166 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1167 		}
1168 		/* and adjust last mbuf's size */
1169 		if (nsegs > 1) {
1170 			m->m_len =
1171 			    JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
1172 		}
1173 		ipackets++;
1174 
1175 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
1176 		    (flags & JME_RD_IPV4)) {
1177 			mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1178 			if (!(flags & JME_RD_IPCSUM))
1179 				mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1180 		}
1181 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
1182 		    (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
1183 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1184 			if (!(flags & JME_RD_TCPCSUM))
1185 				mhead->m_pkthdr.csum_flags |=
1186 				    M_CSUM_TCP_UDP_BAD;
1187 		}
1188 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
1189 		    (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
1190 			mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1191 			if (!(flags & JME_RD_UDPCSUM))
1192 				mhead->m_pkthdr.csum_flags |=
1193 				    M_CSUM_TCP_UDP_BAD;
1194 		}
1195 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
1196 		    (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
1197 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
1198 			if (!(flags & JME_RD_TCPCSUM))
1199 				mhead->m_pkthdr.csum_flags |=
1200 				    M_CSUM_TCP_UDP_BAD;
1201 		}
1202 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
1203 		    (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
1204 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
1205 			if (!(flags & JME_RD_UDPCSUM))
1206 				mhead->m_pkthdr.csum_flags |=
1207 				    M_CSUM_TCP_UDP_BAD;
1208 		}
1209 		if (flags & JME_RD_VLAN_TAG) {
1210 			/* pass to vlan_input() */
1211 			vlan_set_tag(mhead, (flags & JME_RD_VLAN_MASK));
1212 		}
1213 		if_percpuq_enqueue(ifp->if_percpuq, mhead);
1214 	}
1215 	if (ipackets)
1216 		rnd_add_uint32(&sc->rnd_source, ipackets);
1217 }
1218 
1219 static int
1220 jme_intr(void *v)
1221 {
1222 	jme_softc_t *sc = v;
1223 	uint32_t istatus;
1224 
1225 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1226 	     JME_INTR_STATUS);
1227 	if (istatus == 0 || istatus == 0xFFFFFFFF)
1228 		return 0;
1229 	/* Disable interrupts. */
1230 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1231 	    JME_INTR_MASK_CLR, 0xFFFFFFFF);
1232 again:
1233 	/* and update istatus */
1234 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1235 	     JME_INTR_STATUS);
1236 	if ((istatus & JME_INTRS_CHECK) == 0)
1237 		goto done;
1238 	/* Reset PCC counter/timer and Ack interrupts. */
1239 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1240 		istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1241 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1242 		istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1243 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1244 	     JME_INTR_STATUS, istatus);
1245 
1246 	if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
1247 		goto done;
1248 #ifdef JMEDEBUG_RX
1249 	printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
1250 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
1251 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
1252 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
1253 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
1254 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
1255 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
1256 	printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
1257 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
1258 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
1259 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
1260 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
1261 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
1262 #endif
1263 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1264 		jme_intr_rx(sc);
1265 	if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
1266 		/*
1267 		 * Notify hardware availability of new Rx
1268 		 * buffers.
1269 		 * Reading RXCSR takes very long time under
1270 		 * heavy load so cache RXCSR value and writes
1271 		 * the ORed value with the kick command to
1272 		 * the RXCSR. This saves one register access
1273 		 * cycle.
