xref: /netbsd-src/sys/dev/pci/if_iwn.c (revision f89f6560d453f5e37386cc7938c072d2f528b9fa)
1 /*	$NetBSD: if_iwn.c,v 1.74 2014/11/09 14:40:54 nonaka Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.74 2014/11/09 14:40:54 nonaka Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120 
121 /*
122  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
123  */
124 static const struct ieee80211_rateset iwn_rateset_11a =
125 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
126 
127 static const struct ieee80211_rateset iwn_rateset_11b =
128 	{ 4, { 2, 4, 11, 22 } };
129 
130 static const struct ieee80211_rateset iwn_rateset_11g =
131 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
132 
133 static int	iwn_match(device_t , struct cfdata *, void *);
134 static void	iwn_attach(device_t , device_t , void *);
135 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
136 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static int	iwn_detach(device_t , int);
139 #if 0
140 static void	iwn_power(int, void *);
141 #endif
142 static bool	iwn_resume(device_t, const pmf_qual_t *);
143 static int	iwn_nic_lock(struct iwn_softc *);
144 static int	iwn_eeprom_lock(struct iwn_softc *);
145 static int	iwn_init_otprom(struct iwn_softc *);
146 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
147 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
148 		    void **, bus_size_t, bus_size_t);
149 static void	iwn_dma_contig_free(struct iwn_dma_info *);
150 static int	iwn_alloc_sched(struct iwn_softc *);
151 static void	iwn_free_sched(struct iwn_softc *);
152 static int	iwn_alloc_kw(struct iwn_softc *);
153 static void	iwn_free_kw(struct iwn_softc *);
154 static int	iwn_alloc_ict(struct iwn_softc *);
155 static void	iwn_free_ict(struct iwn_softc *);
156 static int	iwn_alloc_fwmem(struct iwn_softc *);
157 static void	iwn_free_fwmem(struct iwn_softc *);
158 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
159 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
160 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
161 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
162 		    int);
163 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
164 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
165 static void	iwn5000_ict_reset(struct iwn_softc *);
166 static int	iwn_read_eeprom(struct iwn_softc *);
167 static void	iwn4965_read_eeprom(struct iwn_softc *);
168 
169 #ifdef IWN_DEBUG
170 static void	iwn4965_print_power_group(struct iwn_softc *, int);
171 #endif
172 static void	iwn5000_read_eeprom(struct iwn_softc *);
173 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
174 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
175 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
176 static void	iwn_newassoc(struct ieee80211_node *, int);
177 static int	iwn_media_change(struct ifnet *);
178 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
179 static void	iwn_iter_func(void *, struct ieee80211_node *);
180 static void	iwn_calib_timeout(void *);
181 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 		    struct iwn_rx_data *);
185 #ifndef IEEE80211_NO_HT
186 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
187 		    struct iwn_rx_data *);
188 #endif
189 static void	iwn5000_rx_calib_results(struct iwn_softc *,
190 		    struct iwn_rx_desc *, struct iwn_rx_data *);
191 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
192 		    struct iwn_rx_data *);
193 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
194 		    struct iwn_rx_data *);
195 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
196 		    struct iwn_rx_data *);
197 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
198 		    uint8_t);
199 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
200 static void	iwn_notif_intr(struct iwn_softc *);
201 static void	iwn_wakeup_intr(struct iwn_softc *);
202 static void	iwn_fatal_intr(struct iwn_softc *);
203 static int	iwn_intr(void *);
204 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
205 		    uint16_t);
206 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
207 		    uint16_t);
208 #ifdef notyet
209 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
210 #endif
211 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
212 		    struct ieee80211_node *, int);
213 static void	iwn_start(struct ifnet *);
214 static void	iwn_watchdog(struct ifnet *);
215 static int	iwn_ioctl(struct ifnet *, u_long, void *);
216 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
217 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
218 		    int);
219 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
220 		    int);
221 static int	iwn_set_link_quality(struct iwn_softc *,
222 		    struct ieee80211_node *);
223 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
224 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
225 static int	iwn_set_critical_temp(struct iwn_softc *);
226 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
227 static void	iwn4965_power_calibration(struct iwn_softc *, int);
228 static int	iwn4965_set_txpower(struct iwn_softc *, int);
229 static int	iwn5000_set_txpower(struct iwn_softc *, int);
230 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
231 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
232 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
233 static int	iwn4965_get_temperature(struct iwn_softc *);
234 static int	iwn5000_get_temperature(struct iwn_softc *);
235 static int	iwn_init_sensitivity(struct iwn_softc *);
236 static void	iwn_collect_noise(struct iwn_softc *,
237 		    const struct iwn_rx_general_stats *);
238 static int	iwn4965_init_gains(struct iwn_softc *);
239 static int	iwn5000_init_gains(struct iwn_softc *);
240 static int	iwn4965_set_gains(struct iwn_softc *);
241 static int	iwn5000_set_gains(struct iwn_softc *);
242 static void	iwn_tune_sensitivity(struct iwn_softc *,
243 		    const struct iwn_rx_stats *);
244 static int	iwn_send_sensitivity(struct iwn_softc *);
245 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
246 static int	iwn5000_runtime_calib(struct iwn_softc *);
247 
248 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
249 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
250 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
251 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
252 
253 static int	iwn_config(struct iwn_softc *);
254 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
255 		    uint8_t);
256 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
257 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
258 static int	iwn_scan(struct iwn_softc *, uint16_t);
259 static int	iwn_auth(struct iwn_softc *);
260 static int	iwn_run(struct iwn_softc *);
261 #ifdef IWN_HWCRYPTO
262 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
263 		    struct ieee80211_key *);
264 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
265 		    struct ieee80211_key *);
266 #endif
267 static int	iwn_wme_update(struct ieee80211com *);
268 #ifndef IEEE80211_NO_HT
269 static int	iwn_ampdu_rx_start(struct ieee80211com *,
270 		    struct ieee80211_node *, uint8_t);
271 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
272 		    struct ieee80211_node *, uint8_t);
273 static int	iwn_ampdu_tx_start(struct ieee80211com *,
274 		    struct ieee80211_node *, uint8_t);
275 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
276 		    struct ieee80211_node *, uint8_t);
277 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
278 		    struct ieee80211_node *, uint8_t, uint16_t);
279 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
280 		    uint8_t, uint16_t);
281 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
282 		    struct ieee80211_node *, uint8_t, uint16_t);
283 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
284 		    uint8_t, uint16_t);
285 #endif
286 static int	iwn5000_query_calibration(struct iwn_softc *);
287 static int	iwn5000_send_calibration(struct iwn_softc *);
288 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
289 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
290 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
291 static int	iwn4965_post_alive(struct iwn_softc *);
292 static int	iwn5000_post_alive(struct iwn_softc *);
293 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
294 		    int);
295 static int	iwn4965_load_firmware(struct iwn_softc *);
296 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
297 		    const uint8_t *, int);
298 static int	iwn5000_load_firmware(struct iwn_softc *);
299 static int	iwn_read_firmware_leg(struct iwn_softc *,
300 		    struct iwn_fw_info *);
301 static int	iwn_read_firmware_tlv(struct iwn_softc *,
302 		    struct iwn_fw_info *, uint16_t);
303 static int	iwn_read_firmware(struct iwn_softc *);
304 static int	iwn_clock_wait(struct iwn_softc *);
305 static int	iwn_apm_init(struct iwn_softc *);
306 static void	iwn_apm_stop_master(struct iwn_softc *);
307 static void	iwn_apm_stop(struct iwn_softc *);
308 static int	iwn4965_nic_config(struct iwn_softc *);
309 static int	iwn5000_nic_config(struct iwn_softc *);
310 static int	iwn_hw_prepare(struct iwn_softc *);
311 static int	iwn_hw_init(struct iwn_softc *);
312 static void	iwn_hw_stop(struct iwn_softc *);
313 static int	iwn_init(struct ifnet *);
314 static void	iwn_stop(struct ifnet *, int);
315 
316 /* XXX MCLGETI alternative */
317 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
318 		    struct ifnet *, u_int);
319 #ifdef IWN_USE_RBUF
320 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
321 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
322 static int	iwn_alloc_rpool(struct iwn_softc *);
323 static void	iwn_free_rpool(struct iwn_softc *);
324 #endif
325 
326 /* XXX needed by iwn_scan */
327 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
328 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
329     const struct ieee80211_rateset *);
330 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
331     const struct ieee80211_rateset *);
332 
333 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
334 
335 #ifdef IWN_DEBUG
336 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
337 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
338 int iwn_debug = 0;
339 #else
340 #define DPRINTF(x)
341 #define DPRINTFN(n, x)
342 #endif
343 
344 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
345 	iwn_detach, NULL);
346 
347 static int
348 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
349 {
350 	struct pci_attach_args *pa = aux;
351 	size_t i;
352 
353 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
354 		return 0;
355 
356 	for (i = 0; i < __arraycount(iwn_devices); i++)
357 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
358 			return 1;
359 
360 	return 0;
361 }
362 
363 static void
364 iwn_attach(device_t parent __unused, device_t self, void *aux)
365 {
366 	struct iwn_softc *sc = device_private(self);
367 	struct ieee80211com *ic = &sc->sc_ic;
368 	struct ifnet *ifp = &sc->sc_ec.ec_if;
369 	struct pci_attach_args *pa = aux;
370 	const char *intrstr;
371 	pci_intr_handle_t ih;
372 	pcireg_t memtype, reg;
373 	int i, error;
374 	char intrbuf[PCI_INTRSTR_LEN];
375 
376 	sc->sc_dev = self;
377 	sc->sc_pct = pa->pa_pc;
378 	sc->sc_pcitag = pa->pa_tag;
379 	sc->sc_dmat = pa->pa_dmat;
380 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
381 
382 	callout_init(&sc->calib_to, 0);
383 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
384 
385 	pci_aprint_devinfo(pa, NULL);
386 
387 	/*
388 	 * Get the offset of the PCI Express Capability Structure in PCI
389 	 * Configuration Space.
390 	 */
391 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
392 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
393 	if (error == 0) {
394 		aprint_error_dev(self,
395 		    "PCIe capability structure not found!\n");
396 		return;
397 	}
398 
399 	/* Clear device-specific "PCI retry timeout" register (41h). */
400 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
401 	if (reg & 0xff00)
402 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
403 
404 	/* Enable bus-mastering and hardware bug workaround. */
405 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
406 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
407 	reg |= PCI_COMMAND_MASTER_ENABLE;
408 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
409 		DPRINTF(("PCIe INTx Disable set\n"));
410 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
411 	}
412 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
413 
414 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
415 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
416 	    &sc->sc_sh, NULL, &sc->sc_sz);
417 	if (error != 0) {
418 		aprint_error_dev(self, "can't map mem space\n");
419 		return;
420 	}
421 
422 	/* Install interrupt handler. */
423 	if (pci_intr_map(pa, &ih) != 0) {
424 		aprint_error_dev(self, "can't map interrupt\n");
425 		return;
426 	}
427 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
428 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
429 	if (sc->sc_ih == NULL) {
430 		aprint_error_dev(self, "can't establish interrupt");
431 		if (intrstr != NULL)
432 			aprint_error(" at %s", intrstr);
433 		aprint_error("\n");
434 		return;
435 	}
436 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
437 
438 	/* Read hardware revision and attach. */
439 	sc->hw_type =
440 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
441 	      >> IWN_HW_REV_TYPE_SHIFT;
442 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
443 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
444 	else
445 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
446 	if (error != 0) {
447 		aprint_error_dev(self, "could not attach device\n");
448 		return;
449 	}
450 
451 	if ((error = iwn_hw_prepare(sc)) != 0) {
452 		aprint_error_dev(self, "hardware not ready\n");
453 		return;
454 	}
455 
456 	/* Read MAC address, channels, etc from EEPROM. */
457 	if ((error = iwn_read_eeprom(sc)) != 0) {
458 		aprint_error_dev(self, "could not read EEPROM\n");
459 		return;
460 	}
461 
462 	/* Allocate DMA memory for firmware transfers. */
463 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
464 		aprint_error_dev(self,
465 		    "could not allocate memory for firmware\n");
466 		return;
467 	}
468 
469 	/* Allocate "Keep Warm" page. */
470 	if ((error = iwn_alloc_kw(sc)) != 0) {
471 		aprint_error_dev(self, "could not allocate keep warm page\n");
472 		goto fail1;
473 	}
474 
475 	/* Allocate ICT table for 5000 Series. */
476 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
477 	    (error = iwn_alloc_ict(sc)) != 0) {
478 		aprint_error_dev(self, "could not allocate ICT table\n");
479 		goto fail2;
480 	}
481 
482 	/* Allocate TX scheduler "rings". */
483 	if ((error = iwn_alloc_sched(sc)) != 0) {
484 		aprint_error_dev(self,
485 		    "could not allocate TX scheduler rings\n");
486 		goto fail3;
487 	}
488 
489 #ifdef IWN_USE_RBUF
490 	/* Allocate RX buffers. */
491 	if ((error = iwn_alloc_rpool(sc)) != 0) {
492 		aprint_error_dev(self, "could not allocate RX buffers\n");
493 		goto fail3;
494 	}
495 #endif
496 
497 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
498 	for (i = 0; i < sc->ntxqs; i++) {
499 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
500 			aprint_error_dev(self,
501 			    "could not allocate TX ring %d\n", i);
502 			goto fail4;
503 		}
504 	}
505 
506 	/* Allocate RX ring. */
507 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
508 		aprint_error_dev(self, "could not allocate RX ring\n");
509 		goto fail4;
510 	}
511 
512 	/* Clear pending interrupts. */
513 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
514 
515 	/* Count the number of available chains. */
516 	sc->ntxchains =
517 	    ((sc->txchainmask >> 2) & 1) +
518 	    ((sc->txchainmask >> 1) & 1) +
519 	    ((sc->txchainmask >> 0) & 1);
520 	sc->nrxchains =
521 	    ((sc->rxchainmask >> 2) & 1) +
522 	    ((sc->rxchainmask >> 1) & 1) +
523 	    ((sc->rxchainmask >> 0) & 1);
524 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
525 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
526 	    ether_sprintf(ic->ic_myaddr));
527 
528 	ic->ic_ifp = ifp;
529 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
530 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
531 	ic->ic_state = IEEE80211_S_INIT;
532 
533 	/* Set device capabilities. */
534 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
535 	 * and IEEE80211_C_PMGT too. */
536 	ic->ic_caps =
537 	    IEEE80211_C_IBSS |		/* IBSS mode support */
538 	    IEEE80211_C_WPA |		/* 802.11i */
539 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
540 	    IEEE80211_C_TXPMGT |	/* tx power management */
541 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
542 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
543 	    IEEE80211_C_WME;		/* 802.11e */
544 
545 #ifndef IEEE80211_NO_HT
546 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
547 		/* Set HT capabilities. */
548 		ic->ic_htcaps =
549 #if IWN_RBUF_SIZE == 8192
550 		    IEEE80211_HTCAP_AMSDU7935 |
551 #endif
552 		    IEEE80211_HTCAP_CBW20_40 |
553 		    IEEE80211_HTCAP_SGI20 |
554 		    IEEE80211_HTCAP_SGI40;
555 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
556 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
557 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
558 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
559 		else
560 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
561 	}
562 #endif	/* !IEEE80211_NO_HT */
563 
564 	/* Set supported legacy rates. */
565 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
566 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
567 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
568 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
569 	}
570 #ifndef IEEE80211_NO_HT
571 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
572 		/* Set supported HT rates. */
573 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
574 		if (sc->nrxchains > 1)
575 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
576 		if (sc->nrxchains > 2)
577 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
578 	}
579 #endif
580 
581 	/* IBSS channel undefined for now. */
582 	ic->ic_ibss_chan = &ic->ic_channels[0];
583 
584 	ifp->if_softc = sc;
585 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
586 	ifp->if_init = iwn_init;
587 	ifp->if_ioctl = iwn_ioctl;
588 	ifp->if_start = iwn_start;
589 	ifp->if_stop = iwn_stop;
590 	ifp->if_watchdog = iwn_watchdog;
591 	IFQ_SET_READY(&ifp->if_snd);
592 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
593 
594 	if_attach(ifp);
595 	ieee80211_ifattach(ic);
596 	ic->ic_node_alloc = iwn_node_alloc;
597 	ic->ic_newassoc = iwn_newassoc;
598 #ifdef IWN_HWCRYPTO
599 	ic->ic_crypto.cs_key_set = iwn_set_key;
600 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
601 #endif
602 	ic->ic_wme.wme_update = iwn_wme_update;
603 #ifndef IEEE80211_NO_HT
604 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
605 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
606 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
607 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
608 #endif
609 
610 	/* Override 802.11 state transition machine. */
611 	sc->sc_newstate = ic->ic_newstate;
612 	ic->ic_newstate = iwn_newstate;
613 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
614 
615 	sc->amrr.amrr_min_success_threshold =  1;
616 	sc->amrr.amrr_max_success_threshold = 15;
617 
618 	iwn_radiotap_attach(sc);
619 
620 	/*
621 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
622 	 * callout_init and callout_setfunc, above.
623 	*/
624 
625 	if (pmf_device_register(self, NULL, iwn_resume))
626 		pmf_class_network_register(self, ifp);
627 	else
628 		aprint_error_dev(self, "couldn't establish power handler\n");
629 
630 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
631 	ieee80211_announce(ic);
632 
633 	return;
634 
635 	/* Free allocated memory if something failed during attachment. */
636 fail4:	while (--i >= 0)
637 		iwn_free_tx_ring(sc, &sc->txq[i]);
638 #ifdef IWN_USE_RBUF
639 	iwn_free_rpool(sc);
640 #endif
641 	iwn_free_sched(sc);
642 fail3:	if (sc->ict != NULL)
643 		iwn_free_ict(sc);
644 fail2:	iwn_free_kw(sc);
645 fail1:	iwn_free_fwmem(sc);
646 }
647 
648 int
649 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
650 {
651 	struct iwn_ops *ops = &sc->ops;
652 
653 	ops->load_firmware = iwn4965_load_firmware;
654 	ops->read_eeprom = iwn4965_read_eeprom;
655 	ops->post_alive = iwn4965_post_alive;
656 	ops->nic_config = iwn4965_nic_config;
657 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
658 	ops->update_sched = iwn4965_update_sched;
659 	ops->get_temperature = iwn4965_get_temperature;
660 	ops->get_rssi = iwn4965_get_rssi;
661 	ops->set_txpower = iwn4965_set_txpower;
662 	ops->init_gains = iwn4965_init_gains;
663 	ops->set_gains = iwn4965_set_gains;
664 	ops->add_node = iwn4965_add_node;
665 	ops->tx_done = iwn4965_tx_done;
666 #ifndef IEEE80211_NO_HT
667 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
668 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
669 #endif
670 	sc->ntxqs = IWN4965_NTXQUEUES;
671 	sc->ndmachnls = IWN4965_NDMACHNLS;
672 	sc->broadcast_id = IWN4965_ID_BROADCAST;
673 	sc->rxonsz = IWN4965_RXONSZ;
674 	sc->schedsz = IWN4965_SCHEDSZ;
675 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
676 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
677 	sc->fwsz = IWN4965_FWSZ;
678 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
679 	sc->limits = &iwn4965_sensitivity_limits;
680 	sc->fwname = "iwlwifi-4965-2.ucode";
681 	/* Override chains masks, ROM is known to be broken. */
682 	sc->txchainmask = IWN_ANT_AB;
683 	sc->rxchainmask = IWN_ANT_ABC;
684 
685 	return 0;
686 }
687 
688 int
689 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
690 {
691 	struct iwn_ops *ops = &sc->ops;
692 
693 	ops->load_firmware = iwn5000_load_firmware;
694 	ops->read_eeprom = iwn5000_read_eeprom;
695 	ops->post_alive = iwn5000_post_alive;
696 	ops->nic_config = iwn5000_nic_config;
697 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
698 	ops->update_sched = iwn5000_update_sched;
699 	ops->get_temperature = iwn5000_get_temperature;
700 	ops->get_rssi = iwn5000_get_rssi;
701 	ops->set_txpower = iwn5000_set_txpower;
702 	ops->init_gains = iwn5000_init_gains;
703 	ops->set_gains = iwn5000_set_gains;
704 	ops->add_node = iwn5000_add_node;
705 	ops->tx_done = iwn5000_tx_done;
706 #ifndef IEEE80211_NO_HT
707 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
708 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
709 #endif
710 	sc->ntxqs = IWN5000_NTXQUEUES;
711 	sc->ndmachnls = IWN5000_NDMACHNLS;
712 	sc->broadcast_id = IWN5000_ID_BROADCAST;
713 	sc->rxonsz = IWN5000_RXONSZ;
714 	sc->schedsz = IWN5000_SCHEDSZ;
715 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
716 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
717 	sc->fwsz = IWN5000_FWSZ;
718 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
719 
720 	switch (sc->hw_type) {
721 	case IWN_HW_REV_TYPE_5100:
722 		sc->limits = &iwn5000_sensitivity_limits;
723 		sc->fwname = "iwlwifi-5000-2.ucode";
724 		/* Override chains masks, ROM is known to be broken. */
725 		sc->txchainmask = IWN_ANT_B;
726 		sc->rxchainmask = IWN_ANT_AB;
727 		break;
728 	case IWN_HW_REV_TYPE_5150:
729 		sc->limits = &iwn5150_sensitivity_limits;
730 		sc->fwname = "iwlwifi-5150-2.ucode";
731 		break;
732 	case IWN_HW_REV_TYPE_5300:
733 	case IWN_HW_REV_TYPE_5350:
734 		sc->limits = &iwn5000_sensitivity_limits;
735 		sc->fwname = "iwlwifi-5000-2.ucode";
736 		break;
737 	case IWN_HW_REV_TYPE_1000:
738 		sc->limits = &iwn1000_sensitivity_limits;
739 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
740 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
741 			sc->fwname = "iwlwifi-100-5.ucode";
742 		else
743 			sc->fwname = "iwlwifi-1000-3.ucode";
744 		break;
745 	case IWN_HW_REV_TYPE_6000:
746 		sc->limits = &iwn6000_sensitivity_limits;
747 		sc->fwname = "iwlwifi-6000-4.ucode";
748 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
749 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
750 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
751 			/* Override chains masks, ROM is known to be broken. */
752 			sc->txchainmask = IWN_ANT_BC;
753 			sc->rxchainmask = IWN_ANT_BC;
754 		}
755 		break;
756 	case IWN_HW_REV_TYPE_6050:
757 		sc->limits = &iwn6000_sensitivity_limits;
758 		sc->fwname = "iwlwifi-6050-5.ucode";
759 		break;
760 	case IWN_HW_REV_TYPE_6005:
761 		sc->limits = &iwn6000_sensitivity_limits;
762 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
763 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
764 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
765 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
766 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
767 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
768 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
769 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
770 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
771 		}
772 		else
773 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
774 		break;
775 	case IWN_HW_REV_TYPE_2030:
776 		sc->limits = &iwn2000_sensitivity_limits;
777 		sc->fwname = "iwlwifi-2030-6.ucode";
778 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
779 		break;
780 	case IWN_HW_REV_TYPE_2000:
781 		sc->limits = &iwn2000_sensitivity_limits;
782 		sc->fwname = "iwlwifi-2000-6.ucode";
783 		break;
784 	case IWN_HW_REV_TYPE_135:
785 		sc->limits = &iwn2000_sensitivity_limits;
786 		sc->fwname = "iwlwifi-135-6.ucode";
787 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
788 		break;
789 	case IWN_HW_REV_TYPE_105:
790 		sc->limits = &iwn2000_sensitivity_limits;
791 		sc->fwname = "iwlwifi-105-6.ucode";
792 		break;
793 	default:
794 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
795 		return ENOTSUP;
796 	}
797 	return 0;
798 }
799 
800 /*
801  * Attach the interface to 802.11 radiotap.