1274 		 */
1275 		sc->jme_rx_cons = 0;
1276 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1277 		    JME_RXCSR,
1278 		    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
1279 	}
1280 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1281 		jme_ifstart(&sc->jme_if);
1282 
1283 	goto again;
1284 
1285 done:
1286 	/* enable interrupts. */
1287 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1288 	    JME_INTR_MASK_SET, JME_INTRS_ENABLE);
1289 	return 1;
1290 }
1291 
1292 
1293 static int
1294 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1295 {
1296 	struct jme_softc *sc = ifp->if_softc;
1297 	int s, error;
1298 	struct ifreq *ifr;
1299 	struct ifcapreq *ifcr;
1300 
1301 	s = splnet();
1302 	/*
1303 	 * we can't support at the same time jumbo frames and
1304 	 * TX checksums offload/TSO
1305 	 */
1306 	switch (cmd) {
1307 	case SIOCSIFMTU:
1308 		ifr = data;
1309 		if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
1310 		    (ifp->if_capenable & (
1311 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx |
1312 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv6_Tx |
1313 		    IFCAP_CSUM_UDPv6_Tx | IFCAP_TSOv4 | IFCAP_TSOv6)) != 0) {
1314 			splx(s);
1315 			return EINVAL;
1316 		}
1317 		break;
1318 	case SIOCSIFCAP:
1319 		ifcr = data;
1320 		if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
1321 		    (ifcr->ifcr_capenable & (
1322 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx |
1323 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv6_Tx |
1324 		    IFCAP_CSUM_UDPv6_Tx | IFCAP_TSOv4 | IFCAP_TSOv6)) != 0) {
1325 			splx(s);
1326 			return EINVAL;
1327 		}
1328 		break;
1329 	}
1330 
1331 	error = ether_ioctl(ifp, cmd, data);
1332 	if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
1333 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1334 			jme_set_filter(sc);
1335 			error = 0;
1336 		} else {
1337 			error = jme_init(ifp, 0);
1338 		}
1339 	}
1340 	splx(s);
1341 	return error;
1342 }
1343 
1344 static int
1345 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1346 {
1347 	struct jme_desc *desc;
1348 	struct mbuf *m;
1349 	int error, i, prod, headdsc, nsegs;
1350 	uint32_t cflags, tso_segsz;
1351 
1352 	if (((*m_head)->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6))
1353 	    != 0) {
1354 		/*
1355 		 * Due to the adherence to NDIS specification JMC250
1356 		 * assumes upper stack computed TCP pseudo checksum
1357 		 * without including payload length. This breaks
1358 		 * checksum offload for TSO case so recompute TCP
1359 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1360 		 * be much burden on modern CPUs.
1361 		 */
1362 		bool v4 = ((*m_head)->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1363 		int iphl = v4 ?
1364 		    M_CSUM_DATA_IPv4_IPHL((*m_head)->m_pkthdr.csum_data) :
1365 		    M_CSUM_DATA_IPv6_IPHL((*m_head)->m_pkthdr.csum_data);
1366 		/*
1367 		 * note: we support vlan offloading, so we should never have
1368 		 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
1369 		 * right.
1370 		 */
1371 		int hlen = ETHER_HDR_LEN + iphl;
1372 
1373 		if (__predict_false((*m_head)->m_len <
1374 		    (hlen + sizeof(struct tcphdr)))) {
1375 			   /*
1376 			    * TCP/IP headers are not in the first mbuf; we need
1377 			    * to do this the slow and painful way.  Let's just
1378 			    * hope this doesn't happen very often.
1379 			    */
1380 			   struct tcphdr th;
1381 
1382 			   m_copydata((*m_head), hlen, sizeof(th), &th);
1383 			   if (v4) {
1384 				    struct ip ip;
1385 
1386 				    m_copydata((*m_head), ETHER_HDR_LEN,
1387 				    sizeof(ip), &ip);
1388 				    ip.ip_len = 0;
1389 				    m_copyback((*m_head),
1390 					 ETHER_HDR_LEN + offsetof(struct ip, ip_len),
1391 					 sizeof(ip.ip_len), &ip.ip_len);
1392 				    th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1393 					 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1394 			   } else {
1395 #if INET6
1396 				    struct ip6_hdr ip6;
1397 
1398 				    m_copydata((*m_head), ETHER_HDR_LEN,
1399 				    sizeof(ip6), &ip6);
1400 				    ip6.ip6_plen = 0;
1401 				    m_copyback((*m_head), ETHER_HDR_LEN +
1402 				    offsetof(struct ip6_hdr, ip6_plen),
1403 					 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1404 				    th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1405 					 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1406 #endif /* INET6 */
1407 			   }
1408 			   m_copyback((*m_head),
1409 			    hlen + offsetof(struct tcphdr, th_sum),
1410 				sizeof(th.th_sum), &th.th_sum);
1411 
1412 			   hlen += th.th_off << 2;
1413 		} else {
1414 			   /*
1415 			    * TCP/IP headers are in the first mbuf; we can do
1416 			    * this the easy way.
1417 			    */
1418 			   struct tcphdr *th;
1419 
1420 			   if (v4) {
1421 				    struct ip *ip =
1422 					 (void *)(mtod((*m_head), char *) +
1423 					ETHER_HDR_LEN);
1424 				    th = (void *)(mtod((*m_head), char *) + hlen);
1425 
1426 				    ip->ip_len = 0;
1427 				    th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1428 					 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1429 			   } else {
1430 #if INET6
1431 				    struct ip6_hdr *ip6 =
1432 				    (void *)(mtod((*m_head), char *) +
1433 				    ETHER_HDR_LEN);
1434 				    th = (void *)(mtod((*m_head), char *) + hlen);
1435 
1436 				    ip6->ip6_plen = 0;
1437 				    th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1438 					 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1439 #endif /* INET6 */
1440 			   }
1441 			hlen += th->th_off << 2;
1442 		}
1443 
1444 	}
1445 
1446 	prod = sc->jme_tx_prod;
1447 
1448 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
1449 	    *m_head, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1450 	if (error) {
1451 		if (error == EFBIG) {
1452 			log(LOG_ERR, "%s: Tx packet consumes too many "
1453 			    "DMA segments, dropping...\n",
1454 			    device_xname(sc->jme_dev));
1455 			m_freem(*m_head);
1456 			*m_head = NULL;
1457 		}
1458 		return (error);
1459 	}
1460 	/*
1461 	 * Check descriptor overrun. Leave one free descriptor.
1462 	 * Since we always use 64bit address mode for transmitting,
1463 	 * each Tx request requires one more dummy descriptor.
1464 	 */
1465 	nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
1466 #ifdef JMEDEBUG_TX
1467 	printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
1468 #endif
1469 	if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
1470 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
1471 		return (ENOBUFS);
1472 	}
1473 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
1474 	    0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1475 
1476 	m = *m_head;
1477 	cflags = 0;
1478 	tso_segsz = 0;
1479 	/* Configure checksum offload and TSO. */
1480 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
1481 		tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
1482 		cflags |= JME_TD_TSO;
1483 	} else {
1484 		if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
1485 			cflags |= JME_TD_IPCSUM;
1486 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6))
1487 		    != 0)
1488 			cflags |= JME_TD_TCPCSUM;
1489 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6))
1490 		    != 0)
1491 			cflags |= JME_TD_UDPCSUM;
1492 	}
1493 	/* Configure VLAN. */
1494 	if (vlan_has_tag(m)) {
1495 		cflags |= (vlan_get_tag(m) & JME_TD_VLAN_MASK);
1496 		cflags |= JME_TD_VLAN_TAG;
1497 	}
1498 
1499 	desc = &sc->jme_txring[prod];
1500 	desc->flags = htole32(cflags);
1501 	desc->buflen = htole32(tso_segsz);
1502 	desc->addr_hi = htole32(m->m_pkthdr.len);
1503 	desc->addr_lo = 0;
1504 	headdsc = prod;
1505 	sc->jme_tx_cnt++;
1506 	JME_DESC_INC(prod, JME_NBUFS);
1507 	for (i = 0; i < nsegs; i++) {
1508 		desc = &sc->jme_txring[prod];
1509 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1510 		desc->buflen =
1511 		    htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
1512 		desc->addr_hi = htole32(
1513 		    JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1514 		desc->addr_lo = htole32(
1515 		    JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1516 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1517 		    prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
1518 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1519 		sc->jme_txmbuf[prod] = NULL;
1520 		sc->jme_tx_cnt++;
1521 		JME_DESC_INC(prod, JME_NBUFS);
1522 	}
1523 
1524 	/* Update producer index. */
1525 	sc->jme_tx_prod = prod;
1526 #ifdef JMEDEBUG_TX
1527 	printf("jme_encap prod now %d\n", sc->jme_tx_prod);
1528 #endif
1529 	/*
1530 	 * Finally request interrupt and give the first descriptor
1531 	 * ownership to hardware.