802  */
803 static void
804 iwn_radiotap_attach(struct iwn_softc *sc)
805 {
806 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
807 
808 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
809 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
810 	    &sc->sc_drvbpf);
811 
812 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
813 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
814 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
815 
816 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
817 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
818 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
819 }
820 
821 static int
822 iwn_detach(device_t self, int flags __unused)
823 {
824 	struct iwn_softc *sc = device_private(self);
825 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
826 	int qid;
827 
828 	callout_stop(&sc->calib_to);
829 
830 	/* Uninstall interrupt handler. */
831 	if (sc->sc_ih != NULL)
832 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
833 
834 	/* Free DMA resources. */
835 	iwn_free_rx_ring(sc, &sc->rxq);
836 	for (qid = 0; qid < sc->ntxqs; qid++)
837 		iwn_free_tx_ring(sc, &sc->txq[qid]);
838 #ifdef IWN_USE_RBUF
839 	iwn_free_rpool(sc);
840 #endif
841 	iwn_free_sched(sc);
842 	iwn_free_kw(sc);
843 	if (sc->ict != NULL)
844 		iwn_free_ict(sc);
845 	iwn_free_fwmem(sc);
846 
847 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
848 
849 	ieee80211_ifdetach(&sc->sc_ic);
850 	if_detach(ifp);
851 
852 	return 0;
853 }
854 
855 #if 0
856 /*
857  * XXX Investigate if clearing the PCI retry timeout could eliminate
858  * the repeated scan calls.  Also the calls to if_init and if_start
859  * are similar to the effect of adding the call to ifioctl_common .
860  */
861 static void
862 iwn_power(int why, void *arg)
863 {
864 	struct iwn_softc *sc = arg;
865 	struct ifnet *ifp;
866 	pcireg_t reg;
867 	int s;
868 
869 	if (why != PWR_RESUME)
870 		return;
871 
872 	/* Clear device-specific "PCI retry timeout" register (41h). */
873 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
874 	if (reg & 0xff00)
875 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
876 
877 	s = splnet();
878 	ifp = &sc->sc_ic.ic_if;
879 	if (ifp->if_flags & IFF_UP) {
880 		ifp->if_init(ifp);
881 		if (ifp->if_flags & IFF_RUNNING)
882 			ifp->if_start(ifp);
883 	}
884 	splx(s);
885 }
886 #endif
887 
888 static bool
889 iwn_resume(device_t dv, const pmf_qual_t *qual)
890 {
891 	return true;
892 }
893 
894 static int
895 iwn_nic_lock(struct iwn_softc *sc)
896 {
897 	int ntries;
898 
899 	/* Request exclusive access to NIC. */
900 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
901 
902 	/* Spin until we actually get the lock. */
903 	for (ntries = 0; ntries < 1000; ntries++) {
904 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
905 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
906 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
907 			return 0;
908 		DELAY(10);
909 	}
910 	return ETIMEDOUT;
911 }
912 
913 static __inline void
914 iwn_nic_unlock(struct iwn_softc *sc)
915 {
916 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
917 }
918 
919 static __inline uint32_t
920 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
921 {
922 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
923 	IWN_BARRIER_READ_WRITE(sc);
924 	return IWN_READ(sc, IWN_PRPH_RDATA);
925 }
926 
927 static __inline void
928 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
929 {
930 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
931 	IWN_BARRIER_WRITE(sc);
932 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
933 }
934 
935 static __inline void
936 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
937 {
938 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
939 }
940 
941 static __inline void
942 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
943 {
944 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
945 }
946 
947 static __inline void
948 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
949     const uint32_t *data, int count)
950 {
951 	for (; count > 0; count--, data++, addr += 4)
952 		iwn_prph_write(sc, addr, *data);
953 }
954 
955 static __inline uint32_t
956 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
957 {
958 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
959 	IWN_BARRIER_READ_WRITE(sc);
960 	return IWN_READ(sc, IWN_MEM_RDATA);
961 }
962 
963 static __inline void
964 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
965 {
966 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
967 	IWN_BARRIER_WRITE(sc);
968 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
969 }
970 
971 #ifndef IEEE80211_NO_HT
972 static __inline void
973 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
974 {
975 	uint32_t tmp;
976 
977 	tmp = iwn_mem_read(sc, addr & ~3);
978 	if (addr & 3)
979 		tmp = (tmp & 0x0000ffff) | data << 16;
980 	else
981 		tmp = (tmp & 0xffff0000) | data;
982 	iwn_mem_write(sc, addr & ~3, tmp);
983 }
984 #endif
985 
986 static __inline void
987 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
988     int count)
989 {
990 	for (; count > 0; count--, addr += 4)
991 		*data++ = iwn_mem_read(sc, addr);
992 }
993 
994 static __inline void
995 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
996     int count)
997 {
998 	for (; count > 0; count--, addr += 4)
999 		iwn_mem_write(sc, addr, val);
1000 }
1001 
1002 static int
1003 iwn_eeprom_lock(struct iwn_softc *sc)
1004 {
1005 	int i, ntries;
1006 
1007 	for (i = 0; i < 100; i++) {
1008 		/* Request exclusive access to EEPROM. */
1009 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1010 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1011 
1012 		/* Spin until we actually get the lock. */
1013 		for (ntries = 0; ntries < 100; ntries++) {
1014 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1015 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1016 				return 0;
1017 			DELAY(10);
1018 		}
1019 	}
1020 	return ETIMEDOUT;
1021 }
1022 
1023 static __inline void
1024 iwn_eeprom_unlock(struct iwn_softc *sc)
1025 {
1026 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1027 }
1028 
1029 /*
1030  * Initialize access by host to One Time Programmable ROM.
1031  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1032  */
1033 static int
1034 iwn_init_otprom(struct iwn_softc *sc)
1035 {
1036 	uint16_t prev = 0, base, next;
1037 	int count, error;
1038 
1039 	/* Wait for clock stabilization before accessing prph. */
1040 	if ((error = iwn_clock_wait(sc)) != 0)
1041 		return error;
1042 
1043 	if ((error = iwn_nic_lock(sc)) != 0)
1044 		return error;
1045 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1046 	DELAY(5);
1047 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1048 	iwn_nic_unlock(sc);
1049 
1050 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1051 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1052 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1053 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1054 	}
1055 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1056 	/* Clear ECC status. */
1057 	IWN_SETBITS(sc, IWN_OTP_GP,
1058 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1059 
1060 	/*
1061 	 * Find the block before last block (contains the EEPROM image)
1062 	 * for HW without OTP shadow RAM.
1063 	 */
1064 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1065 		/* Switch to absolute addressing mode. */
1066 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1067 		base = 0;
1068 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1069 			error = iwn_read_prom_data(sc, base, &next, 2);
1070 			if (error != 0)
1071 				return error;
1072 			if (next == 0)	/* End of linked-list. */
1073 				break;
1074 			prev = base;
1075 			base = le16toh(next);
1076 		}
1077 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1078 			return EIO;
1079 		/* Skip "next" word. */
1080 		sc->prom_base = prev + 1;
1081 	}
1082 	return 0;
1083 }
1084 
1085 static int
1086 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1087 {
1088 	uint8_t *out = data;
1089 	uint32_t val, tmp;
1090 	int ntries;
1091 
1092 	addr += sc->prom_base;
1093 	for (; count > 0; count -= 2, addr++) {
1094 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1095 		for (ntries = 0; ntries < 10; ntries++) {
1096 			val = IWN_READ(sc, IWN_EEPROM);
1097 			if (val & IWN_EEPROM_READ_VALID)
1098 				break;
1099 			DELAY(5);
1100 		}
1101 		if (ntries == 10) {
1102 			aprint_error_dev(sc->sc_dev,
1103 			    "timeout reading ROM at 0x%x\n", addr);
1104 			return ETIMEDOUT;
1105 		}
1106 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1107 			/* OTPROM, check for ECC errors. */
1108 			tmp = IWN_READ(sc, IWN_OTP_GP);
1109 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1110 				aprint_error_dev(sc->sc_dev,
1111 				    "OTPROM ECC error at 0x%x\n", addr);
1112 				return EIO;
1113 			}
1114 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1115 				/* Correctable ECC error, clear bit. */
1116 				IWN_SETBITS(sc, IWN_OTP_GP,
1117 				    IWN_OTP_GP_ECC_CORR_STTS);
1118 			}
1119 		}
1120 		*out++ = val >> 16;
1121 		if (count > 1)
1122 			*out++ = val >> 24;
1123 	}
1124 	return 0;
1125 }
1126 
1127 static int
1128 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1129     bus_size_t size, bus_size_t alignment)
1130 {
1131 	int nsegs, error;
1132 
1133 	dma->tag = tag;
1134 	dma->size = size;
1135 
1136 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1137 	    &dma->map);
1138 	if (error != 0)
1139 		goto fail;
1140 
1141 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1142 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1143 	if (error != 0)
1144 		goto fail;
1145 
1146 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1147 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1148 	if (error != 0)
1149 		goto fail;
1150 
1151 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1152 	    BUS_DMA_NOWAIT);
1153 	if (error != 0)
1154 		goto fail;
1155 
1156 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1157 	memset(dma->vaddr, 0, size);
1158 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1159 
1160 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1161 	if (kvap != NULL)
1162 		*kvap = dma->vaddr;
1163 
1164 	return 0;
1165 
1166 fail:	iwn_dma_contig_free(dma);
1167 	return error;
1168 }
1169 
1170 static void
1171 iwn_dma_contig_free(struct iwn_dma_info *dma)
1172 {
1173 	if (dma->map != NULL) {
1174 		if (dma->vaddr != NULL) {
1175 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1176 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1177 			bus_dmamap_unload(dma->tag, dma->map);
1178 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1179 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1180 			dma->vaddr = NULL;
1181 		}
1182 		bus_dmamap_destroy(dma->tag, dma->map);
1183 		dma->map = NULL;
1184 	}
1185 }
1186 
1187 static int
1188 iwn_alloc_sched(struct iwn_softc *sc)
1189 {
1190 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1191 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1192 	    (void **)&sc->sched, sc->schedsz, 1024);
1193 }
1194 
1195 static void
1196 iwn_free_sched(struct iwn_softc *sc)
1197 {
1198 	iwn_dma_contig_free(&sc->sched_dma);
1199 }
1200 
1201 static int
1202 iwn_alloc_kw(struct iwn_softc *sc)
1203 {
1204 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1205 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1206 	    4096);
1207 }
1208 
1209 static void
1210 iwn_free_kw(struct iwn_softc *sc)
1211 {
1212 	iwn_dma_contig_free(&sc->kw_dma);
1213 }
1214 
1215 static int
1216 iwn_alloc_ict(struct iwn_softc *sc)
1217 {
1218 	/* ICT table must be aligned on a 4KB boundary. */
1219 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1220 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1221 }
1222 
1223 static void
1224 iwn_free_ict(struct iwn_softc *sc)
1225 {
1226 	iwn_dma_contig_free(&sc->ict_dma);
1227 }
1228 
1229 static int
1230 iwn_alloc_fwmem(struct iwn_softc *sc)
1231 {
1232 	/* Must be aligned on a 16-byte boundary. */
1233 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1234 	    sc->fwsz, 16);
1235 }
1236 
1237 static void
1238 iwn_free_fwmem(struct iwn_softc *sc)
1239 {
1240 	iwn_dma_contig_free(&sc->fw_dma);
1241 }
1242 
1243 static int
1244 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1245 {
1246 	bus_size_t size;
1247 	int i, error;
1248 
1249 	ring->cur = 0;
1250 
1251 	/* Allocate RX descriptors (256-byte aligned). */
1252 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1253 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1254 	    (void **)&ring->desc, size, 256);
1255 	if (error != 0) {
1256 		aprint_error_dev(sc->sc_dev,
1257 		    "could not allocate RX ring DMA memory\n");
1258 		goto fail;
1259 	}
1260 
1261 	/* Allocate RX status area (16-byte aligned). */
1262 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1263 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1264 	if (error != 0) {
1265 		aprint_error_dev(sc->sc_dev,
1266 		    "could not allocate RX status DMA memory\n");
1267 		goto fail;
1268 	}
1269 
1270 	/*
1271 	 * Allocate and map RX buffers.
1272 	 */
1273 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1274 		struct iwn_rx_data *data = &ring->data[i];
1275 
1276 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1277 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1278 		    &data->map);
1279 		if (error != 0) {
1280 			aprint_error_dev(sc->sc_dev,
1281 			    "could not create RX buf DMA map\n");
1282 			goto fail;
1283 		}
1284 
1285 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1286 		if (data->m == NULL) {
1287 			aprint_error_dev(sc->sc_dev,
1288 			    "could not allocate RX mbuf\n");
1289 			error = ENOBUFS;
1290 			goto fail;
1291 		}
1292 
1293 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1294 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1295 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1296 		if (error != 0) {
1297 			aprint_error_dev(sc->sc_dev,
1298 			    "can't not map mbuf (error %d)\n", error);
1299 			goto fail;
1300 		}
1301 
1302 		/* Set physical address of RX buffer (256-byte aligned). */
1303 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1304 	}
1305 
1306 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1307 	    BUS_DMASYNC_PREWRITE);
1308 
1309 	return 0;
1310 
1311 fail:	iwn_free_rx_ring(sc, ring);
1312 	return error;
1313 }
1314 
1315 static void
1316 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1317 {
1318 	int ntries;
1319 
1320 	if (iwn_nic_lock(sc) == 0) {
1321 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1322 		for (ntries = 0; ntries < 1000; ntries++) {
1323 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1324 			    IWN_FH_RX_STATUS_IDLE)
1325 				break;
1326 			DELAY(10);
1327 		}
1328 		iwn_nic_unlock(sc);
1329 	}
1330 	ring->cur = 0;
1331 	sc->last_rx_valid = 0;
1332 }
1333 
1334 static void
1335 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1336 {
1337 	int i;
1338 
1339 	iwn_dma_contig_free(&ring->desc_dma);
1340 	iwn_dma_contig_free(&ring->stat_dma);
1341 
1342 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1343 		struct iwn_rx_data *data = &ring->data[i];
1344 
1345 		if (data->m != NULL) {
1346 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1347 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1348 			bus_dmamap_unload(sc->sc_dmat, data->map);
1349 			m_freem(data->m);
1350 		}
1351 		if (data->map != NULL)
1352 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1353 	}
1354 }
1355 
1356 static int
1357 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1358 {
1359 	bus_addr_t paddr;
1360 	bus_size_t size;
1361 	int i, error;
1362 
1363 	ring->qid = qid;
1364 	ring->queued = 0;
1365 	ring->cur = 0;
1366 
1367 	/* Allocate TX descriptors (256-byte aligned). */
1368 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1369 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1370 	    (void **)&ring->desc, size, 256);
1371 	if (error != 0) {
1372 		aprint_error_dev(sc->sc_dev,
1373 		    "could not allocate TX ring DMA memory\n");
1374 		goto fail;
1375 	}
1376 	/*
1377 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1378 	 * to allocate commands space for other rings.
1379 	 * XXX Do we really need to allocate descriptors for other rings?
1380 	 */
1381 	if (qid > 4)
1382 		return 0;
1383 
1384 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1385 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1386 	    (void **)&ring->cmd, size, 4);
1387 	if (error != 0) {
1388 		aprint_error_dev(sc->sc_dev,
1389 		    "could not allocate TX cmd DMA memory\n");
1390 		goto fail;
1391 	}
1392 
1393 	paddr = ring->cmd_dma.paddr;
1394 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1395 		struct iwn_tx_data *data = &ring->data[i];
1396 
1397 		data->cmd_paddr = paddr;
1398 		data->scratch_paddr = paddr + 12;
1399 		paddr += sizeof (struct iwn_tx_cmd);
1400 
1401 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1402 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1403 		    &data->map);
1404 		if (error != 0) {
1405 			aprint_error_dev(sc->sc_dev,
1406 			    "could not create TX buf DMA map\n");
1407 			goto fail;
1408 		}
1409 	}
1410 	return 0;
1411 
1412 fail:	iwn_free_tx_ring(sc, ring);
1413 	return error;
1414 }
1415 
1416 static void
1417 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1418 {
1419 	int i;
1420 
1421 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1422 		struct iwn_tx_data *data = &ring->data[i];
1423 
1424 		if (data->m != NULL) {
1425 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1426 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1427 			bus_dmamap_unload(sc->sc_dmat, data->map);
1428 			m_freem(data->m);
1429 			data->m = NULL;
1430 		}
1431 	}
1432 	/* Clear TX descriptors. */
1433 	memset(ring->desc, 0, ring->desc_dma.size);
1434 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1435 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1436 	sc->qfullmsk &= ~(1 << ring->qid);
1437 	ring->queued = 0;
1438 	ring->cur = 0;
1439 }
1440 
1441 static void
1442 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1443 {
1444 	int i;
1445 
1446 	iwn_dma_contig_free(&ring->desc_dma);
1447 	iwn_dma_contig_free(&ring->cmd_dma);
1448 
1449 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1450 		struct iwn_tx_data *data = &ring->data[i];
1451 
1452 		if (data->m != NULL) {
1453 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1454 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1455 			bus_dmamap_unload(sc->sc_dmat, data->map);
1456 			m_freem(data->m);
1457 		}
1458 		if (data->map != NULL)
1459 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1460 	}
1461 }
1462 
1463 static void
1464 iwn5000_ict_reset(struct iwn_softc *sc)
1465 {
1466 	/* Disable interrupts. */
1467 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1468 
1469 	/* Reset ICT table. */
1470 	memset(sc->ict, 0, IWN_ICT_SIZE);
1471 	sc->ict_cur = 0;
1472 
1473 	/* Set physical address of ICT table (4KB aligned). */
1474 	DPRINTF(("enabling ICT\n"));
1475 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1476 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1477 
1478 	/* Enable periodic RX interrupt. */
1479 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1480 	/* Switch to ICT interrupt mode in driver. */
1481 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1482 
1483 	/* Re-enable interrupts. */
1484 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1485 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1486 }
1487 
1488 static int
1489 iwn_read_eeprom(struct iwn_softc *sc)
1490 {
1491 	struct iwn_ops *ops = &sc->ops;
1492 	struct ieee80211com *ic = &sc->sc_ic;
1493 	uint16_t val;
1494 	int error;
1495 
1496 	/* Check whether adapter has an EEPROM or an OTPROM. */
1497 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1498 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1499 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1500 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1501 	    "OTPROM" : "EEPROM"));
1502 
1503 	/* Adapter has to be powered on for EEPROM access to work. */
1504 	if ((error = iwn_apm_init(sc)) != 0) {
1505 		aprint_error_dev(sc->sc_dev,
1506 		    "could not power ON adapter\n");
1507 		return error;
1508 	}
1509 
1510 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1511 		aprint_error_dev(sc->sc_dev,
1512 		    "bad ROM signature\n");
1513 		return EIO;
1514 	}
1515 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1516 		aprint_error_dev(sc->sc_dev,
1517 		    "could not lock ROM (error=%d)\n", error);
1518 		return error;
1519 	}
1520 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1521 		if ((error = iwn_init_otprom(sc)) != 0) {
1522 			aprint_error_dev(sc->sc_dev,
1523 			    "could not initialize OTPROM\n");
1524 			return error;
1525 		}
1526 	}
1527 
1528 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1529 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1530 	/* Check if HT support is bonded out. */
1531 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1532 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1533 
1534 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1535 	sc->rfcfg = le16toh(val);
1536 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1537 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1538 	if (sc->txchainmask == 0)
1539 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1540 	if (sc->rxchainmask == 0)
1541 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1542 
1543 	/* Read MAC address. */
1544 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1545 
1546 	/* Read adapter-specific information from EEPROM. */
1547 	ops->read_eeprom(sc);
1548 
1549 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1550 
1551 	iwn_eeprom_unlock(sc);
1552 	return 0;
1553 }
1554 
1555 static void
1556 iwn4965_read_eeprom(struct iwn_softc *sc)
1557 {
1558 	uint32_t addr;
1559 	uint16_t val;
1560 	int i;
1561 
1562 	/* Read regulatory domain (4 ASCII characters). */
1563 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1564 
1565 	/* Read the list of authorized channels (20MHz ones only). */
1566 	for (i = 0; i < 5; i++) {
1567 		addr = iwn4965_regulatory_bands[i];
1568 		iwn_read_eeprom_channels(sc, i, addr);
1569 	}
1570 
1571 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1572 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1573 	sc->maxpwr2GHz = val & 0xff;
1574 	sc->maxpwr5GHz = val >> 8;
1575 	/* Check that EEPROM values are within valid range. */
1576 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1577 		sc->maxpwr5GHz = 38;
1578 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1579 		sc->maxpwr2GHz = 38;
1580 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1581 
1582 	/* Read samples for each TX power group. */
1583 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1584 	    sizeof sc->bands);
1585 
1586 	/* Read voltage at which samples were taken. */
1587 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1588 	sc->eeprom_voltage = (int16_t)le16toh(val);
1589 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1590 
1591 #ifdef IWN_DEBUG
1592 	/* Print samples. */
1593 	if (iwn_debug > 0) {
1594 		for (i = 0; i < IWN_NBANDS; i++)
1595 			iwn4965_print_power_group(sc, i);
1596 	}
1597 #endif
1598 }
1599 
1600 #ifdef IWN_DEBUG
1601 static void
1602 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1603 {
1604 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1605 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1606 	int j, c;
1607 
1608 	aprint_normal("===band %d===\n", i);
1609 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1610 	aprint_normal("chan1 num=%d\n", chans[0].num);
1611 	for (c = 0; c < 2; c++) {
1612 		for (j = 0; j < IWN_NSAMPLES; j++) {
1613 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1614 			    "power=%d pa_det=%d\n", c, j,
1615 			    chans[0].samples[c][j].temp,
1616 			    chans[0].samples[c][j].gain,
1617 			    chans[0].samples[c][j].power,
1618 			    chans[0].samples[c][j].pa_det);
1619 		}
1620 	}
1621 	aprint_normal("chan2 num=%d\n", chans[1].num);
1622 	for (c = 0; c < 2; c++) {
1623 		for (j = 0; j < IWN_NSAMPLES; j++) {
1624 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1625 			    "power=%d pa_det=%d\n", c, j,
1626 			    chans[1].samples[c][j].temp,
1627 			    chans[1].samples[c][j].gain,
1628 			    chans[1].samples[c][j].power,
1629 			    chans[1].samples[c][j].pa_det);
1630 		}
1631 	}
1632 }
1633 #endif
1634 
1635 static void
1636 iwn5000_read_eeprom(struct iwn_softc *sc)
1637 {
1638 	struct iwn5000_eeprom_calib_hdr hdr;
1639 	int32_t volt;
1640 	uint32_t base, addr;
1641 	uint16_t val;
1642 	int i;
1643 
1644 	/* Read regulatory domain (4 ASCII characters). */
1645 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1646 	base = le16toh(val);
1647 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1648 	    sc->eeprom_domain, 4);
1649 
1650 	/* Read the list of authorized channels (20MHz ones only). */
1651 	for (i = 0; i < 5; i++) {
1652 		addr = base + iwn5000_regulatory_bands[i];
1653 		iwn_read_eeprom_channels(sc, i, addr);
1654 	}
1655 
1656 	/* Read enhanced TX power information for 6000 Series. */
1657 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1658 		iwn_read_eeprom_enhinfo(sc);
1659 
1660 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1661 	base = le16toh(val);
1662 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1663 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1664 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1665 	sc->calib_ver = hdr.version;
1666 
1667 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1668 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1669 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
1670 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1671 		sc->eeprom_voltage = le16toh(hdr.volt);
1672 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1673 		sc->eeprom_temp = le16toh(val);
1674 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1675 		sc->eeprom_rawtemp = le16toh(val);
1676 	}
1677 
1678 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1679 		/* Compute temperature offset. */
1680 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1681 		sc->eeprom_temp = le16toh(val);
1682 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1683 		volt = le16toh(val);
1684 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1685 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1686 		    sc->eeprom_temp, volt, sc->temp_off));
1687 	} else {
1688 		/* Read crystal calibration. */
1689 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1690 		    &sc->eeprom_crystal, sizeof (uint32_t));
1691 		DPRINTF(("crystal calibration 0x%08x\n",
1692 		    le32toh(sc->eeprom_crystal)));
1693 	}
1694 }
1695 
1696 static void
1697 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1698 {
1699 	struct ieee80211com *ic = &sc->sc_ic;
1700 	const struct iwn_chan_band *band = &iwn_bands[n];
1701 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1702 	uint8_t chan;
1703 	int i;
1704 
1705 	iwn_read_prom_data(sc, addr, channels,
1706 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1707 
1708 	for (i = 0; i < band->nchan; i++) {
1709 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1710 			continue;
1711 
1712 		chan = band->chan[i];
1713 
1714 		if (n == 0) {	/* 2GHz band */
1715 			ic->ic_channels[chan].ic_freq =
1716 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1717 			ic->ic_channels[chan].ic_flags =
1718 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1719 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1720 
1721 		} else {	/* 5GHz band */
1722 			/*
1723 			 * Some adapters support channels 7, 8, 11 and 12
1724 			 * both in the 2GHz and 4.9GHz bands.
1725 			 * Because of limitations in our net80211 layer,
1726 			 * we don't support them in the 4.9GHz band.
1727 			 */
1728 			if (chan <= 14)
1729 				continue;
1730 
1731 			ic->ic_channels[chan].ic_freq =
1732 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1733 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1734 			/* We have at least one valid 5GHz channel. */
1735 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1736 		}
1737 
1738 		/* Is active scan allowed on this channel? */
1739 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1740 			ic->ic_channels[chan].ic_flags |=
1741 			    IEEE80211_CHAN_PASSIVE;
1742 		}
1743 
1744 		/* Save maximum allowed TX power for this channel. */
1745 		sc->maxpwr[chan] = channels[i].maxpwr;
1746 
1747 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1748 		    chan, channels[i].flags, sc->maxpwr[chan]));
1749 	}
1750 }
1751 
1752 static void
1753 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1754 {
1755 	struct iwn_eeprom_enhinfo enhinfo[35];
1756 	uint16_t val, base;
1757 	int8_t maxpwr;
1758 	int i;
1759 
1760 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1761 	base = le16toh(val);
1762 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1763 	    enhinfo, sizeof enhinfo);
1764 
1765 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1766 	for (i = 0; i < __arraycount(enhinfo); i++) {
1767 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1768 			continue;	/* Skip invalid entries. */
1769 
1770 		maxpwr = 0;
1771 		if (sc->txchainmask & IWN_ANT_A)
1772 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1773 		if (sc->txchainmask & IWN_ANT_B)
1774 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1775 		if (sc->txchainmask & IWN_ANT_C)
1776 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1777 		if (sc->ntxchains == 2)
1778 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1779 		else if (sc->ntxchains == 3)
1780 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1781 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1782 
1783 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1784 		sc->enh_maxpwr[i] = maxpwr;
1785 	}
1786 }
1787 
1788 static struct ieee80211_node *
1789 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1790 {
1791 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1792 }
1793 
1794 static void
1795 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1796 {
1797 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1798 	struct iwn_node *wn = (void *)ni;
1799 	uint8_t rate;
1800 	int ridx, i;
1801 
1802 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1803 	/* Start at lowest available bit-rate, AMRR will raise. */
1804 	ni->ni_txrate = 0;
1805 
1806 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1807 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1808 		/* Map 802.11 rate to HW rate index. */
1809 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1810 			if (iwn_rates[ridx].rate == rate)
1811 				break;
1812 		wn->ridx[i] = ridx;
1813 	}
1814 }
1815 
1816 static int
1817 iwn_media_change(struct ifnet *ifp)
1818 {
1819 	struct iwn_softc *sc = ifp->if_softc;
1820 	struct ieee80211com *ic = &sc->sc_ic;
1821 	uint8_t rate, ridx;
1822 	int error;
1823 
1824 	error = ieee80211_media_change(ifp);
1825 	if (error != ENETRESET)
1826 		return error;
1827 
1828 	if (ic->ic_fixed_rate != -1) {
1829 		rate = ic->ic_sup_rates[ic->ic_curmode].
1830 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1831 		/* Map 802.11 rate to HW rate index. */
1832 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1833 			if (iwn_rates[ridx].rate == rate)
1834 				break;
1835 		sc->fixed_ridx = ridx;
1836 	}
1837 
1838 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1839 	    (IFF_UP | IFF_RUNNING)) {
1840 		iwn_stop(ifp, 0);
1841 		error = iwn_init(ifp);
1842 	}
1843 	return error;
1844 }
1845 
1846 static int
1847 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1848 {
1849 	struct ifnet *ifp = ic->ic_ifp;
1850 	struct iwn_softc *sc = ifp->if_softc;
1851 	int error;
1852 
1853 	callout_stop(&sc->calib_to);
1854 
1855 	switch (nstate) {
1856 	case IEEE80211_S_SCAN:
1857 		/* XXX Do not abort a running scan. */
1858 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1859 			if (ic->ic_state != nstate)
1860 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
1861 				    "while scanning(%d) ignored\n", nstate,
1862 				    ic->ic_state);
1863 			break;
1864 		}
1865 
1866 		/* XXX Not sure if call and flags are needed. */
1867 		ieee80211_node_table_reset(&ic->ic_scan);
1868 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1869 		sc->sc_flags |= IWN_FLAG_SCANNING;
1870 
1871 		/* Make the link LED blink while we're scanning. */
1872 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1873 
1874 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1875 			aprint_error_dev(sc->sc_dev,
1876 			    "could not initiate scan\n");
1877 			return error;
1878 		}
1879 		ic->ic_state = nstate;
1880 		return 0;
1881 
1882 	case IEEE80211_S_ASSOC:
1883 		if (ic->ic_state != IEEE80211_S_RUN)
1884 			break;
1885 		/* FALLTHROUGH */
1886 	case IEEE80211_S_AUTH:
1887 		/* Reset state to handle reassociations correctly. */
1888 		sc->rxon.associd = 0;
1889 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1890 		sc->calib.state = IWN_CALIB_STATE_INIT;
1891 
1892 		if ((error = iwn_auth(sc)) != 0) {
1893 			aprint_error_dev(sc->sc_dev,
1894 			    "could not move to auth state\n");
1895 			return error;
1896 		}
1897 		break;
1898 
1899 	case IEEE80211_S_RUN:
1900 		if ((error = iwn_run(sc)) != 0) {
1901 			aprint_error_dev(sc->sc_dev,
1902 			    "could not move to run state\n");
1903 			return error;
1904 		}
1905 		break;
1906 
1907 	case IEEE80211_S_INIT:
1908 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1909 		sc->calib.state = IWN_CALIB_STATE_INIT;
1910 		break;
1911 	}
1912 
1913 	return sc->sc_newstate(ic, nstate, arg);
1914 }
1915 
1916 static void
1917 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1918 {
1919 	struct iwn_softc *sc = arg;
1920 	struct iwn_node *wn = (struct iwn_node *)ni;
1921 
1922 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1923 }
1924 
1925 static void
1926 iwn_calib_timeout(void *arg)
1927 {
1928 	struct iwn_softc *sc = arg;
1929 	struct ieee80211com *ic = &sc->sc_ic;
1930 	int s;
1931 
1932 	s = splnet();
1933 	if (ic->ic_fixed_rate == -1) {
1934 		if (ic->ic_opmode == IEEE80211_M_STA)
1935 			iwn_iter_func(sc, ic->ic_bss);
1936 		else
1937 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1938 	}
1939 	/* Force automatic TX power calibration every 60 secs. */
1940 	if (++sc->calib_cnt >= 120) {
1941 		uint32_t flags = 0;
1942 
1943 		DPRINTF(("sending request for statistics\n"));
1944 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1945 		    sizeof flags, 1);
1946 		sc->calib_cnt = 0;
1947 	}
1948 	splx(s);
1949 
1950 	/* Automatic rate control triggered every 500ms. */
1951 	callout_schedule(&sc->calib_to, hz/2);
1952 }
1953 
1954 /*
1955  * Process an RX_PHY firmware notification.  This is usually immediately
1956  * followed by an MPDU_RX_DONE notification.
1957  */
1958 static void
1959 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1960     struct iwn_rx_data *data)
1961 {
1962 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1963 
1964 	DPRINTFN(2, ("received PHY stats\n"));
1965 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1966 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1967 
1968 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1969 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1970 	sc->last_rx_valid = 1;
1971 }
1972 
1973 /*
1974  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1975  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1976  */
1977 static void
1978 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1979     struct iwn_rx_data *data)
1980 {
1981 	struct iwn_ops *ops = &sc->ops;
1982 	struct ieee80211com *ic = &sc->sc_ic;
1983 	struct ifnet *ifp = ic->ic_ifp;
1984 	struct iwn_rx_ring *ring = &sc->rxq;
1985 	struct ieee80211_frame *wh;
1986 	struct ieee80211_node *ni;
1987 	struct mbuf *m, *m1;
1988 	struct iwn_rx_stat *stat;
1989 	char	*head;
1990 	uint32_t flags;
1991 	int error, len, rssi;
1992 
1993 	if (desc->type == IWN_MPDU_RX_DONE) {
1994 		/* Check for prior RX_PHY notification. */
1995 		if (!sc->last_rx_valid) {
1996 			DPRINTF(("missing RX_PHY\n"));
1997 			return;
1998 		}
1999 		sc->last_rx_valid = 0;
2000 		stat = &sc->last_rx_stat;
2001 	} else
2002 		stat = (struct iwn_rx_stat *)(desc + 1);
2003 
2004 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2005 	    BUS_DMASYNC_POSTREAD);
2006 
2007 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2008 		aprint_error_dev(sc->sc_dev,
2009 		    "invalid RX statistic header\n");
2010 		return;
2011 	}
2012 	if (desc->type == IWN_MPDU_RX_DONE) {
2013 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2014 		head = (char *)(mpdu + 1);
2015 		len = le16toh(mpdu->len);
2016 	} else {
2017 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2018 		len = le16toh(stat->len);
2019 	}
2020 
2021 	flags = le32toh(*(uint32_t *)(head + len));
2022 
2023 	/* Discard frames with a bad FCS early. */
2024 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2025 		DPRINTFN(2, ("RX flags error %x\n", flags));
2026 		ifp->if_ierrors++;
2027 		return;
2028 	}
2029 	/* Discard frames that are too short. */
2030 	if (len < sizeof (*wh)) {
2031 		DPRINTF(("frame too short: %d\n", len));
2032 		ic->ic_stats.is_rx_tooshort++;
2033 		ifp->if_ierrors++;
2034 		return;
2035 	}
2036 
2037 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2038 	if (m1 == NULL) {
2039 		ic->ic_stats.is_rx_nobuf++;
2040 		ifp->if_ierrors++;
2041 		return;
2042 	}
2043 	bus_dmamap_unload(sc->sc_dmat, data->map);
2044 
2045 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2046 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2047 	if (error != 0) {
2048 		m_freem(m1);
2049 
2050 		/* Try to reload the old mbuf. */
2051 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2052 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2053 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2054 		if (error != 0) {
2055 			panic("%s: could not load old RX mbuf",
2056 			    device_xname(sc->sc_dev));
2057 		}
2058 		/* Physical address may have changed. */
2059 		ring->desc[ring->cur] =
2060 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2061 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2062 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2063 		    BUS_DMASYNC_PREWRITE);
2064 		ifp->if_ierrors++;
2065 		return;
2066 	}
2067 
2068 	m = data->m;
2069 	data->m = m1;
2070 	/* Update RX descriptor. */
2071 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2072 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2073 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2074 	    BUS_DMASYNC_PREWRITE);
2075 
2076 	/* Finalize mbuf. */
2077 	m->m_pkthdr.rcvif = ifp;
2078 	m->m_data = head;
2079 	m->m_pkthdr.len = m->m_len = len;
2080 
2081 	/* Grab a reference to the source node. */
2082 	wh = mtod(m, struct ieee80211_frame *);
2083 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2084 
2085 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2086 	/* NetBSD does decryption in ieee80211_input. */
2087 
2088 	rssi = ops->get_rssi(stat);
2089 
2090 	/* XXX Added for NetBSD: scans never stop without it */
2091 	if (ic->ic_state == IEEE80211_S_SCAN)
2092 		iwn_fix_channel(ic, m);
2093 
2094 	if (sc->sc_drvbpf != NULL) {
2095 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2096 
2097 		tap->wr_flags = 0;
2098 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2099 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2100 		tap->wr_chan_freq =
2101 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2102 		tap->wr_chan_flags =
2103 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2104 		tap->wr_dbm_antsignal = (int8_t)rssi;
2105 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2106 		tap->wr_tsft = stat->tstamp;
2107 		switch (stat->rate) {
2108 		/* CCK rates. */
2109 		case  10: tap->wr_rate =   2; break;
2110 		case  20: tap->wr_rate =   4; break;
2111 		case  55: tap->wr_rate =  11; break;
2112 		case 110: tap->wr_rate =  22; break;
2113 		/* OFDM rates. */
2114 		case 0xd: tap->wr_rate =  12; break;
2115 		case 0xf: tap->wr_rate =  18; break;
2116 		case 0x5: tap->wr_rate =  24; break;
2117 		case 0x7: tap->wr_rate =  36; break;
2118 		case 0x9: tap->wr_rate =  48; break;
2119 		case 0xb: tap->wr_rate =  72; break;
2120 		case 0x1: tap->wr_rate =  96; break;
2121 		case 0x3: tap->wr_rate = 108; break;
2122 		/* Unknown rate: should not happen. */
2123 		default:  tap->wr_rate =   0;
2124 		}
2125 
2126 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2127 	}
2128 
2129 	/* Send the frame to the 802.11 layer. */
2130 	ieee80211_input(ic, m, ni, rssi, 0);
2131 
2132 	/* Node is no longer needed. */
2133 	ieee80211_free_node(ni);
2134 }
2135 
2136 #ifndef IEEE80211_NO_HT
2137 /* Process an incoming Compressed BlockAck. */
2138 static void
2139 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2140     struct iwn_rx_data *data)
2141 {
2142 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2143 	struct iwn_tx_ring *txq;
2144 
2145 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2146 	    BUS_DMASYNC_POSTREAD);
2147 
2148 	txq = &sc->txq[le16toh(ba->qid)];
2149 	/* XXX TBD */
2150 }
2151 #endif
2152 
2153 /*
2154  * Process a CALIBRATION_RESULT notification sent by the initialization
2155  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2156  */
2157 static void
2158 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2159     struct iwn_rx_data *data)
2160 {
2161 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2162 	int len, idx = -1;
2163 
2164 	/* Runtime firmware should not send such a notification. */
2165 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2166 		return;
2167 
2168 	len = (le32toh(desc->len) & 0x3fff) - 4;
2169 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2170 	    BUS_DMASYNC_POSTREAD);
2171 
2172 	switch (calib->code) {
2173 	case IWN5000_PHY_CALIB_DC:
2174 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2175 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2176 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2177 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
2178 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2179 			idx = 0;
2180 		break;
2181 	case IWN5000_PHY_CALIB_LO:
2182 		idx = 1;
2183 		break;
2184 	case IWN5000_PHY_CALIB_TX_IQ:
2185 		idx = 2;
2186 		break;
2187 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2188 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2189 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2190 			idx = 3;
2191 		break;
2192 	case IWN5000_PHY_CALIB_BASE_BAND:
2193 		idx = 4;
2194 		break;
2195 	}
2196 	if (idx == -1)	/* Ignore other results. */
2197 		return;
2198 
2199 	/* Save calibration result. */
2200 	if (sc->calibcmd[idx].buf != NULL)
2201 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2202 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2203 	if (sc->calibcmd[idx].buf == NULL) {
2204 		DPRINTF(("not enough memory for calibration result %d\n",
2205 		    calib->code));
2206 		return;
2207 	}
2208 	DPRINTF(("saving calibration result code=%d len=%d\n",
2209 	    calib->code, len));
2210 	sc->calibcmd[idx].len = len;
2211 	memcpy(sc->calibcmd[idx].buf, calib, len);
2212 }
2213 
2214 /*
2215  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2216  * The latter is sent by the firmware after each received beacon.
2217  */
2218 static void
2219 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2220     struct iwn_rx_data *data)
2221 {
2222 	struct iwn_ops *ops = &sc->ops;
2223 	struct ieee80211com *ic = &sc->sc_ic;
2224 	struct iwn_calib_state *calib = &sc->calib;
2225 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2226 	int temp;
2227 
2228 	/* Ignore statistics received during a scan. */
2229 	if (ic->ic_state != IEEE80211_S_RUN)
2230 		return;
2231 
2232 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2233 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2234 
2235 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2236 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2237 
2238 	/* Test if temperature has changed. */
2239 	if (stats->general.temp != sc->rawtemp) {
2240 		/* Convert "raw" temperature to degC. */
2241 		sc->rawtemp = stats->general.temp;
2242 		temp = ops->get_temperature(sc);
2243 		DPRINTFN(2, ("temperature=%dC\n", temp));
2244 
2245 		/* Update TX power if need be (4965AGN only). */
2246 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2247 			iwn4965_power_calibration(sc, temp);
2248 	}
2249 
2250 	if (desc->type != IWN_BEACON_STATISTICS)
2251 		return;	/* Reply to a statistics request. */
2252 
2253 	sc->noise = iwn_get_noise(&stats->rx.general);
2254 
2255 	/* Test that RSSI and noise are present in stats report. */
2256 	if (le32toh(stats->rx.general.flags) != 1) {
2257 		DPRINTF(("received statistics without RSSI\n"));
2258 		return;
2259 	}
2260 
2261 	/*
2262 	 * XXX Differential gain calibration makes the 6005 firmware
2263 	 * crap out, so skip it for now.  This effectively disables
2264 	 * sensitivity tuning as well.
2265 	 */
2266 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2267 		return;
2268 
2269 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2270 		iwn_collect_noise(sc, &stats->rx.general);
2271 	else if (calib->state == IWN_CALIB_STATE_RUN)
2272 		iwn_tune_sensitivity(sc, &stats->rx);
2273 }
2274 
2275 /*
2276  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2277  * and 5000 adapters have different incompatible TX status formats.
2278  */
2279 static void
2280 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2281     struct iwn_rx_data *data)
2282 {
2283 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2284 
2285 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2286 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2287 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2288 }
2289 
2290 static void
2291 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2292     struct iwn_rx_data *data)
2293 {
2294 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2295 
2296 #ifdef notyet
2297 	/* Reset TX scheduler slot. */
2298 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2299 #endif
2300 
2301 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2302 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2303 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2304 }
2305 
2306 /*
2307  * Adapter-independent backend for TX_DONE firmware notifications.
2308  */
2309 static void
2310 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2311     uint8_t status)
2312 {
2313 	struct ieee80211com *ic = &sc->sc_ic;
2314 	struct ifnet *ifp = ic->ic_ifp;
2315 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2316 	struct iwn_tx_data *data = &ring->data[desc->idx];
2317 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2318 
2319 	/* Update rate control statistics. */
2320 	wn->amn.amn_txcnt++;
2321 	if (ackfailcnt > 0)
2322 		wn->amn.amn_retrycnt++;
2323 
2324 	if (status != 1 && status != 2)
2325 		ifp->if_oerrors++;
2326 	else
2327 		ifp->if_opackets++;
2328 
2329 	/* Unmap and free mbuf. */
2330 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2331 	    BUS_DMASYNC_POSTWRITE);
2332 	bus_dmamap_unload(sc->sc_dmat, data->map);
2333 	m_freem(data->m);
2334 	data->m = NULL;
2335 	ieee80211_free_node(data->ni);
2336 	data->ni = NULL;
2337 
2338 	sc->sc_tx_timer = 0;
2339 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2340 		sc->qfullmsk &= ~(1 << ring->qid);
2341 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2342 			ifp->if_flags &= ~IFF_OACTIVE;
2343 			(*ifp->if_start)(ifp);
2344 		}
2345 	}
2346 }
2347 
2348 /*
2349  * Process a "command done" firmware notification.  This is where we wakeup
2350  * processes waiting for a synchronous command completion.
2351  */
2352 static void
2353 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2354 {
2355 	struct iwn_tx_ring *ring = &sc->txq[4];
2356 	struct iwn_tx_data *data;
2357 
2358 	if ((desc->qid & 0xf) != 4)
2359 		return;	/* Not a command ack. */
2360 
2361 	data = &ring->data[desc->idx];
2362 
2363 	/* If the command was mapped in an mbuf, free it. */
2364 	if (data->m != NULL) {
2365 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2366 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2367 		bus_dmamap_unload(sc->sc_dmat, data->map);
2368 		m_freem(data->m);
2369 		data->m = NULL;
2370 	}
2371 	wakeup(&ring->desc[desc->idx]);
2372 }
2373 
2374 /*
2375  * Process an INT_FH_RX or INT_SW_RX interrupt.
2376  */
2377 static void
2378 iwn_notif_intr(struct iwn_softc *sc)
2379 {
2380 	struct iwn_ops *ops = &sc->ops;
2381 	struct ieee80211com *ic = &sc->sc_ic;
2382 	struct ifnet *ifp = ic->ic_ifp;
2383 	uint16_t hw;
2384 
2385 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2386 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2387 
2388 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2389 	while (sc->rxq.cur != hw) {
2390 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2391 		struct iwn_rx_desc *desc;
2392 
2393 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2394 		    BUS_DMASYNC_POSTREAD);
2395 		desc = mtod(data->m, struct iwn_rx_desc *);
2396 
2397 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2398 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2399 
2400 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2401 			iwn_cmd_done(sc, desc);
2402 
2403 		switch (desc->type) {
2404 		case IWN_RX_PHY:
2405 			iwn_rx_phy(sc, desc, data);
2406 			break;
2407 
2408 		case IWN_RX_DONE:		/* 4965AGN only. */
2409 		case IWN_MPDU_RX_DONE:
2410 			/* An 802.11 frame has been received. */
2411 			iwn_rx_done(sc, desc, data);
2412 			break;
2413 #ifndef IEEE80211_NO_HT
2414 		case IWN_RX_COMPRESSED_BA:
2415 			/* A Compressed BlockAck has been received. */
2416 			iwn_rx_compressed_ba(sc, desc, data);
2417 			break;
2418 #endif
2419 		case IWN_TX_DONE:
2420 			/* An 802.11 frame has been transmitted. */
2421 			ops->tx_done(sc, desc, data);
2422 			break;
2423 
2424 		case IWN_RX_STATISTICS:
2425 		case IWN_BEACON_STATISTICS:
2426 			iwn_rx_statistics(sc, desc, data);
2427 			break;
2428 
2429 		case IWN_BEACON_MISSED:
2430 		{
2431 			struct iwn_beacon_missed *miss =
2432 			    (struct iwn_beacon_missed *)(desc + 1);
2433 
2434 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2435 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2436 			/*
2437 			 * If more than 5 consecutive beacons are missed,
2438 			 * reinitialize the sensitivity state machine.
2439 			 */
2440 			DPRINTF(("beacons missed %d/%d\n",
2441 			    le32toh(miss->consecutive), le32toh(miss->total)));
2442 			if (ic->ic_state == IEEE80211_S_RUN &&
2443 			    le32toh(miss->consecutive) > 5)
2444 				(void)iwn_init_sensitivity(sc);
2445 			break;
2446 		}
2447 		case IWN_UC_READY:
2448 		{
2449 			struct iwn_ucode_info *uc =
2450 			    (struct iwn_ucode_info *)(desc + 1);
2451 
2452 			/* The microcontroller is ready. */
2453 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2454 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2455 			DPRINTF(("microcode alive notification version=%d.%d "
2456 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2457 			    uc->subtype, le32toh(uc->valid)));
2458 
2459 			if (le32toh(uc->valid) != 1) {
2460 				aprint_error_dev(sc->sc_dev,
2461 				    "microcontroller initialization "
2462 				    "failed\n");
2463 				break;
2464 			}
2465 			if (uc->subtype == IWN_UCODE_INIT) {
2466 				/* Save microcontroller report. */
2467 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2468 			}
2469 			/* Save the address of the error log in SRAM. */
2470 			sc->errptr = le32toh(uc->errptr);
2471 			break;
2472 		}
2473 		case IWN_STATE_CHANGED:
2474 		{
2475 			uint32_t *status = (uint32_t *)(desc + 1);
2476 
2477 			/* Enabled/disabled notification. */
2478 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2479 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2480 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2481 
2482 			if (le32toh(*status) & 1) {
2483 				/* The radio button has to be pushed. */
2484 				aprint_error_dev(sc->sc_dev,
2485 				    "Radio transmitter is off\n");
2486 				/* Turn the interface down. */
2487 				ifp->if_flags &= ~IFF_UP;
2488 				iwn_stop(ifp, 1);
2489 				return;	/* No further processing. */
2490 			}
2491 			break;
2492 		}
2493 		case IWN_START_SCAN:
2494 		{
2495 			struct iwn_start_scan *scan =
2496 			    (struct iwn_start_scan *)(desc + 1);
2497 
2498 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2499 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2500 			DPRINTFN(2, ("scanning channel %d status %x\n",
2501 			    scan->chan, le32toh(scan->status)));
2502 
2503 			/* Fix current channel. */
2504 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2505 			break;
2506 		}
2507 		case IWN_STOP_SCAN:
2508 		{
2509 			struct iwn_stop_scan *scan =
2510 			    (struct iwn_stop_scan *)(desc + 1);
2511 
2512 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2513 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2514 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2515 			    scan->nchan, scan->status, scan->chan));
2516 
2517 			if (scan->status == 1 && scan->chan <= 14 &&
2518 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2519 				/*
2520 				 * We just finished scanning 2GHz channels,
2521 				 * start scanning 5GHz ones.