1532 	 */
1533 	desc = &sc->jme_txring[headdsc];
1534 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1535 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1536 	    headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
1537 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1538 
1539 	sc->jme_txmbuf[headdsc] = m;
1540 	return (0);
1541 }
1542 
1543 static void
1544 jme_txeof(struct jme_softc *sc)
1545 {
1546 	struct ifnet *ifp;
1547 	struct jme_desc *desc;
1548 	uint32_t status;
1549 	int cons, cons0, nsegs, seg;
1550 
1551 	ifp = &sc->jme_if;
1552 
1553 #ifdef JMEDEBUG_TX
1554 	printf("jme_txeof cons %d prod %d\n",
1555 	    sc->jme_tx_cons, sc->jme_tx_prod);
1556 	printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1557 	    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1558 	    "JME_TXTRHD 0x%x\n",
1559 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1560 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1561 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1562 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1563 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1564 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1565 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1566 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1567 	for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
1568 		desc = &sc->jme_txring[cons];
1569 		printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
1570 		    desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
1571 		JME_DESC_INC(cons, JME_NBUFS);
1572 	}
1573 #endif
1574 
1575 	cons = sc->jme_tx_cons;
1576 	if (cons == sc->jme_tx_prod)
1577 		return;
1578 
1579 	/*
1580 	 * Go through our Tx list and free mbufs for those
1581 	 * frames which have been transmitted.
1582 	 */
1583 	for (; cons != sc->jme_tx_prod;) {
1584 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1585 		    cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
1586 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1587 
1588 		desc = &sc->jme_txring[cons];
1589 		status = le32toh(desc->flags);
1590 #ifdef JMEDEBUG_TX
1591 		printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
1592 		    sc->jme_txmbufm[cons]->dm_nsegs);
1593 #endif
1594 		if (status & JME_TD_OWN)
1595 			break;
1596 
1597 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
1598 			if_statinc(ifp, if_oerrors);
1599 		else {
1600 			if_statinc(ifp, if_opackets);
1601 			if ((status & JME_TD_COLLISION) != 0) {
1602 				if_statadd(ifp, if_collisions,
1603 				    le32toh(desc->buflen) &
1604 				    JME_TD_BUF_LEN_MASK);
1605 			}
1606 		}
1607 		/*
1608 		 * Only the first descriptor of multi-descriptor
1609 		 * transmission is updated so driver have to skip entire
1610 		 * chained buffers for the transmitted frame. In other
1611 		 * words, JME_TD_OWN bit is valid only at the first
1612 		 * descriptor of a multi-descriptor transmission.
1613 		 */
1614 		nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
1615 		cons0 = cons;
1616 		JME_DESC_INC(cons, JME_NBUFS);
1617 		for (seg = 1; seg < nsegs + 1; seg++) {
1618 			bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1619 			    cons * sizeof(struct jme_desc),
1620 			    sizeof(struct jme_desc),
1621 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1622 			sc->jme_txring[cons].flags = 0;
1623 			JME_DESC_INC(cons, JME_NBUFS);
1624 		}
1625 		/* Reclaim transferred mbufs. */
1626 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
1627 		    0, sc->jme_txmbufm[cons0]->dm_mapsize,
1628 		    BUS_DMASYNC_POSTWRITE);
1629 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);
1630 
1631 		KASSERT(sc->jme_txmbuf[cons0] != NULL);
1632 		m_freem(sc->jme_txmbuf[cons0]);
1633 		sc->jme_txmbuf[cons0] = NULL;
1634 		sc->jme_tx_cnt -= nsegs + 1;
1635 		KASSERT(sc->jme_tx_cnt >= 0);
1636 		sc->jme_if.if_flags &= ~IFF_OACTIVE;
1637 	}
1638 	sc->jme_tx_cons = cons;
1639 	/* Unarm watchog timer when there is no pending descriptors in queue. */
1640 	if (sc->jme_tx_cnt == 0)
1641 		ifp->if_timer = 0;
1642 #ifdef JMEDEBUG_TX
1643 	printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
1644 #endif
1645 }
1646 
1647 static void
1648 jme_ifstart(struct ifnet *ifp)
1649 {
1650 	jme_softc_t *sc = ifp->if_softc;
1651 	struct mbuf *mb_head;
1652 	int enq;
1653 
1654 	/*
1655 	 * check if we can free some desc.
1656 	 * Clear TX interrupt status to reset TX coalescing counters.
1657 	 */
1658 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1659 	     JME_INTR_STATUS, INTR_TXQ_COMP);
1660 	jme_txeof(sc);
1661 
1662 	if ((sc->jme_if.if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1663 		return;
1664 	for (enq = 0;; enq++) {
1665 nexttx:
1666 		/* Grab a paquet for output */
1667 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1668 		if (mb_head == NULL) {
1669 #ifdef JMEDEBUG_TX
1670 			printf("%s: nothing to send\n", __func__);
1671 #endif
1672 			break;
1673 		}
1674 		/* try to add this mbuf to the TX ring */
1675 		if (jme_encap(sc, &mb_head)) {
1676 			if (mb_head == NULL) {
1677 				if_statinc(ifp, if_oerrors);
1678 				/* packet dropped, try next one */
1679 				goto nexttx;
1680 			}
1681 			/* resource shortage, try again later */
1682 			IF_PREPEND(&ifp->if_snd, mb_head);
1683 			ifp->if_flags |= IFF_OACTIVE;
1684 			break;
1685 		}
1686 		/* Pass packet to bpf if there is a listener */
1687 		bpf_mtap(ifp, mb_head, BPF_D_OUT);
1688 	}
1689 #ifdef JMEDEBUG_TX
1690 	printf("jme_ifstart enq %d\n", enq);
1691 #endif
1692 	if (enq) {
1693 		/*
1694 		 * Set a 5 second timer just in case we don't hear from
1695 		 * the card again.
1696 		 */
1697 		ifp->if_timer = 5;
1698 		/*
1699 		 * Reading TXCSR takes very long time under heavy load
1700 		 * so cache TXCSR value and writes the ORed value with
1701 		 * the kick command to the TXCSR. This saves one register
1702 		 * access cycle.
1703 		 */
1704 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
1705 		  sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1706 #ifdef JMEDEBUG_TX
1707 		printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1708 		    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1709 		    "JME_TXTRHD 0x%x\n",
1710 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1711 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1712 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1713 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1714 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1715 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1716 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1717 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1718 #endif
1719 	}
1720 }
1721 
1722 static void
1723 jme_ifwatchdog(struct ifnet *ifp)
1724 {
1725 	jme_softc_t *sc = ifp->if_softc;
1726 
1727 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1728 		return;
1729 	printf("%s: device timeout\n", device_xname(sc->jme_dev));
1730 	if_statinc(ifp, if_oerrors);
1731 	jme_init(ifp, 0);
1732 }
1733 
1734 static int
1735 jme_mediachange(struct ifnet *ifp)
1736 {
1737 	int error;
1738 	jme_softc_t *sc = ifp->if_softc;
1739 
1740 	if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
1741 		error = 0;
1742 	else if (error != 0) {
1743 		aprint_error_dev(sc->jme_dev, "could not set media\n");
1744 		return error;
1745 	}
1746 	return 0;
1747 }
1748 
1749 static void
1750 jme_ticks(void *v)
1751 {
1752 	jme_softc_t *sc = v;
1753 	int s = splnet();
1754 
1755 	/* Tick the MII. */
1756 	mii_tick(&sc->jme_mii);
1757 
1758 	/* every seconds */
1759 	callout_schedule(&sc->jme_tick_ch, hz);
1760 	splx(s);
1761 }
1762 
1763 static void
1764 jme_mac_config(jme_softc_t *sc)
1765 {
1766 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1767 	struct mii_data *mii = &sc->jme_mii;
1768 
1769 	ghc = 0;
1770 	rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1771 	rxmac &= ~RXMAC_FC_ENB;
1772 	txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
1773 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1774 	txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
1775 	txpause &= ~TXPFC_PAUSE_ENB;
1776 
1777 	if (mii->mii_media_active & IFM_FDX) {
1778 		ghc |= GHC_FULL_DUPLEX;
1779 		rxmac &= ~RXMAC_COLL_DET_ENB;
1780 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1781 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1782 		    TXMAC_FRAME_BURST);
1783 		/* Disable retry transmit timer/retry limit. */
1784 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1785 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
1786 		    & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1787 	} else {
1788 		rxmac |= RXMAC_COLL_DET_ENB;
1789 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1790 		/* Enable retry transmit timer/retry limit. */
1791 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1792 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)		    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1793 	}
1794 	/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1795 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1796 	case IFM_10_T:
1797 		ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100;
1798 		break;
1799 	case IFM_100_TX:
1800 		ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100;
1801 		break;
1802 	case IFM_1000_T:
1803 		ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000;
1804 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1805 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1806 		break;
1807 	default:
1808 		break;
1809 	}
1810 	if ((sc->jme_flags & JME_FLAG_GIGA) &&
1811 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
1812 		/*
1813 		 * Workaround occasional packet loss issue of JMC250 A2
1814 		 * when it runs on half-duplex media.