2522 				 */
2523 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2524 					break;
2525 			}
2526 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2527 			ieee80211_end_scan(ic);
2528 			break;
2529 		}
2530 		case IWN5000_CALIBRATION_RESULT:
2531 			iwn5000_rx_calib_results(sc, desc, data);
2532 			break;
2533 
2534 		case IWN5000_CALIBRATION_DONE:
2535 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2536 			wakeup(sc);
2537 			break;
2538 		}
2539 
2540 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2541 	}
2542 
2543 	/* Tell the firmware what we have processed. */
2544 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2545 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2546 }
2547 
2548 /*
2549  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2550  * from power-down sleep mode.
2551  */
2552 static void
2553 iwn_wakeup_intr(struct iwn_softc *sc)
2554 {
2555 	int qid;
2556 
2557 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2558 
2559 	/* Wakeup RX and TX rings. */
2560 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2561 	for (qid = 0; qid < sc->ntxqs; qid++) {
2562 		struct iwn_tx_ring *ring = &sc->txq[qid];
2563 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2564 	}
2565 }
2566 
2567 /*
2568  * Dump the error log of the firmware when a firmware panic occurs.  Although
2569  * we can't debug the firmware because it is neither open source nor free, it
2570  * can help us to identify certain classes of problems.
2571  */
2572 static void
2573 iwn_fatal_intr(struct iwn_softc *sc)
2574 {
2575 	struct iwn_fw_dump dump;
2576 	int i;
2577 
2578 	/* Force a complete recalibration on next init. */
2579 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2580 
2581 	/* Check that the error log address is valid. */
2582 	if (sc->errptr < IWN_FW_DATA_BASE ||
2583 	    sc->errptr + sizeof (dump) >
2584 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2585 		aprint_error_dev(sc->sc_dev,
2586 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2587 		return;
2588 	}
2589 	if (iwn_nic_lock(sc) != 0) {
2590 		aprint_error_dev(sc->sc_dev,
2591 		    "could not read firmware error log\n");
2592 		return;
2593 	}
2594 	/* Read firmware error log from SRAM. */
2595 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2596 	    sizeof (dump) / sizeof (uint32_t));
2597 	iwn_nic_unlock(sc);
2598 
2599 	if (dump.valid == 0) {
2600 		aprint_error_dev(sc->sc_dev,
2601 		    "firmware error log is empty\n");
2602 		return;
2603 	}
2604 	aprint_error("firmware error log:\n");
2605 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2606 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2607 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2608 	    dump.id);
2609 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2610 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2611 	aprint_error("  error data      = 0x%08X%08X\n",
2612 	    dump.error_data[0], dump.error_data[1]);
2613 	aprint_error("  branch link     = 0x%08X%08X\n",
2614 	    dump.branch_link[0], dump.branch_link[1]);
2615 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2616 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2617 	aprint_error("  time            = %u\n", dump.time[0]);
2618 
2619 	/* Dump driver status (TX and RX rings) while we're here. */
2620 	aprint_error("driver status:\n");
2621 	for (i = 0; i < sc->ntxqs; i++) {
2622 		struct iwn_tx_ring *ring = &sc->txq[i];
2623 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2624 		    i, ring->qid, ring->cur, ring->queued);
2625 	}
2626 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2627 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2628 }
2629 
2630 static int
2631 iwn_intr(void *arg)
2632 {
2633 	struct iwn_softc *sc = arg;
2634 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2635 	uint32_t r1, r2, tmp;
2636 
2637 	/* Disable interrupts. */
2638 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2639 
2640 	/* Read interrupts from ICT (fast) or from registers (slow). */
2641 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2642 		tmp = 0;
2643 		while (sc->ict[sc->ict_cur] != 0) {
2644 			tmp |= sc->ict[sc->ict_cur];
2645 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2646 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2647 		}
2648 		tmp = le32toh(tmp);
2649 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2650 			tmp = 0;
2651 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2652 			tmp |= 0x8000;
2653 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2654 		r2 = 0;	/* Unused. */
2655 	} else {
2656 		r1 = IWN_READ(sc, IWN_INT);
2657 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2658 			return 0;	/* Hardware gone! */
2659 		r2 = IWN_READ(sc, IWN_FH_INT);
2660 	}
2661 	if (r1 == 0 && r2 == 0) {
2662 		if (ifp->if_flags & IFF_UP)
2663 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2664 		return 0;	/* Interrupt not for us. */
2665 	}
2666 
2667 	/* Acknowledge interrupts. */
2668 	IWN_WRITE(sc, IWN_INT, r1);
2669 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2670 		IWN_WRITE(sc, IWN_FH_INT, r2);
2671 
2672 	if (r1 & IWN_INT_RF_TOGGLED) {
2673 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2674 		aprint_error_dev(sc->sc_dev,
2675 		    "RF switch: radio %s\n",
2676 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2677 	}
2678 	if (r1 & IWN_INT_CT_REACHED) {
2679 		aprint_error_dev(sc->sc_dev,
2680 		    "critical temperature reached!\n");
2681 	}
2682 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2683 		aprint_error_dev(sc->sc_dev,
2684 		    "fatal firmware error\n");
2685 		/* Dump firmware error log and stop. */
2686 		iwn_fatal_intr(sc);
2687 		ifp->if_flags &= ~IFF_UP;
2688 		iwn_stop(ifp, 1);
2689 		return 1;
2690 	}
2691 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2692 	    (r2 & IWN_FH_INT_RX)) {
2693 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2694 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2695 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2696 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2697 			    IWN_INT_PERIODIC_DIS);
2698 			iwn_notif_intr(sc);
2699 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2700 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2701 				    IWN_INT_PERIODIC_ENA);
2702 			}
2703 		} else
2704 			iwn_notif_intr(sc);
2705 	}
2706 
2707 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2708 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2709 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2710 		wakeup(sc);	/* FH DMA transfer completed. */
2711 	}
2712 
2713 	if (r1 & IWN_INT_ALIVE)
2714 		wakeup(sc);	/* Firmware is alive. */
2715 
2716 	if (r1 & IWN_INT_WAKEUP)
2717 		iwn_wakeup_intr(sc);
2718 
2719 	/* Re-enable interrupts. */
2720 	if (ifp->if_flags & IFF_UP)
2721 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2722 
2723 	return 1;
2724 }
2725 
2726 /*
2727  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2728  * 5000 adapters use a slightly different format).
2729  */
2730 static void
2731 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2732     uint16_t len)
2733 {
2734 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2735 
2736 	*w = htole16(len + 8);
2737 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2738 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2739 	    sizeof (uint16_t),
2740 	    BUS_DMASYNC_PREWRITE);
2741 	if (idx < IWN_SCHED_WINSZ) {
2742 		*(w + IWN_TX_RING_COUNT) = *w;
2743 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2744 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2745 		    (char *)(void *)sc->sched_dma.vaddr,
2746 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2747 	}
2748 }
2749 
2750 static void
2751 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2752     uint16_t len)
2753 {
2754 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2755 
2756 	*w = htole16(id << 12 | (len + 8));
2757 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2758 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2759 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2760 	if (idx < IWN_SCHED_WINSZ) {
2761 		*(w + IWN_TX_RING_COUNT) = *w;
2762 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2763 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2764 		    (char *)(void *)sc->sched_dma.vaddr,
2765 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2766 	}
2767 }
2768 
2769 #ifdef notyet
2770 static void
2771 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2772 {
2773 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2774 
2775 	*w = (*w & htole16(0xf000)) | htole16(1);
2776 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2777 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2778 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2779 	if (idx < IWN_SCHED_WINSZ) {
2780 		*(w + IWN_TX_RING_COUNT) = *w;
2781 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2782 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2783 		    (char *)(void *)sc->sched_dma.vaddr,
2784 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2785 	}
2786 }
2787 #endif
2788 
2789 static int
2790 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2791 {
2792 	struct ieee80211com *ic = &sc->sc_ic;
2793 	struct iwn_node *wn = (void *)ni;
2794 	struct iwn_tx_ring *ring;
2795 	struct iwn_tx_desc *desc;
2796 	struct iwn_tx_data *data;
2797 	struct iwn_tx_cmd *cmd;
2798 	struct iwn_cmd_data *tx;
2799 	const struct iwn_rate *rinfo;
2800 	struct ieee80211_frame *wh;
2801 	struct ieee80211_key *k = NULL;
2802 	struct mbuf *m1;
2803 	uint32_t flags;
2804 	u_int hdrlen;
2805 	bus_dma_segment_t *seg;
2806 	uint8_t tid, ridx, txant, type;
2807 	int i, totlen, error, pad;
2808 
2809 	const struct chanAccParams *cap;
2810 	int noack;
2811 	int hdrlen2;
2812 
2813 	wh = mtod(m, struct ieee80211_frame *);
2814 	hdrlen = ieee80211_anyhdrsize(wh);
2815 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2816 
2817 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2818 	    sizeof (struct ieee80211_qosframe) :
2819 	    sizeof (struct ieee80211_frame);
2820 
2821 	if (hdrlen != hdrlen2)
2822 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2823 		hdrlen, hdrlen2);
2824 
2825 	/* XXX OpenBSD sets a different tid when using QOS */
2826 	tid = 0;
2827 	if (ieee80211_has_qos(wh)) {
2828 		cap = &ic->ic_wme.wme_chanParams;
2829 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2830 	}
2831 	else
2832 		noack = 0;
2833 
2834 	ring = &sc->txq[ac];
2835 	desc = &ring->desc[ring->cur];
2836 	data = &ring->data[ring->cur];
2837 
2838 	/* Choose a TX rate index. */
2839 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2840 	    type != IEEE80211_FC0_TYPE_DATA) {
2841 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2842 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2843 	} else if (ic->ic_fixed_rate != -1) {
2844 		ridx = sc->fixed_ridx;
2845 	} else
2846 		ridx = wn->ridx[ni->ni_txrate];
2847 	rinfo = &iwn_rates[ridx];
2848 
2849 	/* Encrypt the frame if need be. */
2850 	/*
2851 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2852 	 * in order to match old code and other drivers. Tests with
2853 	 * tcpdump indicates that the order is irrelevant, however,
2854 	 * as bpf produces unencrypted data for both ordering choices.
2855 	 */
2856 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2857 		k = ieee80211_crypto_encap(ic, ni, m);
2858 		if (k == NULL) {
2859 			m_freem(m);
2860 			return ENOBUFS;
2861 		}
2862 		/* Packet header may have moved, reset our local pointer. */
2863 		wh = mtod(m, struct ieee80211_frame *);
2864 	}
2865 	totlen = m->m_pkthdr.len;
2866 
2867 	if (sc->sc_drvbpf != NULL) {
2868 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2869 
2870 		tap->wt_flags = 0;
2871 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2872 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2873 		tap->wt_rate = rinfo->rate;
2874 		tap->wt_hwqueue = ac;
2875 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2876 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2877 
2878 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2879 	}
2880 
2881 	/* Prepare TX firmware command. */
2882 	cmd = &ring->cmd[ring->cur];
2883 	cmd->code = IWN_CMD_TX_DATA;
2884 	cmd->flags = 0;
2885 	cmd->qid = ring->qid;
2886 	cmd->idx = ring->cur;
2887 
2888 	tx = (struct iwn_cmd_data *)cmd->data;
2889 	/* NB: No need to clear tx, all fields are reinitialized here. */
2890 	tx->scratch = 0;	/* clear "scratch" area */
2891 
2892 	flags = 0;
2893 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2894 		/* Unicast frame, check if an ACK is expected. */
2895 		if (!noack)
2896 			flags |= IWN_TX_NEED_ACK;
2897 	}
2898 
2899 #ifdef notyet
2900 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2901 	if ((wh->i_fc[0] &
2902 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2903 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2904 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2905 #endif
2906 
2907 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2908 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2909 
2910 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2911 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2912 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2913 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2914 			flags |= IWN_TX_NEED_RTS;
2915 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2916 		    ridx >= IWN_RIDX_OFDM6) {
2917 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2918 				flags |= IWN_TX_NEED_CTS;
2919 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2920 				flags |= IWN_TX_NEED_RTS;
2921 		}
2922 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2923 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2924 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2925 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2926 				flags |= IWN_TX_NEED_PROTECTION;
2927 			} else
2928 				flags |= IWN_TX_FULL_TXOP;
2929 		}
2930 	}
2931 
2932 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2933 	    type != IEEE80211_FC0_TYPE_DATA)
2934 		tx->id = sc->broadcast_id;
2935 	else
2936 		tx->id = wn->id;
2937 
2938 	if (type == IEEE80211_FC0_TYPE_MGT) {
2939 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2940 
2941 #ifndef IEEE80211_STA_ONLY
2942 		/* Tell HW to set timestamp in probe responses. */
2943 		/* XXX NetBSD rev 1.11 added probe requests here but */
2944 		/* probe requests do not take timestamps (from Bergamini). */
2945 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2946 			flags |= IWN_TX_INSERT_TSTAMP;
2947 #endif
2948 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2949 		/* changes here. These are not needed (from Bergamini). */
2950 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2951 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2952 			tx->timeout = htole16(3);
2953 		else
2954 			tx->timeout = htole16(2);
2955 	} else
2956 		tx->timeout = htole16(0);
2957 
2958 	if (hdrlen & 3) {
2959 		/* First segment length must be a multiple of 4. */
2960 		flags |= IWN_TX_NEED_PADDING;
2961 		pad = 4 - (hdrlen & 3);
2962 	} else
2963 		pad = 0;
2964 
2965 	tx->len = htole16(totlen);
2966 	tx->tid = tid;
2967 	tx->rts_ntries = 60;
2968 	tx->data_ntries = 15;
2969 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2970 	tx->plcp = rinfo->plcp;
2971 	tx->rflags = rinfo->flags;
2972 	if (tx->id == sc->broadcast_id) {
2973 		/* Group or management frame. */
2974 		tx->linkq = 0;
2975 		/* XXX Alternate between antenna A and B? */
2976 		txant = IWN_LSB(sc->txchainmask);
2977 		tx->rflags |= IWN_RFLAG_ANT(txant);
2978 	} else {
2979 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2980 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2981 	}
2982 	/* Set physical address of "scratch area". */
2983 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2984 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2985 
2986 	/* Copy 802.11 header in TX command. */
2987 	/* XXX NetBSD changed this in rev 1.20 */
2988 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2989 
2990 	/* Trim 802.11 header. */
2991 	m_adj(m, hdrlen);
2992 	tx->security = 0;
2993 	tx->flags = htole32(flags);
2994 
2995 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2996 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2997 	if (error != 0) {
2998 		if (error != EFBIG) {
2999 			aprint_error_dev(sc->sc_dev,
3000 			    "can't map mbuf (error %d)\n", error);
3001 			m_freem(m);
3002 			return error;
3003 		}
3004 		/* Too many DMA segments, linearize mbuf. */
3005 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3006 		if (m1 == NULL) {
3007 			m_freem(m);
3008 			return ENOBUFS;
3009 		}
3010 		if (m->m_pkthdr.len > MHLEN) {
3011 			MCLGET(m1, M_DONTWAIT);
3012 			if (!(m1->m_flags & M_EXT)) {
3013 				m_freem(m);
3014 				m_freem(m1);
3015 				return ENOBUFS;
3016 			}
3017 		}
3018 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3019 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3020 		m_freem(m);
3021 		m = m1;
3022 
3023 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3024 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3025 		if (error != 0) {
3026 			aprint_error_dev(sc->sc_dev,
3027 			    "can't map mbuf (error %d)\n", error);
3028 			m_freem(m);
3029 			return error;
3030 		}
3031 	}
3032 
3033 	data->m = m;
3034 	data->ni = ni;
3035 
3036 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3037 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3038 
3039 	/* Fill TX descriptor. */
3040 	desc->nsegs = 1 + data->map->dm_nsegs;
3041 	/* First DMA segment is used by the TX command. */
3042 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3043 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3044 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3045 	/* Other DMA segments are for data payload. */
3046 	seg = data->map->dm_segs;
3047 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3048 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3049 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3050 		    seg->ds_len << 4);
3051 		seg++;
3052 	}
3053 
3054 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3055 	    BUS_DMASYNC_PREWRITE);
3056 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3057 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3058 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3059 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3060 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3061 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3062 
3063 #ifdef notyet
3064 	/* Update TX scheduler. */
3065 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3066 #endif
3067 
3068 	/* Kick TX ring. */
3069 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3070 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3071 
3072 	/* Mark TX ring as full if we reach a certain threshold. */
3073 	if (++ring->queued > IWN_TX_RING_HIMARK)
3074 		sc->qfullmsk |= 1 << ring->qid;
3075 
3076 	return 0;
3077 }
3078 
3079 static void
3080 iwn_start(struct ifnet *ifp)
3081 {
3082 	struct iwn_softc *sc = ifp->if_softc;
3083 	struct ieee80211com *ic = &sc->sc_ic;
3084 	struct ieee80211_node *ni;
3085 	struct ether_header *eh;
3086 	struct mbuf *m;
3087 	int ac;
3088 
3089 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3090 		return;
3091 
3092 	for (;;) {
3093 		if (sc->qfullmsk != 0) {
3094 			ifp->if_flags |= IFF_OACTIVE;
3095 			break;
3096 		}
3097 		/* Send pending management frames first. */
3098 		IF_DEQUEUE(&ic->ic_mgtq, m);
3099 		if (m != NULL) {
3100 			ni = (void *)m->m_pkthdr.rcvif;
3101 			ac = 0;
3102 			goto sendit;
3103 		}
3104 		if (ic->ic_state != IEEE80211_S_RUN)
3105 			break;
3106 
3107 		/* Encapsulate and send data frames. */
3108 		IFQ_DEQUEUE(&ifp->if_snd, m);
3109 		if (m == NULL)
3110 			break;
3111 		if (m->m_len < sizeof (*eh) &&
3112 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3113 			ifp->if_oerrors++;
3114 			continue;
3115 		}
3116 		eh = mtod(m, struct ether_header *);
3117 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3118 		if (ni == NULL) {
3119 			m_freem(m);
3120 			ifp->if_oerrors++;
3121 			continue;
3122 		}
3123 		/* classify mbuf so we can find which tx ring to use */
3124 		if (ieee80211_classify(ic, m, ni) != 0) {
3125 			m_freem(m);
3126 			ieee80211_free_node(ni);
3127 			ifp->if_oerrors++;
3128 			continue;
3129 		}
3130 
3131 		/* No QoS encapsulation for EAPOL frames. */
3132 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3133 		    M_WME_GETAC(m) : WME_AC_BE;
3134 
3135 		bpf_mtap(ifp, m);
3136 
3137 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3138 			ieee80211_free_node(ni);
3139 			ifp->if_oerrors++;
3140 			continue;
3141 		}
3142 sendit:
3143 		bpf_mtap3(ic->ic_rawbpf, m);
3144 
3145 		if (iwn_tx(sc, m, ni, ac) != 0) {
3146 			ieee80211_free_node(ni);
3147 			ifp->if_oerrors++;
3148 			continue;
3149 		}
3150 
3151 		sc->sc_tx_timer = 5;
3152 		ifp->if_timer = 1;
3153 	}
3154 }
3155 
3156 static void
3157 iwn_watchdog(struct ifnet *ifp)
3158 {
3159 	struct iwn_softc *sc = ifp->if_softc;
3160 
3161 	ifp->if_timer = 0;
3162 
3163 	if (sc->sc_tx_timer > 0) {
3164 		if (--sc->sc_tx_timer == 0) {
3165 			aprint_error_dev(sc->sc_dev,
3166 			    "device timeout\n");
3167 			ifp->if_flags &= ~IFF_UP;
3168 			iwn_stop(ifp, 1);
3169 			ifp->if_oerrors++;
3170 			return;
3171 		}
3172 		ifp->if_timer = 1;
3173 	}
3174 
3175 	ieee80211_watchdog(&sc->sc_ic);
3176 }
3177 
3178 static int
3179 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3180 {
3181 	struct iwn_softc *sc = ifp->if_softc;
3182 	struct ieee80211com *ic = &sc->sc_ic;
3183 	const struct sockaddr *sa;
3184 	int s, error = 0;
3185 
3186 	s = splnet();
3187 
3188 	switch (cmd) {
3189 	case SIOCSIFADDR:
3190 		ifp->if_flags |= IFF_UP;
3191 #ifdef INET
3192 		struct ifaddr *ifa = (struct ifaddr *)data;
3193 		if (ifa->ifa_addr->sa_family == AF_INET)
3194 			arp_ifinit(&ic->ic_ac, ifa);
3195 #endif
3196 		/* FALLTHROUGH */
3197 	case SIOCSIFFLAGS:
3198 		/* XXX Added as it is in every NetBSD driver */
3199 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3200 			break;
3201 		if (ifp->if_flags & IFF_UP) {
3202 			if (!(ifp->if_flags & IFF_RUNNING))
3203 				error = iwn_init(ifp);
3204 		} else {
3205 			if (ifp->if_flags & IFF_RUNNING)
3206 				iwn_stop(ifp, 1);
3207 		}
3208 		break;
3209 
3210 	case SIOCADDMULTI:
3211 	case SIOCDELMULTI:
3212 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3213 		error = (cmd == SIOCADDMULTI) ?
3214 		    ether_addmulti(sa, &sc->sc_ec) :
3215 		    ether_delmulti(sa, &sc->sc_ec);
3216 
3217 		if (error == ENETRESET)
3218 			error = 0;
3219 		break;
3220 
3221 	default:
3222 		error = ieee80211_ioctl(ic, cmd, data);
3223 	}
3224 
3225 	if (error == ENETRESET) {
3226 		error = 0;
3227 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3228 		    (IFF_UP | IFF_RUNNING)) {
3229 			iwn_stop(ifp, 0);
3230 			error = iwn_init(ifp);
3231 		}
3232 	}
3233 
3234 	splx(s);
3235 	return error;
3236 }
3237 
3238 /*
3239  * Send a command to the firmware.
3240  */
3241 static int
3242 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3243 {
3244 	struct iwn_tx_ring *ring = &sc->txq[4];
3245 	struct iwn_tx_desc *desc;
3246 	struct iwn_tx_data *data;
3247 	struct iwn_tx_cmd *cmd;
3248 	struct mbuf *m;
3249 	bus_addr_t paddr;
3250 	int totlen, error;
3251 
3252 	desc = &ring->desc[ring->cur];
3253 	data = &ring->data[ring->cur];
3254 	totlen = 4 + size;
3255 
3256 	if (size > sizeof cmd->data) {
3257 		/* Command is too large to fit in a descriptor. */
3258 		if (totlen > MCLBYTES)
3259 			return EINVAL;
3260 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3261 		if (m == NULL)
3262 			return ENOMEM;
3263 		if (totlen > MHLEN) {
3264 			MCLGET(m, M_DONTWAIT);
3265 			if (!(m->m_flags & M_EXT)) {
3266 				m_freem(m);
3267 				return ENOMEM;
3268 			}
3269 		}
3270 		cmd = mtod(m, struct iwn_tx_cmd *);
3271 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3272 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3273 		if (error != 0) {
3274 			m_freem(m);
3275 			return error;
3276 		}
3277 		data->m = m;
3278 		paddr = data->map->dm_segs[0].ds_addr;
3279 	} else {
3280 		cmd = &ring->cmd[ring->cur];
3281 		paddr = data->cmd_paddr;
3282 	}
3283 
3284 	cmd->code = code;
3285 	cmd->flags = 0;
3286 	cmd->qid = ring->qid;
3287 	cmd->idx = ring->cur;
3288 	memcpy(cmd->data, buf, size);
3289 
3290 	desc->nsegs = 1;
3291 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3292 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3293 
3294 	if (size > sizeof cmd->data) {
3295 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3296 		    BUS_DMASYNC_PREWRITE);
3297 	} else {
3298 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3299 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3300 		    totlen, BUS_DMASYNC_PREWRITE);
3301 	}
3302 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3303 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3304 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3305 
3306 #ifdef notyet
3307 	/* Update TX scheduler. */
3308 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3309 #endif
3310 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3311 
3312 	/* Kick command ring. */
3313 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3314 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3315 
3316 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3317 }
3318 
3319 static int
3320 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3321 {
3322 	struct iwn4965_node_info hnode;
3323 	char *src, *dst;
3324 
3325 	/*
3326 	 * We use the node structure for 5000 Series internally (it is
3327 	 * a superset of the one for 4965AGN). We thus copy the common
3328 	 * fields before sending the command.