1815 		 */
1816 #ifdef JMEDEBUG
1817 		printf("JME250 A2 workaround\n");
1818 #endif
1819 		gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1820 		    JME_GPREG1);
1821 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1822 			gpreg &= ~GPREG1_HDPX_FIX;
1823 		else
1824 			gpreg |= GPREG1_HDPX_FIX;
1825 		bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1826 		    JME_GPREG1, gpreg);
1827 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
1828 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
1829 			/* Extend interface FIFO depth. */
1830 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1831 			    0x1B, 0x0000);
1832 		} else {
1833 			/* Select default interface FIFO depth. */
1834 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1835 			    0x1B, 0x0004);
1836 		}
1837 	}
1838 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
1839 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
1840 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
1841 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
1842 }
1843 
1844 static void
1845 jme_set_filter(jme_softc_t *sc)
1846 {
1847 	struct ethercom *ec = &sc->jme_ec;
1848 	struct ifnet *ifp = &sc->jme_if;
1849 	struct ether_multistep step;
1850 	struct ether_multi *enm;
1851 	uint32_t hash[2] = {0, 0};
1852 	int i;
1853 	uint32_t rxcfg;
1854 
1855 	rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1856 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
1857 	    RXMAC_ALLMULTI);
1858 	/* Always accept frames destined to our station address. */
1859 	rxcfg |= RXMAC_UNICAST;
1860 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1861 		rxcfg |= RXMAC_BROADCAST;
1862 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1863 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1864 			rxcfg |= RXMAC_PROMISC;
1865 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1866 			rxcfg |= RXMAC_ALLMULTI;
1867 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1868 		     JME_MAR0, 0xFFFFFFFF);
1869 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1870 		     JME_MAR1, 0xFFFFFFFF);
1871 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1872 		     JME_RXMAC, rxcfg);
1873 		return;
1874 	}
1875 	/*
1876 	 * Set up the multicast address filter by passing all multicast
1877 	 * addresses through a CRC generator, and then using the low-order
1878 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1879 	 * high order bits select the register, while the rest of the bits
1880 	 * select the bit within the register.