3329 	 */
3330 	src = (char *)node;
3331 	dst = (char *)&hnode;
3332 	memcpy(dst, src, 48);
3333 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3334 	memcpy(dst + 48, src + 72, 20);
3335 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3336 }
3337 
3338 static int
3339 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3340 {
3341 	/* Direct mapping. */
3342 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3343 }
3344 
3345 static int
3346 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3347 {
3348 	struct iwn_node *wn = (void *)ni;
3349 	struct ieee80211_rateset *rs = &ni->ni_rates;
3350 	struct iwn_cmd_link_quality linkq;
3351 	const struct iwn_rate *rinfo;
3352 	uint8_t txant;
3353 	int i, txrate;
3354 
3355 	/* Use the first valid TX antenna. */
3356 	txant = IWN_LSB(sc->txchainmask);
3357 
3358 	memset(&linkq, 0, sizeof linkq);
3359 	linkq.id = wn->id;
3360 	linkq.antmsk_1stream = txant;
3361 	linkq.antmsk_2stream = IWN_ANT_AB;
3362 	linkq.ampdu_max = 31;
3363 	linkq.ampdu_threshold = 3;
3364 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3365 
3366 	/* Start at highest available bit-rate. */
3367 	txrate = rs->rs_nrates - 1;
3368 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3369 		rinfo = &iwn_rates[wn->ridx[txrate]];
3370 		linkq.retry[i].plcp = rinfo->plcp;
3371 		linkq.retry[i].rflags = rinfo->flags;
3372 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3373 		/* Next retry at immediate lower bit-rate. */
3374 		if (txrate > 0)
3375 			txrate--;
3376 	}
3377 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3378 }
3379 
3380 /*
3381  * Broadcast node is used to send group-addressed and management frames.
3382  */
3383 static int
3384 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3385 {
3386 	struct iwn_ops *ops = &sc->ops;
3387 	struct iwn_node_info node;
3388 	struct iwn_cmd_link_quality linkq;
3389 	const struct iwn_rate *rinfo;
3390 	uint8_t txant;
3391 	int i, error;
3392 
3393 	memset(&node, 0, sizeof node);
3394 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3395 	node.id = sc->broadcast_id;
3396 	DPRINTF(("adding broadcast node\n"));
3397 	if ((error = ops->add_node(sc, &node, async)) != 0)
3398 		return error;
3399 
3400 	/* Use the first valid TX antenna. */
3401 	txant = IWN_LSB(sc->txchainmask);
3402 
3403 	memset(&linkq, 0, sizeof linkq);
3404 	linkq.id = sc->broadcast_id;
3405 	linkq.antmsk_1stream = txant;
3406 	linkq.antmsk_2stream = IWN_ANT_AB;
3407 	linkq.ampdu_max = 64;
3408 	linkq.ampdu_threshold = 3;
3409 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3410 
3411 	/* Use lowest mandatory bit-rate. */
3412 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3413 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3414 	linkq.retry[0].plcp = rinfo->plcp;
3415 	linkq.retry[0].rflags = rinfo->flags;
3416 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3417 	/* Use same bit-rate for all TX retries. */
3418 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3419 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3420 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3421 	}
3422 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3423 }
3424 
3425 static void
3426 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3427 {
3428 	struct iwn_cmd_led led;
3429 
3430 	/* Clear microcode LED ownership. */
3431 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3432 
3433 	led.which = which;
3434 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3435 	led.off = off;
3436 	led.on = on;
3437 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3438 }
3439 
3440 /*
3441  * Set the critical temperature at which the firmware will stop the radio
3442  * and notify us.
3443  */
3444 static int
3445 iwn_set_critical_temp(struct iwn_softc *sc)
3446 {
3447 	struct iwn_critical_temp crit;
3448 	int32_t temp;
3449 
3450 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3451 
3452 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3453 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3454 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3455 		temp = IWN_CTOK(110);
3456 	else
3457 		temp = 110;
3458 	memset(&crit, 0, sizeof crit);
3459 	crit.tempR = htole32(temp);
3460 	DPRINTF(("setting critical temperature to %d\n", temp));
3461 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3462 }
3463 
3464 static int
3465 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3466 {
3467 	struct iwn_cmd_timing cmd;
3468 	uint64_t val, mod;
3469 
3470 	memset(&cmd, 0, sizeof cmd);
3471 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3472 	cmd.bintval = htole16(ni->ni_intval);
3473 	cmd.lintval = htole16(10);
3474 
3475 	/* Compute remaining time until next beacon. */
3476 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3477 	mod = le64toh(cmd.tstamp) % val;
3478 	cmd.binitval = htole32((uint32_t)(val - mod));
3479 
3480 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3481 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3482 
3483 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3484 }
3485 
3486 static void
3487 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3488 {
3489 	/* Adjust TX power if need be (delta >= 3 degC). */
3490 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3491 	if (abs(temp - sc->temp) >= 3) {
3492 		/* Record temperature of last calibration. */
3493 		sc->temp = temp;
3494 		(void)iwn4965_set_txpower(sc, 1);
3495 	}
3496 }
3497 
3498 /*
3499  * Set TX power for current channel (each rate has its own power settings).
3500  * This function takes into account the regulatory information from EEPROM,
3501  * the current temperature and the current voltage.
3502  */
3503 static int
3504 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3505 {
3506 /* Fixed-point arithmetic division using a n-bit fractional part. */
3507 #define fdivround(a, b, n)	\
3508 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3509 /* Linear interpolation. */
3510 #define interpolate(x, x1, y1, x2, y2, n)	\
3511 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3512 
3513 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3514 	struct ieee80211com *ic = &sc->sc_ic;
3515 	struct iwn_ucode_info *uc = &sc->ucode_info;
3516 	struct ieee80211_channel *ch;
3517 	struct iwn4965_cmd_txpower cmd;
3518 	struct iwn4965_eeprom_chan_samples *chans;
3519 	const uint8_t *rf_gain, *dsp_gain;
3520 	int32_t vdiff, tdiff;
3521 	int i, c, grp, maxpwr;
3522 	uint8_t chan;
3523 
3524 	/* Retrieve current channel from last RXON. */
3525 	chan = sc->rxon.chan;
3526 	DPRINTF(("setting TX power for channel %d\n", chan));
3527 	ch = &ic->ic_channels[chan];
3528 
3529 	memset(&cmd, 0, sizeof cmd);
3530 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3531 	cmd.chan = chan;
3532 
3533 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3534 		maxpwr   = sc->maxpwr5GHz;
3535 		rf_gain  = iwn4965_rf_gain_5ghz;
3536 		dsp_gain = iwn4965_dsp_gain_5ghz;
3537 	} else {
3538 		maxpwr   = sc->maxpwr2GHz;
3539 		rf_gain  = iwn4965_rf_gain_2ghz;
3540 		dsp_gain = iwn4965_dsp_gain_2ghz;
3541 	}
3542 
3543 	/* Compute voltage compensation. */
3544 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3545 	if (vdiff > 0)
3546 		vdiff *= 2;
3547 	if (abs(vdiff) > 2)
3548 		vdiff = 0;
3549 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3550 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3551 
3552 	/* Get channel attenuation group. */
3553 	if (chan <= 20)		/* 1-20 */
3554 		grp = 4;
3555 	else if (chan <= 43)	/* 34-43 */
3556 		grp = 0;
3557 	else if (chan <= 70)	/* 44-70 */
3558 		grp = 1;
3559 	else if (chan <= 124)	/* 71-124 */
3560 		grp = 2;
3561 	else			/* 125-200 */
3562 		grp = 3;
3563 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3564 
3565 	/* Get channel sub-band. */
3566 	for (i = 0; i < IWN_NBANDS; i++)
3567 		if (sc->bands[i].lo != 0 &&
3568 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3569 			break;
3570 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3571 		return EINVAL;
3572 	chans = sc->bands[i].chans;
3573 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3574 
3575 	for (c = 0; c < 2; c++) {
3576 		uint8_t power, gain, temp;
3577 		int maxchpwr, pwr, ridx, idx;
3578 
3579 		power = interpolate(chan,
3580 		    chans[0].num, chans[0].samples[c][1].power,
3581 		    chans[1].num, chans[1].samples[c][1].power, 1);
3582 		gain  = interpolate(chan,
3583 		    chans[0].num, chans[0].samples[c][1].gain,
3584 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3585 		temp  = interpolate(chan,
3586 		    chans[0].num, chans[0].samples[c][1].temp,
3587 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3588 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3589 		    c, power, gain, temp));
3590 
3591 		/* Compute temperature compensation. */
3592 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3593 		DPRINTF(("temperature compensation=%d (current=%d, "
3594 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3595 
3596 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3597 			/* Convert dBm to half-dBm. */
3598 			maxchpwr = sc->maxpwr[chan] * 2;
3599 			if ((ridx / 8) & 1)
3600 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3601 
3602 			pwr = maxpwr;
3603 
3604 			/* Adjust TX power based on rate. */
3605 			if ((ridx % 8) == 5)
3606 				pwr -= 15;	/* OFDM48: -7.5dB */
3607 			else if ((ridx % 8) == 6)
3608 				pwr -= 17;	/* OFDM54: -8.5dB */
3609 			else if ((ridx % 8) == 7)
3610 				pwr -= 20;	/* OFDM60: -10dB */
3611 			else
3612 				pwr -= 10;	/* Others: -5dB */
3613 
3614 			/* Do not exceed channel max TX power. */
3615 			if (pwr > maxchpwr)
3616 				pwr = maxchpwr;
3617 
3618 			idx = gain - (pwr - power) - tdiff - vdiff;
3619 			if ((ridx / 8) & 1)	/* MIMO */
3620 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3621 
3622 			if (cmd.band == 0)
3623 				idx += 9;	/* 5GHz */
3624 			if (ridx == IWN_RIDX_MAX)
3625 				idx += 5;	/* CCK */
3626 
3627 			/* Make sure idx stays in a valid range. */
3628 			if (idx < 0)
3629 				idx = 0;
3630 			else if (idx > IWN4965_MAX_PWR_INDEX)
3631 				idx = IWN4965_MAX_PWR_INDEX;
3632 
3633 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3634 			    c, ridx, idx));
3635 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3636 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3637 		}
3638 	}
3639 
3640 	DPRINTF(("setting TX power for chan %d\n", chan));
3641 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3642 
3643 #undef interpolate
3644 #undef fdivround
3645 }
3646 
3647 static int
3648 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3649 {
3650 	struct iwn5000_cmd_txpower cmd;
3651 
3652 	/*
3653 	 * TX power calibration is handled automatically by the firmware
3654 	 * for 5000 Series.
3655 	 */
3656 	memset(&cmd, 0, sizeof cmd);
3657 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3658 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3659 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3660 	DPRINTF(("setting TX power\n"));
3661 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3662 }
3663 
3664 /*
3665  * Retrieve the maximum RSSI (in dBm) among receivers.
3666  */
3667 static int
3668 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3669 {
3670 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3671 	uint8_t mask, agc;
3672 	int rssi;
3673 
3674 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3675 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3676 
3677 	rssi = 0;
3678 	if (mask & IWN_ANT_A)
3679 		rssi = MAX(rssi, phy->rssi[0]);
3680 	if (mask & IWN_ANT_B)
3681 		rssi = MAX(rssi, phy->rssi[2]);
3682 	if (mask & IWN_ANT_C)
3683 		rssi = MAX(rssi, phy->rssi[4]);
3684 
3685 	return rssi - agc - IWN_RSSI_TO_DBM;
3686 }
3687 
3688 static int
3689 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3690 {
3691 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3692 	uint8_t agc;
3693 	int rssi;
3694 
3695 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3696 
3697 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3698 		   le16toh(phy->rssi[1]) & 0xff);
3699 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3700 
3701 	return rssi - agc - IWN_RSSI_TO_DBM;
3702 }
3703 
3704 /*
3705  * Retrieve the average noise (in dBm) among receivers.
3706  */
3707 static int
3708 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3709 {
3710 	int i, total, nbant, noise;
3711 
3712 	total = nbant = 0;
3713 	for (i = 0; i < 3; i++) {
3714 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3715 			continue;
3716 		total += noise;
3717 		nbant++;
3718 	}
3719 	/* There should be at least one antenna but check anyway. */
3720 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3721 }
3722 
3723 /*
3724  * Compute temperature (in degC) from last received statistics.
3725  */
3726 static int
3727 iwn4965_get_temperature(struct iwn_softc *sc)
3728 {
3729 	struct iwn_ucode_info *uc = &sc->ucode_info;
3730 	int32_t r1, r2, r3, r4, temp;
3731 
3732 	r1 = le32toh(uc->temp[0].chan20MHz);
3733 	r2 = le32toh(uc->temp[1].chan20MHz);
3734 	r3 = le32toh(uc->temp[2].chan20MHz);
3735 	r4 = le32toh(sc->rawtemp);
3736 
3737 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3738 		return 0;
3739 
3740 	/* Sign-extend 23-bit R4 value to 32-bit. */
3741 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3742 	/* Compute temperature in Kelvin. */
3743 	temp = (259 * (r4 - r2)) / (r3 - r1);
3744 	temp = (temp * 97) / 100 + 8;
3745 
3746 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3747 	return IWN_KTOC(temp);
3748 }
3749 
3750 static int
3751 iwn5000_get_temperature(struct iwn_softc *sc)
3752 {
3753 	int32_t temp;
3754 
3755 	/*
3756 	 * Temperature is not used by the driver for 5000 Series because
3757 	 * TX power calibration is handled by firmware.  We export it to
3758 	 * users through the sensor framework though.
3759 	 */
3760 	temp = le32toh(sc->rawtemp);
3761 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3762 		temp = (temp / -5) + sc->temp_off;
3763 		temp = IWN_KTOC(temp);
3764 	}
3765 	return temp;
3766 }
3767 
3768 /*
3769  * Initialize sensitivity calibration state machine.
3770  */
3771 static int
3772 iwn_init_sensitivity(struct iwn_softc *sc)
3773 {
3774 	struct iwn_ops *ops = &sc->ops;
3775 	struct iwn_calib_state *calib = &sc->calib;
3776 	uint32_t flags;
3777 	int error;
3778 
3779 	/* Reset calibration state machine. */
3780 	memset(calib, 0, sizeof (*calib));
3781 	calib->state = IWN_CALIB_STATE_INIT;
3782 	calib->cck_state = IWN_CCK_STATE_HIFA;
3783 	/* Set initial correlation values. */
3784 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3785 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3786 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3787 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3788 	calib->cck_x4      = 125;
3789 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3790 	calib->energy_cck  = sc->limits->energy_cck;
3791 
3792 	/* Write initial sensitivity. */
3793 	if ((error = iwn_send_sensitivity(sc)) != 0)
3794 		return error;
3795 
3796 	/* Write initial gains. */
3797 	if ((error = ops->init_gains(sc)) != 0)
3798 		return error;
3799 
3800 	/* Request statistics at each beacon interval. */
3801 	flags = 0;
3802 	DPRINTF(("sending request for statistics\n"));
3803 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3804 }
3805 
3806 /*
3807  * Collect noise and RSSI statistics for the first 20 beacons received
3808  * after association and use them to determine connected antennas and
3809  * to set differential gains.
3810  */
3811 static void
3812 iwn_collect_noise(struct iwn_softc *sc,
3813     const struct iwn_rx_general_stats *stats)
3814 {
3815 	struct iwn_ops *ops = &sc->ops;
3816 	struct iwn_calib_state *calib = &sc->calib;
3817 	uint32_t val;
3818 	int i;
3819 
3820 	/* Accumulate RSSI and noise for all 3 antennas. */
3821 	for (i = 0; i < 3; i++) {
3822 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3823 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3824 	}
3825 	/* NB: We update differential gains only once after 20 beacons. */
3826 	if (++calib->nbeacons < 20)
3827 		return;
3828 
3829 	/* Determine highest average RSSI. */
3830 	val = MAX(calib->rssi[0], calib->rssi[1]);
3831 	val = MAX(calib->rssi[2], val);
3832 
3833 	/* Determine which antennas are connected. */
3834 	sc->chainmask = sc->rxchainmask;
3835 	for (i = 0; i < 3; i++)
3836 		if (val - calib->rssi[i] > 15 * 20)
3837 			sc->chainmask &= ~(1 << i);
3838 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3839 	    sc->rxchainmask, sc->chainmask));
3840 
3841 	/* If none of the TX antennas are connected, keep at least one. */
3842 	if ((sc->chainmask & sc->txchainmask) == 0)
3843 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3844 
3845 	(void)ops->set_gains(sc);
3846 	calib->state = IWN_CALIB_STATE_RUN;
3847 
3848 #ifdef notyet
3849 	/* XXX Disable RX chains with no antennas connected. */
3850 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3851 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3852 #endif
3853 
3854 	/* Enable power-saving mode if requested by user. */
3855 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3856 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3857 }
3858 
3859 static int
3860 iwn4965_init_gains(struct iwn_softc *sc)
3861 {
3862 	struct iwn_phy_calib_gain cmd;
3863 
3864 	memset(&cmd, 0, sizeof cmd);
3865 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3866 	/* Differential gains initially set to 0 for all 3 antennas. */
3867 	DPRINTF(("setting initial differential gains\n"));
3868 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3869 }
3870 
3871 static int
3872 iwn5000_init_gains(struct iwn_softc *sc)
3873 {
3874 	struct iwn_phy_calib cmd;
3875 
3876 	memset(&cmd, 0, sizeof cmd);
3877 	cmd.code = sc->reset_noise_gain;
3878 	cmd.ngroups = 1;
3879 	cmd.isvalid = 1;
3880 	DPRINTF(("setting initial differential gains\n"));
3881 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3882 }
3883 
3884 static int
3885 iwn4965_set_gains(struct iwn_softc *sc)
3886 {
3887 	struct iwn_calib_state *calib = &sc->calib;
3888 	struct iwn_phy_calib_gain cmd;
3889 	int i, delta, noise;
3890 
3891 	/* Get minimal noise among connected antennas. */
3892 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3893 	for (i = 0; i < 3; i++)
3894 		if (sc->chainmask & (1 << i))
3895 			noise = MIN(calib->noise[i], noise);
3896 
3897 	memset(&cmd, 0, sizeof cmd);
3898 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3899 	/* Set differential gains for connected antennas. */
3900 	for (i = 0; i < 3; i++) {
3901 		if (sc->chainmask & (1 << i)) {
3902 			/* Compute attenuation (in unit of 1.5dB). */
3903 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3904 			/* NB: delta <= 0 */
3905 			/* Limit to [-4.5dB,0]. */
3906 			cmd.gain[i] = MIN(abs(delta), 3);
3907 			if (delta < 0)
3908 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3909 		}
3910 	}
3911 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3912 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3913 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3914 }
3915 
3916 static int
3917 iwn5000_set_gains(struct iwn_softc *sc)
3918 {
3919 	struct iwn_calib_state *calib = &sc->calib;
3920 	struct iwn_phy_calib_gain cmd;
3921 	int i, ant, div, delta;
3922 
3923 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3924 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3925 
3926 	memset(&cmd, 0, sizeof cmd);
3927 	cmd.code = sc->noise_gain;
3928 	cmd.ngroups = 1;
3929 	cmd.isvalid = 1;
3930 	/* Get first available RX antenna as referential. */
3931 	ant = IWN_LSB(sc->rxchainmask);
3932 	/* Set differential gains for other antennas. */
3933 	for (i = ant + 1; i < 3; i++) {
3934 		if (sc->chainmask & (1 << i)) {
3935 			/* The delta is relative to antenna "ant". */
3936 			delta = ((int32_t)calib->noise[ant] -
3937 			    (int32_t)calib->noise[i]) / div;
3938 			/* Limit to [-4.5dB,+4.5dB]. */
3939 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3940 			if (delta < 0)
3941 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3942 		}
3943 	}
3944 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3945 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3946 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3947 }
3948 
3949 /*
3950  * Tune RF RX sensitivity based on the number of false alarms detected
3951  * during the last beacon period.
3952  */
3953 static void
3954 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3955 {
3956 #define inc(val, inc, max)			\
3957 	if ((val) < (max)) {			\
3958 		if ((val) < (max) - (inc))	\
3959 			(val) += (inc);		\
3960 		else				\
3961 			(val) = (max);		\
3962 		needs_update = 1;		\
3963 	}
3964 #define dec(val, dec, min)			\
3965 	if ((val) > (min)) {			\
3966 		if ((val) > (min) + (dec))	\
3967 			(val) -= (dec);		\
3968 		else				\
3969 			(val) = (min);		\
3970 		needs_update = 1;		\
3971 	}
3972 
3973 	const struct iwn_sensitivity_limits *limits = sc->limits;
3974 	struct iwn_calib_state *calib = &sc->calib;
3975 	uint32_t val, rxena, fa;
3976 	uint32_t energy[3], energy_min;
3977 	uint8_t noise[3], noise_ref;
3978 	int i, needs_update = 0;
3979 
3980 	/* Check that we've been enabled long enough. */
3981 	if ((rxena = le32toh(stats->general.load)) == 0)
3982 		return;
3983 
3984 	/* Compute number of false alarms since last call for OFDM. */
3985 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3986 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3987 	fa *= 200 * 1024;	/* 200TU */
3988 
3989 	/* Save counters values for next call. */
3990 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3991 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3992 
3993 	if (fa > 50 * rxena) {
3994 		/* High false alarm count, decrease sensitivity. */
3995 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3996 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3997 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3998 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3999 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4000 
4001 	} else if (fa < 5 * rxena) {
4002 		/* Low false alarm count, increase sensitivity. */
4003 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4004 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4005 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4006 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4007 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4008 	}
4009 
4010 	/* Compute maximum noise among 3 receivers. */
4011 	for (i = 0; i < 3; i++)
4012 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4013 	val = MAX(noise[0], noise[1]);
4014 	val = MAX(noise[2], val);
4015 	/* Insert it into our samples table. */
4016 	calib->noise_samples[calib->cur_noise_sample] = val;
4017 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4018 
4019 	/* Compute maximum noise among last 20 samples. */
4020 	noise_ref = calib->noise_samples[0];
4021 	for (i = 1; i < 20; i++)
4022 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4023 
4024 	/* Compute maximum energy among 3 receivers. */
4025 	for (i = 0; i < 3; i++)
4026 		energy[i] = le32toh(stats->general.energy[i]);
4027 	val = MIN(energy[0], energy[1]);
4028 	val = MIN(energy[2], val);
4029 	/* Insert it into our samples table. */
4030 	calib->energy_samples[calib->cur_energy_sample] = val;
4031 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4032 
4033 	/* Compute minimum energy among last 10 samples. */
4034 	energy_min = calib->energy_samples[0];
4035 	for (i = 1; i < 10; i++)
4036 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4037 	energy_min += 6;
4038 
4039 	/* Compute number of false alarms since last call for CCK. */
4040 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4041 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4042 	fa *= 200 * 1024;	/* 200TU */
4043 
4044 	/* Save counters values for next call. */
4045 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4046 	calib->fa_cck = le32toh(stats->cck.fa);
4047 
4048 	if (fa > 50 * rxena) {
4049 		/* High false alarm count, decrease sensitivity. */
4050 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4051 		calib->cck_state = IWN_CCK_STATE_HIFA;
4052 		calib->low_fa = 0;
4053 
4054 		if (calib->cck_x4 > 160) {
4055 			calib->noise_ref = noise_ref;
4056 			if (calib->energy_cck > 2)
4057 				dec(calib->energy_cck, 2, energy_min);
4058 		}
4059 		if (calib->cck_x4 < 160) {
4060 			calib->cck_x4 = 161;
4061 			needs_update = 1;
4062 		} else
4063 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4064 
4065 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4066 
4067 	} else if (fa < 5 * rxena) {
4068 		/* Low false alarm count, increase sensitivity. */
4069 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4070 		calib->cck_state = IWN_CCK_STATE_LOFA;
4071 		calib->low_fa++;
4072 
4073 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4074 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4075 		     calib->low_fa > 100)) {
4076 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4077 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4078 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4079 		}
4080 	} else {
4081 		/* Not worth to increase or decrease sensitivity. */
4082 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4083 		calib->low_fa = 0;
4084 		calib->noise_ref = noise_ref;
4085 
4086 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4087 			/* Previous interval had many false alarms. */
4088 			dec(calib->energy_cck, 8, energy_min);
4089 		}
4090 		calib->cck_state = IWN_CCK_STATE_INIT;
4091 	}
4092 
4093 	if (needs_update)
4094 		(void)iwn_send_sensitivity(sc);
4095 #undef dec
4096 #undef inc
4097 }
4098 
4099 static int
4100 iwn_send_sensitivity(struct iwn_softc *sc)
4101 {
4102 	struct iwn_calib_state *calib = &sc->calib;
4103 	struct iwn_enhanced_sensitivity_cmd cmd;
4104 	int len;
4105 
4106 	memset(&cmd, 0, sizeof cmd);
4107 	len = sizeof (struct iwn_sensitivity_cmd);
4108 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4109 	/* OFDM modulation. */
4110 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4111 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4112 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4113 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4114 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4115 	cmd.energy_ofdm_th   = htole16(62);
4116 	/* CCK modulation. */
4117 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4118 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4119 	cmd.energy_cck       = htole16(calib->energy_cck);
4120 	/* Barker modulation: use default values. */
4121 	cmd.corr_barker      = htole16(190);
4122 	cmd.corr_barker_mrc  = htole16(390);
4123 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4124 		goto send;
4125 	/* Enhanced sensitivity settings. */
4126 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4127 	cmd.ofdm_det_slope_mrc = htole16(668);
4128 	cmd.ofdm_det_icept_mrc = htole16(4);
4129 	cmd.ofdm_det_slope     = htole16(486);
4130 	cmd.ofdm_det_icept     = htole16(37);
4131 	cmd.cck_det_slope_mrc  = htole16(853);
4132 	cmd.cck_det_icept_mrc  = htole16(4);
4133 	cmd.cck_det_slope      = htole16(476);
4134 	cmd.cck_det_icept      = htole16(99);
4135 send:
4136 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4137 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4138 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4139 	    calib->energy_cck));
4140 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4141 }
4142 
4143 /*
4144  * Set STA mode power saving level (between 0 and 5).
4145  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4146  */
4147 static int
4148 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4149 {
4150 	struct iwn_pmgt_cmd cmd;
4151 	const struct iwn_pmgt *pmgt;
4152 	uint32_t maxp, skip_dtim;
4153 	pcireg_t reg;
4154 	int i;
4155 
4156 	/* Select which PS parameters to use. */
4157 	if (dtim <= 2)
4158 		pmgt = &iwn_pmgt[0][level];
4159 	else if (dtim <= 10)
4160 		pmgt = &iwn_pmgt[1][level];
4161 	else
4162 		pmgt = &iwn_pmgt[2][level];
4163 
4164 	memset(&cmd, 0, sizeof cmd);
4165 	if (level != 0)	/* not CAM */
4166 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4167 	if (level == 5)
4168 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4169 	/* Retrieve PCIe Active State Power Management (ASPM). */
4170 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4171 	    sc->sc_cap_off + PCIE_LCSR);
4172 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4173 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4174 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4175 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4176 
4177 	if (dtim == 0) {
4178 		dtim = 1;
4179 		skip_dtim = 0;
4180 	} else
4181 		skip_dtim = pmgt->skip_dtim;
4182 	if (skip_dtim != 0) {
4183 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4184 		maxp = pmgt->intval[4];
4185 		if (maxp == (uint32_t)-1)
4186 			maxp = dtim * (skip_dtim + 1);
4187 		else if (maxp > dtim)
4188 			maxp = (maxp / dtim) * dtim;
4189 	} else
4190 		maxp = dtim;
4191 	for (i = 0; i < 5; i++)
4192 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4193 
4194 	DPRINTF(("setting power saving level to %d\n", level));
4195 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4196 }
4197 
4198 int
4199 iwn5000_runtime_calib(struct iwn_softc *sc)
4200 {
4201 	struct iwn5000_calib_config cmd;
4202 
4203 	memset(&cmd, 0, sizeof cmd);
4204 	cmd.ucode.once.enable = 0xffffffff;
4205 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4206 	DPRINTF(("configuring runtime calibration\n"));
4207 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4208 }
4209 
4210 static int
4211 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4212 {
4213 	struct iwn_bluetooth bluetooth;
4214 
4215 	memset(&bluetooth, 0, sizeof bluetooth);
4216 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4217 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4218 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4219 
4220 	DPRINTF(("configuring bluetooth coexistence\n"));
4221 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4222 }
4223 
4224 static int
4225 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4226 {
4227 	uint8_t prio_table[16];
4228 
4229 	memset(&prio_table, 0, sizeof prio_table);
4230 	prio_table[ 0] =  6;	/* init calibration 1		*/
4231 	prio_table[ 1] =  7;	/* init calibration 2		*/
4232 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4233 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4234 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4235 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4236 	prio_table[ 6] =  6;	/* dtim				*/
4237 	prio_table[ 7] =  8;	/* scan52			*/
4238 	prio_table[ 8] = 10;	/* scan24			*/
4239 
4240 	DPRINTF(("sending priority lookup table\n"));
4241 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4242 	               &prio_table, sizeof prio_table, 0);
4243 }
4244 
4245 static int
4246 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4247     size_t len)
4248 {
4249 	struct iwn_btcoex_prot btprot;
4250 	int error;
4251 
4252 	basic->bt.flags = IWN_BT_COEX_ENABLE;
4253 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4254 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4255 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4256 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4257 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4258 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4259 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4260 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4261 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4262 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4263 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4264 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4265 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4266 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4267 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4268 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4269 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4270 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
4271 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
4272 	basic->reduce_txpower = 0; /* as not implemented */
4273 	basic->valid = IWN_BT_ALL_VALID_MASK;
4274 
4275 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4276 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4277 	if (error != 0) {
4278 		aprint_error_dev(sc->sc_dev,
4279 			"could not configure advanced bluetooth coexistence\n");
4280 		return error;
4281 	}
4282 
4283 	error = iwn_config_bt_coex_prio_table(sc);
4284 	if (error != 0) {
4285 		aprint_error_dev(sc->sc_dev,
4286 			"could not configure send BT priority table\n");
4287 		return error;
4288 	}
4289 
4290 	/* Force BT state machine change */
4291 	memset(&btprot, 0, sizeof btprot);
4292 	btprot.open = 1;
4293 	btprot.type = 1;
4294 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4295 	if (error != 0) {
4296 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4297 		return error;
4298 	}
4299 
4300 	btprot.open = 0;
4301 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4302 	if (error != 0) {
4303 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4304 		return error;
4305 	}
4306 	return 0;
4307 }
4308 
4309 static int
4310 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4311 {
4312 	struct iwn_bt_adv1 d;
4313 
4314 	memset(&d, 0, sizeof d);
4315 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4316 	d.tx_prio_boost = 0;
4317 	d.rx_prio_boost = 0;
4318 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4319 }
4320 
4321 static int
4322 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4323 {
4324 	struct iwn_bt_adv2 d;
4325 
4326 	memset(&d, 0, sizeof d);
4327 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4328 	d.tx_prio_boost = 0;
4329 	d.rx_prio_boost = 0;
4330 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4331 }
4332 
4333 static int
4334 iwn_config(struct iwn_softc *sc)
4335 {
4336 	struct iwn_ops *ops = &sc->ops;
4337 	struct ieee80211com *ic = &sc->sc_ic;
4338 	struct ifnet *ifp = ic->ic_ifp;
4339 	uint32_t txmask;
4340 	uint16_t rxchain;
4341 	int error;
4342 
4343 	error = ops->config_bt_coex(sc);
4344 	if (error != 0) {
4345 		aprint_error_dev(sc->sc_dev,
4346 			"could not configure bluetooth coexistence\n");
4347 		return error;
4348 	}
4349 
4350 	/* Set radio temperature sensor offset. */
4351 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4352 		error = iwn6000_temp_offset_calib(sc);
4353 		if (error != 0) {
4354 			aprint_error_dev(sc->sc_dev,
4355 			    "could not set temperature offset\n");
4356 			return error;
4357 		}
4358 	}
4359 
4360 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4361 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4362 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
4363 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4364 		error = iwn2000_temp_offset_calib(sc);
4365 		if (error != 0) {
4366 			aprint_error_dev(sc->sc_dev,
4367 			    "could not set temperature offset\n");
4368 			return error;
4369 		}
4370 	}
4371 
4372 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4373 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4374 		/* Configure runtime DC calibration. */
4375 		error = iwn5000_runtime_calib(sc);
4376 		if (error != 0) {
4377 			aprint_error_dev(sc->sc_dev,
4378 			    "could not configure runtime calibration\n");
4379 			return error;
4380 		}
4381 	}
4382 
4383 	/* Configure valid TX chains for 5000 Series. */
4384 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4385 		txmask = htole32(sc->txchainmask);
4386 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4387 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4388 		    sizeof txmask, 0);
4389 		if (error != 0) {
4390 			aprint_error_dev(sc->sc_dev,
4391 			    "could not configure valid TX chains\n");
4392 			return error;
4393 		}
4394 	}
4395 
4396 	/* Set mode, channel, RX filter and enable RX. */
4397 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4398 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4399 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4400 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4401 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4402 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4403 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4404 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4405 	switch (ic->ic_opmode) {
4406 	case IEEE80211_M_STA:
4407 		sc->rxon.mode = IWN_MODE_STA;
4408 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4409 		break;
4410 	case IEEE80211_M_MONITOR:
4411 		sc->rxon.mode = IWN_MODE_MONITOR;
4412 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4413 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4414 		break;
4415 	default:
4416 		/* Should not get there. */
4417 		break;
4418 	}
4419 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4420 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4421 	sc->rxon.ht_single_mask = 0xff;
4422 	sc->rxon.ht_dual_mask = 0xff;
4423 	sc->rxon.ht_triple_mask = 0xff;
4424 	rxchain =
4425 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4426 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4427 	    IWN_RXCHAIN_IDLE_COUNT(2);
4428 	sc->rxon.rxchain = htole16(rxchain);
4429 	DPRINTF(("setting configuration\n"));
4430 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4431 	if (error != 0) {
4432 		aprint_error_dev(sc->sc_dev,
4433 		    "RXON command failed\n");
4434 		return error;
4435 	}
4436 
4437 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4438 		aprint_error_dev(sc->sc_dev,
4439 		    "could not add broadcast node\n");
4440 		return error;
4441 	}
4442 
4443 	/* Configuration has changed, set TX power accordingly. */
4444 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4445 		aprint_error_dev(sc->sc_dev,
4446 		    "could not set TX power\n");
4447 		return error;
4448 	}
4449 
4450 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4451 		aprint_error_dev(sc->sc_dev,
4452 		    "could not set critical temperature\n");
4453 		return error;
4454 	}
4455 
4456 	/* Set power saving level to CAM during initialization. */
4457 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4458 		aprint_error_dev(sc->sc_dev,
4459 		    "could not set power saving level\n");
4460 		return error;
4461 	}
4462 	return 0;
4463 }
4464 
4465 static uint16_t
4466 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4467     uint8_t n_probes)
4468 {
4469 	/* No channel? Default to 2GHz settings */
4470 	if (flags & IEEE80211_CHAN_2GHZ)
4471 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
4472 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4473 
4474 	/* 5GHz dwell time */
4475 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
4476 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4477 }
4478 
4479 /*
4480  * Limit the total dwell time to 85% of the beacon interval.
4481  *
4482  * Returns the dwell time in milliseconds.
4483  */
4484 static uint16_t
4485 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4486 {
4487 	struct ieee80211com *ic = &sc->sc_ic;
4488 	struct ieee80211_node *ni = ic->ic_bss;
4489 	int bintval = 0;
4490 
4491 	/* bintval is in TU (1.024mS) */
4492 	if (ni != NULL)
4493 		bintval = ni->ni_intval;
4494 
4495 	/*
4496 	 * If it's non-zero, we should calculate the minimum of
4497 	 * it and the DWELL_BASE.
4498 	 *
4499 	 * XXX Yes, the math should take into account that bintval
4500 	 * is 1.024mS, not 1mS..
4501 	 */
4502 	if (bintval > 0)
4503 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4504 
4505 	/* No association context? Default */
4506 	return IWN_PASSIVE_DWELL_BASE;
4507 }
4508 
4509 static uint16_t
4510 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4511 {
4512 	uint16_t passive;
4513 	if (flags & IEEE80211_CHAN_2GHZ)
4514 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4515 	else
4516 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4517 
4518 	/* Clamp to the beacon interval if we're associated */
4519 	return iwn_limit_dwell(sc, passive);
4520 }
4521 
4522 static int
4523 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4524 {
4525 	struct ieee80211com *ic = &sc->sc_ic;
4526 	struct iwn_scan_hdr *hdr;
4527 	struct iwn_cmd_data *tx;
4528 	struct iwn_scan_essid *essid;
4529 	struct iwn_scan_chan *chan;
4530 	struct ieee80211_frame *wh;
4531 	struct ieee80211_rateset *rs;
4532 	struct ieee80211_channel *c;
4533 	uint8_t *buf, *frm;
4534 	uint16_t rxchain, dwell_active, dwell_passive;
4535 	uint8_t txant;
4536 	int buflen, error, is_active;
4537 
4538 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4539 	if (buf == NULL) {
4540 		aprint_error_dev(sc->sc_dev,
4541 		    "could not allocate buffer for scan command\n");
4542 		return ENOMEM;
4543 	}
4544 	hdr = (struct iwn_scan_hdr *)buf;
4545 	/*
4546 	 * Move to the next channel if no frames are received within 10ms
4547 	 * after sending the probe request.
4548 	 */
4549 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4550 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4551 
4552 	/* Select antennas for scanning. */
4553 	rxchain =
4554 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4555 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4556 	    IWN_RXCHAIN_DRIVER_FORCE;
4557 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4558 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4559 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4560 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4561 	} else	/* Use all available RX antennas. */
4562 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4563 	hdr->rxchain = htole16(rxchain);
4564 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4565 
4566 	tx = (struct iwn_cmd_data *)(hdr + 1);
4567 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4568 	tx->id = sc->broadcast_id;
4569 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4570 
4571 	if (flags & IEEE80211_CHAN_5GHZ) {
4572 		hdr->crc_threshold = 0xffff;
4573 		/* Send probe requests at 6Mbps. */
4574 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4575 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4576 	} else {
4577 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4578 		/* Send probe requests at 1Mbps. */
4579 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4580 		tx->rflags = IWN_RFLAG_CCK;
4581 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4582 	}
4583 	/* Use the first valid TX antenna. */
4584 	txant = IWN_LSB(sc->txchainmask);
4585 	tx->rflags |= IWN_RFLAG_ANT(txant);
4586 
4587 	/*
4588 	 * Only do active scanning if we're announcing a probe request
4589 	 * for a given SSID (or more, if we ever add it to the driver.)
4590 	 */
4591 	is_active = 0;
4592 
4593 	essid = (struct iwn_scan_essid *)(tx + 1);
4594 	if (ic->ic_des_esslen != 0) {
4595 		essid[0].id = IEEE80211_ELEMID_SSID;
4596 		essid[0].len = ic->ic_des_esslen;
4597 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4598 
4599 		is_active = 1;
4600 	}
4601 	/*
4602 	 * Build a probe request frame.  Most of the following code is a
4603 	 * copy & paste of what is done in net80211.
4604 	 */
4605 	wh = (struct ieee80211_frame *)(essid + 20);
4606 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4607 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4608 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4609 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4610 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4611 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4612 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4613 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4614 
4615 	frm = (uint8_t *)(wh + 1);
4616 	frm = ieee80211_add_ssid(frm, NULL, 0);
4617 	frm = ieee80211_add_rates(frm, rs);
4618 #ifndef IEEE80211_NO_HT
4619 	if (ic->ic_flags & IEEE80211_F_HTON)
4620 		frm = ieee80211_add_htcaps(frm, ic);
4621 #endif
4622 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4623 		frm = ieee80211_add_xrates(frm, rs);
4624 
4625 	/* Set length of probe request. */
4626 	tx->len = htole16(frm - (uint8_t *)wh);
4627 
4628 
4629 	/*
4630 	 * If active scanning is requested but a certain channel is
4631 	 * marked passive, we can do active scanning if we detect
4632 	 * transmissions.
4633 	 *
4634 	 * There is an issue with some firmware versions that triggers
4635 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
4636 	 * on a radar channel even though this means that we should NOT
4637 	 * send probes.
4638 	 *
4639 	 * The "good CRC threshold" is the number of frames that we
4640 	 * need to receive during our dwell time on a channel before
4641 	 * sending out probes -- setting this to a huge value will
4642 	 * mean we never reach it, but at the same time work around
4643 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4644 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4645 	 *
4646 	 * This was fixed in later versions along with some other
4647 	 * scan changes, and the threshold behaves as a flag in those
4648 	 * versions.
4649 	 */
4650 
4651 	/*
4652 	 * If we're doing active scanning, set the crc_threshold
4653 	 * to a suitable value.  This is different to active veruss
4654 	 * passive scanning depending upon the channel flags; the
4655 	 * firmware will obey that particular check for us.
4656 	 */
4657 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4658 		hdr->crc_threshold = is_active ?
4659 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4660 	else
4661 		hdr->crc_threshold = is_active ?
4662 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4663 
4664 	chan = (struct iwn_scan_chan *)frm;
4665 	for (c  = &ic->ic_channels[1];
4666 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4667 		if ((c->ic_flags & flags) != flags)
4668 			continue;
4669 
4670 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4671 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4672 		chan->flags = 0;
4673 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4674 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4675 		if (ic->ic_des_esslen != 0)
4676 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4677 
4678 		/*
4679 		 * Calculate the active/passive dwell times.
4680 		 */
4681 
4682 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4683 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4684 
4685 		/* Make sure they're valid */
4686 		if (dwell_passive <= dwell_active)
4687 			dwell_passive = dwell_active + 1;
4688 
4689 		chan->active = htole16(dwell_active);
4690 		chan->passive = htole16(dwell_passive);
4691 
4692 		chan->dsp_gain = 0x6e;
4693 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4694 			chan->rf_gain = 0x3b;
4695 		} else {
4696 			chan->rf_gain = 0x28;
4697 		}
4698 		hdr->nchan++;
4699 		chan++;
4700 	}
4701 
4702 	buflen = (uint8_t *)chan - buf;
4703 	hdr->len = htole16(buflen);
4704 
4705 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4706 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4707 	free(buf, M_DEVBUF);
4708 	return error;
4709 }
4710 
4711 static int
4712 iwn_auth(struct iwn_softc *sc)
4713 {
4714 	struct iwn_ops *ops = &sc->ops;
4715 	struct ieee80211com *ic = &sc->sc_ic;
4716 	struct ieee80211_node *ni = ic->ic_bss;
4717 	int error;
4718 
4719 	/* Update adapter configuration. */
4720 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4721 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4722 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4723 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4724 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4725 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4726 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4727 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4728 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4729 	switch (ic->ic_curmode) {
4730 	case IEEE80211_MODE_11A:
4731 		sc->rxon.cck_mask  = 0;
4732 		sc->rxon.ofdm_mask = 0x15;
4733 		break;
4734 	case IEEE80211_MODE_11B:
4735 		sc->rxon.cck_mask  = 0x03;
4736 		sc->rxon.ofdm_mask = 0;
4737 		break;
4738 	default:	/* Assume 802.11b/g. */
4739 		sc->rxon.cck_mask  = 0x0f;
4740 		sc->rxon.ofdm_mask = 0x15;
4741 	}
4742 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4743 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4744 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4745 	if (error != 0) {
4746 		aprint_error_dev(sc->sc_dev,
4747 		    "RXON command failed\n");
4748 		return error;
4749 	}
4750 
4751 	/* Configuration has changed, set TX power accordingly. */
4752 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4753 		aprint_error_dev(sc->sc_dev,
4754 		    "could not set TX power\n");
4755 		return error;
4756 	}
4757 	/*
4758 	 * Reconfiguring RXON clears the firmware nodes table so we must
4759 	 * add the broadcast node again.
4760 	 */
4761 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4762 		aprint_error_dev(sc->sc_dev,
4763 		    "could not add broadcast node\n");
4764 		return error;
4765 	}
4766 	return 0;
4767 }
4768 
4769 static int
4770 iwn_run(struct iwn_softc *sc)
4771 {
4772 	struct iwn_ops *ops = &sc->ops;
4773 	struct ieee80211com *ic = &sc->sc_ic;
4774 	struct ieee80211_node *ni = ic->ic_bss;
4775 	struct iwn_node_info node;
4776 	int error;
4777 
4778 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4779 		/* Link LED blinks while monitoring. */
4780 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4781 		return 0;
4782 	}
4783 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4784 		aprint_error_dev(sc->sc_dev,
4785 		    "could not set timing\n");
4786 		return error;
4787 	}
4788 
4789 	/* Update adapter configuration. */
4790 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4791 	/* Short preamble and slot time are negotiated when associating. */
4792 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4793 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4794 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4795 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4796 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4797 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4798 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4799 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4800 	if (error != 0) {
4801 		aprint_error_dev(sc->sc_dev,
4802 		    "could not update configuration\n");
4803 		return error;
4804 	}
4805 
4806 	/* Configuration has changed, set TX power accordingly. */
4807 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4808 		aprint_error_dev(sc->sc_dev,
4809 		    "could not set TX power\n");
4810 		return error;
4811 	}
4812 
4813 	/* Fake a join to initialize the TX rate. */
4814 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4815 	iwn_newassoc(ni, 1);
4816 
4817 	/* Add BSS node. */
4818 	memset(&node, 0, sizeof node);
4819 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4820 	node.id = IWN_ID_BSS;
4821 #ifdef notyet
4822 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4823 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4824 #endif
4825 	DPRINTF(("adding BSS node\n"));
4826 	error = ops->add_node(sc, &node, 1);
4827 	if (error != 0) {
4828 		aprint_error_dev(sc->sc_dev,
4829 		    "could not add BSS node\n");
4830 		return error;
4831 	}
4832 	DPRINTF(("setting link quality for node %d\n", node.id));
4833 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4834 		aprint_error_dev(sc->sc_dev,
4835 		    "could not setup link quality for node %d\n", node.id);
4836 		return error;
4837 	}
4838 
4839 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4840 		aprint_error_dev(sc->sc_dev,
4841 		    "could not set sensitivity\n");
4842 		return error;
4843 	}
4844 	/* Start periodic calibration timer. */
4845 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4846 	sc->calib_cnt = 0;
4847 	callout_schedule(&sc->calib_to, hz/2);
4848 
4849 	/* Link LED always on while associated. */
4850 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4851 	return 0;
4852 }
4853 
4854 #ifdef IWN_HWCRYPTO
4855 /*
4856  * We support CCMP hardware encryption/decryption of unicast frames only.
4857  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4858  */
4859 static int
4860 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4861     struct ieee80211_key *k)
4862 {
4863 	struct iwn_softc *sc = ic->ic_softc;
4864 	struct iwn_ops *ops = &sc->ops;
4865 	struct iwn_node *wn = (void *)ni;
4866 	struct iwn_node_info node;
4867 	uint16_t kflags;
4868 
4869 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4870 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4871 		return ieee80211_set_key(ic, ni, k);
4872 
4873 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4874 	if (k->k_flags & IEEE80211_KEY_GROUP)
4875 		kflags |= IWN_KFLAG_GROUP;
4876 
4877 	memset(&node, 0, sizeof node);
4878 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4879 	    sc->broadcast_id : wn->id;
4880 	node.control = IWN_NODE_UPDATE;
4881 	node.flags = IWN_FLAG_SET_KEY;
4882 	node.kflags = htole16(kflags);
4883 	node.kid = k->k_id;
4884 	memcpy(node.key, k->k_key, k->k_len);
4885 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4886 	return ops->add_node(sc, &node, 1);
4887 }
4888 
4889 static void
4890 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4891     struct ieee80211_key *k)
4892 {
4893 	struct iwn_softc *sc = ic->ic_softc;
4894 	struct iwn_ops *ops = &sc->ops;
4895 	struct iwn_node *wn = (void *)ni;
4896 	struct iwn_node_info node;
4897 
4898 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4899 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4900 		/* See comment about other ciphers above. */
4901 		ieee80211_delete_key(ic, ni, k);
4902 		return;
4903 	}
4904 	if (ic->ic_state != IEEE80211_S_RUN)
4905 		return;	/* Nothing to do. */
4906 	memset(&node, 0, sizeof node);
4907 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4908 	    sc->broadcast_id : wn->id;
4909 	node.control = IWN_NODE_UPDATE;
4910 	node.flags = IWN_FLAG_SET_KEY;
4911 	node.kflags = htole16(IWN_KFLAG_INVALID);
4912 	node.kid = 0xff;
4913 	DPRINTF(("delete keys for node %d\n", node.id));
4914 	(void)ops->add_node(sc, &node, 1);
4915 }
4916 #endif
4917 
4918 /* XXX Added for NetBSD (copied from rev 1.39). */
4919 
4920 static int
4921 iwn_wme_update(struct ieee80211com *ic)
4922 {
4923 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4924 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4925 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4926 	const struct wmeParams *wmep;
4927 	struct iwn_edca_params cmd;
4928 	int ac;
4929 
4930 	/* don't override default WME values if WME is not actually enabled */
4931 	if (!(ic->ic_flags & IEEE80211_F_WME))
4932 		return 0;
4933 	cmd.flags = 0;
4934 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4935 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4936 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4937 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4938 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4939 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4940 
4941 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4942 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4943 					cmd.ac[ac].cwmin,
4944 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4945 	}
4946 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4947 #undef IWN_USEC
4948 #undef IWN_EXP2
4949 }
4950 
4951 #ifndef IEEE80211_NO_HT
4952 /*
4953  * This function is called by upper layer when an ADDBA request is received
4954  * from another STA and before the ADDBA response is sent.