1881 	 */
1882 	rxcfg |= RXMAC_MULTICAST;
1883 	memset(hash, 0, sizeof(hash));
1884 
1885 	ETHER_LOCK(ec);
1886 	ETHER_FIRST_MULTI(step, ec, enm);
1887 	while (enm != NULL) {
1888 #ifdef JEMDBUG
1889 		printf("%s: addrs %s %s\n", __func__,
1890 		   ether_sprintf(enm->enm_addrlo),
1891 		   ether_sprintf(enm->enm_addrhi));
1892 #endif
1893 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
1894 			i = ether_crc32_be(enm->enm_addrlo, 6);
1895 			/* Just want the 6 least significant bits. */
1896 			i &= 0x3f;
1897 			hash[i / 32] |= 1 << (i%32);
1898 		} else {
1899 			hash[0] = hash[1] = 0xffffffff;
1900 			sc->jme_if.if_flags |= IFF_ALLMULTI;
1901 			break;
1902 		}
1903 		ETHER_NEXT_MULTI(step, enm);
1904 	}
1905 	ETHER_UNLOCK(ec);
1906 #ifdef JMEDEBUG
1907 	printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
1908 #endif
1909 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
1910 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
1911 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
1912 }
1913 
1914 #if 0
1915 static int
1916 jme_multicast_hash(uint8_t *a)
1917 {
1918 	int hash;
1919 
1920 #define DA(addr, bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
1921 #define xor8(a,b,c,d,e,f,g,h)						\
1922 	(((a != 0) + (b != 0) + (c != 0) + (d != 0) +			\
1923 	  (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
1924 
1925 	hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
1926 	    DA(a,36), DA(a,42));
1927 	hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
1928 	    DA(a,37), DA(a,43)) << 1;
1929 	hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
1930 	    DA(a,38), DA(a,44)) << 2;
1931 	hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
1932 	    DA(a,39), DA(a,45)) << 3;
1933 	hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
1934 	    DA(a,40), DA(a,46)) << 4;
1935 	hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
1936 	    DA(a,41), DA(a,47)) << 5;
1937 
1938 	return hash;
1939 }
1940 #endif
1941 
1942 static int
1943 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
1944 {
1945 	 uint32_t reg;
1946 	 int i;
1947 
1948 	 *val = 0;
1949 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1950 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1951 		      JME_SMBCSR);
1952 		  if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
1953 			   break;
1954 		  delay(10);
1955 	 }
1956 
1957 	 if (i == 0) {
1958 		  aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
1959 		  return (ETIMEDOUT);
1960 	 }
1961 
1962 	 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
1963 	 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
1964 	     JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
1965 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1966 		  delay(10);
1967 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1968 		      JME_SMBINTF);
1969 		  if ((reg & SMBINTF_CMD_TRIGGER) == 0)
1970 			   break;
1971 	 }
1972 
1973 	 if (i == 0) {
1974 		  aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
1975 		  return (ETIMEDOUT);
1976 	 }
1977 
1978 	 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
1979 	 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
1980 	 return (0);
1981 }
1982 
1983 
1984 static int
1985 jme_eeprom_macaddr(struct jme_softc *sc)
1986 {
1987 	uint8_t eaddr[ETHER_ADDR_LEN];
1988 	uint8_t fup, reg, val;
1989 	uint32_t offset;
1990 	int match;
1991 
1992 	offset = 0;
1993 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1994 	    fup != JME_EEPROM_SIG0)
1995 		return (ENOENT);
1996 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1997 	    fup != JME_EEPROM_SIG1)
1998 		return (ENOENT);
1999 	match = 0;
2000 	do {
2001 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
2002 			break;
2003 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
2004 		    == (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
2005 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
2006 				break;
2007 			if (reg >= JME_PAR0 &&
2008 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
2009 				if (jme_eeprom_read_byte(sc, offset + 2,
2010 				    &val) != 0)
2011 					break;
2012 				eaddr[reg - JME_PAR0] = val;
2013 				match++;
2014 			}
2015 		}
2016 		if (fup & JME_EEPROM_DESC_END)
2017 			break;
2018 
2019 		/* Try next eeprom descriptor. */
2020 		offset += JME_EEPROM_DESC_BYTES;
2021 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
2022 
2023 	if (match == ETHER_ADDR_LEN) {
2024 		memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN);
2025 		return (0);
2026 	}
2027 
2028 	return (ENOENT);
2029 }
2030 
2031 static int
2032 jme_reg_macaddr(struct jme_softc *sc)
2033 {
2034 	uint32_t par0, par1;
2035 
2036 	par0 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0);
2037 	par1 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1);
2038 	par1 &= 0xffff;
2039 	if ((par0 == 0 && par1 == 0) ||
2040 	    (par0 == 0xffffffff && par1 == 0xffff)) {
2041 		return (ENOENT);
2042 	} else {
2043 		sc->jme_enaddr[0] = (par0 >> 0) & 0xff;
2044 		sc->jme_enaddr[1] = (par0 >> 8) & 0xff;
2045 		sc->jme_enaddr[2] = (par0 >> 16) & 0xff;
2046 		sc->jme_enaddr[3] = (par0 >> 24) & 0xff;
2047 		sc->jme_enaddr[4] = (par1 >> 0) & 0xff;
2048 		sc->jme_enaddr[5] = (par1 >> 8) & 0xff;
2049 	}
2050 	return (0);
2051 }
2052 
2053 /*
2054  * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
2055  * set up in jme_pci_attach()
2056  */
2057 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
2058 {
2059 	int rc;
2060 	const struct sysctlnode *node;
2061 
2062 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2063 	    0, CTLTYPE_NODE, "jme",
2064 	    SYSCTL_DESCR("jme interface controls"),
2065 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2066 		goto err;
2067 	}
2068 
2069 	jme_root_num = node->sysctl_num;
2070 	return;
2071 
2072 err:
2073 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2074 }
2075 
2076 static int
2077 jme_sysctl_intrxto(SYSCTLFN_ARGS)
2078 {
2079 	int error, t;
2080 	struct sysctlnode node;
2081 	struct jme_softc *sc;
2082 	uint32_t reg;
2083 
2084 	node = *rnode;
2085 	sc = node.sysctl_data;
2086 	t = sc->jme_intrxto;
2087 	node.sysctl_data = &t;
2088 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2089 	if (error || newp == NULL)
2090 		return error;
2091 
2092 	if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
2093 		return EINVAL;
2094 
2095 	/*
2096 	 * update the softc with sysctl-changed value, and mark
2097 	 * for hardware update
2098 	 */
2099 	sc->jme_intrxto = t;
2100 	/* Configure Rx queue 0 packet completion coalescing. */
2101 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2102 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2103 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2104 	return 0;
2105 }
2106 
2107 static int
2108 jme_sysctl_intrxct(SYSCTLFN_ARGS)
2109 {
2110 	int error, t;
2111 	struct sysctlnode node;
2112 	struct jme_softc *sc;
2113 	uint32_t reg;
2114 
2115 	node = *rnode;
2116 	sc = node.sysctl_data;
2117 	t = sc->jme_intrxct;
2118 	node.sysctl_data = &t;
2119 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2120 	if (error || newp == NULL)
2121 		return error;
2122 
2123 	if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
2124 		return EINVAL;
2125 
2126 	/*
2127 	 * update the softc with sysctl-changed value, and mark
2128 	 * for hardware update
2129 	 */
2130 	sc->jme_intrxct = t;
2131 	/* Configure Rx queue 0 packet completion coalescing. */
2132 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2133 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2134 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2135 	return 0;
2136 }
2137 
2138 static int
2139 jme_sysctl_inttxto(SYSCTLFN_ARGS)
2140 {
2141 	int error, t;
2142 	struct sysctlnode node;
2143 	struct jme_softc *sc;
2144 	uint32_t reg;
2145 
2146 	node = *rnode;
2147 	sc = node.sysctl_data;
2148 	t = sc->jme_inttxto;
2149 	node.sysctl_data = &t;
2150 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2151 	if (error || newp == NULL)
2152 		return error;
2153 
2154 	if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
2155 		return EINVAL;
2156 
2157 	/*
2158 	 * update the softc with sysctl-changed value, and mark
2159 	 * for hardware update
2160 	 */
2161 	sc->jme_inttxto = t;
2162 	/* Configure Tx queue 0 packet completion coalescing. */
2163 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2164 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2165 	reg |= PCCTX_COAL_TXQ0;
2166 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2167 	return 0;
2168 }
2169 
2170 static int
2171 jme_sysctl_inttxct(SYSCTLFN_ARGS)
2172 {
2173 	int error, t;
2174 	struct sysctlnode node;
2175 	struct jme_softc *sc;
2176 	uint32_t reg;
2177 
2178 	node = *rnode;
2179 	sc = node.sysctl_data;
2180 	t = sc->jme_inttxct;
2181 	node.sysctl_data = &t;
2182 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2183 	if (error || newp == NULL)
2184 		return error;
2185 
2186 	if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
2187 		return EINVAL;
2188 
2189 	/*
2190 	 * update the softc with sysctl-changed value, and mark
2191 	 * for hardware update
2192 	 */
2193 	sc->jme_inttxct = t;
2194 	/* Configure Tx queue 0 packet completion coalescing. */
2195 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2196 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2197 	reg |= PCCTX_COAL_TXQ0;
2198 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2199 	return 0;
2200 }
2201