4955  */
4956 static int
4957 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4958     uint8_t tid)
4959 {
4960 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4961 	struct iwn_softc *sc = ic->ic_softc;
4962 	struct iwn_ops *ops = &sc->ops;
4963 	struct iwn_node *wn = (void *)ni;
4964 	struct iwn_node_info node;
4965 
4966 	memset(&node, 0, sizeof node);
4967 	node.id = wn->id;
4968 	node.control = IWN_NODE_UPDATE;
4969 	node.flags = IWN_FLAG_SET_ADDBA;
4970 	node.addba_tid = tid;
4971 	node.addba_ssn = htole16(ba->ba_winstart);
4972 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4973 	    ba->ba_winstart));
4974 	return ops->add_node(sc, &node, 1);
4975 }
4976 
4977 /*
4978  * This function is called by upper layer on teardown of an HT-immediate
4979  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4980  */
4981 static void
4982 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4983     uint8_t tid)
4984 {
4985 	struct iwn_softc *sc = ic->ic_softc;
4986 	struct iwn_ops *ops = &sc->ops;
4987 	struct iwn_node *wn = (void *)ni;
4988 	struct iwn_node_info node;
4989 
4990 	memset(&node, 0, sizeof node);
4991 	node.id = wn->id;
4992 	node.control = IWN_NODE_UPDATE;
4993 	node.flags = IWN_FLAG_SET_DELBA;
4994 	node.delba_tid = tid;
4995 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4996 	(void)ops->add_node(sc, &node, 1);
4997 }
4998 
4999 /*
5000  * This function is called by upper layer when an ADDBA response is received
5001  * from another STA.
5002  */
5003 static int
5004 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5005     uint8_t tid)
5006 {
5007 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5008 	struct iwn_softc *sc = ic->ic_softc;
5009 	struct iwn_ops *ops = &sc->ops;
5010 	struct iwn_node *wn = (void *)ni;
5011 	struct iwn_node_info node;
5012 	int error;
5013 
5014 	/* Enable TX for the specified RA/TID. */
5015 	wn->disable_tid &= ~(1 << tid);
5016 	memset(&node, 0, sizeof node);
5017 	node.id = wn->id;
5018 	node.control = IWN_NODE_UPDATE;
5019 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5020 	node.disable_tid = htole16(wn->disable_tid);
5021 	error = ops->add_node(sc, &node, 1);
5022 	if (error != 0)
5023 		return error;
5024 
5025 	if ((error = iwn_nic_lock(sc)) != 0)
5026 		return error;
5027 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5028 	iwn_nic_unlock(sc);
5029 	return 0;
5030 }
5031 
5032 static void
5033 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5034     uint8_t tid)
5035 {
5036 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5037 	struct iwn_softc *sc = ic->ic_softc;
5038 	struct iwn_ops *ops = &sc->ops;
5039 
5040 	if (iwn_nic_lock(sc) != 0)
5041 		return;
5042 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5043 	iwn_nic_unlock(sc);
5044 }
5045 
5046 static void
5047 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5048     uint8_t tid, uint16_t ssn)
5049 {
5050 	struct iwn_node *wn = (void *)ni;
5051 	int qid = 7 + tid;
5052 
5053 	/* Stop TX scheduler while we're changing its configuration. */
5054 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5055 	    IWN4965_TXQ_STATUS_CHGACT);
5056 
5057 	/* Assign RA/TID translation to the queue. */
5058 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5059 	    wn->id << 4 | tid);
5060 
5061 	/* Enable chain-building mode for the queue. */
5062 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5063 
5064 	/* Set starting sequence number from the ADDBA request. */
5065 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5066 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5067 
5068 	/* Set scheduler window size. */
5069 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5070 	    IWN_SCHED_WINSZ);
5071 	/* Set scheduler frame limit. */
5072 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5073 	    IWN_SCHED_LIMIT << 16);
5074 
5075 	/* Enable interrupts for the queue. */
5076 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5077 
5078 	/* Mark the queue as active. */
5079 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5080 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5081 	    iwn_tid2fifo[tid] << 1);
5082 }
5083 
5084 static void
5085 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5086 {
5087 	int qid = 7 + tid;
5088 
5089 	/* Stop TX scheduler while we're changing its configuration. */
5090 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5091 	    IWN4965_TXQ_STATUS_CHGACT);
5092 
5093 	/* Set starting sequence number from the ADDBA request. */
5094 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5095 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5096 
5097 	/* Disable interrupts for the queue. */
5098 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5099 
5100 	/* Mark the queue as inactive. */
5101 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5102 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5103 }
5104 
5105 static void
5106 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5107     uint8_t tid, uint16_t ssn)
5108 {
5109 	struct iwn_node *wn = (void *)ni;
5110 	int qid = 10 + tid;
5111 
5112 	/* Stop TX scheduler while we're changing its configuration. */
5113 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5114 	    IWN5000_TXQ_STATUS_CHGACT);
5115 
5116 	/* Assign RA/TID translation to the queue. */
5117 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5118 	    wn->id << 4 | tid);
5119 
5120 	/* Enable chain-building mode for the queue. */
5121 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5122 
5123 	/* Enable aggregation for the queue. */
5124 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5125 
5126 	/* Set starting sequence number from the ADDBA request. */
5127 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5128 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5129 
5130 	/* Set scheduler window size and frame limit. */
5131 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5132 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5133 
5134 	/* Enable interrupts for the queue. */
5135 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5136 
5137 	/* Mark the queue as active. */
5138 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5139 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5140 }
5141 
5142 static void
5143 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5144 {
5145 	int qid = 10 + tid;
5146 
5147 	/* Stop TX scheduler while we're changing its configuration. */
5148 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5149 	    IWN5000_TXQ_STATUS_CHGACT);
5150 
5151 	/* Disable aggregation for the queue. */
5152 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5153 
5154 	/* Set starting sequence number from the ADDBA request. */
5155 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5156 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5157 
5158 	/* Disable interrupts for the queue. */
5159 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5160 
5161 	/* Mark the queue as inactive. */
5162 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5163 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5164 }
5165 #endif	/* !IEEE80211_NO_HT */
5166 
5167 /*
5168  * Query calibration tables from the initialization firmware.  We do this
5169  * only once at first boot.  Called from a process context.
5170  */
5171 static int
5172 iwn5000_query_calibration(struct iwn_softc *sc)
5173 {
5174 	struct iwn5000_calib_config cmd;
5175 	int error;
5176 
5177 	memset(&cmd, 0, sizeof cmd);
5178 	cmd.ucode.once.enable = 0xffffffff;
5179 	cmd.ucode.once.start  = 0xffffffff;
5180 	cmd.ucode.once.send   = 0xffffffff;
5181 	cmd.ucode.flags       = 0xffffffff;
5182 	DPRINTF(("sending calibration query\n"));
5183 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5184 	if (error != 0)
5185 		return error;
5186 
5187 	/* Wait at most two seconds for calibration to complete. */
5188 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5189 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5190 	return error;
5191 }
5192 
5193 /*
5194  * Send calibration results to the runtime firmware.  These results were
5195  * obtained on first boot from the initialization firmware.
5196  */
5197 static int
5198 iwn5000_send_calibration(struct iwn_softc *sc)
5199 {
5200 	int idx, error;
5201 
5202 	for (idx = 0; idx < 5; idx++) {
5203 		if (sc->calibcmd[idx].buf == NULL)
5204 			continue;	/* No results available. */
5205 		DPRINTF(("send calibration result idx=%d len=%d\n",
5206 		    idx, sc->calibcmd[idx].len));
5207 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5208 		    sc->calibcmd[idx].len, 0);
5209 		if (error != 0) {
5210 			aprint_error_dev(sc->sc_dev,
5211 			    "could not send calibration result\n");
5212 			return error;
5213 		}
5214 	}
5215 	return 0;
5216 }
5217 
5218 static int
5219 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5220 {
5221 	struct iwn5000_wimax_coex wimax;
5222 
5223 #ifdef notyet
5224 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5225 		/* Enable WiMAX coexistence for combo adapters. */
5226 		wimax.flags =
5227 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5228 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5229 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5230 		    IWN_WIMAX_COEX_ENABLE;
5231 		memcpy(wimax.events, iwn6050_wimax_events,
5232 		    sizeof iwn6050_wimax_events);
5233 	} else
5234 #endif
5235 	{
5236 		/* Disable WiMAX coexistence. */
5237 		wimax.flags = 0;
5238 		memset(wimax.events, 0, sizeof wimax.events);
5239 	}
5240 	DPRINTF(("Configuring WiMAX coexistence\n"));
5241 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5242 }
5243 
5244 static int
5245 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5246 {
5247 	struct iwn6000_phy_calib_temp_offset cmd;
5248 
5249 	memset(&cmd, 0, sizeof cmd);
5250 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5251 	cmd.ngroups = 1;
5252 	cmd.isvalid = 1;
5253 	if (sc->eeprom_temp != 0)
5254 		cmd.offset = htole16(sc->eeprom_temp);
5255 	else
5256 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5257 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5258 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5259 }
5260 
5261 static int
5262 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5263 {
5264 	struct iwn2000_phy_calib_temp_offset cmd;
5265 
5266 	memset(&cmd, 0, sizeof cmd);
5267 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5268 	cmd.ngroups = 1;
5269 	cmd.isvalid = 1;
5270 	if (sc->eeprom_rawtemp != 0) {
5271 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5272 		cmd.offset_high = htole16(sc->eeprom_temp);
5273 	} else {
5274 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5275 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5276 	}
5277 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5278 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5279 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5280 	    le16toh(cmd.burnt_voltage_ref)));
5281 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5282 }
5283 
5284 /*
5285  * This function is called after the runtime firmware notifies us of its
5286  * readiness (called in a process context).
5287  */
5288 static int
5289 iwn4965_post_alive(struct iwn_softc *sc)
5290 {
5291 	int error, qid;
5292 
5293 	if ((error = iwn_nic_lock(sc)) != 0)
5294 		return error;
5295 
5296 	/* Clear TX scheduler state in SRAM. */
5297 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5298 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5299 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5300 
5301 	/* Set physical address of TX scheduler rings (1KB aligned). */
5302 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5303 
5304 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5305 
5306 	/* Disable chain mode for all our 16 queues. */
5307 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5308 
5309 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5310 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5311 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5312 
5313 		/* Set scheduler window size. */
5314 		iwn_mem_write(sc, sc->sched_base +
5315 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5316 		/* Set scheduler frame limit. */
5317 		iwn_mem_write(sc, sc->sched_base +
5318 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5319 		    IWN_SCHED_LIMIT << 16);
5320 	}
5321 
5322 	/* Enable interrupts for all our 16 queues. */
5323 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5324 	/* Identify TX FIFO rings (0-7). */
5325 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5326 
5327 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5328 	for (qid = 0; qid < 7; qid++) {
5329 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5330 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5331 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5332 	}
5333 	iwn_nic_unlock(sc);
5334 	return 0;
5335 }
5336 
5337 /*
5338  * This function is called after the initialization or runtime firmware
5339  * notifies us of its readiness (called in a process context).
5340  */
5341 static int
5342 iwn5000_post_alive(struct iwn_softc *sc)
5343 {
5344 	int error, qid;
5345 
5346 	/* Switch to using ICT interrupt mode. */
5347 	iwn5000_ict_reset(sc);
5348 
5349 	if ((error = iwn_nic_lock(sc)) != 0)
5350 		return error;
5351 
5352 	/* Clear TX scheduler state in SRAM. */
5353 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5354 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5355 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5356 
5357 	/* Set physical address of TX scheduler rings (1KB aligned). */
5358 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5359 
5360 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5361 
5362 	/* Enable chain mode for all queues, except command queue. */
5363 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5364 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5365 
5366 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5367 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5368 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5369 
5370 		iwn_mem_write(sc, sc->sched_base +
5371 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5372 		/* Set scheduler window size and frame limit. */
5373 		iwn_mem_write(sc, sc->sched_base +
5374 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5375 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5376 	}
5377 
5378 	/* Enable interrupts for all our 20 queues. */
5379 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5380 	/* Identify TX FIFO rings (0-7). */
5381 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5382 
5383 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5384 	for (qid = 0; qid < 7; qid++) {
5385 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5386 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5387 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5388 	}
5389 	iwn_nic_unlock(sc);
5390 
5391 	/* Configure WiMAX coexistence for combo adapters. */
5392 	error = iwn5000_send_wimax_coex(sc);
5393 	if (error != 0) {
5394 		aprint_error_dev(sc->sc_dev,
5395 		    "could not configure WiMAX coexistence\n");
5396 		return error;
5397 	}
5398 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5399 		struct iwn5000_phy_calib_crystal cmd;
5400 
5401 		/* Perform crystal calibration. */
5402 		memset(&cmd, 0, sizeof cmd);
5403 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5404 		cmd.ngroups = 1;
5405 		cmd.isvalid = 1;
5406 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5407 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5408 		DPRINTF(("sending crystal calibration %d, %d\n",
5409 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5410 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5411 		if (error != 0) {
5412 			aprint_error_dev(sc->sc_dev,
5413 			    "crystal calibration failed\n");
5414 			return error;
5415 		}
5416 	}
5417 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5418 		/* Query calibration from the initialization firmware. */
5419 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5420 			aprint_error_dev(sc->sc_dev,
5421 			    "could not query calibration\n");
5422 			return error;
5423 		}
5424 		/*
5425 		 * We have the calibration results now, reboot with the
5426 		 * runtime firmware (call ourselves recursively!)
5427 		 */
5428 		iwn_hw_stop(sc);
5429 		error = iwn_hw_init(sc);
5430 	} else {
5431 		/* Send calibration results to runtime firmware. */
5432 		error = iwn5000_send_calibration(sc);
5433 	}
5434 	return error;
5435 }
5436 
5437 /*
5438  * The firmware boot code is small and is intended to be copied directly into
5439  * the NIC internal memory (no DMA transfer).
5440  */
5441 static int
5442 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5443 {
5444 	int error, ntries;
5445 
5446 	size /= sizeof (uint32_t);
5447 
5448 	if ((error = iwn_nic_lock(sc)) != 0)
5449 		return error;
5450 
5451 	/* Copy microcode image into NIC memory. */
5452 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5453 	    (const uint32_t *)ucode, size);
5454 
5455 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5456 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5457 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5458 
5459 	/* Start boot load now. */
5460 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5461 
5462 	/* Wait for transfer to complete. */
5463 	for (ntries = 0; ntries < 1000; ntries++) {
5464 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5465 		    IWN_BSM_WR_CTRL_START))
5466 			break;
5467 		DELAY(10);
5468 	}
5469 	if (ntries == 1000) {
5470 		aprint_error_dev(sc->sc_dev,
5471 		    "could not load boot firmware\n");
5472 		iwn_nic_unlock(sc);
5473 		return ETIMEDOUT;
5474 	}
5475 
5476 	/* Enable boot after power up. */
5477 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5478 
5479 	iwn_nic_unlock(sc);
5480 	return 0;
5481 }
5482 
5483 static int
5484 iwn4965_load_firmware(struct iwn_softc *sc)
5485 {
5486 	struct iwn_fw_info *fw = &sc->fw;
5487 	struct iwn_dma_info *dma = &sc->fw_dma;
5488 	int error;
5489 
5490 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5491 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5492 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5493 	    BUS_DMASYNC_PREWRITE);
5494 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5495 	    fw->init.text, fw->init.textsz);
5496 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5497 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5498 
5499 	/* Tell adapter where to find initialization sections. */
5500 	if ((error = iwn_nic_lock(sc)) != 0)
5501 		return error;
5502 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5503 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5504 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5505 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5506 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5507 	iwn_nic_unlock(sc);
5508 
5509 	/* Load firmware boot code. */
5510 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5511 	if (error != 0) {
5512 		aprint_error_dev(sc->sc_dev,
5513 		    "could not load boot firmware\n");
5514 		return error;
5515 	}
5516 	/* Now press "execute". */
5517 	IWN_WRITE(sc, IWN_RESET, 0);
5518 
5519 	/* Wait at most one second for first alive notification. */
5520 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5521 		aprint_error_dev(sc->sc_dev,
5522 		    "timeout waiting for adapter to initialize\n");
5523 		return error;
5524 	}
5525 
5526 	/* Retrieve current temperature for initial TX power calibration. */
5527 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5528 	sc->temp = iwn4965_get_temperature(sc);
5529 
5530 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5531 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5532 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5533 	    BUS_DMASYNC_PREWRITE);
5534 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5535 	    fw->main.text, fw->main.textsz);
5536 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5537 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5538 
5539 	/* Tell adapter where to find runtime sections. */
5540 	if ((error = iwn_nic_lock(sc)) != 0)
5541 		return error;
5542 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5543 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5544 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5545 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5546 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5547 	    IWN_FW_UPDATED | fw->main.textsz);
5548 	iwn_nic_unlock(sc);
5549 
5550 	return 0;
5551 }
5552 
5553 static int
5554 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5555     const uint8_t *section, int size)
5556 {
5557 	struct iwn_dma_info *dma = &sc->fw_dma;
5558 	int error;
5559 
5560 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5561 	memcpy(dma->vaddr, section, size);
5562 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5563 
5564 	if ((error = iwn_nic_lock(sc)) != 0)
5565 		return error;
5566 
5567 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5568 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5569 
5570 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5571 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5572 	    IWN_LOADDR(dma->paddr));
5573 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5574 	    IWN_HIADDR(dma->paddr) << 28 | size);
5575 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5576 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5577 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5578 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5579 
5580 	/* Kick Flow Handler to start DMA transfer. */
5581 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5582 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5583 
5584 	iwn_nic_unlock(sc);
5585 
5586 	/* Wait at most five seconds for FH DMA transfer to complete. */
5587 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5588 }
5589 
5590 static int
5591 iwn5000_load_firmware(struct iwn_softc *sc)
5592 {
5593 	struct iwn_fw_part *fw;
5594 	int error;
5595 
5596 	/* Load the initialization firmware on first boot only. */
5597 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5598 	    &sc->fw.main : &sc->fw.init;
5599 
5600 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5601 	    fw->text, fw->textsz);
5602 	if (error != 0) {
5603 		aprint_error_dev(sc->sc_dev,
5604 		    "could not load firmware %s section\n", ".text");
5605 		return error;
5606 	}
5607 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5608 	    fw->data, fw->datasz);
5609 	if (error != 0) {
5610 		aprint_error_dev(sc->sc_dev,
5611 		    "could not load firmware %s section\n", ".data");
5612 		return error;
5613 	}
5614 
5615 	/* Now press "execute". */
5616 	IWN_WRITE(sc, IWN_RESET, 0);
5617 	return 0;
5618 }
5619 
5620 /*
5621  * Extract text and data sections from a legacy firmware image.
5622  */
5623 static int
5624 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5625 {
5626 	const uint32_t *ptr;
5627 	size_t hdrlen = 24;
5628 	uint32_t rev;
5629 
5630 	ptr = (const uint32_t *)fw->data;
5631 	rev = le32toh(*ptr++);
5632 
5633 	/* Check firmware API version. */
5634 	if (IWN_FW_API(rev) <= 1) {
5635 		aprint_error_dev(sc->sc_dev,
5636 		    "bad firmware, need API version >=2\n");
5637 		return EINVAL;
5638 	}
5639 	if (IWN_FW_API(rev) >= 3) {
5640 		/* Skip build number (version 2 header). */
5641 		hdrlen += 4;
5642 		ptr++;
5643 	}
5644 	if (fw->size < hdrlen) {
5645 		aprint_error_dev(sc->sc_dev,
5646 		    "firmware too short: %zd bytes\n", fw->size);
5647 		return EINVAL;
5648 	}
5649 	fw->main.textsz = le32toh(*ptr++);
5650 	fw->main.datasz = le32toh(*ptr++);
5651 	fw->init.textsz = le32toh(*ptr++);
5652 	fw->init.datasz = le32toh(*ptr++);
5653 	fw->boot.textsz = le32toh(*ptr++);
5654 
5655 	/* Check that all firmware sections fit. */
5656 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5657 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5658 		aprint_error_dev(sc->sc_dev,
5659 		    "firmware too short: %zd bytes\n", fw->size);
5660 		return EINVAL;
5661 	}
5662 
5663 	/* Get pointers to firmware sections. */
5664 	fw->main.text = (const uint8_t *)ptr;
5665 	fw->main.data = fw->main.text + fw->main.textsz;
5666 	fw->init.text = fw->main.data + fw->main.datasz;
5667 	fw->init.data = fw->init.text + fw->init.textsz;
5668 	fw->boot.text = fw->init.data + fw->init.datasz;
5669 	return 0;
5670 }
5671 
5672 /*
5673  * Extract text and data sections from a TLV firmware image.
5674  */
5675 static int
5676 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5677     uint16_t alt)
5678 {
5679 	const struct iwn_fw_tlv_hdr *hdr;
5680 	const struct iwn_fw_tlv *tlv;
5681 	const uint8_t *ptr, *end;
5682 	uint64_t altmask;
5683 	uint32_t len;
5684 
5685 	if (fw->size < sizeof (*hdr)) {
5686 		aprint_error_dev(sc->sc_dev,
5687 		    "firmware too short: %zd bytes\n", fw->size);
5688 		return EINVAL;
5689 	}
5690 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5691 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5692 		aprint_error_dev(sc->sc_dev,
5693 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5694 		return EINVAL;
5695 	}
5696 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5697 	    le32toh(hdr->build)));
5698 
5699 	/*
5700 	 * Select the closest supported alternative that is less than
5701 	 * or equal to the specified one.
5702 	 */
5703 	altmask = le64toh(hdr->altmask);
5704 	while (alt > 0 && !(altmask & (1ULL << alt)))
5705 		alt--;	/* Downgrade. */
5706 	DPRINTF(("using alternative %d\n", alt));
5707 
5708 	ptr = (const uint8_t *)(hdr + 1);
5709 	end = (const uint8_t *)(fw->data + fw->size);
5710 
5711 	/* Parse type-length-value fields. */
5712 	while (ptr + sizeof (*tlv) <= end) {
5713 		tlv = (const struct iwn_fw_tlv *)ptr;
5714 		len = le32toh(tlv->len);
5715 
5716 		ptr += sizeof (*tlv);
5717 		if (ptr + len > end) {
5718 			aprint_error_dev(sc->sc_dev,
5719 			    "firmware too short: %zd bytes\n", fw->size);
5720 			return EINVAL;
5721 		}
5722 		/* Skip other alternatives. */
5723 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5724 			goto next;
5725 
5726 		switch (le16toh(tlv->type)) {
5727 		case IWN_FW_TLV_MAIN_TEXT:
5728 			fw->main.text = ptr;
5729 			fw->main.textsz = len;
5730 			break;
5731 		case IWN_FW_TLV_MAIN_DATA:
5732 			fw->main.data = ptr;
5733 			fw->main.datasz = len;
5734 			break;
5735 		case IWN_FW_TLV_INIT_TEXT:
5736 			fw->init.text = ptr;
5737 			fw->init.textsz = len;
5738 			break;
5739 		case IWN_FW_TLV_INIT_DATA:
5740 			fw->init.data = ptr;
5741 			fw->init.datasz = len;
5742 			break;
5743 		case IWN_FW_TLV_BOOT_TEXT:
5744 			fw->boot.text = ptr;
5745 			fw->boot.textsz = len;
5746 			break;
5747 		case IWN_FW_TLV_ENH_SENS:
5748 			if (len != 0) {
5749 				aprint_error_dev(sc->sc_dev,
5750 				    "TLV type %d has invalid size %u\n",
5751 				    le16toh(tlv->type), len);
5752 				goto next;
5753 			}
5754 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
5755 			break;
5756 		case IWN_FW_TLV_PHY_CALIB:
5757 			if (len != sizeof(uint32_t)) {
5758 				aprint_error_dev(sc->sc_dev,
5759 				    "TLV type %d has invalid size %u\n",
5760 				    le16toh(tlv->type), len);
5761 				goto next;
5762 			}
5763 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5764 				sc->reset_noise_gain = le32toh(*ptr);
5765 				sc->noise_gain = le32toh(*ptr) + 1;
5766 			}
5767 			break;
5768 		case IWN_FW_TLV_FLAGS:
5769 			if (len < sizeof(uint32_t))
5770 				break;
5771 			if (len % sizeof(uint32_t))
5772 				break;
5773 			sc->tlv_feature_flags = le32toh(*ptr);
5774 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5775 			break;
5776 		default:
5777 			DPRINTF(("TLV type %d not handled\n",
5778 			    le16toh(tlv->type)));
5779 			break;
5780 		}
5781  next:		/* TLV fields are 32-bit aligned. */
5782 		ptr += (len + 3) & ~3;
5783 	}
5784 	return 0;
5785 }
5786 
5787 static int
5788 iwn_read_firmware(struct iwn_softc *sc)
5789 {
5790 	struct iwn_fw_info *fw = &sc->fw;
5791 	firmware_handle_t fwh;
5792 	int error;
5793 
5794 	/*
5795 	 * Some PHY calibration commands are firmware-dependent; these
5796 	 * are the default values that will be overridden if
5797 	 * necessary.
5798 	 */
5799 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5800 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5801 
5802 	/* Initialize for error returns */
5803 	fw->data = NULL;
5804 	fw->size = 0;
5805 
5806 	/* Open firmware image. */
5807 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5808 		aprint_error_dev(sc->sc_dev,
5809 		    "could not get firmware handle %s\n", sc->fwname);
5810 		return error;
5811 	}
5812 	fw->size = firmware_get_size(fwh);
5813 	if (fw->size < sizeof (uint32_t)) {
5814 		aprint_error_dev(sc->sc_dev,
5815 		    "firmware too short: %zd bytes\n", fw->size);
5816 		firmware_close(fwh);
5817 		return EINVAL;
5818 	}
5819 
5820 	/* Read the firmware. */
5821 	fw->data = firmware_malloc(fw->size);
5822 	if (fw->data == NULL) {
5823 		aprint_error_dev(sc->sc_dev,
5824 		    "not enough memory to stock firmware %s\n", sc->fwname);
5825 		firmware_close(fwh);
5826 		return ENOMEM;
5827 	}
5828 	error = firmware_read(fwh, 0, fw->data, fw->size);
5829 	firmware_close(fwh);
5830 	if (error != 0) {
5831 		aprint_error_dev(sc->sc_dev,
5832 		    "could not read firmware %s\n", sc->fwname);
5833 		goto out;
5834 	}
5835 
5836 	/* Retrieve text and data sections. */
5837 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5838 		error = iwn_read_firmware_leg(sc, fw);
5839 	else
5840 		error = iwn_read_firmware_tlv(sc, fw, 1);
5841 	if (error != 0) {
5842 		aprint_error_dev(sc->sc_dev,
5843 		    "could not read firmware sections\n");
5844 		goto out;
5845 	}
5846 
5847 	/* Make sure text and data sections fit in hardware memory. */
5848 	if (fw->main.textsz > sc->fw_text_maxsz ||
5849 	    fw->main.datasz > sc->fw_data_maxsz ||
5850 	    fw->init.textsz > sc->fw_text_maxsz ||
5851 	    fw->init.datasz > sc->fw_data_maxsz ||
5852 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5853 	    (fw->boot.textsz & 3) != 0) {
5854 		aprint_error_dev(sc->sc_dev,
5855 		    "firmware sections too large\n");
5856 		goto out;
5857 	}
5858 
5859 	/* We can proceed with loading the firmware. */
5860 	return 0;
5861 out:
5862 	firmware_free(fw->data, fw->size);
5863 	fw->data = NULL;
5864 	fw->size = 0;
5865 	return error ? error : EINVAL;
5866 }
5867 
5868 static int
5869 iwn_clock_wait(struct iwn_softc *sc)
5870 {
5871 	int ntries;
5872 
5873 	/* Set "initialization complete" bit. */
5874 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5875 
5876 	/* Wait for clock stabilization. */
5877 	for (ntries = 0; ntries < 2500; ntries++) {
5878 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5879 			return 0;
5880 		DELAY(10);
5881 	}
5882 	aprint_error_dev(sc->sc_dev,
5883 	    "timeout waiting for clock stabilization\n");
5884 	return ETIMEDOUT;
5885 }
5886 
5887 static int
5888 iwn_apm_init(struct iwn_softc *sc)
5889 {
5890 	pcireg_t reg;
5891 	int error;
5892 
5893 	/* Disable L0s exit timer (NMI bug workaround). */
5894 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5895 	/* Don't wait for ICH L0s (ICH bug workaround). */
5896 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5897 
5898 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5899 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5900 
5901 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5902 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5903 
5904 	/* Retrieve PCIe Active State Power Management (ASPM). */
5905 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5906 	    sc->sc_cap_off + PCIE_LCSR);
5907 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5908 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5909 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5910 	else
5911 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5912 
5913 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5914 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5915 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5916 
5917 	/* Wait for clock stabilization before accessing prph. */
5918 	if ((error = iwn_clock_wait(sc)) != 0)
5919 		return error;
5920 
5921 	if ((error = iwn_nic_lock(sc)) != 0)
5922 		return error;
5923 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5924 		/* Enable DMA and BSM (Bootstrap State Machine). */
5925 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5926 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5927 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5928 	} else {
5929 		/* Enable DMA. */
5930 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5931 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5932 	}
5933 	DELAY(20);
5934 	/* Disable L1-Active. */
5935 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5936 	iwn_nic_unlock(sc);
5937 
5938 	return 0;
5939 }
5940 
5941 static void
5942 iwn_apm_stop_master(struct iwn_softc *sc)
5943 {
5944 	int ntries;
5945 
5946 	/* Stop busmaster DMA activity. */
5947 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5948 	for (ntries = 0; ntries < 100; ntries++) {
5949 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5950 			return;
5951 		DELAY(10);
5952 	}
5953 	aprint_error_dev(sc->sc_dev,
5954 	    "timeout waiting for master\n");
5955 }
5956 
5957 static void
5958 iwn_apm_stop(struct iwn_softc *sc)
5959 {
5960 	iwn_apm_stop_master(sc);
5961 
5962 	/* Reset the entire device. */
5963 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5964 	DELAY(10);
5965 	/* Clear "initialization complete" bit. */
5966 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5967 }
5968 
5969 static int
5970 iwn4965_nic_config(struct iwn_softc *sc)
5971 {
5972 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5973 		/*
5974 		 * I don't believe this to be correct but this is what the
5975 		 * vendor driver is doing. Probably the bits should not be
5976 		 * shifted in IWN_RFCFG_*.
5977 		 */
5978 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5979 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5980 		    IWN_RFCFG_STEP(sc->rfcfg) |
5981 		    IWN_RFCFG_DASH(sc->rfcfg));
5982 	}
5983 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5984 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5985 	return 0;
5986 }
5987 
5988 static int
5989 iwn5000_nic_config(struct iwn_softc *sc)
5990 {
5991 	uint32_t tmp;
5992 	int error;
5993 
5994 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5995 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5996 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5997 		    IWN_RFCFG_STEP(sc->rfcfg) |
5998 		    IWN_RFCFG_DASH(sc->rfcfg));
5999 	}
6000 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6001 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6002 
6003 	if ((error = iwn_nic_lock(sc)) != 0)
6004 		return error;
6005 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6006 
6007 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6008 		/*
6009 		 * Select first Switching Voltage Regulator (1.32V) to
6010 		 * solve a stability issue related to noisy DC2DC line
6011 		 * in the silicon of 1000 Series.
6012 		 */
6013 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6014 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6015 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6016 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6017 	}
6018 	iwn_nic_unlock(sc);
6019 
6020 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6021 		/* Use internal power amplifier only. */
6022 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6023 	}
6024 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6025 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6026 		/* Indicate that ROM calibration version is >=6. */
6027 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6028 	}
6029 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6030 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6031 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6032 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6033 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
6034 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6035 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6036 	return 0;
6037 }
6038 
6039 /*
6040  * Take NIC ownership over Intel Active Management Technology (AMT).
6041  */
6042 static int
6043 iwn_hw_prepare(struct iwn_softc *sc)
6044 {
6045 	int ntries;
6046 
6047 	/* Check if hardware is ready. */
6048 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6049 	for (ntries = 0; ntries < 5; ntries++) {
6050 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6051 		    IWN_HW_IF_CONFIG_NIC_READY)
6052 			return 0;
6053 		DELAY(10);
6054 	}
6055 
6056 	/* Hardware not ready, force into ready state. */
6057 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6058 	for (ntries = 0; ntries < 15000; ntries++) {
6059 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6060 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6061 			break;
6062 		DELAY(10);
6063 	}
6064 	if (ntries == 15000)
6065 		return ETIMEDOUT;
6066 
6067 	/* Hardware should be ready now. */
6068 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6069 	for (ntries = 0; ntries < 5; ntries++) {
6070 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6071 		    IWN_HW_IF_CONFIG_NIC_READY)
6072 			return 0;
6073 		DELAY(10);
6074 	}
6075 	return ETIMEDOUT;
6076 }
6077 
6078 static int
6079 iwn_hw_init(struct iwn_softc *sc)
6080 {
6081 	struct iwn_ops *ops = &sc->ops;
6082 	int error, chnl, qid;
6083 
6084 	/* Clear pending interrupts. */
6085 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6086 
6087 	if ((error = iwn_apm_init(sc)) != 0) {
6088 		aprint_error_dev(sc->sc_dev,
6089 		    "could not power ON adapter\n");
6090 		return error;
6091 	}
6092 
6093 	/* Select VMAIN power source. */
6094 	if ((error = iwn_nic_lock(sc)) != 0)
6095 		return error;
6096 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6097 	iwn_nic_unlock(sc);
6098 
6099 	/* Perform adapter-specific initialization. */
6100 	if ((error = ops->nic_config(sc)) != 0)
6101 		return error;
6102 
6103 	/* Initialize RX ring. */
6104 	if ((error = iwn_nic_lock(sc)) != 0)
6105 		return error;
6106 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6107 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6108 	/* Set physical address of RX ring (256-byte aligned). */
6109 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6110 	/* Set physical address of RX status (16-byte aligned). */
6111 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6112 	/* Enable RX. */
6113 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6114 	    IWN_FH_RX_CONFIG_ENA           |
6115 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6116 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6117 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6118 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6119 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6120 	iwn_nic_unlock(sc);
6121 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6122 
6123 	if ((error = iwn_nic_lock(sc)) != 0)
6124 		return error;
6125 
6126 	/* Initialize TX scheduler. */
6127 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6128 
6129 	/* Set physical address of "keep warm" page (16-byte aligned). */
6130 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6131 
6132 	/* Initialize TX rings. */
6133 	for (qid = 0; qid < sc->ntxqs; qid++) {
6134 		struct iwn_tx_ring *txq = &sc->txq[qid];
6135 
6136 		/* Set physical address of TX ring (256-byte aligned). */
6137 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6138 		    txq->desc_dma.paddr >> 8);
6139 	}
6140 	iwn_nic_unlock(sc);
6141 
6142 	/* Enable DMA channels. */
6143 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6144 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6145 		    IWN_FH_TX_CONFIG_DMA_ENA |
6146 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6147 	}
6148 
6149 	/* Clear "radio off" and "commands blocked" bits. */
6150 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6151 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6152 
6153 	/* Clear pending interrupts. */
6154 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6155 	/* Enable interrupt coalescing. */
6156 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6157 	/* Enable interrupts. */
6158 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6159 
6160 	/* _Really_ make sure "radio off" bit is cleared! */
6161 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6162 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6163 
6164 	/* Enable shadow registers. */
6165 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6166 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6167 
6168 	if ((error = ops->load_firmware(sc)) != 0) {
6169 		aprint_error_dev(sc->sc_dev,
6170 		    "could not load firmware\n");
6171 		return error;
6172 	}
6173 	/* Wait at most one second for firmware alive notification. */
6174 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6175 		aprint_error_dev(sc->sc_dev,
6176 		    "timeout waiting for adapter to initialize\n");
6177 		return error;
6178 	}
6179 	/* Do post-firmware initialization. */
6180 	return ops->post_alive(sc);
6181 }
6182 
6183 static void
6184 iwn_hw_stop(struct iwn_softc *sc)
6185 {
6186 	int chnl, qid, ntries;
6187 
6188 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6189 
6190 	/* Disable interrupts. */
6191 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6192 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6193 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6194 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6195 
6196 	/* Make sure we no longer hold the NIC lock. */
6197 	iwn_nic_unlock(sc);
6198 
6199 	/* Stop TX scheduler. */
6200 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6201 
6202 	/* Stop all DMA channels. */
6203 	if (iwn_nic_lock(sc) == 0) {
6204 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6205 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6206 			for (ntries = 0; ntries < 200; ntries++) {
6207 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6208 				    IWN_FH_TX_STATUS_IDLE(chnl))
6209 					break;
6210 				DELAY(10);
6211 			}
6212 		}
6213 		iwn_nic_unlock(sc);
6214 	}
6215 
6216 	/* Stop RX ring. */
6217 	iwn_reset_rx_ring(sc, &sc->rxq);
6218 
6219 	/* Reset all TX rings. */
6220 	for (qid = 0; qid < sc->ntxqs; qid++)
6221 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6222 
6223 	if (iwn_nic_lock(sc) == 0) {
6224 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6225 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6226 		iwn_nic_unlock(sc);
6227 	}
6228 	DELAY(5);
6229 	/* Power OFF adapter. */
6230 	iwn_apm_stop(sc);
6231 }
6232 
6233 static int
6234 iwn_init(struct ifnet *ifp)
6235 {
6236 	struct iwn_softc *sc = ifp->if_softc;
6237 	struct ieee80211com *ic = &sc->sc_ic;
6238 	int error;
6239 
6240 	mutex_enter(&sc->sc_mtx);
6241 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
6242 		goto out;
6243 	if ((error = iwn_hw_prepare(sc)) != 0) {
6244 		aprint_error_dev(sc->sc_dev,
6245 		    "hardware not ready\n");
6246 		goto fail;
6247 	}
6248 
6249 	/* Check that the radio is not disabled by hardware switch. */
6250 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6251 		aprint_error_dev(sc->sc_dev,
6252 		    "radio is disabled by hardware switch\n");
6253 		error = EPERM;	/* :-) */
6254 		goto fail;
6255 	}
6256 
6257 	/* Read firmware images from the filesystem. */
6258 	if ((error = iwn_read_firmware(sc)) != 0) {
6259 		aprint_error_dev(sc->sc_dev,
6260 		    "could not read firmware\n");
6261 		goto fail;
6262 	}
6263 
6264 	/* Initialize interrupt mask to default value. */
6265 	sc->int_mask = IWN_INT_MASK_DEF;
6266 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6267 
6268 	/* Initialize hardware and upload firmware. */
6269 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6270 	error = iwn_hw_init(sc);
6271 	firmware_free(sc->fw.data, sc->fw.size);
6272 	sc->fw.data = NULL;
6273 	sc->fw.size = 0;
6274 	if (error != 0) {
6275 		aprint_error_dev(sc->sc_dev,
6276 		    "could not initialize hardware\n");
6277 		goto fail;
6278 	}
6279 
6280 	/* Configure adapter now that it is ready. */
6281 	if ((error = iwn_config(sc)) != 0) {
6282 		aprint_error_dev(sc->sc_dev,
6283 		    "could not configure device\n");
6284 		goto fail;
6285 	}
6286 
6287 	ifp->if_flags &= ~IFF_OACTIVE;
6288 	ifp->if_flags |= IFF_RUNNING;
6289 
6290 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6291 		ieee80211_begin_scan(ic, 0);
6292 	else
6293 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6294 
6295 	sc->sc_flags |= IWN_FLAG_HW_INITED;
6296 out:
6297 	mutex_exit(&sc->sc_mtx);
6298 	return 0;
6299 
6300 fail:	mutex_exit(&sc->sc_mtx);
6301 	iwn_stop(ifp, 1);
6302 	return error;
6303 }
6304 
6305 static void
6306 iwn_stop(struct ifnet *ifp, int disable)
6307 {
6308 	struct iwn_softc *sc = ifp->if_softc;
6309 	struct ieee80211com *ic = &sc->sc_ic;
6310 
6311 	if (!disable)
6312 		mutex_enter(&sc->sc_mtx);
6313 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6314 	ifp->if_timer = sc->sc_tx_timer = 0;
6315 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6316 
6317 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6318 
6319 	/* Power OFF hardware. */
6320 	iwn_hw_stop(sc);
6321 
6322 	if (!disable)
6323 		mutex_exit(&sc->sc_mtx);
6324 }
6325 
6326 /*
6327  * XXX MCLGETI alternative
6328  *
6329  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6330  * as long as there are available free buffers then it uses MEXTMALLOC.,
6331  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6332  * The MCLGET4K code is used for testing an alternative mbuf cache.
6333  */
6334 
6335 static struct mbuf *
6336 MCLGETIalt(struct iwn_softc *sc, int how,
6337     struct ifnet *ifp __unused, u_int size)
6338 {
6339 	struct mbuf *m;
6340 #ifdef IWN_USE_RBUF
6341 	struct iwn_rbuf *rbuf;
6342 #endif
6343 
6344 	MGETHDR(m, how, MT_DATA);
6345 	if (m == NULL)
6346 		return NULL;
6347 
6348 #ifdef IWN_USE_RBUF
6349 	if (sc->rxq.nb_free_entries > 0 &&
6350 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6351 		/* Attach buffer to mbuf header. */
6352 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6353 		m->m_flags |= M_EXT_RW;
6354 	}
6355 	else {
6356 		MEXTMALLOC(m, size, how);
6357 		if ((m->m_flags & M_EXT) == 0) {
6358 			m_freem(m);
6359 			return NULL;
6360 		}
6361 	}
6362 
6363 #else
6364 #ifdef MCLGET4K
6365 	if (size == 4096)
6366 		MCLGET4K(m, how);
6367 	else
6368 		panic("size must be 4k");
6369 #else
6370 	MEXTMALLOC(m, size, how);
6371 #endif
6372 	if ((m->m_flags & M_EXT) == 0) {
6373 		m_freem(m);
6374 		return NULL;
6375 	}
6376 #endif
6377 
6378 	return m;
6379 }
6380 
6381 #ifdef IWN_USE_RBUF
6382 static struct iwn_rbuf *
6383 iwn_alloc_rbuf(struct iwn_softc *sc)
6384 {
6385 	struct iwn_rbuf *rbuf;
6386 	mutex_enter(&sc->rxq.freelist_mtx);
6387 
6388 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6389 	if (rbuf != NULL) {
6390 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6391 		sc->rxq.nb_free_entries --;
6392 	}
6393 	mutex_exit(&sc->rxq.freelist_mtx);
6394 	return rbuf;
6395 }
6396 
6397 /*
6398  * This is called automatically by the network stack when the mbuf to which
6399  * our RX buffer is attached is freed.
6400  */
6401 static void
6402 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6403 {
6404 	struct iwn_rbuf *rbuf = arg;
6405 	struct iwn_softc *sc = rbuf->sc;
6406 
6407 	/* Put the RX buffer back in the free list. */
6408 	mutex_enter(&sc->rxq.freelist_mtx);
6409 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6410 	mutex_exit(&sc->rxq.freelist_mtx);
6411 
6412 	sc->rxq.nb_free_entries ++;
6413 	if (__predict_true(m != NULL))
6414 		pool_cache_put(mb_cache, m);
6415 }
6416 
6417 static int
6418 iwn_alloc_rpool(struct iwn_softc *sc)
6419 {
6420 	struct iwn_rx_ring *ring = &sc->rxq;
6421 	struct iwn_rbuf *rbuf;
6422 	int i, error;
6423 
6424 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6425 
6426 	/* Allocate a big chunk of DMA'able memory... */
6427 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6428 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6429 	if (error != 0) {
6430 		aprint_error_dev(sc->sc_dev,
6431 		    "could not allocate RX buffers DMA memory\n");
6432 		return error;
6433 	}
6434 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6435 	SLIST_INIT(&ring->freelist);
6436 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6437 		rbuf = &ring->rbuf[i];
6438 
6439 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6440 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6441 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6442 
6443 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6444 	}
6445 	ring->nb_free_entries = IWN_RBUF_COUNT;
6446 	return 0;
6447 }
6448 
6449 static void
6450 iwn_free_rpool(struct iwn_softc *sc)
6451 {
6452 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6453 }
6454 #endif
6455 
6456 /*
6457  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6458  * Copyright (c) 2001 Atsushi Onoe
6459  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6460  * Copyright (c) 2007-2009 Damien Bergamini
6461  * All rights reserved.
6462  */
6463 
6464 /*
6465  * Add an SSID element to a frame (see 7.3.2.1).
6466  */
6467 static u_int8_t *
6468 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6469 {
6470 	*frm++ = IEEE80211_ELEMID_SSID;
6471 	*frm++ = len;
6472 	memcpy(frm, ssid, len);
6473 	return frm + len;
6474 }
6475 
6476 /*
6477  * Add a supported rates element to a frame (see 7.3.2.2).
6478  */
6479 static u_int8_t *
6480 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6481 {
6482 	int nrates;
6483 
6484 	*frm++ = IEEE80211_ELEMID_RATES;
6485 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6486 	*frm++ = nrates;
6487 	memcpy(frm, rs->rs_rates, nrates);
6488 	return frm + nrates;
6489 }
6490 
6491 /*
6492  * Add an extended supported rates element to a frame (see 7.3.2.14).
6493  */
6494 static u_int8_t *
6495 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6496 {
6497 	int nrates;
6498 
6499 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6500 
6501 	*frm++ = IEEE80211_ELEMID_XRATES;
6502 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6503 	*frm++ = nrates;
6504 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6505 	return frm + nrates;
6506 }
6507 
6508 /*
6509  * XXX: Hack to set the current channel to the value advertised in beacons or
6510  * probe responses. Only used during AP detection.
6511  * XXX: Duplicated from if_iwi.c
6512  */
6513 static void
6514 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6515 {
6516 	struct ieee80211_frame *wh;
6517 	uint8_t subtype;
6518 	uint8_t *frm, *efrm;
6519 
6520 	wh = mtod(m, struct ieee80211_frame *);
6521 
6522 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6523 		return;
6524 
6525 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6526 
6527 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6528 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6529 		return;
6530 
6531 	frm = (uint8_t *)(wh + 1);
6532 	efrm = mtod(m, uint8_t *) + m->m_len;
6533 
6534 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6535 	while (frm < efrm) {
6536 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6537 #if IEEE80211_CHAN_MAX < 255
6538 		if (frm[2] <= IEEE80211_CHAN_MAX)
6539 #endif
6540 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6541 
6542 		frm += frm[1] + 2;
6543 	}
6544 }
6545 
6546 #ifdef notyetMODULE
6547 
6548 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6549 
6550 #ifdef _MODULE
6551 #include "ioconf.c"
6552 #endif
6553 
6554 static int
6555 if_iwn_modcmd(modcmd_t cmd, void *data)
6556 {
6557 	int error = 0;
6558 
6559 	switch (cmd) {
6560 	case MODULE_CMD_INIT:
6561 #ifdef _MODULE
6562 		error = config_init_component(cfdriver_ioconf_if_iwn,
6563 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6564 #endif
6565 		return error;
6566 	case MODULE_CMD_FINI:
6567 #ifdef _MODULE
6568 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6569 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6570 #endif
6571 		return error;
6572 	case MODULE_CMD_AUTOUNLOAD:
6573 #ifdef _MODULE
6574 		/* XXX This is not optional! */
6575 #endif
6576 		return error;
6577 	default:
6578 		return ENOTTY;
6579 	}
6580 }
6581 #endif
6582